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ARTICLE INFO ABSTRACT
This paper is dedicated to Prof. Roland The use of adjoint solvers is considered in order to obtain the sensitivity of clinical measures
Glowinski in aneurysms to incomplete (or unknown) boundary conditions and/or geometry. It is shown

that these techniques offer interesting theoretical insights and viable computational tools to

. obtain these sensitivities. A optimization framework with Navier-Stokes equations (in the laminar
Incomplete boundary conditions . . .. e e . . . Ls
Adjoint solvers regime) as constraints is introduced. Sensitivities with respect to inflow and inflow position are
CFD derived. In the specific case of inflow normal to the boundary, the sensitivities are shown to be
Sensitivity analysis the function of adjoint pressure. For the Poiseuille flow through a channel, explicit expressions
for all the underlying quantities such as solution to the state equations, adjoint equations and
sensitivites are derived, which are further confirmed by numerical experiments. In the next two
examples, flow inside aneurysm geometries is considered.

Keywords:

1. Introduction

The analysis of haemodynamic phenomena and their clinical relevance via computational mechanics (fluids, solids, ...) is now
common in research and development. Yet a recurring question has been the influence of boundary conditions and geometry on
‘clinically relevant measures’. As an example, consider flows in aneurysms, which are thought to be one of the primary drivers of
aneurysm wall degeneration leading to destabilization, growth and eventual rupture [45,36]. Because the risk of aneurysm rup-
ture is small (less than 1% annually [36]) but devastating, and the risk of complications during interventions is still significant
(approximately 10% combined [23,27]), it is very important to identify high risk aneurysms for immediate treatment and low risk
aneurysms for conservative observation and management. In addition, aneurysm treatment with devices that deviate the flow away
from the aneurysm and promote aneurysm occlusion via intra-saccular thrombosis (so called flow diverting devices), has become a
common strategy for complex aneurysms that are difficult to treat with open surgery or endovascular coils [27]. However, with this
approach, many aneurysms remain open for a long time after treatment (e.g. over 9 months), and thus are still exposed to rupture
risks. For these reasons, many investigations have focused on understanding the links between flow conditions and clinical outcomes,
including aneurysm growth and rupture as well as occlusion and healing after treatment with flow diverters. Several studies have
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Fig. 2. Vessel 2: Difference in flow features between properly resolved and unresolved upstream geometry.

proposed to use different CFD-derived hemodynamic parameters to characterize the aneurysm hemodynamic environment and dis-
criminate between ruptured and unruptured aneurysms [28,38,37,41,32,6,8]. Recently, hemodynamic variables have been combined
with geometric, anatomical, and clinical parameters into statistical and machine learning models to identify aneurysms at risk of
rupture [9,22,15,40,1] and/or destabilization and growth [42,39]. In parallel, the changes in hemodynamic conditions caused by the
implantation of flow diverting devices have been investigated as possible predictors of outcomes of these endovascular treatments
[21,24,42,30]. However, several of these studies suffer from an important limitation: to simplify and accelerate the vascular model-
ing, mesh generation, and flow simulation, arterial branches, including the inflow vessel are truncated, sometimes too close to the
aneurysm. A crucial question is how far upstream the geometry has to be modeled accurately in order to obtain sufficiently accurate
flow predictions, as well as their associated loads on vessel walls (shear, pressures) and clinically relevant measures (such as kinetic
and vortical energy, vortex line length, etc.). In many cases, users may not have sufficient upstream information, so this question
is of high relevance. The thesis of Castro and subsequent publications [4,5] have shown how dramatic the difference between well
resolved upstream geometries and so-called ‘cut’ geometries can be. In some cases, completely different types of flow were seen,
which in turn could have led to different clinical decisions. Figs. 1-2 show two examples.

To complicate matters further, the flow is transient/pulsating, and the flowrate and flow profile coming in at the upstream
boundary in most cases is unknown. It is a common practice to simply set some kind of pipe flow profile (Poiseuille, Womersley) at
the inflow, adjusting the analytical parameters to the estimated/known flux.

The central question remains: what is the influence of a change of boundary conditions (e.g. inflow profiles) or geometry (e.g. more
upstream/downstream geometry) on the clinically relevant measures ?

A simple way to answer this question is to perform several runs, each with a different geometry or different boundary condition.
This finite difference approach can then yield the sensitivity of a ‘measure of clinical relevance’ I to a change in geometry or boundary
condition z. Another possibility is via adjoints [25,43,18,17,3]. We also refer to a series of works by Glowinski and collaborators



R. Lohner, H. Antil, F. Mut et al. Journal of Computational Physics 497 (2024) 112619

on the role of adjoints in optimization [12,16,34,2,11,13]. See also [35,19,14]. We emphasize that this list is incomplete as many
authors have made fundamental contributions to this topic.

1.1. Upstream boundary conditions for the flow

It is known from empirical evidence and simple fluid mechanics that given any steady inflow velocity profile, after a given number
of diameters along the pipe the flow will revert to a simple pipe flow (Poiseuille). This so-called hydrodynamic entry length L, is a
function of the Reynolds number Re, and for laminar flow and uniform inflow is given by:
pU, d

L,=005Re d, Re= , (€8]
M

where p,U,, u denote the density, mean entrance velocity and viscosity of the flow and d the vessel diameter. For blood and a typical
artery p=1g/cm?,U, =50 cm/sec,u=0.04 g/cm/sec, d =0.1 cm, so Re=0(100) and L, = 5 d. Note that this estimate is only valid
for steady flows and a uniform inflow. As far as the authors are aware, similar estimates for vessels with high curvatures (tortuosity)
as typically encountered in arteries are not available. We note in passing that for the unsteady cases analyzed by [4,5] the number
of upstream diameters required before the flow did not change in the aneurysms was much higher than the estimate given above.

1.2. Possible mathematical approaches
In order to formulate the problem mathematically, we can consider different approaches.

a) Empirical Data: for any given geometry/case, one could perform a series of studies, changing the type of inflow (vortical flows,
unsteady flows) and seeing how long the observed hydrodynamic entry lengths are;

b) Sensitivity Analysis I: one could try to obtain a ‘topological derivative’ that measures the sensitivity of the flow in the aneurysm
with respect to movement of the upstream boundary.

¢) Sensitivity Analysis II: one could obtain a ‘flow derivative’ that measures the sensitivity of the clinical measure of the flow in
the aneurysm with respect to changes of the entry flow in the upstream boundary.

Outline: The remainder of the paper is organized as follows. In Section 2, we first introduce a generic optimization problem formu-
lation and adjoint framework. This generic discussion is well-known. This is followed by an example of Navier-Stokes specific to the
aneurysm problem. We study the sensitivity with respect to the inflow velocity and inflow position. Section 3 focuses on numerical
implementation. In Section 4.1, we present a specific example corresponding to the 2-D channel flow. For this example, we are able
to derive explicit expressions for the state variables, adjoint variables, and the sensitivities (see Appendix A). This is followed by a
realistic aneurysm example in Section 4.3, where we study the sensitivity of the ‘measure of clinical relevance’ I. All the numerical
examples confirm the proposed approach.

2. General adjoint formulation

Suppose we have a ‘measure of clinical relevance’ I for a region that is in or close to an aneurysm. This could be the kinetic or
vortical energy, the shear stress or the length of vortex lines - all of which have been proposed in the literature [31,7,10].

The question then becomes: how sensitive is this measure to the (often unknown) boundary conditions imposed or the (often
approximate) geometric accuracy? Given that I is a function of the unknowns « and these in turn are a function of a set of parameters
z describing the boundary conditions or the geometry, the answer to this question is given by the gradient of /. Consider the well-
known generic minimization problem

min /(u,z) subjectto e(u,z)=0,
u,z

where I : U x Z — R is the cost functional and e(-,) : U X Z — Y is the PDE constraint. Here U,Y and Z are function spaces.
Typically, U,Y are Banach spaces and Z is a Hilbert space. Under very generic conditions, one can establish existence of solution
to the above optimization problems, see [17,3]. As it has been known in the literature, there are two ways to derive the expression
of the adjoint and the gradient of objective function I. The first approach is the so-called reduced formulation, where assuming that
the PDE is uniquely solvable, one considers the well-defined control-to-state map

z - u(z)

with (u(z), z) solving the PDE e(u(z), z) = 0. The reduced objective functional is then given by Z(z) = I(u(z), z). Then one obtains the
derivative of 7 with respect to z which also requires computing the sensitivites of u with respect to z. The second approach is the
full space formulation and it requires forming the Lagrangian. Under fairly generic conditions (constraint qualifications), one can
establish the existence of Lagrange multipliers in this setting, see [46,17]. Regardless, in both cases, the same expression of gradient
is obtained [3, Pg. 14].

We briefly sketch the Lagrangian approach and refer to [17,3] for details. Let p denotes the adjoint variable, then the Lagrangian
functional is given by
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L(u, z,p) = I(u, z) — (e(u, z), p)y y - &)

Then at a stationary point (u, z, p) the following conditions hold

L,(u,z,p)=0,
Lu(us va) =0, (3)
L,(u,z,p)=0.

Our goal for the application under consideration is not to solve the above optimization problem, but rather derive the expression of
the gradient L,(u, z, p). In view of the expression of the Lagrangian given in (2), it is not difficult to see that conditions in (3) are
equivalent to

e(u,z)=0, (State equation)
e,(u,2)*p=1,(u,z), (Adjoint equation) (C))
I (u,z)—e,(u,2)*p=0. (Gradient equation)

Namely, the gradient is given by (cf. [3, Pg. 14])

VI(z)=1,(u,z)—e,(u,z) p. 5)
The consequences of the above formulation are profound:

« The variation of I in (5) exhibits only derivatives with respect to z, i.e., no explicit derivatives with respect to u appear;
« The cost of evaluation of gradients is independent of the number of design variables (!).

In the next section, we will apply this abstract framework to the case where the PDE e(u,z) =0 is given by the incompressible
Navier-Stokes equations. These equations are used to model the flow in the aneurysms.

2.1. Incompressible Navier-Stokes and sensitivity with respect to inflow

Let the domain Q c R? be sufficiently smooth, and consisting of two subdomains Q,,e,ysm and the remainder of the domain
Q\ Qpeurysm COnsisting of vascular vessels. Furthermore, let the boundary T" of Q consist of three parts T, (inflow), Iyj.oq (fixed /
wall), and Iy, (outflow). Moreover, let (u, p) denote the velocity-pressure pair solving the incompressible Navier-Stokes equations:

—div(uVu)+ (u-Vyu+Vp=f inQ
divu=0 inQ
u=z only (6)
u=0 on 1—‘fixed
(uVu— pI)-n=0 onT,

where f denotes a given force (for the current set of applications f =0), u is viscosity, I is the identity tensor, and n is the outward
unit normal. Finally, z is some given velocity profile on the inflow boundary I,.

Given a quantity of interest (measure of clinical relevance), I(u, p, z), the goal is to obtain the derivative of I with respect z with
the help of adjoint formulation as discussed in the previous section. We begin by stating the following result, see [44, Appendix C]

Lemma 1. Let u, v and @ be smooth vector fields, then
/[(u -Vyvla dx = —/(div ww-a)+[(u-Vya]-vdx+ /(u -n)(v - ) ds.
Q Q r

When v =u and div u =0, then

/[(u~V)u]ﬁdX=—/[(u~V)12]-udx+/(u~n)(u~ﬁ)ds.
Q Q r

Next, a derivation of sensitivity is provided using the adjoint approach. We denote the partial derivative of I with respect to u, z
and p, respectively by I, I, and I,. We begin by writing the Lagrangian functional

4
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L(u,p,it, p,r) = I(u,p,z) — /(—div(qu)+(u-V)u+Vp—f)-ﬁ—ﬁdiv udx
Q

+/(u—z)-ﬁrds .
I‘in

Applying integration-by-parts, and using Lemma 1, along with u =0 on I'}j.q and (uVu — pl)n=0 on Iy, we obtain that

L(u,p,it, p,iar)=1(u,p,z)— /ﬂVu :Via—[(u-V)a]-u—pdivia+u-Vpdx

Q
+ / i-(—uVu+ pI)nds— / u-npds
FinUl fixed Tip Ul o
+/(u—z)-ﬁrds+ / (u-n)(u-a)ds|.
Iﬂin Iﬂinur‘ou(

Applying integration-by-parts again, we arrive at

L(u,p,a,p,ir)=1(u,p,z) — /(—div(MVﬁ) +Vp) u—[(u- V)] -u— pdiv izdx
Q
+ / - (—puVu+ pl)nds+/u~(yVﬁ— pI)nds
TinUlfixed Tin

+/u-(yVﬁ— pI)nds
Iy

@)

out

+/(u—z)~121~ds+ / (u-n)(u-ayds|.
r

in FinUloue

In view of (3), taking a variation of L with respect to (u, p) and setting it equal to zero, we obtain the adjoint equation
—div(uVa)— (u- V)i — (V) u+Vp=1I,upz) inQ
divii=-1I,u,p,z) inQ
®
=0 onTIj, Ul
(uVie— pI)n=—[(u-@)n+ (u-n)ia] onT,,.

We note the compatibility condition:

r=—WVa— pI)n—(u-a)n—(u-n)i=—(uVa— pI)n onl;,,
where in the last equality we used the fact that # =0 on I';,. We notice that, if I is independent of p, then we obtain the standard
incompressibility condition for @ in (8). Finally, the required variation of I with respect to z is given by

D, I(u,p,z)=1,(u,p,z)—[(uVi— pI)n+ u-i)n+ (u-n)a] onT;

in

S 9
=1,(u,p,z)—[(uVa— pI)n] onTy,,

where we have again used the fact that # =0 on I';,. Note that if the clinical measure I is not a function of the control variable (in

this case the inflow velocity), for a channel with constant flow in the normal direction n (i.e. uVii-n =0) the sensitivity reverts to

(recall that 7 is the reduced objective)

D,I(z)=pn onTy,. (10
i.e. the sensitivity to inflow velocities is the adjoint pressure.
2.1.1. Sensitivity to changes in inflow position

Consider next the variation of the Lagrangian L given in (7) with respect to the normal n. We recall that after simplifications, we
have
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Fig. 3. Schematic of Aneurysm.

L(u,p,u, p,ay)=1(u,p,z)— /(u —z)[(uVia— pI)n] ds.
l—‘in

Then

D, L(u,p,a,p,ir)h=D,1(u,p,z)h— / D, [(u—z)((uVia— pI)n)]h ds
r

in

=D, I(u,p,2)h - /(Dnuh) [((uVa— pDm)]+ (u—z)D, [(uVa — pDm)]h ds
I

in

= D,,T(u,p,Z)h—/(D,,uh) [((uVa— pDn)] ds,
r

in

where, in the last step, we have used the fact that u =z on T';;. In case, I is independent of n, we then obtain that

D, L(u, p.ii, piar)h = — / (D uh) [(uVi— pDn)] ds.
T,

in

Note that if 4V - n=0 (as is often the case) the sensitivity reverts to (recall that 7 is the reduced objective)

D, I(n)=u’p onTy, (11

i.e. the sensitivity to changes in inflow position is the adjoint pressure multiplied by the normal derivative of the inflow velocity.
2.2. In- and outflow boundary conditions for the adjoint

Consider the aneurysm shown in Fig. 3.

For the usual (forward) incompressible Navier-Stokes calculation, one would prescribe a velocity profile (u = z) at the inflow
boundary and the ‘do nothing’ ((#Vu — pI)n =0) or pressure boundary condition (p =p ) at the outflow boundary. This implies
letting the pressure ‘free’ at the inflow and the velocity ‘free’ at the outflow. At the walls the velocity is zero, i.e. u|r, = 0. Consider
now the adjoint problem. The boundary conditions in this case are described in (8), i.e., we obtain zero velocity at the inflow and
‘do nothing’ or prescribed zero adjoint pressure at the outflow. The adjoint velocity is also zero on the walls.

3. Numerical implementation

In a strict mathematical sense, the adjoint solver obtained by discretizing the adjoint partial differential equation should be as
close as possible to the discrete adjoint obtained from transposing and manipulating the discretization of the forward problem. In
this way ‘optimize-then-discretize’ and ‘discretize-then-optimize’ are as close as possible. This was not adopted in the present case.
Instead, while the forward problem was solved for the incompressible Navier-Stokes equations, the adjoint equations were derived for
the quasi-incompressible Navier-Stokes equations, which for steady flows give the same results. The forward problem was integrated
to steady state using a fractional step solver with implicit solution of the viscous terms and the pressure increments using an edge-
based formulation of linear finite elements (tetrahedra). The adjoint was discretized using edge-based upwinding for the velocities
and 4th order pressure stabilization [26]. For each point i in the mesh this scheme is given by:

T ~ ~ ~
[AK]] M VR, + (u; + K@ — ) + M T2 + D, =0, 12)

where A, M;, V¥, K, > D; denote the Jacobians of the advective fluxes, lumped mass-matrix, discrete gradient in direction k, Laplacian

edge-based coefficients and damping vector, and
Vi@), = Cfi(@; + 1)),

where C,.kj are the edge-based coefficients for the gradient (see [26], Chapter 20). Furthermore

D; =A% |a, —a,

i+ glij -(V@); + V)| ,
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Fig. 4. Poiseuille Flow: Pressure.

where c is the speed of sound, 5 the adjoint pressure, A = |u| + ¢ the maximum eigenvalue of the system, 1,; =x; — x; the edge-vector,
i.e. the difference in the coordinates of nodes i, j and 0 < < 1 denotes a pressure sensor function of the form [33].

bi _ﬁj + 0'51ij (V) + V(ﬁ)j)|

|Bi = B +10.51; - (V(B); + V(D))

For #=0,1, second and fourth order damping operators are obtained respectively. Several other forms are possible for the sensor
function g [29].

Although this discretization of the adjoint Euler fluxes looks like a blend of second and fourth order dissipation, it has no
adjustable parameters. Defining U = (u, p), U = (@, p) Eqn. (12) may be re-written as

p=1-

R(U,0)=0,

the system re-written as an unsteady equation of the form:

U,+RU,0)=0,

and integrated in pseudo-time 7 via a classic explicit multistep Runge-Kutta [20].
4. Numerical examples

We will focus on two main examples. At first, we consider Poiseuille flow through a channel in Section 4.1. Remarkably enough,
we are able to derive the explicit expressions for all the quantities, such as solution to the state equation, adjoint equation and
sensitivities, see Appendix A. These theoretical results are also confirmed by numerical results. In Section 4.3, we focus on a realistic
aneurysm scenario, where we truly see the benefits of the proposed sensitivity approach.

4.1. Poiseuille flow

The 2-D channel flow provides a good test to verify the implementation of the forward and adjoint solvers. The domain considered
is of dimension 0.0 < x < 0.5, —0.05 < y < 0.05 and —0.005 < z < 0.005. A parabolic inflow with maximum velocity of u,,,, = 1.0 was
prescribed. The velocity at the top and bottom walls (y,,,,, ¥..x) Was prescribed to zero, and the velocity in the z-direction was
prescribed to zero for the back and front walls (z,,;,, Z,,.,)- The other relevant parameter is 4 = 0.01. Two ‘clinically relevant measures’
(i.e. cost functions) were considered: kinetic energy I = % fQ pu? dx and vortical energy I = % o PIV X u|? dx. We set p=1.0 in our
experiments. The derivation of the exact solutions for the adjoint equations for these cost functions may be found in Appendix A. Let
u=(u,v,w)", then the x-component of u is given by:

_ 4 o
u—[l—ﬁy]uo,

where u) =u,,,, and H is the total height of the channel, i.e. y,,,, = —¥,., = H/2. We thus obtain

max

8uy 8uy . 8uuy

0yu=—H2y, 6yyu——H2, WP =T

The pressure, velocity magnitude, and velocity vectors are shown in Figs. 4-6.

4.1.1. Kinetic energy
Consider the cost function

I=%/plul2 dx,
implying

1,=pu.

u
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Fig. 5. Poiseuille Flow: Velocity Magnitude.

Fig. 6. Poiseuille Flow: Velocity.

Fig. 7. Poiseuille Flow: Adjoint Pressure.

Fig. 8. Poiseuille Flow: Magnitude of Adjoint Velocity. Here the cost function is Kinetic Energy.

As can be seen in Appendix A, the adjoint pressure for this cost function is:
.4
o p= gpuo s

i.e. the gradient of the adjoint pressure is also constant and linearly dependent of u,. The results obtained are shown in Figs. 7-9.

4.1.2. Vortical energy
The cost function is given by

I=%/,{J|V><u|2 dx .
For the 2-D channel (u=u(y),v=0,w =2z)

(Vxu? = (ou)’
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Fig. 9. Poiseuille Flow: Adjoint Velocity. Here the cost function is Kinetic Energy.

Fig. 10. Poiseuille Flow: Adjoint Pressure. Cost Function: Vortical Energy.

pressure
200

100

Fig. 11. a,b,c Aneurysm: Surface Triangulation, Surface Pressure and Magnitude of Velocity in Cut Plane.

so that

P 8pug
I,=puyu,),=-pu,, = —;p,x T

i.e. constant. As can be seen in Appendix A, the adjoint velocities and pressure are given by:

i(x,)=0 . 0(x.)=0 ,_,;=§p ,

(See Fig. 10.)
4.2. Aneurysm with simple flow pattern

As a more relevant example, we include an aneurysm with simple flow pattern. The geometry and discretization may be discerned
from Figs. 11a-c which show the surface triangulation, pressure and magnitude of the velocity. The mesh consisted of about 470 K
tetrahedra, 87 K points and 13.5 K boundary points. The region for the source-terms of the adjoint is shown in Fig. 12 a and the
adjoint pressure, as well as the magnitude of the adjoint velocities obtained in Figs. 12 b,c. The adjoint velocites can also be seen in
Figs. 13 a,b. Note the effect of the source-term that pushes the adjoint flow and forms a double vortex.

4.3. Aneurysm with complex flow pattern

As a second example, we include an aneurysm with a complex flow pattern. The geometry and discretization may be discerned
from Figs. 14a-c which show the surface triangulation, pressure and magnitude of the velocity. The mesh consisted of 1.46M tetra-
hedra, 270 K points and 45 K boundary points. The region for the source-terms of the adjoint is shown in Fig. 15 a and the adjoint
pressure, as well as the magnitude of the adjoint velocities obtained in Figs. 15 b,c. Note that at the inflow the adjoint pressure is not
close to zero, indicating that the inflow section may have to be extended further in order to obtain reliable results.
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-0.000129

Fig. 12. a,b,c Aneurysm: Source, Adjoint Pressure and Magnitude of Adjoint Velocity in Cut Plane.

ad_velo
00188

Fig. 13. a,b Aneurysm: Adjoint Velocity in Cut Plane.
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75

Fig. 14. a,b,c Aneurysm: Surface Triangulation, Surface Pressure and Magnitude of Velocity in Cut Plane.

adj_press v adj_veloc Magnitude
0 3e5 002 004 006

AdjSource

0.08

Fig. 15. a,b,c Aneurysm: Source, Adjoint Pressure and Magnitude of Adjoint Velocity in Cut Plane.

5. Conclusions and outlook

The use of adjoint solvers to assess the sensitivity of incomplete boundary (inflow, geometry) information has been considered.
The results of this investigation indicate that the sensitivity of clinical measures or other flow features that are inside the flow domain
with respect to inflow velocity is proportional to the adjoint pressure, while the sensitivity with respect to inflow geometry is given
by the product of the adjoint pressure and the normal derivative of the inflow velocity. Thus, the adjoint pressure may be a good
indicator to see if the inflow boundary of haemodynamic cases is far enough from the region of interest so that errors can be avoided.
The use of adjoint solvers is not unproblematic. Unlike running a series of cases, varying inflow profiles and geometry, and seeing
their influence on many clinically relevant measures, adjoints require a different run for each of the clinical measures.

10
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Appendix A. Analytical expressions for Poiseuille flow

A.1. Exact forward solution

Let us consider a long 2-D channel of length 0 < x < L and width —H /2 < y < H/2 with incompressible viscous flow. Let u =
(u,v,w)", then the equation for the x-velocity u is given by:

uoyu+vo,u+0.p=pAu.

Assuming a constant velocity profile in x, i.e. u = u(y) and laminar flow with v = 0, the solution is the Poiseuille solution, given by:

4 -
u:[l—Ey]uo, 13
where y, is the maximum velocity at the center of the channel, and the channel extends in height from —H /2 <y < H /2, implying
8uy
ayu == m V,
and
8y
W=
so that the constant pressure gradient is given by:
8uuy
op=~— ST

where we have used the fact that d,.u = d,,u =0. The average velocity is then:

A.2. Adjoint equations
The equation for the adjoint x-velocity i is given by:

—uU0, il — V0l + 0,p = plil . + I,

Here [ is the cost function. For the channel u is given by (13) and v=0.

Kinetic Energy: If the cost function is given by the kinetic energy
=1 / uf? dx,
2

1,=pu.

then

Assuming a long channel with no change in x of the variables, the equation for the adjoint x-velocity & simplifies to:
0,5 = o, i -y
\D=H yyu+pu0[ TP ] .
Assuming furthermore that 9, j is constant, and applying the boundary conditions & =0 for y=—H /2 and y = H /2 this yields

| N H? ouy [H* 4
=— [0 = - = .
i 2”[ xP+Pu0][ 2 y] 37 |16 77

11
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If we consider that at the inflow boundary & =0, then as the adjoint velocity field is also divergence-free, in any section of x we must

have:
/ ady=0.

This implies:
H/2
=0.

P12 [t ]
16775

/ ﬂdy:i[—axﬁ+/m0] [izy—— -
2u 4 31 pp 3uH? —H/2
—H/2
Evaluation of all terms leads to the remarkable result:
.4 pH?
. p=-puy=——0
<P 3 Puy 104 P>

i.e. the gradient of the adjoint pressure is also constant and linearly dependent of u,. Given that the base level of the pressure p is
arbitrary, we might set it so that it vanishes at the exit, i.e. p=0. We finally obtain the remarkable result that:

= Ton P

2
i.e. the pressure and adjoint pressure are related by the factor % and have a constant gradient in the field. The adjoint velocity is
given by:

Y SN VL B A
T\ Y| T |16 Y| S

At the center of the channel the velocity is given by:

pugH?

W=0= 00

Vortical Energy: If the cost function is given by the vortical energy

1=%/;}|V><u|2 dx,
then, for the 2-D channel (u=u(y),v=0,w = z)
2 2
|V Xu| :(0yu) s
so that

p 8puy
I, = poyu(dyu) , = —po,u= —;Bxp =
i.e. constant (!). Assuming a long channel with no change in x for the variables, the equation for the adjoint x-velocity # simplifies
to:

~ - P
0xP = Hoyyii — péxp.

As this is a long channel and the source-term is constant, the assumption that 9,/ is constant is warranted. This implies that 9,
should also be a constant. Applying the boundary conditions & =0 for y=—H /2 and y = H /2 yields:

. 4 o1
u—[l—my]uo.

However, if we again consider that at the inflow boundary & =0, and given that the adjoint velocity field is divergence-free, then in
any section of x we must have:

/ﬁdy=0,

which implies that the only possible solution is i(x, y) = 0, and therefore:
~_ P
-0, p= ; 0D
As at the exit the pressure p vanishes, i.e. p =0, we finally obtain the remarkable result that:

P
-p=-p,
"

12
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i.e. the pressure and adjoint pressure are related by the factor 5 and have a constant gradient in the field.
A.3. Exact derivatives of cost functions

Kinetic Energy:

1’%:%/ lu? dx.

Given that u = u(y), v = 0 this results in:
ke _ 1 2,1 2 4 217
Ie—zp/dx/u dy—EpL/uo[l—ﬁy] dy
x y

ke L iLHpug ,

T 215
e 8 2
I,uz—ELH/”"O—gHPm ,

i.e. linear in the length L and the velocity u,, and

18 12,
Iv];EZEEHpugZEEHPi"MO N

i.e. not dependent (constant) of the length L and quadratic in the velocity u,. In the previous equations we assumed p,,, =0, and
used the analytical results that relate mass flow, viscosity and pressure gradient for the Poiseuille flow. One should remark that if
the domain that is of interest does not change (e.g. only a certain region inside the channel is considered), the correct value is:

ke _
1 =0

as the flow is constant in x and therefore the cost functional does not change if the upstream boundary is moved.

Vortical Energy (Dissipation):

1v@=%/p|V><u|2 dx.

Given that u = u(y), v = 0 this results in:

2
1 8 PUy
ve _ L 2gy=2_20
I —Zp/dx/wyul dy—3H2LH
x y

This implies:
) 16, uy 2LHp
ve - Dy, 0 ,
w= 3T T3

i.e. linear in the length L and the velocity u,, and

2 ~
ve _ §P“0 _ LH puy,

* 3 H 3 ’
i.e. not dependent (constant) of the length L and quadratic in the velocity u,. Notice, though, that as before if the domain that is of
interest does not change (e.g. only a certain region inside the channel is considered), the correct value is:

=0

as the flow is constant in x and the cost functional will not change if the upstream boundary is moved.
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