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The use of adjoint solvers is considered in order to obtain the sensitivity of clinical measures 
in aneurysms to incomplete (or unknown) boundary conditions and/or geometry. It is shown 
that these techniques offer interesting theoretical insights and viable computational tools to 
obtain these sensitivities. A optimization framework with Navier-Stokes equations (in the laminar 
regime) as constraints is introduced. Sensitivities with respect to inflow and inflow position are 
derived. In the specific case of inflow normal to the boundary, the sensitivities are shown to be 
the function of adjoint pressure. For the Poiseuille flow through a channel, explicit expressions 
for all the underlying quantities such as solution to the state equations, adjoint equations and 
sensitivites are derived, which are further confirmed by numerical experiments. In the next two 
examples, flow inside aneurysm geometries is considered.

1. Introduction

The analysis of haemodynamic phenomena and their clinical relevance via computational mechanics (fluids, solids, … ) is now 
common in research and development. Yet a recurring question has been the influence of boundary conditions and geometry on 
‘clinically relevant measures’. As an example, consider flows in aneurysms, which are thought to be one of the primary drivers of 
aneurysm wall degeneration leading to destabilization, growth and eventual rupture [45,36]. Because the risk of aneurysm rup-
ture is small (less than 1% annually [36]) but devastating, and the risk of complications during interventions is still significant 
(approximately 10% combined [23,27]), it is very important to identify high risk aneurysms for immediate treatment and low risk 
aneurysms for conservative observation and management. In addition, aneurysm treatment with devices that deviate the flow away 
from the aneurysm and promote aneurysm occlusion via intra-saccular thrombosis (so called flow diverting devices), has become a 
common strategy for complex aneurysms that are difficult to treat with open surgery or endovascular coils [27]. However, with this 
approach, many aneurysms remain open for a long time after treatment (e.g. over 9 months), and thus are still exposed to rupture 
risks. For these reasons, many investigations have focused on understanding the links between flow conditions and clinical outcomes, 
including aneurysm growth and rupture as well as occlusion and healing after treatment with flow diverters. Several studies have 
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Fig. 1. Vessel 1: Difference in flow features between properly resolved and unresolved upstream geometry.

Fig. 2. Vessel 2: Difference in flow features between properly resolved and unresolved upstream geometry.

proposed to use different CFD-derived hemodynamic parameters to characterize the aneurysm hemodynamic environment and dis-
criminate between ruptured and unruptured aneurysms [28,38,37,41,32,6,8]. Recently, hemodynamic variables have been combined 
with geometric, anatomical, and clinical parameters into statistical and machine learning models to identify aneurysms at risk of 
rupture [9,22,15,40,1] and/or destabilization and growth [42,39]. In parallel, the changes in hemodynamic conditions caused by the 
implantation of flow diverting devices have been investigated as possible predictors of outcomes of these endovascular treatments 
[21,24,42,30]. However, several of these studies suffer from an important limitation: to simplify and accelerate the vascular model-
ing, mesh generation, and flow simulation, arterial branches, including the inflow vessel are truncated, sometimes too close to the 
aneurysm. A crucial question is how far upstream the geometry has to be modeled accurately in order to obtain sufficiently accurate 
flow predictions, as well as their associated loads on vessel walls (shear, pressures) and clinically relevant measures (such as kinetic 
and vortical energy, vortex line length, etc.). In many cases, users may not have sufficient upstream information, so this question 
is of high relevance. The thesis of Castro and subsequent publications [4,5] have shown how dramatic the difference between well 
resolved upstream geometries and so-called ‘cut’ geometries can be. In some cases, completely different types of flow were seen, 
which in turn could have led to different clinical decisions. Figs. 1-2 show two examples.

To complicate matters further, the flow is transient/pulsating, and the flowrate and flow profile coming in at the upstream 
boundary in most cases is unknown. It is a common practice to simply set some kind of pipe flow profile (Poiseuille, Womersley) at 
the inflow, adjusting the analytical parameters to the estimated/known flux.

The central question remains: what is the influence of a change of boundary conditions (e.g. inflow profiles) or geometry (e.g. more 
upstream/downstream geometry) on the clinically relevant measures ?

A simple way to answer this question is to perform several runs, each with a different geometry or different boundary condition. 
This finite difference approach can then yield the sensitivity of a ‘measure of clinical relevance’ 𝐼 to a change in geometry or boundary 
condition 𝒛. Another possibility is via adjoints [25,43,18,17,3]. We also refer to a series of works by Glowinski and collaborators 
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on the role of adjoints in optimization [12,16,34,2,11,13]. See also [35,19,14]. We emphasize that this list is incomplete as many 
authors have made fundamental contributions to this topic.

1.1. Upstream boundary conditions for the flow

It is known from empirical evidence and simple fluid mechanics that given any steady inflow velocity profile, after a given number 
of diameters along the pipe the flow will revert to a simple pipe flow (Poiseuille). This so-called hydrodynamic entry length 𝐿ℎ is a 
function of the Reynolds number 𝑅𝑒, and for laminar flow and uniform inflow is given by:

𝐿ℎ = 0.05𝑅𝑒 𝑑 , 𝑅𝑒 =
𝜌𝑈𝑒 𝑑
𝜇

, (1)

where 𝜌, 𝑈𝑒, 𝜇 denote the density, mean entrance velocity and viscosity of the flow and 𝑑 the vessel diameter. For blood and a typical 
artery 𝜌 = 1 𝑔∕𝑐𝑚3, 𝑈𝑒 = 50 𝑐𝑚∕𝑠𝑒𝑐, 𝜇 = 0.04 𝑔∕𝑐𝑚∕𝑠𝑒𝑐, 𝑑 = 0.1 𝑐𝑚, so 𝑅𝑒 = 𝑂(100) and 𝐿ℎ = 5 𝑑. Note that this estimate is only valid 
for steady flows and a uniform inflow. As far as the authors are aware, similar estimates for vessels with high curvatures (tortuosity) 
as typically encountered in arteries are not available. We note in passing that for the unsteady cases analyzed by [4,5] the number 
of upstream diameters required before the flow did not change in the aneurysms was much higher than the estimate given above.

1.2. Possible mathematical approaches

In order to formulate the problem mathematically, we can consider different approaches.

a) Empirical Data: for any given geometry/case, one could perform a series of studies, changing the type of inflow (vortical flows, 
unsteady flows) and seeing how long the observed hydrodynamic entry lengths are;

b) Sensitivity Analysis I: one could try to obtain a ‘topological derivative’ that measures the sensitivity of the flow in the aneurysm 
with respect to movement of the upstream boundary.

c) Sensitivity Analysis II: one could obtain a ‘flow derivative’ that measures the sensitivity of the clinical measure of the flow in 
the aneurysm with respect to changes of the entry flow in the upstream boundary.

Outline: The remainder of the paper is organized as follows. In Section 2, we first introduce a generic optimization problem formu-
lation and adjoint framework. This generic discussion is well-known. This is followed by an example of Navier-Stokes specific to the 
aneurysm problem. We study the sensitivity with respect to the inflow velocity and inflow position. Section 3 focuses on numerical 
implementation. In Section 4.1, we present a specific example corresponding to the 2-D channel flow. For this example, we are able 
to derive explicit expressions for the state variables, adjoint variables, and the sensitivities (see Appendix A). This is followed by a 
realistic aneurysm example in Section 4.3, where we study the sensitivity of the ‘measure of clinical relevance’ 𝐼 . All the numerical 
examples confirm the proposed approach.

2. General adjoint formulation

Suppose we have a ‘measure of clinical relevance’ 𝐼 for a region that is in or close to an aneurysm. This could be the kinetic or 
vortical energy, the shear stress or the length of vortex lines - all of which have been proposed in the literature [31,7,10].

The question then becomes: how sensitive is this measure to the (often unknown) boundary conditions imposed or the (often 
approximate) geometric accuracy? Given that 𝐼 is a function of the unknowns 𝑢 and these in turn are a function of a set of parameters 
𝑧 describing the boundary conditions or the geometry, the answer to this question is given by the gradient of 𝐼 . Consider the well-
known generic minimization problem

min
𝑢,𝑧

𝐼(𝑢,𝑧) subject to 𝑒(𝑢,𝑧) = 0 ,

where 𝐼 ∶ 𝑈 × 𝑍 → ℝ is the cost functional and 𝑒(⋅, ⋅) ∶ 𝑈 × 𝑍 → 𝑌 is the PDE constraint. Here 𝑈 , 𝑌 and 𝑍 are function spaces. 
Typically, 𝑈 , 𝑌 are Banach spaces and 𝑍 is a Hilbert space. Under very generic conditions, one can establish existence of solution 
to the above optimization problems, see [17,3]. As it has been known in the literature, there are two ways to derive the expression 
of the adjoint and the gradient of objective function 𝐼 . The first approach is the so-called reduced formulation, where assuming that 
the PDE is uniquely solvable, one considers the well-defined control-to-state map

𝑧↦ 𝑢(𝑧)

with (𝑢(𝑧), 𝑧) solving the PDE 𝑒(𝑢(𝑧), 𝑧) = 0. The reduced objective functional is then given by (𝑧) = 𝐼(𝑢(𝑧), 𝑧). Then one obtains the 
derivative of  with respect to 𝑧 which also requires computing the sensitivites of 𝑢 with respect to 𝑧. The second approach is the 
full space formulation and it requires forming the Lagrangian. Under fairly generic conditions (constraint qualifications), one can 
establish the existence of Lagrange multipliers in this setting, see [46,17]. Regardless, in both cases, the same expression of gradient 
is obtained [3, Pg. 14].

We briefly sketch the Lagrangian approach and refer to [17,3] for details. Let 𝑝 denotes the adjoint variable, then the Lagrangian 
functional is given by
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𝐿(𝑢,𝑧,𝑝) = 𝐼(𝑢,𝑧)− ⟨𝑒(𝑢,𝑧),𝑝⟩𝑌 ,𝑌 ∗ . (2)
Then at a stationary point (𝑢, 𝑧, 𝑝) the following conditions hold

𝐿𝑝(𝑢,𝑧,𝑝) = 0,

𝐿𝑢(𝑢,𝑧,𝑝) = 0,

𝐿𝑧(𝑢,𝑧,𝑝) = 0.

(3)

Our goal for the application under consideration is not to solve the above optimization problem, but rather derive the expression of 
the gradient 𝐿𝑧(𝑢, 𝑧, 𝑝). In view of the expression of the Lagrangian given in (2), it is not difficult to see that conditions in (3) are 
equivalent to

𝑒(𝑢,𝑧) = 0, (State equation)
𝑒𝑢(𝑢,𝑧)∗𝑝 = 𝐼𝑢(𝑢,𝑧), (Adjoint equation)

𝐼𝑧(𝑢,𝑧)− 𝑒𝑧(𝑢,𝑧)∗𝑝 = 0. (Gradient equation)
(4)

Namely, the gradient is given by (cf. [3, Pg. 14])

∇(𝑧) = 𝐼𝑧(𝑢,𝑧)− 𝑒𝑧(𝑢,𝑧)∗𝑝. (5)
The consequences of the above formulation are profound:

• The variation of 𝐼 in (5) exhibits only derivatives with respect to 𝑧, i.e., no explicit derivatives with respect to 𝑢 appear;
• The cost of evaluation of gradients is independent of the number of design variables (!).

In the next section, we will apply this abstract framework to the case where the PDE 𝑒(𝑢, 𝑧) = 0 is given by the incompressible 
Navier-Stokes equations. These equations are used to model the flow in the aneurysms.

2.1. Incompressible Navier-Stokes and sensitivity with respect to inflow

Let the domain Ω ⊂ ℝ𝑑 be sufficiently smooth, and consisting of two subdomains Ωaneurysm and the remainder of the domain 
Ω ⧵ Ωaneurysm consisting of vascular vessels. Furthermore, let the boundary Γ of Ω consist of three parts Γin (inflow), Γf ixed (fixed / 
wall), and Γout (outflow). Moreover, let (𝒖, 𝑝) denote the velocity-pressure pair solving the incompressible Navier-Stokes equations:

−div(𝜇∇𝒖) + (𝒖 ⋅∇)𝒖+∇𝑝 = 𝒇 in Ω

div 𝒖 = 0 in Ω

𝒖 = 𝒛 on Γin
𝒖 = 𝟎 on Γf ixed

(𝜇∇𝒖− 𝑝𝑰) ⋅ 𝒏 = 𝟎 on Γout

(6)

where 𝒇 denotes a given force (for the current set of applications 𝒇 = 0), 𝜇 is viscosity, 𝑰 is the identity tensor, and 𝒏 is the outward 
unit normal. Finally, 𝒛 is some given velocity profile on the inflow boundary Γin.

Given a quantity of interest (measure of clinical relevance), 𝐼(𝒖, 𝑝, 𝒛), the goal is to obtain the derivative of 𝐼 with respect 𝒛 with 
the help of adjoint formulation as discussed in the previous section. We begin by stating the following result, see [44, Appendix C]

Lemma 1. Let 𝒖, 𝒗 and 𝒖̃ be smooth vector fields, then

∫
Ω

[(𝒖 ⋅∇)𝒗]𝒖̃ dx = −∫
Ω

(div 𝒖)(𝒗 ⋅ 𝒖̃) + [(𝒖 ⋅∇)𝒖̃] ⋅ 𝒗 dx + ∫
Γ

(𝒖 ⋅ 𝒏)(𝒗 ⋅ 𝒖̃) ds.

When 𝒗 = 𝒖 and div 𝒖 = 0, then

∫
Ω

[(𝒖 ⋅∇)𝒖]𝒖̃ dx = −∫
Ω

[(𝒖 ⋅∇)𝒖̃] ⋅ 𝒖 dx + ∫
Γ

(𝒖 ⋅ 𝒏)(𝒖 ⋅ 𝒖̃) ds.

Next, a derivation of sensitivity is provided using the adjoint approach. We denote the partial derivative of 𝐼 with respect to 𝒖, 𝒛
and 𝑝, respectively by 𝐼𝒖, 𝐼𝒛 and 𝐼𝑝. We begin by writing the Lagrangian functional
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𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ) = 𝐼(𝒖,𝑝,𝒛)−
⎡
⎢
⎢⎣∫Ω

(
−div(𝜇∇𝒖) + (𝒖 ⋅∇)𝒖+∇𝑝− 𝒇

)
⋅ 𝒖̃− 𝑝̃div 𝒖dx

+∫
Γin

(𝒖− 𝒛) ⋅ 𝒖̃Γ ds
⎤
⎥
⎥⎦
.

Applying integration-by-parts, and using Lemma 1, along with 𝒖 = 0 on Γf ixed and (𝜇∇𝒖− 𝑝𝟏)𝒏 = 0 on Γout , we obtain that

𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ) = 𝐼(𝒖,𝑝,𝒛)−
⎡
⎢
⎢⎣∫Ω

𝜇∇𝒖 ∶ ∇𝒖̃− [(𝒖 ⋅∇)𝒖̃] ⋅ 𝒖− 𝑝div 𝒖̃+ 𝒖 ⋅∇𝑝̃dx

+ ∫
Γin∪Γf ixed

𝒖̃ ⋅ (−𝜇∇𝒖+ 𝑝𝑰)𝒏ds− ∫
Γin∪Γout

𝒖 ⋅ 𝒏𝑝̃ds

+∫
Γin

(𝒖− 𝒛) ⋅ 𝒖̃Γ ds + ∫
Γin∪Γout

(𝒖 ⋅ 𝒏)(𝒖 ⋅ 𝒖̃)ds
⎤
⎥
⎥
⎥⎦
.

Applying integration-by-parts again, we arrive at

𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ) = 𝐼(𝒖,𝑝,𝒛)−
⎡
⎢
⎢⎣∫Ω

(
−div(𝜇∇𝒖̃) +∇𝑝̃

)
⋅ 𝒖− [(𝒖 ⋅∇)𝒖̃] ⋅ 𝒖− 𝑝div 𝒖̃dx

+ ∫
Γin∪Γf ixed

𝒖̃ ⋅ (−𝜇∇𝒖+ 𝑝𝑰)𝒏ds + ∫
Γin

𝒖 ⋅ (𝜇∇𝒖̃− 𝑝̃𝑰)𝒏ds

+ ∫
Γout

𝒖 ⋅ (𝜇∇𝒖̃− 𝑝̃𝑰)𝒏ds

+ ∫
Γin

(𝒖− 𝒛) ⋅ 𝒖̃Γ ds + ∫
Γin∪Γout

(𝒖 ⋅ 𝒏)(𝒖 ⋅ 𝒖̃)ds
⎤
⎥
⎥
⎥⎦
.

(7)

In view of (3), taking a variation of 𝐿 with respect to (𝒖, 𝑝) and setting it equal to zero, we obtain the adjoint equation

−div(𝜇∇𝒖̃)− (𝒖 ⋅∇)𝒖̃− (∇𝒖̃)⊤𝒖+∇𝑝̃ = 𝐼𝒖(𝒖,𝑝,𝒛) in Ω

div 𝒖̃ = −𝐼𝑝(𝒖,𝑝,𝒛) in Ω

𝒖̃ = 𝟎 on Γin ∪ Γf ixed
(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏 = − [(𝒖 ⋅ 𝒖̃)𝒏+ (𝒖 ⋅ 𝒏)𝒖̃] on Γout .

(8)

We note the compatibility condition:

𝒖̃Γ = −(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏− (𝒖 ⋅ 𝒖̃)𝒏− (𝒖 ⋅ 𝒏)𝒖̃ = −(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏 on Γin,

where in the last equality we used the fact that 𝒖̃ = 𝟎 on Γin. We notice that, if 𝐼 is independent of 𝑝, then we obtain the standard 
incompressibility condition for 𝒖̃ in (8). Finally, the required variation of 𝐼 with respect to 𝒛 is given by

𝐷𝒛𝐼(𝒖,𝑝,𝒛) = 𝐼𝒛(𝒖,𝑝,𝒛)− [(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏+ (𝒖 ⋅ 𝒖̃)𝒏+ (𝒖 ⋅ 𝒏)𝒖̃] on Γin
= 𝐼𝒛(𝒖,𝑝,𝒛)− [(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏] on Γin ,

(9)

where we have again used the fact that 𝒖̃ = 𝟎 on Γin. Note that if the clinical measure 𝐼 is not a function of the control variable (in 
this case the inflow velocity), for a channel with constant flow in the normal direction 𝒏 (i.e. 𝜇∇𝒖̃ ⋅ 𝒏 = 0) the sensitivity reverts to 
(recall that  is the reduced objective)

𝐷𝒛(𝒛) = 𝑝̃𝒏 on Γin . (10)
i.e. the sensitivity to inflow velocities is the adjoint pressure.

2.1.1. Sensitivity to changes in inflow position
Consider next the variation of the Lagrangian 𝐿 given in (7) with respect to the normal 𝒏. We recall that after simplifications, we 

have
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Fig. 3. Schematic of Aneurysm.

𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ) = 𝐼(𝒖,𝑝,𝒛)− ∫
Γin

(𝒖− 𝒛) [(𝜇∇𝒖̃− 𝑝̃𝑰)𝒏] ds .

Then

𝐷𝒏𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ)𝒉 =𝐷𝒏𝐼(𝒖,𝑝,𝒛)𝒉− ∫
Γin

𝐷𝒏 [(𝒖− 𝒛) ((𝜇∇𝒖̃− 𝑝̃𝑰)𝒏)]𝒉 ds

=𝐷𝒏𝐼(𝒖,𝑝,𝒛)𝒉− ∫
Γin

(𝐷𝒏𝒖𝒉) [((𝜇∇𝒖̃− 𝑝̃𝑰)𝒏)] + (𝒖− 𝒛)𝐷𝒏 [((𝜇∇𝒖̃− 𝑝̃𝑰)𝒏)]𝒉 ds

=𝐷𝒏𝐼(𝒖,𝑝,𝒛)𝒉− ∫
Γin

(𝐷𝒏𝒖𝒉) [((𝜇∇𝒖̃− 𝑝̃𝑰)𝒏)] ds ,

where, in the last step, we have used the fact that 𝒖 = 𝒛 on Γin. In case, 𝐼 is independent of 𝒏, we then obtain that

𝐷𝒏𝐿(𝒖,𝑝, 𝒖̃, 𝑝̃, 𝒖̃Γ)𝒉 = −∫
Γin

(𝐷𝒏𝒖𝒉) [((𝜇∇𝒖̃− 𝑝̃𝑰)𝒏)] ds .

Note that if 𝜇∇𝒖̃ ⋅ 𝒏 = 0 (as is often the case) the sensitivity reverts to (recall that  is the reduced objective)

𝐷𝒏(𝒏) = 𝑢𝑛𝑛𝑝̃ on Γin (11)
i.e. the sensitivity to changes in inflow position is the adjoint pressure multiplied by the normal derivative of the inflow velocity.

2.2. In- and outflow boundary conditions for the adjoint

Consider the aneurysm shown in Fig. 3.
For the usual (forward) incompressible Navier-Stokes calculation, one would prescribe a velocity profile (𝒖 = 𝒛) at the inflow 

boundary and the ‘do nothing’ ((𝜂∇𝒖 − 𝑝𝑰)𝒏 = 0) or pressure boundary condition (𝑝 = 𝑝 out ) at the outflow boundary. This implies 
letting the pressure ‘free’ at the inflow and the velocity ‘free’ at the outflow. At the walls the velocity is zero, i.e. 𝒖|Γf ixed = 𝟎. Consider 
now the adjoint problem. The boundary conditions in this case are described in (8), i.e., we obtain zero velocity at the inflow and 
‘do nothing’ or prescribed zero adjoint pressure at the outflow. The adjoint velocity is also zero on the walls.

3. Numerical implementation

In a strict mathematical sense, the adjoint solver obtained by discretizing the adjoint partial differential equation should be as 
close as possible to the discrete adjoint obtained from transposing and manipulating the discretization of the forward problem. In 
this way ‘optimize-then-discretize’ and ‘discretize-then-optimize’ are as close as possible. This was not adopted in the present case. 
Instead, while the forward problem was solved for the incompressible Navier-Stokes equations, the adjoint equations were derived for 
the quasi-incompressible Navier-Stokes equations, which for steady flows give the same results. The forward problem was integrated 
to steady state using a fractional step solver with implicit solution of the viscous terms and the pressure increments using an edge-
based formulation of linear finite elements (tetrahedra). The adjoint was discretized using edge-based upwinding for the velocities 
and 4th order pressure stabilization [26]. For each point 𝑖 in the mesh this scheme is given by:

[
𝐀𝑘]𝑇

𝑖 𝑀𝑖∇𝑘(𝒖̃)𝑖 + (𝜇𝑖 + 𝜇𝑗 )𝐾𝑖𝑗 (𝒖̃𝑖 − 𝒖̃𝑗 ) +𝑀𝑖𝐼Ω𝒖 +𝐷𝑖 = 0 , (12)
where 𝐀, 𝑀𝑖, ∇𝑘, 𝐾𝑖𝑗 , 𝐷𝑖 denote the Jacobians of the advective fluxes, lumped mass-matrix, discrete gradient in direction 𝑘, Laplacian 
edge-based coefficients and damping vector, and

∇𝑘(𝒖̃)𝑖 = 𝐶𝑘
𝑖𝑗 (𝒖̃𝑖 + 𝒖̃𝑗 ) ,

where 𝐶𝑘
𝑖𝑗 are the edge-based coefficients for the gradient (see [26], Chapter 20). Furthermore

𝐷𝑖 = −𝜆(𝑖𝑗)
[
𝒖̃𝑖 − 𝒖̃𝑗 +

𝛽
2 𝐥𝑖𝑗 ⋅ (∇(𝒖̃)𝑖 +∇(𝒖̃)𝑗 )

]
,



Journal of Computational Physics 497 (2024) 112619

7

R. Löhner, H. Antil, F. Mut et al.

Fig. 4. Poiseuille Flow: Pressure.

where 𝑐 is the speed of sound, 𝑝̃ the adjoint pressure, 𝜆 = |𝒖| + 𝑐 the maximum eigenvalue of the system, 𝐥𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗 the edge-vector, 
i.e. the difference in the coordinates of nodes 𝑖, 𝑗 and 0 < 𝛽 < 1 denotes a pressure sensor function of the form [33].

𝛽 = 1−
𝑝̃𝑖 − 𝑝̃𝑗 + 0.5𝐥𝑖𝑗 ⋅ (∇(𝑝̃)𝑖 +∇(𝑝̃)𝑗 )|
|𝑝̃𝑖 − 𝑝̃𝑗 |+ |0.5𝐥𝑖𝑗 ⋅ (∇(𝑝̃)𝑖 +∇(𝑝̃)𝑗 )|

.

For 𝛽 = 0, 1, second and fourth order damping operators are obtained respectively. Several other forms are possible for the sensor 
function 𝛽 [29].

Although this discretization of the adjoint Euler fluxes looks like a blend of second and fourth order dissipation, it has no 
adjustable parameters. Defining 𝑼 = (𝒖, 𝑝), 𝑼̃ = (𝒖̃, ̃𝑝) Eqn. (12) may be re-written as

𝐑(𝑼 , 𝑼̃ ) = 0 ,

the system re-written as an unsteady equation of the form:

𝑼̃ ,𝜏 +𝐑(𝑼 , 𝑼̃ ) = 0 ,

and integrated in pseudo-time 𝜏 via a classic explicit multistep Runge-Kutta [20].

4. Numerical examples

We will focus on two main examples. At first, we consider Poiseuille flow through a channel in Section 4.1. Remarkably enough, 
we are able to derive the explicit expressions for all the quantities, such as solution to the state equation, adjoint equation and 
sensitivities, see Appendix A. These theoretical results are also confirmed by numerical results. In Section 4.3, we focus on a realistic 
aneurysm scenario, where we truly see the benefits of the proposed sensitivity approach.

4.1. Poiseuille flow

The 2-D channel flow provides a good test to verify the implementation of the forward and adjoint solvers. The domain considered 
is of dimension 0.0 ≤ 𝑥 ≤ 0.5, −0.05 ≤ 𝑦 ≤ 0.05 and −0.005 ≤ 𝑧 ≤ 0.005. A parabolic inflow with maximum velocity of 𝑢𝑚𝑎𝑥 = 1.0 was 
prescribed. The velocity at the top and bottom walls (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) was prescribed to zero, and the velocity in the 𝑧-direction was 
prescribed to zero for the back and front walls (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥). The other relevant parameter is 𝜇 = 0.01. Two ‘clinically relevant measures’ 
(i.e. cost functions) were considered: kinetic energy 𝐼 = 1

2 ∫Ω 𝜌𝒖2 dx and vortical energy 𝐼 = 1
2 ∫Ω 𝜌|∇ × 𝒖|2 dx. We set 𝜌 = 1.0 in our 

experiments. The derivation of the exact solutions for the adjoint equations for these cost functions may be found in Appendix A. Let 
𝒖 = (𝑢, 𝑣, 𝑤)⊤, then the 𝑥-component of 𝒖 is given by:

𝑢 =
[
1− 4

𝐻2 𝑦
2
]
𝑢0 ,

where 𝑢0 = 𝑢𝑚𝑎𝑥 and 𝐻 is the total height of the channel, i.e. 𝑦𝑚𝑎𝑥 = −𝑦𝑚𝑖𝑛 =𝐻∕2. We thus obtain

𝜕𝑦𝑢 = −
8𝑢0
𝐻2 𝑦, 𝜕𝑦𝑦𝑢 = −

8𝑢0
𝐻2 , 𝜕𝑥𝑝 = −

8𝜇𝑢0
𝐻2 .

The pressure, velocity magnitude, and velocity vectors are shown in Figs. 4-6.

4.1.1. Kinetic energy
Consider the cost function

𝐼 = 1
2 ∫ 𝜌|𝒖|2 dx ,

implying

𝐼𝑢 = 𝜌𝑢.
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Fig. 5. Poiseuille Flow: Velocity Magnitude.

Fig. 6. Poiseuille Flow: Velocity.

Fig. 7. Poiseuille Flow: Adjoint Pressure.

Fig. 8. Poiseuille Flow: Magnitude of Adjoint Velocity. Here the cost function is Kinetic Energy.

As can be seen in Appendix A, the adjoint pressure for this cost function is:

𝜕𝑥𝑝̃ =
4
5𝜌𝑢0 ,

i.e. the gradient of the adjoint pressure is also constant and linearly dependent of 𝑢0. The results obtained are shown in Figs. 7–9.

4.1.2. Vortical energy
The cost function is given by

𝐼 = 1
2 ∫ 𝜌 |∇× 𝒖|2 dx .

For the 2-D channel (𝑢 = 𝑢(𝑦), 𝑣 = 0, 𝑤 = 𝑧)

(∇× 𝒖)2 =
(
𝜕𝑦𝑢

)2 ,
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Fig. 9. Poiseuille Flow: Adjoint Velocity. Here the cost function is Kinetic Energy.

Fig. 10. Poiseuille Flow: Adjoint Pressure. Cost Function: Vortical Energy.

Fig. 11. a,b,c Aneurysm: Surface Triangulation, Surface Pressure and Magnitude of Velocity in Cut Plane.

so that

𝐼,𝑢 = 𝜌𝑢,𝑦(𝑢,𝑦),𝑢 = −𝜌𝑢,𝑦𝑦 = − 𝜌
𝜇
𝑝,𝑥 =

8𝜌𝑢0
𝐻2 ,

i.e. constant. As can be seen in Appendix A, the adjoint velocities and pressure are given by:

𝑢̃(𝑥,𝑦) = 0 , 𝑣̃(𝑥,𝑦) = 0 ,−𝑝̃ = 𝜌
𝜇
𝑝 .

(See Fig. 10.)

4.2. Aneurysm with simple flow pattern

As a more relevant example, we include an aneurysm with simple flow pattern. The geometry and discretization may be discerned 
from Figs. 11a-c which show the surface triangulation, pressure and magnitude of the velocity. The mesh consisted of about 470 K 
tetrahedra, 87 K points and 13.5 K boundary points. The region for the source-terms of the adjoint is shown in Fig. 12 a and the 
adjoint pressure, as well as the magnitude of the adjoint velocities obtained in Figs. 12 b,c. The adjoint velocites can also be seen in 
Figs. 13 a,b. Note the effect of the source-term that pushes the adjoint flow and forms a double vortex.

4.3. Aneurysm with complex flow pattern

As a second example, we include an aneurysm with a complex flow pattern. The geometry and discretization may be discerned 
from Figs. 14a-c which show the surface triangulation, pressure and magnitude of the velocity. The mesh consisted of 1.46M tetra-
hedra, 270 K points and 45 K boundary points. The region for the source-terms of the adjoint is shown in Fig. 15 a and the adjoint 
pressure, as well as the magnitude of the adjoint velocities obtained in Figs. 15 b,c. Note that at the inflow the adjoint pressure is not 
close to zero, indicating that the inflow section may have to be extended further in order to obtain reliable results.
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Fig. 12. a,b,c Aneurysm: Source, Adjoint Pressure and Magnitude of Adjoint Velocity in Cut Plane.

Fig. 13. a,b Aneurysm: Adjoint Velocity in Cut Plane.

Fig. 14. a,b,c Aneurysm: Surface Triangulation, Surface Pressure and Magnitude of Velocity in Cut Plane.

Fig. 15. a,b,c Aneurysm: Source, Adjoint Pressure and Magnitude of Adjoint Velocity in Cut Plane.

5. Conclusions and outlook

The use of adjoint solvers to assess the sensitivity of incomplete boundary (inflow, geometry) information has been considered. 
The results of this investigation indicate that the sensitivity of clinical measures or other flow features that are inside the flow domain 
with respect to inflow velocity is proportional to the adjoint pressure, while the sensitivity with respect to inflow geometry is given 
by the product of the adjoint pressure and the normal derivative of the inflow velocity. Thus, the adjoint pressure may be a good 
indicator to see if the inflow boundary of haemodynamic cases is far enough from the region of interest so that errors can be avoided. 
The use of adjoint solvers is not unproblematic. Unlike running a series of cases, varying inflow profiles and geometry, and seeing 
their influence on many clinically relevant measures, adjoints require a different run for each of the clinical measures.
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Appendix A. Analytical expressions for Poiseuille flow

A.1. Exact forward solution

Let us consider a long 2-D channel of length 0 ≤ 𝑥 ≤ 𝐿 and width −𝐻∕2 ≤ 𝑦 ≤ 𝐻∕2 with incompressible viscous flow. Let 𝒖 =
(𝑢, 𝑣, 𝑤)⊤, then the equation for the 𝑥-velocity 𝑢 is given by:

𝑢𝜕𝑥𝑢+ 𝑣𝜕𝑦𝑢+ 𝜕𝑥𝑝 = 𝜇Δ𝑢 .

Assuming a constant velocity profile in 𝑥, i.e. 𝑢 = 𝑢(𝑦) and laminar flow with 𝑣 = 0, the solution is the Poiseuille solution, given by:

𝑢 =
[
1− 4

𝐻2 𝑦
2
]
𝑢0 , (13)

where 𝑢0 is the maximum velocity at the center of the channel, and the channel extends in height from −𝐻∕2 ≤ 𝑦 ≤𝐻∕2, implying

𝜕𝑦𝑢 = −
8𝑢0
𝐻2 𝑦 ,

and

𝜕𝑦𝑦𝑢 = −
8𝑢0
𝐻2 ,

so that the constant pressure gradient is given by:

𝜕𝑥𝑝 = −
8𝜇𝑢0
𝐻2 ,

where we have used the fact that 𝜕𝑥𝑢 = 𝜕𝑥𝑥𝑢 = 0. The average velocity is then:

𝑢 = 1
𝐻

𝐻∕2

∫
−𝐻∕2

𝑢 dy = 2
3 𝑢0 .

A.2. Adjoint equations

The equation for the adjoint 𝑥-velocity 𝑢̃ is given by:

−𝑢𝜕𝑥𝑢̃− 𝑣𝜕𝑦𝑢̃+ 𝜕𝑥𝑝̃ = 𝜇Δ𝑢̃,𝑥𝑥 + 𝐼𝑢

Here 𝐼 is the cost function. For the channel 𝑢 is given by (13) and 𝑣 = 0.

Kinetic Energy: If the cost function is given by the kinetic energy

𝐼 = 1
2 ∫ 𝜌|𝒖|2 dx ,

then

𝐼𝑢 = 𝜌𝑢 .

Assuming a long channel with no change in 𝑥 of the variables, the equation for the adjoint 𝑥-velocity 𝑢̃ simplifies to:

𝜕𝑥𝑝̃ = 𝜇𝜕𝑦𝑦𝑢̃+ 𝜌𝑢0
[
1− 4

𝐻2 𝑦
2
]
.

Assuming furthermore that 𝜕𝑥𝑝̃ is constant, and applying the boundary conditions 𝑢̃ = 0 for 𝑦 = −𝐻∕2 and 𝑦 =𝐻∕2 this yields

𝑢̃ = 1
2𝜇

[
−𝜕𝑥𝑝̃+ 𝜌𝑢0

] [𝐻2

4 − 𝑦2
]
−

𝜌𝑢0
3𝜇𝐻2

[
𝐻4

16 − 𝑦4
]
.
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If we consider that at the inflow boundary 𝑢̃ = 0, then as the adjoint velocity field is also divergence-free, in any section of 𝑥 we must 
have:

∫ 𝑢̃𝑑𝑦 = 0.

This implies:
𝐻∕2

∫
−𝐻∕2

𝑢̃ dy = 1
2𝜇

[
−𝜕𝑥𝑝̃+ 𝜌𝑢0

] [𝐻2

4 𝑦− 𝑦3

3

]𝐻∕2

−𝐻∕2
−

𝜌𝑢0
3𝜇𝐻2

[
𝐻4

16 𝑦− 𝑦5

5

]𝐻∕2

−𝐻∕2
= 0.

Evaluation of all terms leads to the remarkable result:

𝜕𝑥𝑝̃ =
4
5𝜌𝑢0 = −𝜌𝐻2

10𝜇 𝜕𝑥𝑝 ,

i.e. the gradient of the adjoint pressure is also constant and linearly dependent of 𝑢0. Given that the base level of the pressure 𝑝 is 
arbitrary, we might set it so that it vanishes at the exit, i.e. 𝑝 = 0. We finally obtain the remarkable result that:

−𝑝̃ = 𝜌𝐻2

10𝜇 𝑝 ,

i.e. the pressure and adjoint pressure are related by the factor 𝜌𝐻2

10𝜇 and have a constant gradient in the field. The adjoint velocity is 
given by:

𝑢̃ =
𝜌𝑢0
𝜇

{
1
10

[
𝐻2

4 − 𝑦2
]
− 1

3𝐻2

[
𝐻4

16 − 𝑦4
]}

.

At the center of the channel the velocity is given by:

𝑢̃(𝑦 = 0) =
𝜌𝑢0𝐻2

240𝜇 .

Vortical Energy: If the cost function is given by the vortical energy

𝐼 = 1
2 ∫ 𝜌 |∇× 𝒖|2 dx ,

then, for the 2-D channel (𝑢 = 𝑢(𝑦), 𝑣 = 0, 𝑤 = 𝑧)

|∇× 𝒖|2 = (
𝜕𝑦𝑢

)2 ,

so that

𝐼𝑢 = 𝜌𝜕𝑦𝑢(𝜕𝑦𝑢),𝑢 = −𝜌𝜕𝑦𝑦𝑢 = − 𝜌
𝜇
𝜕𝑥𝑝 =

8𝜌𝑢0
𝐻2 ,

i.e. constant (!). Assuming a long channel with no change in 𝑥 for the variables, the equation for the adjoint 𝑥-velocity 𝑢̃ simplifies 
to:

𝜕𝑥𝑝̃ = 𝜇𝜕𝑦𝑦𝑢̃−
𝜌
𝜇
𝜕𝑥𝑝 .

As this is a long channel and the source-term is constant, the assumption that 𝜕𝑥𝑝̃ is constant is warranted. This implies that 𝜕𝑦𝑦𝑢̃
should also be a constant. Applying the boundary conditions 𝑢̃ = 0 for 𝑦 = −𝐻∕2 and 𝑦 =𝐻∕2 yields:

𝑢̃ =
[
1− 4

𝐻2 𝑦
2
]
𝑢̃0 .

However, if we again consider that at the inflow boundary 𝑢̃ = 0, and given that the adjoint velocity field is divergence-free, then in 
any section of 𝑥 we must have:

∫ 𝑢̃𝑑𝑦 = 0 ,

which implies that the only possible solution is 𝑢̃(𝑥, 𝑦) = 0, and therefore:

−𝜕𝑥𝑝̃ =
𝜌
𝜇
𝜕𝑥𝑝 .

As at the exit the pressure 𝑝 vanishes, i.e. 𝑝 = 0, we finally obtain the remarkable result that:

−𝑝̃ = 𝜌
𝜇
𝑝 ,
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i.e. the pressure and adjoint pressure are related by the factor 𝜌𝜇 and have a constant gradient in the field.

A.3. Exact derivatives of cost functions

Kinetic Energy:

𝐼𝑘𝑒 = 1
2 ∫ 𝜌|𝒖|2 dx .

Given that 𝑢 = 𝑢(𝑦), 𝑣 = 0 this results in:

𝐼𝑘𝑒 = 1
2𝜌∫

𝑥

𝑑𝑥∫
𝑦

𝑢2𝑑𝑦 = 1
2𝜌𝐿∫ 𝑢20

[
1− 4

𝐻2 𝑦
2
]2

𝑑𝑦

𝐼𝑘𝑒 = 1
2

8
15𝐿𝐻𝜌𝑢20 ,

𝐼𝑘𝑒,𝑢0 =
8
15𝐿𝐻𝜌𝑢0 =

2
3𝐻𝑝̃𝑖𝑛 ,

i.e. linear in the length 𝐿 and the velocity 𝑢0, and

𝐼𝑘𝑒,𝑥 = 1
2

8
15𝐻𝜌𝑢20 =

1
2
2
3𝐻𝑝̃𝑖𝑛𝑢0 ,

i.e. not dependent (constant) of the length 𝐿 and quadratic in the velocity 𝑢0. In the previous equations we assumed 𝑝𝑜𝑢𝑡 = 0, and 
used the analytical results that relate mass flow, viscosity and pressure gradient for the Poiseuille flow. One should remark that if 
the domain that is of interest does not change (e.g. only a certain region inside the channel is considered), the correct value is:

𝐼𝑘𝑒,𝑥 = 0

as the flow is constant in 𝑥 and therefore the cost functional does not change if the upstream boundary is moved.

Vortical Energy (Dissipation):

𝐼𝑣𝑒 = 1
2 ∫ 𝜌|∇× 𝒖|2 dx .

Given that 𝑢 = 𝑢(𝑦), 𝑣 = 0 this results in:

𝐼𝑣𝑒 = 1
2𝜌∫

𝑥

𝑑𝑥∫
𝑦

|𝜕𝑦𝑢|2𝑑𝑦 = 8
3
𝜌𝑢20
𝐻2 𝐿𝐻

This implies:

𝐼𝑣𝑒,𝑢0 =
16
3 𝐿𝜌

𝑢0
𝐻

= 2𝐿𝐻𝑝̃
3 ,

i.e. linear in the length 𝐿 and the velocity 𝑢0, and

𝐼𝑣𝑒,𝑥 = 8
3
𝜌𝑢20
𝐻

=
𝐿𝐻𝑝̃𝑢0

3 ,

i.e. not dependent (constant) of the length 𝐿 and quadratic in the velocity 𝑢0. Notice, though, that as before if the domain that is of 
interest does not change (e.g. only a certain region inside the channel is considered), the correct value is:

𝐼𝑣𝑒,𝑥 = 0

as the flow is constant in 𝑥 and the cost functional will not change if the upstream boundary is moved.
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