AIAA SciTech Forum

8-12 January 2024, Orlando, FL
ATAA SCITECH 2024 Forum

Downloaded by Harbir Antil on January 5, 2024 | http://arc.aiaa.org | DOI: 10.2514/6.2024-2622

On The Use of Risk Measures in Digital Twins to
Identify Weaknesses in Structures

Facundo Airaudo* and Harbir Antil" and Rainald Lohner* and Umarkhon Rakhimov®
George Mason University, Fairfax, VA 22030

Given measurements from sensors and a set of standard forces, an optimization based
approach to identify weakness in structures is introduced. The key novelty lies in letting the
load and measurements to be random variables. Subsequently the conditional-value-at-risk
(CVaR) is minimized subject to the elasticity equations as constraints. CVaR is a risk measure
that leads to minimization of rare and low probability events which the standard expectation
cannot. The optimization variable is the (deterministic) strength factor which appears as a
coefficient in the elasticity equation, thus making the problem nonconvex. Due to uncertainty,
the problem is high dimensional and, due to CVaR, the problem is nonsmooth. An adjoint
based approach is developed with quadrature in the random variables. Numerical results are
presented in the context of a plate, a large structure with trusses similar to those used in solar
arrays or cranes, and a footbridge.

L. Introduction

Given that all materials exposed to the environment and/or undergoing loads eventually age and fail, the task of
trying to detect and localize weaknesses in structures is common to many fields. To mention just a few: airplanes, drones
and missiles, turbines, launch pads and airport infrastructure, wind turbines, satellites and space stations. Traditionally,
manual inspection was the only way of carrying out this task, aided by ultrasound, X-ray, or vibration analysis techniques.
The advent of accurate, abundant and cheap sensors, together with detailed, high-fidelity computational models in an
environment of digital twins has opened the possibility of enhancing and automating the detection and localization
of weaknesses in structures. The authors in article [1] introduced an adjoint based optimization approach [2-5] to
identify weakness in structures under the deterministic setting. Given the displacement or strain measurements from
certain sensor measurements, the goal is to solve an inverse problem to determine material properties. This amounts to
minimizing a cost functional subject to elasticity equations as constraints, and is a deterministic optimization problem
with partial differential equations (PDE) as constraints. Here the optimization problem itself can be thought as a ‘digital
twin’ which is informed by the physical system via sensor measurements. The digital twin then make predictions about
the structural weakness.

However, the underlying elasticity equation contains various unknown quantities. In particular, the load measurements
can present uncertainty, especially if it comes from sources that were not accounted for, like wind or temperature
variations. In addition, the measurements from sensors could be faulty due to sensor errors or various signal-to-noise
thresholds. The present article proposes to model these quantities as random fields. This has dual benefits: firstly, one
can tackle the unknown quantities and secondly, it will lead to designs which are resilient to uncertainty. However,
several challenges appear. Due to random data/inputs, the PDE solution becomes a random field and the cost functional
becomes a random variable. It is unrealistic to minimize a random variable. Moreover, these problems can be very high
dimensional problems.

Traditionally, cost functionals that are random variables have been handled by computing their expectation. However,
evaluating the expectation is like computing an average. This scenario cannot handle the outliers which lie in the tail of
a distribution. Instead, following [6], we consider the so-called conditional-value-at-risk (CVaR), which is the average
of the B-tail of the distribution with 8 € (0, 1). The first use of CVaR in optimization problems with PDE constraints
can be found in [7]. Recently, this approach has been further extended using tensor decomposition tools [8] to tackle
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higher dimensional problems. See also [9] for a tensor-train framework with state constraints (e.g., constraints on the
displacement).

Outline: The remainder of the paper has been organized as follows: In section II we state the well known definition
of CVaR. Section III focuses on the optimization problem with elasticity constraints under uncertainty. Section IV
discusses the adjoint formulation to evaluate the gradients. Section V, presents our implementation details and various
numerical examples. Finally, in section VI a few concluding remarks are provided.

II. Conditional Value at Risk

Let £ := (D, A, P) be a complete probability space. Here D denotes the set of outcomes, A C 2P is the o-algebra
of events, and P : A — [0, 1] is the appropriate probability measure. Consider a scalar random variable X defined on
L. In our setting below, X will be the random variable objective function. The expectation of X is given by

E[X] = /D X (w)dP(w) . )

X can be, for example, a typical objective function in an optimization problem, minimizing its standard expectation
would be regarded as a risk neutral approach. Making use of risk measures like CVaRg allow the optimization process
to focus on certain areas of the random domain instead of the whole range.
If B € (0, 1) is fixed, and P[X < ¢] denotes the probability of the random variable X is less than or equal to ¢, then
the value-at-risk (VaR) is given by
VaRg[X] := tigﬂg{t : P[X <1t] 2B} 2)

Unfortunately, VaRg is not a coherent risk measure as it violates the sub-additivity / convexity axiom in risk-measures
[6]. Instead, CVaRg, which is coherent, is a preferred risk-measure. Due to Rockafellar and Uryasev [10, 11], CVaRg
can be written as

CVaRg[X] = tlrelﬂg {t+ T i,BE[(X - t)+]} , 3)
where (X — 1), = max{X —,0}. In case of a continuous random variable, the above definition is equivalent to
CVaRg[X] =E[X : X > VaRg[X]], i.e.,, CVaRg[X] is indeed the average of 5-tail of the distribution of X. Namely,
CVaRg[X] focuses on the rare and low probability events, especially when 8 — 1. This is further illustrated in Figure 1
by the shaded region under the curve. L.e., the Cumulative Distribution Function (CDF) here is larger than 8 and here
X > VaRg[X] with probability 1 — 8. Notice that the main reason for considering CVaRg instead of VaRg is that the
latter is not coherent. In addition, the expression of CVaRg given in (3) making it much more computationally tractable
in comparison to VaRg.

Throughout, we make the finite dimensional noise assumption. We assume that w can be sampled via a finite
random vector £ : D — ZE instead, where Z = (D) ¢ R? with d € N. This allows us to redefine the probably
space as (E,X,y) where £ = £(A) is the o-algebra and y(¢) is the continuous probability density function such
that E[X] = /a X(&)y(€)dé. The random variable X(€) can be considered as a function of the random vector

E=(&W,... &)

I11. Problem Formulation

In what follows we assume that a spatial discretization has been carried out via finite elements, finite volumes or
finite differences, even though the discussion below is independent of any particular discretization. The determination
of material properties (or weaknesses) may be formulated as an optimization problem for the deterministic strength
factor a@(x) as follows: Let the load E 5 ¢ +— f(£¢) be a random vector with known distribution. Moreover, let
Xj,j = 1,...,m denotes the m measurement locations for deformations E > ¢ +— u;."d (&), j=1,...,m or strains
EBfl—)S;"S(f), j=1...,m.

Then the random variable objective functional that we want to minimize to identify the spatial distribution of the
strength factor « is given by

I(u(é),e) = % Diwr @) (e) -1 - u(€))? + % DIwIS(E)(S(€) ~ T - s(€)%, “
j=1 j=1
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Fig. 1 Illustrations of a normal Probability Density Function (PDF) and its corresponding Cumulative
Distribution function (CDF) for a random loss function X. For an arbitrary 5, VaRg and CVaRg are shown.

where w;."d, w;.'” are displacement and strain weights possibly depending on parameter &, I¢, I* interpolation matrices

that are used to obtain the displacements and strains from the finite element mesh at the measurement locations. However,
as mentioned earlier, minimizing /(u(¢), @) in (5a) is not tractable. We scalarize this using CVaRg given in (3). The
resulting minimization problem is given by

it {CVaRg (). )] = {1+ B0 0) - 0.1} (5)

subject to the finite element description (e.g. trusses, beams, plates, shells, solids) of the structure [12, 13] under
consideration (i.e. the digital twin/system [14, 15]):

K(a)u(¢) =£(¢), as. é€E. (5b)

Here K is the usual stiffness matrix, which is obtained by assembling all the element matrices:

Ne
K= Z K, , (6)
e=1

where the strength factor a, of the elements has already been incorporated. We note in passing that in order to ensure
that K is invertible and non-degenerate a, > € > 0.

IV. Adjoint Approach
In order to establish a gradient based method, we need to calculate the derivative of CVaRg with respect to a. Notice
that (-); is not differentiable in the classical sense, but it is differentiable in a generalized sense [16, 17]. We set the

derivative of (x), as
, 1 ifx>0
x), =
s { 0 otherwise,

enabling us to use a gradient based method. If one wants to use a higher order method (like Newton), then one approach
is to smooth the (-), function [7, 9].
Next, let the Lagrangian functional be

L(u, @, u) = CVaRg[I(u("), )] +/:7(§) u(é) " (K(a)u(é) —f(£))d¢
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where u indicates the Lagrange multiplier. A variation of £ with respect to u, at a stationary point, leads to

0= L0 = TS EI W) @) =00l )] + [ () Kl (@,

which gives rise to the adjoint equation

K(2) (&) = % [(I(u(@). a) - 1), 6ul(u(é). )], as. & €E. ™

Subsequently, the variation of £ with respect to @ gives us the required derivative with respect to &
oL@ = [ Y(OTO K (@u(©de. ®)
Finally, the variation with respect to 7 is given by
§; L(w,a,u)=1- ﬁ]a [(I(u(), @) =0)] . )

With the expression of the derivatives of £ with respect to @ and ¢, we can now create a gradient based method to solve
the optimization problem.

V. Implementation Details and Numerical Experiments

The goal of this section is provide several illustrative experiments. Prior to that, we discuss some missing ingredients.
Section V.A discusses the appropriate weights to be used in (5a). This is followed by section V.B which discusses
the appropriate smoothing procedure for the gradients, first introduced in [1]. The article [1] also highlights that this
smoothing can be associated with the use of appropriate function space based scalar product. Section V.C focuses on
the approximation of the expectation E. The proposed approach is applied to illustrative examples in section V.D. There
examples were computed using our codes for optimization and interfacing, and CALCULIX [18] as our solver for the
elasticity equations. CALCULIX is a general, open source finite element code for structural mechanics applications
with many element types, material models and options.

A. Local Weighting
In this study, we consider the following weights in (5a), and refer to [1] for further scenarios:
1 1
witd = ——— Wil = —— (10)
J d ij 2
(u]9)? /)

B. Smoothing of Gradients
The gradients of the cost function with respect to « allow for oscillatory solutions. One must therefore smooth or

‘regularize’ the spatial distribution. This happens naturally when using few degrees of freedom, i.e. when « is defined

via other spatial shape functions (e.g. larger spatial regions of piecewise constant ). As the (possibly oscillatory)
gradients obtained in the (many) finite elements are averaged over spatial regions, an intrinsic smoothing occurs. This is
not the case if @ and the gradient are defined and evaluated in each element separately, allowing for the largest degrees
of freedom in a mesh and hence the most accurate representation. Several types of smoothing or ‘regularization’ are
possible, see [1]. All of them start by performing a volume averaging from elements to points:

Ze a'eve
Ap = —F——
P N Ve

where a,, a., V. denote the value of @ at point p, as well as the values of « in element e and the volume of element e,
and the sum extends over all the elements surrounding point p. This work uses the averaging process described next.

(1)
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Simple Point/Element/Point Averaging
In this case, the values of a are cycled between elements and points. When going from point values to element

values, a simple average is taken:
1
Ae=— ) @ (12)
ne &
1
where n, denotes the number of nodes of an element and the sum extends over all the nodes of the element. After
obtaining the new element values via equation (12) the point averages are again evaluated via equation (11). These two
steps are repeated for a number of smoothing steps, which typically are in the range 1-5. This form of averaging is very

crude, but works very well in practice.

C. Approximation of expectation

The expectation E[-] in (5a), (8), and (9) is approximated using Gauss quadrature. Unfortunately, the computational
complexity in this case is O(n?) where n is the number of quadrature points in each random variable direction and
d is dimension of the random variables. One can overcome this curse of dimensionality by using tensor-train (TT)
decomposition as recently shown in [8, 9]. However, the TT decomposition is not used in the present paper.

Ww st el 1

Fig. 2 TIllustration of the use of load groups. Each group is scaled by a different random variable &;.

A simpler approach is chosen, in the form of load groups. Since we expect the load to be distributed in space along
a certain direction, we divide the load factor into multiple groups, each scaled separately by a random factor. Figure 2
shows an example of this concept. The choice of how many groups to use is given by a compromise between required
precision and availability of computing resources. In our computations, we choose the groups of uniform width.
For the cases in which a certain degree of uncertainty is expected in the measured loads, we have the following
formulation for the forward problem
K(a)u = Q.f, (13)

where Q; is a diagonal matrix that makes it so the load applied to point i is scaled by the proper random variable &;, .
For example, the standard expectation for a continuous random variable from equation (1), rewritten here for clarity:

E[X] = / X (w)dP(w).
D
Recalling the finite dimensional noise assumption from section II, we can rewrite it as
BlX] = [ X(@y()de.

where ¢ is a vector & = (&1, ..., &,) representing the load groups with n; indicating the number of load groups.
If we discretize the integral using a Gauss quadrature, we have

g g
E[X] = Z Z Wi(l)...W,(n,l)X(Xi(l),...,X,(nl))'y(.xl.(l),...,x,(nl)). (14)
8 lg 8 lg 8 lg
i=1 oy

For a quadrature with ng points in each direction, and using n; load groups, we need to compute X and y a total of ngl
times. Clearly, this can quickly become very costly.
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D. Example: Plate.
We consider the plate shown in Figure 3. The plate dimensions are (all units in mks): 0 < x < 60,0 < y < 30,
0 < z < 0.1. Density, Young’s modulus and Poisson rate were set to p = 7.8, E = 2 - 10°, v = 0.3, respectively. The top
boundary is clamped (u = 0) and a vertical load is given by f, =4 - 10°¢, where the scalar & lies in 2 = (0.8, 1.2).
The spatial discretization for the displacement and adjoint is carried out using piecewise linear finite elements. The
strength factor is discretized using piecewise constant elements.

1.0e+00 [ 1.0e+00
| 05 1.0002
5 5
g —1.00015 8
— 06 g e
£ £
2 — 10001 2
_ 04 o ]
‘ & &
. 1.00005
02
[ 1001 1.0e+00

Fig. 3 Left: Target strength factor and sensors. Right: Initial Strength Factor.

Gauss quadrature with 4 terms is used to approximate the integrals over =. Steepest descent with backtracking line
search is used as the optimization algorithm. Finally, four smoothing steps are applied to the gradient.

Consider the configuration shown in Figure 3 where part of plate has been weakened. The goal is to try to match the
displacement corresponding to the configuration shown in this figure.

1. With Load and Sensor Uncertainty

For each j, the random load is fy = 10°¢ where & is randomly drawn from a uniform distribution over Z. For each j,
this gives us the desired measurements w”’¢. That means that every sensor will derive its values from a different load
case. Thus, we can see it as having m conflicting realizations of the random variable at the same time.

Figure 4 shows a comparison between the standard expectation and CVaRg with different levels of 5. All optimization
runs took 100 iterations for a decrease in the objective function of 2 orders of magnitude. Clearly, CVaRg performs
much better as it is able to get rid of the extra weak spot that the uncertainties produced.

It is worth noting that as larger g are utilized, the solution tends to become more underdeveloped, meaning that the
values of the parameter do not go all the way down to 0.1 as we would like. However, this is not a problem since our
main goal is to accurately find the location of the weakening and the value placed on it is not as important.
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Fig. 4 Top row: first panel (standard expectation); middle and right panels (CVaRg with g = 0.1 and 0.3).
Bottom row (from left to right): CVaRg with 8= 0.5,0.7 and 0.9. Clearly, CVaRg performs much better than
the standard expectation.

4701

2. With Load Uncertainty

In this example, we look at high dimensionality in the load uncertainty. For this case, all sensors will measure the
same (deterministic) constant load given by f;, =4 - 103, applied at the top surface. In our optimization problem, we
apply a random load as described below.

In order to properly test a high-dimensional, worst case scenario, we compute the target displacements using a
deterministic load with a linear variation f, = 4.4 - 10° - %x, as shown in Figure 5 (top right). This sets up an
interesting dimensionality problem, as the load was assumed to be constant, the linear behaviour of this load is not
known by the optimizer.

The best one can do if one expects a non-constant variation of the loading in space, is to set up as many load groups
as one can afford to in order to best adapt to unforeseen random behaviour. In this example, we choose to divide the
loaded surface in 4 groups, each with its own associated random variable. Illustrations of this concept can be seen in the
bottom row of figure 5.

Using a Gauss quadrature scheme of order 3, our optimization algorithm required 3 state solves in order to evaluate
the objective function and the same number of adjoint solves to evaluate the gradient during each optimization iteration.
Recall that the quadrature is used to approximate the expectation in both the objective function and the gradient with
respect to a.

We optimize the same parameters as the previous case, with the difference that our integration limit were now
constrained to & = (0.9, 1.1). The results are shown in Figure 6, which displays that the risk neutral approach is
comparable to CVaRg for low 8. However, the accuracy improves as 3 gets larger.
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Measured Load: Actual Load:
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Fig. 5 Top Left: Loading assumed to be present. Top Right: Actual loading used to compute the sensor

displacements. Bottom: Examples of loading configurations used in the integration process.
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Fig. 6 Top row: first panel (standard expectation); middle and right panels (CVaRg with g = 0.3 and 0.5).
Bottom row (from left to right): CVaRg with 8 = 0.6, 0.7 and 0.9. CVaRg performs better than the standard

expectation.

E. Example: Large Truss Structure Under Load and Sensor Uncertainty

Consider the large truss structure shown in Figure 7. Structures such as this one are found in the solar panels of
the international space station, or in cranes. The structure is composed of 350 beam elements with transversal area
A = 5cm?. Density, Young’s modulus and Poisson rate were set to p = 7.8, E = 2-10°, v = 0.3, respectively. Moreover,
6 load cases were set up in order to cover a wide set of scenarios. These are presented in Figure 8. The loads on each
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case were allowed to be scaled by a random variable &, where & lies in E = (0.8, 1.2).

As in the previous case, the strength factor is discretized using piecewise constant elements. Gauss quadrature
with 4 terms is used to approximate the integrals over 2. Steepest descent with backtracking line search is used as the
optimization algorithm. Four smoothing steps are applied to the gradient.

For each load case, and each measurement point, a new random variable & was generated as in the first plate example.
Ten sensors were used in this example (cf. Figure 7). The weakened configuration was run nsensor*ncase times
in order to compute all the target displacements. Figure 9 shows a comparison between the standard expectation and
CVaRp with different levels of 5. As in the case of the plate, we again observe significant benefits when using CVaRg.

Strength Factor
1.0e-01 04 0.6 08 1.0e+00

Fig. 7 The goal is to achieve the strength factor shown in this large truss configuration. Notice that several
beams on the structure have been weakened.

F. Example: Footbridge Under Thermal Loading

This case considers a typical footbridge and was taken from [19], see also [1] for results in the deterministic setting.
The different types of trusses and plates whose dimensions have been compiled in Table 1, can be discerned from
Figure 10. Density, Young’s modulus and Poisson ratio were set to p = 7,800 kg/m>, E = 2- 10" kg/sec?/m,v = 0.3
respectively. The structure was modeled using 136 shell and 329 beam elements. The bridge is under a distributed load
of 1 MPa in the downwards direction, applied to every plate, as well as gravity.

Component # Shape. Dimensions in mm

Steel plate. ¢t = 10

Steel beam. Hollow section 300 x 200 x 12
Steel beam. Hollow section 200 x 200 x 10
Steel beam. Hollow section 180 x 180 x 10
Steel beam. Hollow section 180 x 180 x 5
Steel beam. Hollow section 200 x 200 x 10
Steel beam. Hollow section 200 x 100 x 5

Table 1 Footbridge: Components

~N N W =
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(a) Case 1: Downwards load.
—2-10° N on left arm, —1 - 10° N on right arm.
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(¢) Case 3: Downwards load.
—1-10° N on left arm, -1 - 10° N on right arm.
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(b) Case 2: Side Load.
—2.5-10® N on left arm, 5 - 103 N on right arm.

Load Magnitude
000400 le+8 2048 3048  de+B  500+08
| 1

Displacements Magnitude
20 40 60

0.00+00 820401

L 1 |

(d) Case 4: Side load.
2.5-108 N on left arm, -5 - 108 N on right arm.

Load Magnitude
00e+00 2048 4e+8 6e+8 8e+8  1.0e+09
/ ! o

Displacements Magnitude
4 6

00e+00 2 10e+01

(e) Case 5: Torsional load.
+1-10° N on the four points shown.

Load Magnitude
000400 2048  do+8 60+ 8o+ 100409
| |

b

Displacements Magnitude
a 6 8

00e+00 2 10e+01

D i

(f) Case 6: Torsional load.
¥1-10° N on the four points shown.

Fig. 8 Load cases run simultaneously for the crane problem.

In large structures it is typical to have a certain degree of deformation as a result of variations in ambient temperature.

This could be a considerable source of uncertainty if this temperature is not correctly accounted for.
In the elasticity equations, a strain component is given by a change in temperature as

€ = Uexp AT,

where aexp 1 the coeflicient of thermal expansion, which for our case is @exp = 11 - 1076, Naturally, imposing this strain

on the constrained system will result in a stress along the structure.

A weakened configuration such as the one shown in Figure 11 is solved for the sensor displacements. In this case
however, a AT = —30K is imposed on the whole structure for this target configuration. Gauss quadrature with 4 terms is
used to approximate the integrals over 2 = (0.9, 1.1). Steepest descent with backtracking line search is used as the

optimization algorithm. Finally, five smoothing steps are applied to the gradient.

We optimize starting with the configuration from Figure 12, in which AT = +29.8K is assumed to be present as our

random variable. This value is =10% of the ambient temperature T = 298K.

Results are shown for the risk neutral approach in Figure 13 and for a CVaRg approach with 8 = 0.3 in Figure 14.

Both approaches took around 50 gradient descent iterations for a decrease of 3 order of magnitude in the objective.

10

(15)
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Fig. 9 Top row: left panel (standard expectation); right panel CVaRg with 5 = 0.1. Middle row: CVaRg with
B =0.3,0.5. Bottom row: CVaRg with 5 = 0.7, 0.8. Clearly, CVaRg performs much better than the standard
expectation.

Material Number

Fig. 10 Footbridge: Components.

It is clear that both methods perform well. The uncertain thermal loading results in a false positive of a weak spot on
the right side of the structure. While the CVaRgz method is better at suppressing this spot, it also results in a slightly
more underdeveloped solution for this case, as can be seen in the color maps.

11
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Fig. 12 Footbridge: Initial configuration.

Strength Factor
0.4 0.6 . 1.0e+00
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Fig. 13 Footbridge: Optimized configuration using risk neutral objective function

VI. Conclusion

This work studies the role of risk-measures in digital-twins to tackle uncertainty in loads and measurements. In
particular, the focus is on identifying weaknesses in structures under uncertainty, leading to an optimization problem
with PDE constraints. This is also termed as ‘digital twin’ because it takes data from the physical system (using sensors)
and supplements appropriate predictions. Risk measures such as CVaRg are known to be more conservative than risk
neutral measures such as expectation and can lead to robust designs which are resilient to rare events.

While the results are very promising, some questions remain unanswered with the use of risk-averse optimization for
system identification. As we assume a certain degree of uncertainty on the supposed known loads, and we add more
sources of load uncertainty in the shape of thermal or wind loading, the optimization tasks become more complex and
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Fig. 14 Footbridge: Optimized configuration using CVaRg objective function with g = 0.3.

costly. The use of a discrete division of the load sources with group loading allows the problems to be tractable, but one
could further explore other strategies such as tensor train decomposition [8, 9].

As the numerical results show, the conservativeness of the CVaRg approach sometimes leads to underdeveloped

solutions, which tends not to be a problem for system identification, as the proper location of the weak spots are found.
In addition, it was found that the best results were obtained for cases in which a large uncertainty in sensor measurements
was present.
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