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An adjoint-based procedure to determine weaknesses, or, more generally, the material
properties of structures is developed and tested. Given a series of load cases and cor-
responding displacement/strain measurements, the material properties are obtained by
minimizing the weighted differences between the measured and computed values. In a sub-
sequent step, techniques to minimize the number of load cases and sensors are proposed
and tested.

Several examples show the viability, accuracy and efficiency of the proposed methodology
and its potential use for high fidelity digital twins.

I. INTRODUCTION

Given that all materials exposed to the environment and/or undergoing loads eventually age and fail,
the task of trying to detect and localize weaknesses in structures is common to many fields. To mention
just a few: airplanes, drones, turbines, launch pads and airport and marine infrastructure, bridges, high-rise
buildings, wind turbines, and satellites. Traditionally, manual inspection was the only way of carrying out
this task, aided by ultrasound, X-ray, or vibration analysis techniques. The advent of accurate, abundant
and cheap sensors, together with detailed, high-fidelity computational models in an environment of digital
twins has opened the possibility of enhancing and automating the detection and localization of weaknesses
in structures.

From an abstract setting, it would seem that the task of determining material properties from loads and
measurements is an ill-posed problem. After all, if we think of atoms, granules or some polygonal (e.g. finite
element [FEM]) subdivision of space, the amount of data given resides in a much smaller space than the
data sought. If we think of a cuboid domain in d dimensions with N? subdivisions, the maximum amount
of surface information/ data given is of O(N9~1) while the data sought is of O(NY).

Another aspect that would seem to imply that this is an ill-posed problem is the possibility that many
different spatial distributions of material properties could yield very similar or equal displacements under
loads.

On the other hand, the propagation of physical properties (e.g. displacements, temperature, electrical cur-
rents, etc.) through the domain obeys physical conservation laws, i.e. some partial differential equations
(PDEs). This implies that the material properties that can give rise to the data measured on the boundary
are restricted by these conservation laws, i.e. are constrained. This would indicate that perhaps the problem
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is not as ill-posed as initially thought.

As the task of damage detection is of such importance, many analytical techniques have been developed over
the last decades.? 79195, 17,21,22,24,25,27,28 Gome of these were developed to identify weaknesses in structures,
others (e.g.'7) to correct or update finite element models. The damage/weakness detection from measure-
ments falls into the more general class of inverse problems where material properties are sought based on a
desired cost functional.® 71829 Tt is known that these inverse problems are ill-defined and require regular-
ization techniques.

The analytical methods depend on the measurement device at hand, and one can classify broadly according
to them. The first class of analytical methods is based on changes observed in (steady) displacements or
strains.>% 21,2730 The second class considers velocities or accelerations in the time domain.'® 2428 The
third class is based on changes observed in the frequency domain.” 8 17,22,25

Some of the methods based on displacements, strains, velocities or accelerations used adjoint formula-
tions 9 20,24,27,30,32 i order to obtain the gradient of the cost function with the least amount of effort.
In the present case, the procedures used are also based on measured forces and displacements/strains, use
adjoint formulations and smoothing of gradients to quickly localize damaged regions.® Unlike previous ef-
forts, they are intended for weakness/damage detection in the context of digital twins, i.e. we assume a
set of defined loadings and sensors that accompany the structure (object, product, process) throughout its
lifetime in order to monitor its state. The digital twins are assumed to contain finite element discretiza-
tions/models of high fidelity, something that nowadays is common the aerospace industry. Therefore, the
proposed approach fits well into the overall workflow of high-level CAD environments and high fidelity FEM
models seen in the design phase.

II. ASSUMPTIONS

What follows relies on the following set of assumptions:

- Monitoring the weakening of a structure is carried out by applying a set of n different forces f;,i = 1,n

and measuring the resulting displacements u/??,i = 1,n,j = 1, m and/or strains si;%t=1Ln,jg=1m

j
at m different locations x;,j = 1, m (the intrinsic assumption is that the forces can be standardized

and perhaps even maintained throughout the life of the structure);

- The weakening of a structure may occur at any location, i.e. there are no regions that are excluded for
weakening; this is the most conservative assumption, and could be relaxed under certain conditions;

- The sensors for displacements and strains are limited in their ability to measure by noise/signal ratios,
i.e. actual displacements and strains have to be larger than a certain threshold to be of use:

u™l>wuo , [s™=s0 . (2.1)

- The type of force used to monitor the weakening of a structure is limited by practical considerations;
this implies that the number of different forces is limited, and can not assume arbitrary distributions
in space.

- The weakening of a structure may be described by a field a(x), where 0 < a(x) < 1 and a(x) = 0
corresponds to total failure (no load bearing capability) while a(x) = 1 is the original state;

- The displacements, strains and stresses of the structure are well described by a sufficiently fine finite
element discretization (e.g. trusses, beams, plates, shells, solids),3>33 which results in a system of
equations for each load case:

where u; are the displacements and K the usual stiffness matrix, which is obtained by assembling all
the element matrices:

Ne
K=> K. . (2.3)
e=1
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III. DETERMINING MATERIAL PROPERTIES VIA OPTIMIZATION

The determination of material properties (or weaknesses) may be formulated as an optimization problem
for the strength factor a(x) as follows: Given n force loadings f;,4 = 1,n and n - m corresponding measure-
ments at m measuring points/locations x;, j = 1, m of their respective displacements u“;d t1=1n,j3=1m
or strains s;7*%,1 = 1,n,j = 1,m, obtain the spat1al distribution of the strength factor o that minimizes the
cost function:

11,1, %zz (W~ T+ 30 S e ~ Tys (3.1)

lel

31,33

subject to the finite element description (e.g. trusses, beams, plates, shells, solids) of the structure under

consideration (i.e. the digital twin/system?:23):

md wms

where w7, w;7* are displacement and strain weights, I¢,1¢ interpolation matrices that are used to obtain
the displacements and strains from the finite element mesh at the measurement locations, and K the usual

stiffness matrix, which is obtained by assembling all the element matrices:

Ne
K=> oK. , (3.3)
e=1

where the strength factor a. of the elements has already been incorporated. We note in passing that in order
to ensure that K is invertible and non-degenerate a. > € > 0. Note that the optimization problem given by
Eqns.(2.1-2.3) does not assume any specific choice of finite element basis functions, i.e. is widely applicable.

3.1 OPTIMIZATION VIA ADJOINTS

The objective function can be extended to the Lagrangian functional

L, ponty, ) =I(uy, p0)+ Y dl(Ku —f;) | (3.4)
i=1

where @; are the Lagrange multipliers (adjoints). Variation of the Lagrangian with respect to each of the
measurements then results in:

dL
dL - mdyd md d ms s s t
du}zz w9 (w1 uz—l—Zw J5i(sP® — Isi) + Ky = 0 (3.5b)
7 j=1
dL = e
= Z Zda ZutK u; (3.5¢)
€ i=1 €

where J?; denotes the relationship between the displacements and strains (i.e. the derivatives of the dis-
placement field on the finite element mesh and the location x; (see Section 3 below)).
The consequences of this rearrangement are profound:

- The gradient of L, I with respect to a may be obtained by solving n forward and adjoint problems;
ie.

- Unlike finite difference methods, which require at least n forward problems per design variable, the
number of forward and adjoint problems to be solved is independent of the number of variables
used for «a (!);

- Once the n forward and adjoint problems have been solved, the cost for the evaluation of the gradient
of each design variable a. only involves the degrees of freedom of the element, i.e. is of complexity
o();
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- For most structural problems K = K, so if a direct solver has been employed for the forward problem,
the cost for the evaluation of the adjoint problems is negligible;

- For most structural problems K = K¢, so if an iterative solver is employed for the forward and adjoint
problems, the preconditioner can be re-utilized.

3.2 OPTIMIZATION STEPS

An optimization cycle using the adjoint approach is composed of the following steps:
For each force/measurement pair i:

- With current a: solve for the displacements — u;
- With current «, u; and u?}d, sg}d: solve for the adjoints — u;
- With u;, u;: obtain gradients — Ifa = Lfa
Once all the gradients have been obtained:
- Sum up the gradients — I, = > 1, I,
- If necessary: smooth gradients — "¢

- Update apew = aora — vI5"°.

Here v is a small stepsize that can be adjusted so as to obtain optimal convergence (e.g. via a line search
method).

IV. INTERPOLATION OF DISPLACEMENTS AND STRAINS

The location of a displacement or strain gauge may not coincide with any of the nodes of the finite element
mesh. Therefore, in general, the displacement u;, at a measurement location x}' needs to be obtained via
the interpolation matrix Ig as follows:

w(x) = L) a (4.1)

where u are the values of the displacements vector at all gridpoints.
In many cases it is much simpler to install strain gauges instead of displacement gauges. In this case, the
strains need to be obtained from the displacement field. This can be written formally as:

s=D-u , (4.2)

where the ‘derivative matrix’ contains the local values of the derivatives of the shape-functions of u. The
strain at an arbitrary position x* is obtained via the interpolation matrix I as follows:

se(xp) =L (x) s =L(x[")-D-u . (4.3)

Note that in many cases the strains will only be defined in the elements, so that the interpolation matrices
for displacements and strains may differ.

V. CHOICE OF WEIGHTS

The cost function is given by Eqn.(3.1), repeated here for clarity:

n m
md (. .md d 2
E E wi (a1 - w)” +

i=1 j=1 i

I(u,,a) =

> wit(syt — I - si)? (5.1)
=1 j=1

N =
N —

One can immediately see that the dimensions of displacements and strains are different. This implies that
the weights should be chosen in order that all the dimensions coincide. The simplest way of achieving this
is by making the cost function dimensionless. This implies that the displacement weights wg’;d should be of
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dimension [1/(displacement*displacement)] (the strains are already dimensionless). Furthermore, in order to
make the procedures more generally applicable they should not depend on a particular choice of measurement
units (metric, imperial, etc.). This implies that the weights for the displacements and strains should be of
the order of the characteristic or measured magnitude. Several options are possible:

- Local Weighting: in this case

(5.2)

this works well, but may lead to an ‘over-emphasis’ of small displacements/strains that are in regions
of marginal interest;

- Average Weighting: in this case one first obtains the average of the absolute value of the displace-
ments/strains for a loadcase and uses them for the weights, i.e.:

:Z;'n:1|u;7jld . w’_’?d—i s :Z;n:llsg.“' . w?’.w:i . (53)
av m ) ij Ugv y 2av m ) ij ng ) .

this works well, but may lead to an ‘under-emphasis’ of small displacements/strains that may occur in
important regions;

- Max Weighting: in this case one first obtains the maximum of the absolute value of the displace-
ments/strains for a loadcase and uses them for the weights, i.e.:

. 1
Umaz = max(|u;7;d|,] =1,m) ; w;?d =— ;
umaw
ms N ms 1
Smaz = ma$(|5ij l,j=1,m) ; Wi = —3 ) (5.4)
Smam

this also works well for many cases, but may lead to an ‘under-emphasis’ of smaller displacements/strains
that can occur in important regions;

- Local/Max Weighting: in this case

1 1
wm’d = R w’(‘r}s = ] 55
t maz(eUmaz, |u§?d|))2 B maz(€smaz, |S?;s|))2 ’ 55)

with e = 0(0.01—0.10); this seemed to work best of all, as it combines local weighting with a max-bound
minimum for local values.

VI. SMOOTHING OF GRADIENTS

The gradients of the cost function with respect to a allow for oscillatory solutions. One must therefore
smooth or ‘regularize’ the spatial distribution. This happens naturally when using few degrees of freedom,
i.e. when « is defined via other spatial shape functions (e.g. larger spatial regions of piecewise constant
a?7). As the (possibly oscillatory) gradients obtained in the (many) finite elements are averaged over spatial
regions, an intrinsic smoothing occurs. This is not the case if & and the gradient are defined and evaluated in
each element separately, allowing for the largest degrees of freedom in a mesh and hence the most accurate
representation. Three different types of smoothing or ‘regularization’ were considered. All of them start by
performing a volume averaging from elements to points:

Ze CYere

AR (6.1)

Oép:
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where a;, o, Ve denote the value of a at point p, as well as the values of a in element e and the volume of
element e, and the sum extends over all the elements surrounding point p.

6.1 Simple Point/Element/Point Averaging
In this case, the values of a are cycled between elements and points. When going from point values to
element values, a simple average is taken:

Qe = ni Zai ) (6.2)

where n. denotes the number of nodes of an element and the sum extends over all the nodes of the element.
After obtaining the new element values via Eqn.(5.2) the point averages are again evaluated via Eqn.(5.1).
This process is repeated for a specified number of iterations (typically 1-5). While very crude, this form of
averaging works surprisingly well.

6.2 H' (Weak) Laplacian Smoothing
In this case, the initial values «g obtained for « are smoothed via:

1-AV]a=a , (3¢7n|F =0 . (6.3)

Here \ is a free parameter which may be problem and mesh dependent (its dimensional value is length
squared). Discretization via finite elements yields:

[MC + )\Kd] a = Mplpoao y (64)

where M., K4, M,1,0 denote the consistent mass matrix, the stiffness or ‘diffusion” matrix obtained for the
Laplacian operator and the projection matrix from element values (ag) to point values (e).

6.3 Pseudo-Laplacian Smoothing
One can avoid the dimensional dependency of A by smoothing via:

[1-AVR*V]a=ag , (6.5)
where h is a characteristic element size. For linear elements, one can show that this is equivalent to:

[MC +A (Ml - MC)] o = MplpOaO s (66)

where M; denotes the lumped mass matrix.'® In the examples shown below this form of smoothing was used
for the gradients, setting A = 0.05.

VII. IMPLEMENTATION IN BLACK-BOX SOLVERS

The optimization cycle outlined above can be implemented in a very efficient way if one has direct access
to the source-code of finite element-based structural mechanics solvers, but is also amenable to black-box
(e.g. commercial) solvers. A possible way to proceed is the following:

- Output the original stiffness matrix K; for each element;
- For each optimization step/cycle:

- With the current element values for a: build the new stiffness matrix; this is usually done with a
user-defined subroutine or module (all commercial codes allow for that);

- For each load case ¢:
- Solve the forward problem (— u;);
- Post-process the results of the forward problem in order to obtain the displacements and strains;

- With the measured and computed displacements/ strains and weights: compute the cost function part
of this load case (— I);
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- Build the ‘force vector’ (i.e. the right-hand-side) for the adjoint problem by comparing the measured
and computed displacements/ strains and weighting them appropriately;

- Solve the adjoint problem (— @;);
- With u;, u; and the original stiffness matrix K;: get the gradient in each element;

- Smooth the gradients (either via a ‘fake-heat-solver’ if Laplacian smoothing is desired, or via an external
smoother);

- Send the cost function and the smoothed gradients to the optimizer;

- Update «

VIII. OPTIMIZATION OF LOADINGS

The aim of choosing a minimal yet optimal set of forces to monitor the weakening of structures is to
be able to determine the field a(x) as best as possible. From structural mechanics, this implies that one
should avoid regions where the strains are very small or vanish. For these regions, a(x) can assume an
arbitrary value without having any effect on the overall displacements or strains. Therefore, the forces
should be chosen such that the number of regions with very small or vanishing strains should
be minimized.

As stated before, for practical reasons the number and type of possible loads is limited. This ‘limitation of
the search space for loads’ opens up the possibility of a simple algorithm to determine the optimal choice.
For each of the n possible loads f;,7 = 1,n, obtain the resulting displacement and strains, and record all
elements for which the strains are above a minimal sensor threshold sg.

If only one force is to be applied, the obvious choice is to select the one that produces the largest area with
strains that are above a minimal threshold. Having selected this force, the regions that have already been
affected by this force (i.e. with strains that are above the minimal threshold) are excluded from further
consideration. The next best force is then again the one that is able to measure the largest area with strains
that are above a minimal threshold. And so on recursively.

IX. OPTIMAL PLACEMENT OF SENSORS

Let us assume that a certain part Q% of the structure has weakened. This could be a region of several
elements, or a single element. This will lead to a change in the stiffness matrix, and a resulting change in
displacements and strains. The aim is to be able to record and identify the spatial location of this weakening
with the minimum number of sensors. The change in displacements or strains due to a weakening requires
the evaluation of the derivative

_ du(x)
da(x;)

for all possible combination of locations x;,x;. In the most general case x; is arbitrary, i.e. it could be any
node or element of the mesh. However, if sensors can only be placed in certain regions of the domain, the
location of x; can be reduced significantly.

Two possible ways were explored to obtain D (x;,x;): forward-based and adjoint-based.

Da(xivxj)

9.1 FORWARD-BASED

An immediate approach takes each ‘region of elements’, changes the stiffness matrix and computes the
resulting changes in displacements and strains at the possible sensor locations. Dropping the index for the
load cases, for each of them this results in:

(K+AK): - (u+Au)=f . (9.1.1)
With the original system (Eqn.(2.2)) this results in:

K-Au=-AK:(u+ Au) . (9.1.2)
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As the inverse (or LU decomposed) matrix of K is assumed as given (it was needed to compute u), there
are now two options:
a) Neglect the higher order terms AK - Au, which results in:

K-Au=-AK - u . (9.1.3)
b) Iterate for Au:

K-Au™ = -AK: - (u+Au") , i=1k , Au’=0 (9.1.4)

One is now able to determine for each possible weakening region 2}, k& = 1,r the resulting deformations
and strains, and with the thresholds ug, sg those sensors that are able to monitor the weakening.

The effect of weakening a region (in the extreme case a single element) on the sensors implies, in the worst
case, a CPU requirement that is of order O(N, e2l - Npandwidtn) for each of the n load cases, where Ng; denotes
the number of elements and Npgngwiden the bandwidth of the system matrix K. Clearly, for large problems
with No; = O(10°) this can become costly. Several options to manage this high cost are treated in Section 9.4.

9.2 ADJOINT-BASED

A more elegant (and faster) approach makes use of the adjoint to obtain the desired sensitivities for each
possible sensor locations. The desired quantity whose derivative with respect to element strength factor «
is sought (e.g. displacement at a sensor location) can be written as:

J = u(be,loads, a,x) . (9.2.1)
The desired derivative is given by:

dJ _8J 9] du

— =— 4+ = 9.2.2
da  Oa + Ou Ja ( )
This can be augmented to a Lagrangian by invoking the elasticity equations, resulting in:
LY = u(be,loads, o, x) + - (K-u—f) . (9.2.3)
The derivatives result in the usual systems of equations:
Li=K-u—f=0, (9.2.4a)
Ou(bc, load
L‘{l: U( C, LOQ S,a7X)+fl'K:0 ) (924b)
’ Ju
Ll =a-Kc-u, (9.2.4c)

Using the adjoint the information sought is evaluated in the opposite order to the previous (forward,
element-based) procedure. While in the forward case an element/region was weakened resulting in displace-
ments/strains for all nodes/elements, in the adjoint case a location is selected and the effect of weakening
each element on this location is obtained.

Observe that in this case the CPU requirement is of order O(m - N¢; - Npandwiarn) for each of the n loadcases,
where m denotes the number of sensors (assumed to be much lower than the number of elements), N
the number of elements and Npgndwidtn the bandwidth of the system matrix K. The advantages of using
the adjoint may become even more pronounced for nonlinear problems. While the forward-based procedure
would require the solution of a nonlinear problem for each element (or element group), the adjoint always
remains a linear problem.

9.3 SENSOR PLACEMENT

If only one sensor is to be placed, the obvious choice is to select the one that is able to measure the highest
number of weakening regions. Having selected this sensor, the weakening regions that were able to be
measured are excluded from further consideration. The next best sensor is then again the one that is able
to measure the highest number of the remaining weakening regions. And so on recursively.
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9.4 IMPLEMENTATION DETAILS
There are two aspects of the sensitivity calculation procedures for optimal sensor placement that need to be
addressed: computation and storage requirements.

9.4.1 Computation
The effect of weakening a region (in the extreme case a single element) for the forward option, or the sensi-

tivity of each element/point in the mesh for the adjoint option implies, in the worst case, a CPU requirement
that is of order O(N, 62l - Nbandwidth ), where N denotes the number of elements and Npgpnduwideh the bandwidth
of the system matrix K. Clearly, for large problems with N = O(10°) this can become costly. As is so
often the case in computational mechanics, algorithms and hardware can help alleviate this problem.

a) Clustering of Elements

Instead of weakening a single element (forward option) or computing the sensity of a single node/element
(adjoint option), one can cluster elements into subregions. The CPU requirements then decrease to O(Nyeq -
Nei - Noandwidth), where Npoq denotes the number of subregions. In the present case an advancing front
technique was used to cluster elements into subregions. The size of the subregions can be specified via a
minimum required number of elements per subregion, the area/volume of the subregion or the minimum
distance from the first element/point of the subregion. Given that in 3-D the number of elements in a sub-
region increases quickly, the number of subregions can be substantially lower than the number of elements,
yielding a considerable reduction in CPU requirements.

b) Parallel Computing

The matrix problem that needs to be solved to obtain the effect of weakening a region/element (forward op-
tion) or to obtain the sensitivity of a region/element (adjoint option) is independent of other regions/elements,
making the problem embarrassingly parallel.

9.4.2 Storage
Storing the effect of weakening a region (in the extreme case a single element) or the sensitivity of all elements

for every element implies, in the worst case, a storage requirement that is of order O(N?2). Even if one is only
interested in the effect on m sensors this implies O(m - N;). Clearly, for large problems with N.; = O(10°)
and m = O(10%) this can become an issue. A simple way to diminish the storage requirements is to store
the on/off sensing in powers of 2:

m
s=Y 2, (9.4.1)
i=1
where k; is either 1 or 0 depending on whether the sensor was activated or not.

9.5 SENSOR PLACEMENT WITH REGIONS

In some cases, the weakening of all elements can be achieved with only a few sensors (in the extreme case
a single sensor). However, placing a single sensor would preclude being able to precicely define weakening
regions. Therefore, only the elements in the neighbourhood of the selected sensor are excluded from further
consideration. As before, the neighbourhood of the sensor can be specified via the number of elements, the
area/volume or the distance from the sensor. The remainder of the procedure outlined above remains the
same.

X. EXAMPLES

All the numerical examples were carried out using two finite element codes. The first, FEELAST, S is
a finite element code based on simple linear (truss), triangular (plate) and tetrahedral (volume) elements
with constant material properties per element that only solves the linear elasticity equations. The second,
CALCULIX,!" is a general, open source finite element code for structural mechanical applications with many
element types, material models and options. The optimization loops were steered via a simple shell-script for
the adjoint-based gradient descent method. In all cases, a ‘target’ distribution of a(x) was given, together
with defined external forces fr. The problem was then solved, i.e. the displacements u(x) and strains s(x)
were obtained and recorded at the ‘measurement locations’ x;, 7 = 1, m. This then yielded the ‘measurement
pair’ f,u;, j =1,morf,s;, j =1, m that was used to determine the material strength distributions «(x)
in the field.
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10.1 Plate With Hole

The case is shown in Figures 10.1a,b, and considers a plate with a hole. The plate dimensions are (all units in
cgs): 0 <x<60,0<y<30,0<2z<0.1. Ahole of diameter d = 10 is placed in the middle (x = 30,y = 15).
Density, Young’s modulus and Poisson rate were set to p = 7.8, E = 2-10'2, v = 0.3 respectively. 672 linear,
triangular, plain stress elements were used. The left boundary of the plate is assumed clamped (u = 0),
while a horizontal load of ¢ = (10°,0,0) was prescribed at the right end. In the first instance, a small region
of weakened material was specified. The ability of the procedure to detect or ‘recover’ this weakening based
on the number of sensors used (shown as white dots) is clearly visible. As the number of sensors increases,
the region is recovered. Notice that even with 1 sensor a weakening is already detected, and that with 6
sensors the weakened region is clearly defined.

n“

Figure 10.1a Plate With Hole: Effect of Sensors

In the second case, four weakening regions were specified.

10 of 28

American Institute of Aeronautics and Astronautics



Downloaded by Harbir Antil on January 5, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2024-2621

1.0e-01

1.0e+00

L.

—06
—04

02
1.0e01

Figure 10.1b Plate With Hole: Sensing 4 Weakened Regions

10.2 Thick Plate With Conical Hole

The case is shown in Figure 10.2a and considers a thick plate with a conical hole. The plate dimensions
are (all units in cgs): 0 < z < 60,0 <y < 30,0 < 2z < 10. A conical hole of diameter d; = 5 and
dy = 15 is placed in the middle (x = 30,y = 15). Density, Young’s modulus and Poisson rate were set to
p="T78E=2-102 v = 0.3 respectively. Two grids, of 19 K and 120 K linear tetrahedral elements (tet)
were used. The surface mesh of the coarser mesh is shown in Figure 10.2a. A first series of runs with the
28 sensors shown in Figure 10.2b were conducted. The target and computed weakening for the two grids
and the 28 sensors are shown in Figures 10.2c-f. Note the proper detection of the weakened region.

Having proven that the technique works, the optimal number of sensors and loads were obtained. Figure 10.2g
records the number of (displacement) sensors that were able to measure/‘sense’ the weakening of each element
using the ‘forward-based’ approach. As expected, the number is higher for the elements close to the clamped
boundary. The technique outlined above (Section 6.3) sorted the sensors. This resulted in just 5 sensors,
whose location and ‘zone of influence’ is shown in Figures 10.2h,i. The weakening regions computed with
these sensors for the two grids are shown in Figures 10.2j,k. One can see that even with this small number
of sensors the regions are well defined. The convergence history of the cost function for these cases is plotted
in Figure 10.21. Finally, Figure 10.2m shows the number of elements with strains above a threshold for the
2 load cases: ¢ = (10%,0,0) and g2 = (0,—10°,0). One can see that with these 2 loads cases almost all
elements are affected, so any further load cases would not lead to more information.
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Figure 10.2a Thick Plate With Conical Hole: Surface of Coarse Mesh

Figure 10.2b Thick Plate With Conical Hole: Location of Sensors
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Figure 10.2c Thick Plate With Conical Hole: Weakened Region (Coarse Mesh)

Figure 10.2d Thick Plate With Conical Hole: Computed Strength Factor With 28 Sensors (Coarse Mesh)
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Figure 10.2e Thick Plate With Conical Hole: Weakened Region (Fine Mesh)

Figure 10.2f Thick Plate With Conical Hole: Computed Strength Factor With 28 Sensors (Fine Mesh)
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Figure 10.2g Thick Plate With Conical Hole: Nr. of Sensors Activated by Weakening An Element

Figure 10.2h Thick Plate With Conical Hole: Optimal Location of Displacement Sensors
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Figure 10.2i Thick Plate With Conical Hole: Elements ‘Sensed’ for Each Displacement Sensor

Figure 10.2j Thick Plate With Conical Hole: Computed Strength Factor With 5 Sensors (Coarse Mesh)
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Figure 10.2k Thick Plate With Conical Hole: Computed Strength Factor With 5 Sensors (Fine Mesh)
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Figure 10.21 Thick Plate With Conical Hole: Convergence of Cost Function for all Cases
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Figure 10.2m Thick Plate With Conical Hole: Loads Affecting Strain in Elements

10.3 Connecting Rod
The case is shown in Figure 10.3a and considers a connecting rod typical of mechanical and aerospace

engineering (e.g. to actuate flaps in wings). The two inner diameters are d1 = 2,d2 = 6, and the distance
between the centers is dio = 22 (all units in cgs). Density, Young’s modulus and Poisson rate were set to
p="178,E=2-10'2,v = 0.3 respectively. The inner part of the smaller cylinder is held fixed, while forces
in the z,y direction are applied at the larger cylinder. In order to assess the effect of mesh refinement,
two different grids were employed: coarse (9.9Ktet) and medium (71Ktet). In all cases linear, tetrahedral
elements were used. The surface mesh of the medium mesh is shown in Figure 10.3b. In a first series of
runs, 32 measuring points were placed on the connector rod surface and the target strength factor shown
in Figures 10.3c was specified. Figures 10.3d,e depict the difference between the measured and computed
displacements and the strength factor at iterations 0 (beginning) and 160 (end). Note the decrease in the
difference between the measured and computed displacements, and the emergence of the weakened region.
This is also reflected in the convergence history of the cost function (Figures 10.3f). The displacements and
stresses are shown in Figures 10.3g,h.
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Figure 10.3a Connecting Rod: Surface

Figure 10.3b Connecting Rod: Surface Triangulation

19 of 28

American Institute of Aeronautics and Astronautics



Downloaded by Harbir Antil on January 5, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2024-2621

Figure 10.3c Connecting Rod: Target Strength Factor

Figure 10.3d Connecting Rod: Iteration 0
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Figure 10.3e Connecting Rod: Iteration 160
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Figure 10.3f Connecting Rod: Cost Function History
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Figure 10.3g Connecting Rod: Displacements
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Figure 10.3h Connecting Rod: Stresses

This case was analyzed further by specifying 86 measuring points (Figure 10.3i) and then obtaining from
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these the optimal sensors using the procedures outlined above. Given that the number of elements and
possible sensors was considerable, groups of elements of desired ‘group size’ of 1x1x1 cm were formed. These
can be discerned in Figure 10.3j, which shows the number of sensors that would ‘see’ (i.e. be activated)
when a group of elements is weakened. The location of the optimal sensors obtained, as well as the region of
elements each of them covers, can be seen in Figure 10.3k. In order to assess the effect of mesh resolution the
the weakening regions obtained using the original 86 sensor locations and the optimal 8 sensor locations for
the coarse and medium meshes are compared in Figures 10.3l-0. As expected, mesh resolution is important,
and the 8 optimally placed sensors are able to detect the weakened region with high precision. This example
highlights the importance of using high-definition digital twins and not simpler reduced order models (ROMs)
or machine learning models (MLs) in order to localize regions of weakended material in complex structures.

Figure 10.3i Connecting Rod: 86 Possible Sensor Locations
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Figure 10.3j Connecting Rod: Number of Sensors Activated by Weakening Element Groups
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Figure 10.3k Connecting Rod: Optimal Sensor Locations
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Figure 10.31 Connecting Rod: Strength Factor Obtained With 86 Sensors on Coarse Mesh

Figure 10.3m Connecting Rod: Strength Factor Obtained With 86 Sensors on Medium Mesh
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Figure 10.3n Connecting Rod: Strength Factor Obtained With 8 Sensors on Coarse Mesh
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Figure 10.30 Connecting Rod: Strength Factor Obtained With 8 Sensors on Medium Mesh

26 of 28

American Institute of Aeronautics and Astronautics



Downloaded by Harbir Antil on January 5, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2024-2621

XI. CONCLUSIONS AND OUTLOOK

An adjoint-based procedure to determine weaknesses, or, more generally the material properties of struc-
tures has been presented. Given a series of force and displacement/strain measurements, the material
properties are obtained by minimizing the weighted differences between the measured and computed values.
In a subsequent step techniques to optimize the number of loadings and sensors have been proposed and
tested.

Several examples show the viability, accuracy and efficiency of the proposed methodology.

We consider this a first step that demonstrates the viability of the adjoint-based methodology for system
identification and its use for high fidelity digital twins.1%23

Many questions remain open, of which we just mention some obvious ones:

- Will these techniques work for nonlinear problems ?
- Which sensor resolution is required to obtain reliable results ?

Will these techniques work under uncertain measurements 74

- Can one detect faulty sensors in a systematic way 7
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