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a short data window using deep learning algorithms. This paper shows that
the proposed deep convolutional neural networks (CNNs)-based assessment
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steps performed through max pooling (Time LeNet), time CNN, fully con-
volutional network with attention mechanism (Encoder), and CNN with a
shortcut residual connection (ResNet). The proposed approach is validated
on different synthetic measurement data sets generated from the IEEE 9-bus
system that is used as a reference, and further applied to a 769-bus system
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1. Introduction

Applications of Deep Learning (DL), a special class of Machine Learning
(ML) techniques that employ multi-layered neural networks (NNs) to extract
information from raw data, have recently emerged in power systems analy-
sis. The typical applications of DL are classification of events from Phasor
Measurement Unit (PMU) data [I], voltage stability [2], [3], and dynamic
security assessment [4], among others.

To maintain the small signal stability (SSS) of a power system, the au-
thors in [5] address the problem of parameter optimization for power system
stabilizers (PSSs). The proposed approach employs a NN with Levenberg-
Marquardt optimization, showing good performance. Another example of
the successful applications of NNs is presented in [6], where optimal PSS
parameters are determined for PSSs that do not provide enough damping for
the system. Meanwhile, the work of [7] explores optimal and robust power
system stabilizer design for multi-machine power systems. A heuristic search
optimization that is known as cuckoo search optimization is proposed to ob-
tain PSS parameters that ensure SSS of a particular power system. Since
heuristic algorithms empirically showed a convergence close to the global op-
timum, the work of [§] proposed to use such algorithms for coordinated tuning
of PSS parameters too. In [9] the authors propose to employ the decision
trees at each generation bus to evaluate the interarea oscillations damping.
The method is of low computational burden and robust to loss of informa-
tion. In [10] the authors proposed to use a convolutional neural network to
damp oscillations. The CNN is integrated into the control system of a power
system stabilizer, which differs from the research task presented in this work.
In [11] the authors presented a convolutional neural network that is applied
for small signal stability assessment, however, the input data is generated
only for N — 1 contingencies, while in our work we generate the N — m con-
tingencies according to the statistical distribution of such events until the
grid preserves integrity (for more details please refer to [12]). In addition,
we propose a comparison study of different neural network architectures for
the proposed SSS assessment problem, discussing the results. In the recent
publication [I3] Light Gradient Boosting Machine method as a variant of
decision trees is applied for damping assessment using power measurements
of 9-bus and 39-bus systems. The presented approach and the problem for-
mulation is adjacent to the presented one in our research, however, differs
in data collection, methodology of the assessment using decision trees, and



the output damping value evaluation. In [14] and [I5] the SSS assessment is
addressed using one CNN architecture for classification, permutation feature
importance as feature selection method, and transfer learning technique to
start with better training initialization. In contrast, in this work several ar-
chitectures of CNNs adapted for time-series classification task are considered
in order to compare their performance under different hyperparameters such
as batch size, and data length that influence the training process and the
classification result.

As can be noticed, most of the methods in the literature are concerned
with the improvement of the SSS of a system after such instability has been
detected. However, limited attention [16] has been paid to the automation of
fast instability detection using a time window shorter than classical methods
(i.e. Prony method [I7], [I8]). In contrast to the approach proposed in this
work, other methods require meticulous and cumbersome data preparation
for training to ensure good performance of the proposed machine learning
algorithms [19], [20]. In this paper deep convolutional neural networks with
different architectures are studied to solve the small signal stability assess-
ment (SSSA) task. These algorithms allow for extremely fast decision mak-
ing after being adequately trained [2I]. In addition, the proposed approach
demonstrates good performance under relatively short input data lengths
and can perform classification online.

Even though deep learning is a relatively novel research area, the appli-
cations for power system problems become numerous, and expected to grow
[22]. Another reason for the limited application is the requirement of care-
ful data generation for training, which is a challenging task in the case of
working with large power systems [23|, [12]. First, this task demands consid-
erable computational power. Second, substantial effort is needed to design
numerical experiments together with simulation data cleaning and curating
before training of the deep learning algorithms takes place. If irrelevant or
invalid data is preserved in the training data set, the trained deep learning
model may learn inappropriate rules and patterns in the data, that corrupt
the performance of the algorithm.

In this paper we propose an approach for SSSA using novel deep convolu-
tional neural network architectures adapted for time series data classification,
employing data preparation techniques for training, and validating the ap-
proach on the large 769-bus system. In this approach, the classes are the
system conditions, i.e. stable or unstable. Thus, the main contributions of
this paper are:



1. To propose a novel fast approach employing FCN [24], Time LeNet
[25], Time CNN [26], Encoder [27], ResNet [24] for SSSA. The proposed
system extracts patterns in power system data that include both spatial
and temporal dependencies that are used for SSSA, which is a novel
approach for SSS analysis. We show that CNN is capable of performing
faster than traditional Prony.

2. To show the importance of using precision and recall metrics (illustrated
through case studies), how to contrast these metrics and to explain how
they influence the trained model’s evaluation.

3. To provide a comparison of the performance of trained models that use
different signal types such as voltage phasor magnitude, voltage phasor
angle, with and without Gaussian noise.

4. To evaluate how the length of the input signal influences model perfor-
mance for each deep neural network studied and compare it with the
classical Prony method.

The remainder of the paper is organized as follows. Section [2] introduces the
proposed method. Section [3] elaborates each of five algorithms applied for
the small signal assessment task. Section {f presents the assessment of the
proposed method. Finally, Section [6] concludes this work.

2. Proposed Method

2.1. Owverview of the framework

The proposed method consists of two major processes: off-line learning
and online assessment. The former consists of three phases: training, vali-
dation and testing, shown in Figure [l In the training phase, the ML model
learns from labeled data by tuning its parameters. The model training pro-
cess involves iterations where the output of the algorithm and the true label
are compared using a performance metric, e.g. accuracy. The validation
phase includes tuning the hyperparameters of the classifier (internal param-
eters of the chosen CNN architecture). The testing phase involves exposing
the trained CNN to unseen sets of data to verify if it has been trained and
validated correctly. Once the model is trained, the online assessment process
exploits the trained CNN model for SSS assessment. This process includes
the deployment of the trained model at the control center with the online
collection of the measurements and evaluation of CNN’s output.
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Figure 1: Overview of the proposed method.



2.2. Data Preprocessing

The following data preprocessing steps are performed for the voltage angle
signal at each generator bus: a) subtraction of the center of angle that is
defined as the inertia weighted average of all rotor angles [28]; b) unwrapping;
c) subtracting the initial value to obtain a deviation signal; d) detrending.
Let us present the input data as x = [xj, Xa, ..., Xr|, where T is the number
of time-series signals. For the voltage magnitude of positive sequence data,
the deviations of the voltage signals are presented as follows:

x; = [Vig— Vip, Vay — Va0, .s Vie = Vio, Ve — Vivy) (1)

where N is the total no. of buses, V;; is the voltage magnitude at bus i
of length ¢, and Vo the initial value of voltage for each bus 7. In addition,
to test the ability of the deep learning algorithms to learn from noisy data,
1% Gaussian noise has been added to the simulated signals that are used as
pseudo-measurements in this work.

In the case of the voltage angle, the data is presented as a set of vectors
of x = [£014, L0y, ..., Z0N4]. Then, then angle unwraping is performed by
computing:

l@jﬁ' = 49]-71- + (27Tk) if (AGM - Aﬁjyi,l) Z ™ (2)

where 7 is the sample number in the dataset, ¢ the identifier of a measurement
at a particular moment in time, and k is updated after every large jump in
the phase value [29].

It is assumed that measurements are made at key system locations where
PMU are installed or simulated using the equivalent system model: generator
terminal buses at major power plants, major transmission level substations
and boundary buses of tie-lines between the study and neighboring systems.

2.3. Offtine Training

The collected data is divided into 3 parcels: (1) training, validation and
testing data (see Section . The split is usually done with % of data used
for training, and % of data used for testing. In case when there is a lack of
data, k-fold cross validation is employed to generate a validation set of data,
where k defines a number of groups the data is divided into, meaning that
k-th part of the data will be left for validation of the trained model. Thus,
the model is trained on k — 1 folds of data and evaluated on the k-th subset
of data.



If the training set is presented as a collection of values {x (), y(n)}f:[:l, the
objective of the training is to find the parameters of a model (e.g. W, b in
equations ) when minimizing the categorical cross entropy error function

LC’E; i.e.,

N C
Lep =min » > Yo mlog(fe,m) (3)
n=1 c=1
where ¢,y is the classification result of the input values x(,) for the trained
model, C' the number of classes, and N the number of training cases.
The classification is performed according to:

0 (Stable),  if V(; > 3%
Yn) = { ) (4)

1 (Unstable), if 3¢; < 3%

where (; is the damping ratio of the i-th oscillatory mode, with ¢ = 1...m
for a power system with m modes.

The oscillatory mode is represented as a complex eigenvalue \; = o; + jw;
of the state matrix A of a power system, where o; - a decay rate, f; =
w;/(2m) - the oscillation frequency in Hertz. The damping ratio of the mode
is evaluated as given in [30]:

—0

(i = —=—— x 100 (5)

2
o7 + w;

According to the North American Electric Reliability Corporation tech-
nical report [31]: "Though alert and alarm thresholds should be based on
studies, a damping ratio below 5% typically warrants investigation while
corrective action is likely necessary if the damping ratio falls below 3%."
Therefore, the threshold of damping ratio that is equal to 3% was chosen.

2.4. Online Assessment

For small signal assessment, the online assessment is performed when the
trained model is employed to classify the state of the system using measure-
ments as input (e.g., PMU data) that contains pre-fault measurements, the
measurements during the contingency itself, and post-contingency measure-
ments.

In the online assessment stage, the trained deep learning model is used
as a classifier that defines the power system stability state based on the



collected measurements. It is assumed that the set of measurements - voltage
magnitude or voltage angle of the length T, are collected and minimally
preprocessed before passing to the classifier (Fig. [1). The output of the
classifier (see Figs. , , 7 @ is evaluated and passed through the softmax
function to make a decision on the predicted value g € (0, 1) for each class.
The parameter of the softmax function delta 6 = 0.5 defines the boundary
between the classes. Thus, the prediction of the class is made in favour of
the y > ¢.

2.5. FEvaluation Metrics

The training of the CNNs has been performed using accuracy metric,
while precision and recall were measured on testing data.

Accuracy. This metric defines the general performance of the algorithm
over all classes.

Nrp + Nrn
Nrp+ Npp + Nry + Npn

accuracy = (6)
where Nrp is the total of unstable cases (positive class corresponds to un-
stable labeling) correctly classified as unstable; Nry is the total of stable
cases (negative class by choice of the authors) correctly classified; Ngp is the
number of stable cases misclassified as unstable; and Ngy is the number of
unstable cases misclassified as stable.

Precision and Recall. Precision relates accuracy of the model in clas-
sifying the data as positive sample. Recall evaluates the number of correct
positive predictions over all positive predictions that are relevant.

N N
T crecall = — 2 (7)

.. P
precision = ————;
Nrp + Npp Nrp + Npn

3. Deep Convolutional Neural Networks

In this section, the Deep CNN architectures that are used for time-series
data classification are presented.
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Figure 2: Fully convolutional neural network architecture

3.1. Fully convolutional neural network (FCN)

The architecture of FCN [24] is presented in Fig. [2| The basic convolution
block can be described by equations (8)):

y=W®®x+b
s = BN(y) (8)
h = ReLU(s)

where ® - the convolution operator, BN is the batch normalization function,
ReLU is the rectified linear unit function.

Meanwhile, the objective function is a categorical cross entropy to be
minimized. The Adam optimizer is a stochastic gradient descent method.

8.2. Time LeNet

Time-LeNet architecture [26] (Fig. [3]) includes two convolutional hidden
layers that are followed by a pooling layer, a feature layer, and an output
layer. The Time-LeNet NN is described by

y-(t) = ReLU(W, ® x(t) + b,)

sp(t) = MP(y,((t = DI+ 1), 40 ((E = D)1 +2), ...,y (8)) (9)
h = ReLU(Z s+ b)

where % denotes dot product, M P denotes max pooling operation, r is the
number of filters (feature maps), [ is the length of a convolution window.

The objective function is a loss function that is defined as categorical
cross entropy to be minimized. The optimizer is Adam (see Section with
learning rate equal to 0.01, and decay equal to 0.005.
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Figure 4: Time CNN neural network architecture
3.3. Time-CNN

Time-CNN [26] shown in Fig. []is a traditional deep CNN, but with
the output consisting of a fully convolutional layer and using a local aver-
age pooling operation instead of max pooling operation in the Time-LeNet
architecture (Fig. @ The Time-CNN can be described by

y-(t) = S(W, @ x(t) + b,)

5o(t) = APy ((t = DI+ Dyt = DI+ 2), gty O

where S is the sigmoid activation function, AP is the average pooling oper-
ation. The objective function is a mean squared error to be minimized. The
optimizer is Adam with learning rate equal to 0.001.

3.4. Encoder

The Encoder (Fig. [27] is a hybrid deep CNN architecture that is
similar to FCN with the difference in one layer: the GAP layer is replaced
with an attention layer. This architecture is larger in number of feature maps
in each convolutional layer than Time-LeNet or Time-CNN. The operations
within the hidden layers are presented in the set of the equations .
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hy = Conuvg, (z); hy = Conuvg,(hy)

x = Conuvg,(hs)

y=ATN (x[:,:,: 256] = S(x[:,:, 256 :]))

2=W®y+Db; s=IN(z); u=5(s)

(11)

where I N is an instance normalization operation, k1, ko, k3 are the number of
output filters equal to 128, 256, and 512, respectively; AT'N is the attention
mechanism, and S is the softmax function.

The attention AT'N(-), is implemented by splitting the data in equal
parcels. Softmax function is applied to one parcel, and then two parcels
are multiplied. Thus, each element of the softmax-treated parcel serves as a
weight for another one. This mechanism enables the model to learn which
parts of the time series are important for classification.

The objective function is a loss function that is defined as categorical
cross entropy to be minimized. The optimizer is Adam with the learning
rate equal to 1 x 1076,

3.5. Residual Neural Network (ResNet)

Finally, the last NN architecture used in this work is the Residual Neural
Network (ResNet) [24], which is a deep NN with 11 layers among each 9 lay-
ers that are convolutional (see Fig. [6]). The main characteristic of this type
of network is the shortcut residual connection between consecutive convolu-
tional layers. Thus, each convolutional layer characterized by the number of
filters k, as shown by

hy = Conug, (z); he = Conuvg,(hy); hs = Convg,(hs)
y=nhs+x (12)
h = ReLU(y)
where ki = 64, ky = 128, k3 = 128 is the number of filters in each layer. The
final layer includes both global average pooling and softmax operations.

11
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4. Case Studies and Analysis

The following case studies were conducted to employ the proposed CNNs
of different architectures and show their superiority on shorter data window
than required for Prony algorithm. To determine if the deep CNNs are
capable to perform well, several approaches to prepare training and testing
data were used. In order to limit the possible space of states that define the
dynamics to be learnt and, therefore, to verify the capability of each deep
CNNs architecture for SSSA, the IEEE 9-bus system is chosen for proof-of-
concept. This system is a reduced model of the Western System Coordinating
Council system with nine buses and three generators with base kV levels are
13.8 kV, 16.5 kV, 18 kV, and 230 kV [32].

Using the IEEE 9-bus system, seven case studies were developed as shown
in Table [l

The labeling of the data is done using modal analysis of the power system
(see Section [2.3)). The simulation data was obtained using the approach for
realistic contingency scenario generation in [12]. The methodology to gen-
erate realistic data contains a contingency creation of a certain length via
line opening, however, preserving the integrity of the system. The genera-
tion was performed with fault clearing time sampling following the Gamma
distribution and location sampling. The initial operating conditions of each
system simulation are sampled from the range of operating conditions that
are created uniformly changing load/generation in 0.7-1.3 times initial op-
erating condition and solving power flow. In addition, the shifting of the
measurements window to include the pre-contingency interval is performed
to observe if the data during steady state operation influences the deep neural
networks’ training.

The number of cases of stable and unstable scenarios were balanced to
allow the deep CNNs to learn both classes with the same importance. The
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Table 1: Case Study Setup. IEEE 9-bus system

Case Study | Data | Preprocessing Noise Prefault interval

1 /0 Yes No 1 sec
2 20 Yes 1% Gaussian 1 sec
3 V No No No

4 Vv No No 0.5 sec
5) %4 No No 1 sec
6 %4 Yes No 1 sec
7 %4 Yes 1% Gaussian 1 sec

where Z6 - voltage angle, V' - voltage magnitude. For all the cases the data
are generated using [12],the data length is 10 sec.

Table 2: Performance evaluation of Deep Convolutional NNs. IEEE 9-bus system
Case Study Metrics FCN Time-LeNet Time-CNN Encoder ResNet

1 0.993 / 0.991 / 0.977 | 0.993 / 0.991 / 0.977 | 0.989 / 0.992 / 0.971 0.990 / 0.992 / 0.973 0.992 / 0.994 / 0.978
0.992 / 0.994 / 0.978 [ 0.992 / 0.994 / 0.978 | 0.990 / 0.992 / 0.975 0.990 / 0.991 / 0.973 0.990 / 0.988 / 0.977

2

3 0.778 /0.781 / 0.815 0.989 /0.992 /0.971 | 0.986 / 0.989 / 0.963 | 0.989 /0.992 /0.972 | 0.991 / 0.991 / 0.979
4 Accuracy/ Precision/ Recall | 0.989 / 0.992 / 0.971 | 0.989 / 0.992 / 0.971 | 0.986 / 0.989 / 0.963 | 0.989 / 0.992 / 0.972 0.450 / 0.390 / 0.576
5 0.989 /0.992 / 0.971 | 0.427 /0.142 / 0.333 [ 0.986 / 0.989 / 0.963 | 0.989 / 0.992 / 0.972 [ 0.988 / 0.991 / 0.970
6 0.989 /0.992 / 0.971 [ 0.989 /0.992 /0.972 | 0.987 /0.989 / 0.963 | 0.989 / 0.991 / 0.972 | 0.989 / 0.992 / 0.971
7 0.985 /0.984 / 0.965 0.987 /0.986 / 0.970 | 0.985 /0.989 /0.963 | 0.989 / 0.992 / 0.972 | 0.986 / 0.986 / 0.967

evaluation metrics are accuracy, precision, and recall. The two latter metrics
are not typical for the evaluation, however, we show that in some cases they
are decisive while accuracy give incomplete information.

After analyzing the performance achieved by the CNNs for the IEEE 9-
bus system, the measurements of the particular type that correspond to the
best performance are selected for the further training and tuning using a
large-scale power system model, i.e. a 769-bus system of a region in the U.S.
Eastern Interconnection. For this system the time-series data was labeled by
performing mode estimation using Prony method [I7] to replicate scenarios
when the model of the system is not available. However, the data window
for the proposed CNNs approach for SSSA is much shorter than for Prony
analysis.

4.1. Proof of Concept: Training on voltage angle data from the IEEE 9-bus
system

The data reporting rate is 60 times per second. The training is done
on input data of size 4,498 data parcels (corresponding to the same number
of different nonlinear simulations, i.e. 4,498), each of a 10 sec length. The
experiment settings are presented in Table [T the results of the training for
each case study are summarized in Table

13



4.1.1. Case Study 1: Voltage angle data without noise, with a pre-contingency
interval

In this case study the generated data does not contain noise, but includes
a steady state interval of 1 sec before the contingency occurs. The results of
training the algorithms are marked as Case study 1 in Table

For all the CNN models recall is lower than accuracy or precision. Lower
recall than precision means that the number of false negative examples (un-
stable cases misclassified as stable) is bigger than the number of false positives
(stable cases misclassified as unstable). Thus, we consider that the better
CNN model is the one with higher recall, meaning less misclassified unsta-
ble cases. For the system operator the minimization (preferably zero) of the
misclassified unstable cases is crucial to trust the classifier’s output.To sum-
marize, the best training results considering all applied metrics are achieved
utilizing FCN, ResNet NNs, and Time-LeNet.

4.1.2. Case Study 2: Voltage angle data with 1% Gaussian noise, and with
a pre-contingency interval

A typical value of 1% Gaussian noise has been added to the voltage angle
signal. The results of this case study, shown in Table 2 suggest that the best
performing deep NNs among tested are FCN and Time Le-Net.

The difference between FCN and Time Le-Net is that FCN has a GAP
layer with average pooling, while Time Le-Net has max pooling after each
convolutional layer. Nevertheless, both networks showed good performance
in this case study.

4.2. Training on voltage magnitude data from the IEEE 9-bus system

In this case study the aim is to compare the CNNs trained using voltage
magnitudes measured at the generator buses in IEEE 9-bus system.

4.2.1. Case Study 3: Voltage magnitude data without noise, after the con-
tingency
In this case study the data has been collected right after the contingency
starts, for a duration of 10 sec.
Following the results in Table [2| the performance of the convolutional
architectures, especially of FCN, has decreased in comparison to the results
of Case Study 1 and 2. ResNet showed the best performance.

14



Table 3: Case Study 7: Training on voltage amplitude data with 1% Gaussian noise

Algorithm | Train loss | Valid. loss | Train accuracy/ | N. of

valid. accuracy | epoch

FCN 0.000 1.496 1/0.985 1999
Time-LeNet 0.064 0.075 0.987/0.985 5

Time-CNN 0.007 0.010 0.987/0.985 1987
Encoder 0.000 0.134 1/0.989 85

ResNet 0.000 0.208 1/0.986 1477

4.2.2. Case Study 4: Voltage magnitude data without noise, with pre-contingency
interval

In this case study the data of steady state operation (0.5 sec) before a
contingency with the data (9.5 sec) after the contingency is used for training.
In Table [2| Case 4 results show performance improvements for the FCN with
respect to Case 3, while Time-CNN, Time Le-Net and Encoder demonstrated
better robustness towards the data change. ResNet showed the worse per-
formance. This can be explained by the special architecture of ResNet that
allows the NN to remember longer the past patterns in the data. In this case
this memory did not allow convergence to a better solution. To conclude,
the results of Table [2| suggest that Encoder is the best choice for training on
the data in this case study.

To verify these conclusions, additional data corresponding to the steady
state regime has been added to the data sets. Thus, the simulations start 1
sec. before the contingency is applied.

4.2.3. Case Study 5: Voltage magnitude data without noise, with enlarged
pre-contingency interval

In this case (see Tables [2) the Encoder shows the best performance. In
addition, ResNet and FCN showed good performance as well. ResNet has
improved its performance with respect to the previous case study. In contrast,
Time Le-Net demonstrates the worst performance among all the CNNs.

The results showed that the best performance of all deep NNs is achieved
when using data from the preprocessed angles deviations (see Section
for data preprocessing details). Therefore, considering the effectiveness of
the data preprocessing, the next case study is designed using the voltage
magnitude deviations measured on the generator buses in the IEEE 9-bus
system.

15



4.3. Case Study 6. Voltage magnitude deviation data

Results for this case study are shown in Table [2| were an improvement
(w.r.t. Case 5) of performance of all the NNs can be observed. We can
conclude that the deviations allow the models to focus more on the system
dynamics, which are masked when evaluating the raw magnitude values.
FCN and ResNet performed equally good.

To consider training on data that is closer to “real-world” measurements,
1% Gaussian noise is added to the voltage magnitude deviations in the next
case study.

4.4. Case Study 7. Voltage magnitude deviations data with 1% Gaussian
noise

In this study, when the 1% Gaussian noise has been added to the mea-
surements, one can observe an example of overfitting of the trained NNs. If
we judge on the results in Table [2, we can draw a conclusion that the best
NN architecture for this case is the Encoder. However, as Table |3| clearly
shows, the FCN, Encoder and ResNet experience overfitting when exposed
to noisy data. In other words, the trained NNs remembered noise as useful
dynamics, which is unwanted behaviour.

In contrast, using the results of Table [3| together with Table [2| it can
be observed that Time Le-Net and Time-CNN show good performance and
did not overfit. Therefore, one of these architectures has to be chosen for
implementation when considering noisy data. Otherwise, the extra tuning
of NN is required to avoid overfitting. In addition, comparing Time Le-Net
and Time-CNN using the computational efficiency metric, Time Le-Net is
superior in the training time showing the fastest convergence (in 5 epochs)
to the best model.

4.5. Training on voltage angle deviations data of the 769-bus system

This case study has been developed to ensure that the proposed method-
ology is valid for a large-scale power system.

4.5.1. Voltage angle deviations data preparation

Considering the results from Case Studies 1-7, the best performance of
the deep CNN algorithms has been achieved on preprocessed voltage angle
deviations data. Therefore, this case study has been designed using the
same kind of data as in Section [4.I] These synthetic measurements are
collected locally at the terminal bus of the largest generator in the 769-bus
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system. As mentioned earlier, the data has been generated using the realistic
contingency generation algorithm [12]. The labeling of the generated data
was performed using Prony’s algorithm starting from the 2 seconds mark of
the simulation until 10 seconds, having a 8-second window. Since Prony is
a simple estimation algorithm, the estimation problem is constrained to fit
the pole that is closest to 0.8 Hz which is a frequency of a typical inter-area
mode in the 769-bus system [33]. Within the generated simulations, there
is a lack of cases with negative damping. Consequently, for this case study,
we consider two classes: stable and unstable (when the damping is less than
3%). The data contains 7,878 time-series trajectories in total. The data
reporting rate is 60 samples per second. It has been divided to % of data
for training, and % of data for testing. The validation procedure has been
performed using a k-fold cross validation algorithm.

4.5.2. Voltage angle deviations data with and without 1% Gaussian noise

The dependency of the performance metrics on presence of noise in the
data is more prominent in precision and recall change, when accuracy remains
very close to the value trained without noise. The significant difference be-
tween the accuracy of training with and without noise data is observed in
Encoder (around 5%) without dependency on the batch size in Fig. (7| and
Fig. [8, and ResNet when the batch size is 128 in Fig. [7], less prominent
(range of 2 —4%) for every CNN when the data length is 6.67 sec. in Fig. [9]

When recall drops significantly for FCN (around 14%) the batch size
increased to 128, for ResNet (around 26%), and it improves for the Encoder
(up to 10%) with the presence of noise. This improvement is interpreted as
the decrease in misclassification of unstable scenarios with respect to truly
unstable cases. Therefore, the architecture of Encoder with the attention
mechanism allows to classify unstable scenarios better in the presence of
noise when the data interval is short. The best performance on the short
data length is received using the Encoder and Time-LeNet architectures.
The latter uses max pooling (propagating maximum out of the region where
the operation is applied) after each convolutional layer.

4.5.3. Batch size tuning

The batch size defines how often the NNs parameters will be updated
during the training. Larger batch size speeds up the training, but the ac-
curacy of the trained NN may suffer due to rare updates. According to the
results in Fig. [7, 8] and [9] the optimal batch size is 64 when considering the

17



improvement of the performance metrics. The Encoder has shown good ro-
bustness of the precision towards the noise. However, when the training data
length is shorter, the precision of the Encoder and Time-LeNet drops with
the increase of the batch size. Thus, if the goal is to utilize shorter input data
(decreasing the data collection window), and therefore, the total processing
time for the whole method when performing the online assessment, the batch
size has to be limited to 64.

4.5.4. Dependency of performance metrics on the data length. Comparison
with Prony method

Considering the conclusion on the optimal batch size value, in Fig. [10|the
dependency of the metrics on the training data length for the fixed batch size
is shown. The best performance is shown by the Encoder and Time-LeNet,
while there is a decrease in metrics for the data length of 200 samples, the
difference in metrics is negligible for the length of 300 and 400 samples. In
addition, the classic SSSA approach - Prony method - is 10% less accurate
than the proposed methodology. The ability of the CNN perform fast and
accurate classification is explained by the meticulous training phase.

4.5.5. Performance Time. Training and Online Assessment

In Figll] the benefit of Time-LeNet is that of offering the fastest online
assessment time performance, however, this comes at the cost of requiring
substantial offline training time to be allocated. The opposite case is shown
by the Encoder, the online assessment time is larger but still small (less than
1.8 x 1073 sec.), while the training time is the smallest among the considered
CNNs.

4.5.6. Analysis of acceptable level of misclassification

In Fig[I2] the input data for qualitative analysis is shown. These help to
understand the difference in misclassified unstable cases that were overlooked
by the Encoder, but correctly classified by Time-LeNet. It worth noticing
that among the cases that where misclassified by the Encoder, only one is
obviously unstable. The potential explanation for this misclassification can
be the lack of similar cases in the training set, as the majority of cases
are marginally stable. The case with indx=2570 in Fig. has prominent
unstable upper envelope of the voltage angle signal and marginally stable
behaviour for the lower envelope of the signal.
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5. Discussion

The proposed framework (Fig. is designed to be smoothly integrated
into the operators’ decision-making process. In case of system instability
connected with the inappropriate damping value, alarm has to be raised to
the power system operator. According to NYISO operations monitoring pro-
cedures [34] the response to the warning operation includes the list of actions
that are coordinated between transmission operators and the other control
areas in case the automatic control (for example, power system stabilizer)
fails to stabilize the system. Among the corrective actions that are recom-
mended for the power system operators are terminal bus voltage set point
adjustment at automatic voltage regulator, generation reduction, switching
on the shunt capacitor banks, load shedding and generation trip as last re-
sort. Usually, the operators apply the actions in the mentioned order till the
stabilization of a system. In case of necessity to track the damping value of
the system, the task of SSS assessment can be reformulated into the deep
learning-based damping prediction as it is presented in [13], [35].

6. Conclusion

In this paper we propose a novel method to perform small signal stability
assessment of a power system using deep convolutional neural networks to
learn the oscillatory pattern of power system dynamics by capturing time and
spatial dependencies in the measurements. The main advantage of the pro-
posed approach is the ability of performing substantially faster than classical
algorithms on the shorter data window with substantially higher accuracy
(10%) with online execution times as low as 1.8x1073 sec. by exploiting the
trained CNNs.

To validate the method, the synthetic realistic measurements were gener-
ated using the IEEE 9-bus system and the 769-bus system. Among all data
types used for the validation of the CNNs performance, the best performance
was achieved for the preprocessed voltage angle differences. Time-LeNet and
Encoder have shown the best performance in terms of performance metrics
such as accuracy, precision, and recall. While accuracy is less susceptible to
the changes made in each study, precision and recall shown how sensitive the
method is towards unstable or marginally stable conditions.
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