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ARTICLE INFO ABSTRACT

Keywords: An adjoint-based procedure to determine weaknesses, or, more generally the material prop-
Weakness detection erties of structures is developed and tested. Given a series of force and displacement/strain
Digital twin

measurements, the material properties are obtained by minimizing the adequately weighted
differences between the measured and computed values. The approach is directly based on
the finite element model of the structure of interest, which can be arbitrarily complex and be
composed of any kind of element formulation. This is especially advantageous in complicated
real-world applications. As a consequence, the procedure can provide highly resolved parameter
distributions within the structure and allows for the localization of e.g. damage regions or other
zones with deviations from the planned configuration. Several examples with truss, plain strain
and volume elements show the viability, accuracy and efficiency of the proposed methodology
using both displacement and strain measurements. An important finding was that in order
to obtain reliable, convergent results the gradient of the cost function has to be smoothed
appropriately.
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1. Introduction

The problem of trying to determine the material properties of a domain from loads and measurements is common to many
fields. To mention just a few: mining (e.g. prospecting for oil and gas), medicine (e.g. trying to infer tissue properties), engineering
(e.g. trying to determine the existence and location of fissures, aging of structures).

A very pressing issue at present is the aging of concrete structures in the developed world. Many bridges (and large buildings)
were built with reinforced concrete after the destruction of the second world war and the highway system that emerged thereafter.
These bridges are now 60-70 years old, about the lifespan of concrete. Therefore, it is imperative to know their structural integrity,
which implies determining material properties from external loads and displacements. Damage localization is especially challenging
in the case of reinforced concrete structures due to the inhomogeneous material layout and (mostly) very voluminous, massive
structures. Another prominent example with urgent need for damage identification are the structures in wind generators [1]. These
massive devices are continuously subjected to large, time-dependent forces which will surely lead to material exhaustion and aging
in 20-50 years. This motivates the development of new damage detection techniques suitable for these applications. As is usual in
the empirical sciences, both experimental (as is, in vivo) and analytical techniques are being pursued vigorously at present.

On the experimental side, vibration analysis, coda wave interferometry [2-4], external and internal laser interferometry, and
even in-situ X-ray techniques are being considered.
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On the analytical side, many techniques have been developed over the last decades [5-16]. Some of these were developed to
identify weaknesses in structures, others (e.g. [6]) to correct or update finite element models. The damage/weakness detection from
measurements falls into the more general class of inverse problems where material properties are sought based on a desired cost
functional [14,17-19]. It is known that these inverse problems are ill-defined and require regularization techniques.

The analytical methods depend on the measurement device at hand, and one can classify broadly according to them. The first
class of analytical methods is based on changes observed in (steady) displacements or strains [10,12,15,16,20]. The second class
considers velocities or accelerations in the time domain [8,9,13]. The third class is based on changes observed in the frequency
domain [5-7,11,14].

Some of the methods based on displacements, strains, velocities or accelerations used adjoint formulations [10,12,13,20-23] in
order to obtain the gradient of the cost function with the least amount of effort.

The procedures proposed here are also based on measured forces and displacements/strains, use adjoint formulations and
smoothing of gradients to quickly localize damaged regions. Unlike previous efforts, they are intended for weakness/damage
detection in the context of digital twins, i.e. we assume a set of defined loadings and sensors that accompany the structure (object,
product, process) throughout its lifetime in order to monitor its state. The digital twins are assumed to contain finite element
discretizations/models of high fidelity, i.e. it is important to show the use of multiple element types in order to ensure the generality
of the proposed procedures. In order to ensure convergence, an appropriate infinite dimensional scaling (scalar product) is used to
evaluate the gradients. This is also termed as gradient smoothing. Several of the numerical examples clearly indicate that in order
to obtain convergence, it is critical to account for this smoothing.

The framework introduced has been applied to multiple challenging examples including bridges, cranes, plates and solids.

2. Determining material properties via optimization

The determination of material properties (or weaknesses) may be formulated as an optimization problem for the strength factor
a(x) as follows: Given n force loadings f;,i = 1,n and n measurements at m measuring points/locations x God = 1Lm of their respective
displacements “:‘r}d , i =1,n j =1,m or strains s['.’j'.s, i =1,n, j = 1,m, obtain the spatial distribution of the strength factor « that
minimizes the cost function:

n o m

n m
1 1
----- w0 =L T S gt -t + L S gy -t @

i=1 j=1 i=1 j=1
subject to the finite element description (e.g. trusses, beams, plates, shells, solids) of the structure [24,25] under consideration
(i.e. the digital twin/system [26,27]):

i=1ln , (2.2)

where wlf"jd .wy) are displacement and strain weights, I¢,I* interpolation matrices that are used to obtain the displacements and
strains from the finite element mesh at the measurement locations, and K the usual stiffness matrix, which is obtained by assembling

all the element matrices:
NE
K, =Y oK | (2.3)
e=1

where the strength factor ¢, of the elements has already been incorporated. In order to ensure that K is invertible and non-degenerate
a, > ¢ > 0, where ¢ is a cut-off that is typically set to ¢ = O(1072). We emphasize that the optimization problem (2.1)-(2.2) does
not assume any specific choice of finite element basis functions, but it is widely applicable.

2.1. Optimization via adjoints

The objective function can be extended to the Lagrangian functional

n
Ly, ey ) =1@, .0+ Y @Ky -f) (2.4)

i=1

where @i; are the Lagrange multipliers (adjoints). Variation of the Lagrangian with respect to each of the measurements then results in:

dL

& =Ky, —f;=0 (2.5a)

dL m m

e 2‘1 Wi — 1wy + 2‘1 Wi I (sl — 1) + K'i; = 0 (2.5b)
J= J=

dL < ., dK c

aZ oV =Y @Ky, , 2.5¢

da, 2:4 i} da, u ;ul u (2.50)

I

where J;. denotes the relationship between the displacements and strains (i.e. the derivatives of the displacement field on the finite
element mesh and the location x ; (see Section 3 below).
The consequences of this rearrangement are profound:
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The gradient of L, I with respect to « may be obtained by solving n forward and adjoint problems; i.e.

Unlike finite difference methods, which require at least n forward problems per design variable, the number of forward and
adjoint problems to be solved is independent of the number of variables used for « (!);

Once the n forward and adjoint problems have been solved, the cost for the evaluation of the gradient of each design variable
a, only involves the degrees of freedom of the element, i.e. is of complexity O(1);

For most structural problems K = K’, so if a direct solver has been employed for the forward problem, the cost for the
evaluation of the adjoint problems is negligible;

For most structural problems K = K/, so if an iterative solver is employed for the forward and adjoint problems, the
preconditioner can be re-utilized.

2.2. Optimization steps

An optimization cycle using the adjoint approach is then composed of the following steps:
For each force/measurement pair i:

1. With current a: solve for the displacements — u;
2. With current a, u; and u[’.’j’.",s;';.d: solve for the adjoints — @,
3. With u;, @;: obtain gradients — I!, = L!,
4. Once all the gradients have been obtained:
4.1. Sum up the gradients — 1, = Y\ I',
4.2. If necessary: smooth gradients — 13"
4.3. Update a,,, = a,y — rI3".

Here y is a small stepsize that can be adjusted so as to obtain optimal convergence (e.g. via a line search).
3. Interpolation of displacements and strains

The location of a displacement or strain gauge may not coincide with any of the nodes of the finite element mesh. Therefore, in
general, the displacement u; at a measurement location x" needs to be obtained via the interpolation matrix Ilf’ as follows:

(M) =1x"u , (3.1)

where u are the values of the displacement vector at all grid points.
In many cases it is much simpler to install strain gauges instead of displacement gauges. In this case, the strains need to be
obtained from the displacement field. This can be written formally as:

s=Du , (3.2)
where the ‘derivative matrix’ D contains the local values of the derivatives of the shape-functions of u. The strain at an arbitrary
position x" is obtained via the interpolation matrix I} as follows:

s;(x") =L (x[")s = L'(x)Du . (3.3)

Note that in many cases the strains will only be defined in the elements, so that the interpolation matrices for displacements and
strains may differ.

4. Choice of weights

The cost function is given by Eq. (2.1) repeated here for clarity:

n m n m
I(u,,a) = % 33w~ + % 3 Y w s~ s)?. .1
i=1 j=1 i=1 j=1
One can immediately see that the dimensions of displacements and strains are different. This implies that the weights should be
chosen in order that all the dimensions coincide. The simplest way of achieving this is by making the cost function dimensionless.
This implies that the displacement weights w;;‘.d should be of dimension [1/(displacement*displacement)] (the strains are already
dimensionless). Furthermore, in order to make the procedures more generally applicable they should not depend on a particular
choice of measurement units (metric, imperial, etc.). This implies that the weights for the displacements and strains should be of
the order of the characteristic or measured magnitude. Several options are possible:

Local weighting
In this case

1 1
wht= —— ™= —— (4.2)
ij (u;;',d)z Y (Sz"j's)z

this works well, but may lead to an ‘over-emphasis’ of small displacements/strains that are in regions of marginal interest.
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Average weighting
In this case one first obtains the average of the absolute value of the displacements/strains for a load case and uses them for the
weights, i.e.:
m md m ms
Z':] |u~ | 1 Z':] |S,. | 1
Uy = == Wi = = s, = T W= o (4.3)

av m T m TR
av av

this works well, but may lead to an ‘under-emphasis’ of small displacements/strains that may occur in important regions;

Max weighting
In this case one first obtains the maximum of the absolute value of the displacements/strains for a load case and uses them for
the weights, i.e.:

d) . a_ 1
Upax = max(|u;"j [.j=1,m) ; w;"j =5 ;
max
(4.4)
1
_ ms| i _ ) ms _ .
Smax = max(lsij l,j=1Lm) ; w,.j = 2 ;

max

this also works well for many cases, but may lead to an ‘under-emphasis’ of smaller displacements/strains that can occur in important
regions;

Local/max weighting
In this case

d 1 ms 1
Wit = e W = ————— | (4.5)
Y max(euyyy |u$d|)2 Yo max(es gy |sl'.'j'.s|)2
1 1
whd = S = . (4.6)

y Y max(es

max(eumax’ |u:;d |)2 max> |S,'-;S |)2

with € = 0(0.01 — 0.10); this seemed to work best of all, as it combines local weighting with a max-bound minimum for local
values.

5. Smoothing of gradients

The gradients of the cost function with respect to « allow for oscillatory solutions. One must therefore smooth or ‘regularize’
the spatial distribution. This happens naturally when using few degrees of freedom, i.e. when « is defined via other spatial shape
functions (e.g. larger spatial regions of piecewise constant « [10]). As the (possibly oscillatory) gradients obtained in the (many)
finite elements are averaged over spatial regions, an intrinsic smoothing occurs. This is not the case if « and the gradient are defined
and evaluated in each element separately, allowing for the largest degrees of freedom in a mesh and hence the most accurate
representation.

Three different types of smoothing or ‘regularization’ were considered. All of them start by performing a volume averaging from
elements to points:

a,V,
a,= h , (5.1)
Ze Vé’
where a,, @,,V, denote the value of « at point p, as well as the values of « in element e and the volume of element e, and the sum

extends over all the elements surrounding point p.

5.1. Simple point/element/point averaging

In this case, the values of a are cycled between elements and points. When going from point values to element values, a simple
average is taken:

1
a, = "_e Z o (5.2)

where n, denotes the number of nodes (degrees of freedom) of an element and the sum extends over all the nodes of the element.
After obtaining the new element values via Eq. (5.2) the point averages are again evaluated via Eq. (5.1). This form of averaging is
very crude, but works surprisingly well.
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5.2. Laplacian smoothing

In this case, the initial values a;, obtained for a are smoothed via:
[1-aV]a=ay , a,|,=0 (5.3)

(see Appendix for further details). Note the appearance of the Laplacian operator multiplied by a small (hence the name) ‘smoothing
factor’ A, which is a free parameter that may be problem and mesh dependent (its dimensional value is length squared). Discretization
via finite elements yields:

M, + K| @ =M, o2, . 5.4

where M., K, M, 0 denote the consistent mass matrix, the stiffness or ‘diffusion’ matrix obtained for the Laplacian operator and
the projection matrix from element values (a) to point values (a).

5.3. Pseudo-Laplacian smoothing

One can avoid the dimensional dependency of 4 by smoothing via:
[1-AVAV]a=q, , (5.5)
where 4 is a characteristic element size. For linear elements, one can show that this is equivalent to:
M, + 4 (M, -M,)]a =M, a, . (5.6)

where M, denotes the lumped mass matrix [28]. In the examples shown below this form of smoothing was used for the gradients,
setting A = 0.05.

6. Examples

All the numerical examples were carried out using two finite element codes. The first, FEELAST [29], is a finite element code
based on simple linear (truss), triangular (plate) and tetrahedral (volume) elements with constant material properties per element
that only solves the linear elasticity equations. The second, CALCULIX [30], is a general, open source finite element code for
structural mechanical applications with many element types, material models and options. The optimization loops were steered
via a simple shell-script for the adjoint-based optimization. In all cases, a ‘target’ distribution of a(x) was given, together with
defined external forces f-. The problem was then solved, i.e. the displacements u(x) and strains s(x) were obtained and recorded at
the ‘measurement locations’ x s J=1,m. This then yielded the ‘measurement pair’ f,u ;, j=Lmorf,s;, j=1m that was used to
determine the material strength distributions a(x) in the field.

The first cases serve to verify that the procedure can recover a uniform strength factor, starting for an arbitrary distribution. The
subsequent cases treat the more realistic scenario of trying to determine regions of weakening materials. The element complexity
and dimensionality also increases as the examples progress: the first cases are with truss elements, followed by cases with beam and
plate elements, as well as plane stress and 3-D solids.

6.1. Crane

The case is shown in Fig. 6.1 and considers a typical crane used at construction sites. The crane has a height of 1,400 cm, and
the arm has a length of 2,500 cm. A typical truss is about 100 cm long and has an area of 5 cm?. Density, Young’s modulus and
Poisson rate were set to p = 7.8 gr/em’, E = 2 - 10'2 gr/sec?/cm, v = 0.3, respectively. The two end points on the arm had applied
loads of f, =-2.0- 10° gr cm/s?, while the two end points on balancing/back part of the arm had loads of fy=-10- 10° gr cm/s2.
The finite element discretization consisted of 350 linear truss elements. The loads lead to a displacement in the vertical direction
w, = —18 cm at the tip of the arm. The top Fig. 6.1 shows the strength factor a and the ten measuring points used (which in this

y
case coincide with nodes of the finite element mesh), while the bottom figure displays the displacement field.

Displacement measurements

Given the desired/measured displacements at these 10 measuring points, different starting values for the strength factor a were
explored. Recall that the target strength factor is a = 1, uniformly in all trusses. If the procedure cannot recover this simple strength
factor from any arbitrary initial distribution, its utility is doubtful. Figs. 6.2-6.4 show the results obtained when starting from a
uniform value of « = 2.0 without (Fig. 6.3(a)) and with (Fig. 6.3(b)) gradient smoothing. In each of these graphs in the upper
half the vertical color bar corresponds to the absolute value of the difference between the target and actual displacements at the
measuring points (in cm), and is denoted by ‘Diff Displ’, while the horizontal color bar corresponds to the strength factor «, in
the element and is denoted by ‘Strength’. The lower half shows the displacement field (in cm) and the corresponding color bar is
denoted by ‘Displ’. One can see that for this case gradient smoothing is essential: the case without smoothing achieves a fairly good
reduction in the difference between the measured and computed displacements (Fig. 6.3(a)), but the strength factor distribution is
very different from the target.
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Strength

R1.6
1.2
0.8

0.5

Fig. 6.1. Crane: base case (a« = 1.0) [Top: Measuring points and strength factor in the trusses; Bottom: Displacement field].

lteration: 0.000000

Diff_Displ

Strength
1.2

Fig. 6.2. Crane: Initial optimization iteration with initial strength factor « = 2.0. Top panel: Strength factor in the trusses; Bottom panel: Displacement field. The
vertical bar in top panel corresponds to the absolute value of the difference between the target and actual displacements at the measuring points (in ¢m), and
is denoted by ‘Diff Displ’, while the horizontal color bar corresponds to the strength factor a, in the element and is denoted by ‘Strength’. The bottom panel
shows the displacement field (in cm) and corresponding colorbar is denoted by ‘Displ’. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Iteration: 920.000000

Iteration: 20.000000

Diff_Displ
%l
6
4
2
Strength 0

1.2 1.6

Strength
1.2

(a) Without smoothing (b) With smoothing

Fig. 6.3. Crane: 90-th optimization iteration with initial strength factor a = 2.0. Top panel: Strength factors in the trusses; Bottom panel: Displacement fields. The
vertical bar in top panel corresponds to the absolute value of the difference between the target and actual displacements at the measuring points (in ¢m), and
is denoted by ‘Diff Displ’, while the horizontal color bar corresponds to the strength factor a, in the element and is denoted by ‘Strength’. The bottom panel
shows the displacement field (in cm) and corresponding colorbar is denoted by ‘Displ’. Notice that left column corresponds to no smoothing and right one with
smoothing. The latter produces correct results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
1e+00 1e+00
Cost — Cost —
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=4 =4
2 2
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=} Ste-06 4
I I
7] 7]
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o o
1e-02 | . 1e-08 §
1e-10 ]
1e-03. L L L L L i S — te-12 L L L - i i i ]
0 50 100 150 200 250 350 400 450 500 0 50 100 150 200 250 350 400 450 500
lteration lteration

(a) Without smoothing

(b) With smoothing

Fig. 6.4. Crane: Start: Random « = 2.0, cost function history.

Fig. 6.4 shows the evolution of the cost function for optimizations with and without smoothing of gradients. It can be seen that
without smoothing the optimization stalls around a local minimum, while the second case allows the objective function to reach
the optimal solution.

Figs. 6.5 and 6.6 show the results obtained when starting from a random distribution of « without and with gradient smoothing.
As before, one can see that for this case gradient smoothing is essential: the case without smoothing achieves a near-perfect match
between the measured and computed displacements (Fig. 6.6(a)), but the strength factor distribution is very different from the
target. This is also reflected in Fig. 6.7, where the evolution of the cost function is plotted for both cases.

Strain measurements
Ten strain measuring points were defined in trusses along the structure (see top left of Figs. 6.8 and 6.9). Given the

desired/measured strains at these 10 measuring points, different starting values for the strength factor « were explored. The results
obtained and behaviors observed were very similar to the cases with displacement measurements: gradient smoothing was essential.
Therefore, in the sequel only results with gradient smoothing are shown. Figs. 6.8 and 6.9 show the results obtained when starting
from a uniform value of « = 0.5. The top figures show the actual values while the bottom part shows the expected strain and
strength distribution in the trusses. Note also on the top left the differences in target and actual strain at the measurement points.

The evolution of the cost function for this case is plotted in Fig. 6.10.
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lteration: 0.000000

Diff_Displ
7
.6
4
Strength p

0.8

Fig. 6.5. Crane: Initial optimization iteration with random initial strength factor a. Top panel: Strength factor in the trusses; Bottom panel: Displacement field.
The vertical bar in top panel corresponds to the absolute value of the difference between the target and actual displacements at the measuring points (in cm),
and is denoted by ‘Diff Displ’, while the horizontal color bar corresponds to the strength factor a, in the element and is denoted by ‘Strength’. The bottom panel
shows the displacement field (in cm) and corresponding colorbar is denoted by ‘Displ’. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Iteration: 20.000000

(a) Without smoothing

Iteration: 90.000000
Diff_Displ Diff_Displ

Strength
0.8

(b) With smoothing

Fig. 6.6. Crane: 90-th optimization iteration with initial strength factor « being random. Top panel: Strength factors in the trusses; Bottom panel: Displacement
fields. The vertical bar in top panel corresponds to the absolute value of the difference between the target and actual displacements at the measuring points (in
cm), and is denoted by ‘Diff Displ’, while the horizontal color bar corresponds to the strength factor «, in the element and is denoted by ‘Strength’. The bottom
panel shows the displacement field (in cm) and corresponding colorbar is denoted by ‘Displ’. Notice that left column corresponds to no smoothing and right one
with smoothing. The latter produces correct results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 6.7. Crane: Start: Random a, cost function history.

Iteration: 0.000000

StrFac
1

: Diff_Strain

0.00
0.0008
L]

0.0004 08
0

Strain
0.001

Fig. 6.8. Crane: Start: a = 0.5, Iteration: 0 [Top left: Stress in the trusses; difference of measured/current strains; Top right: Strength factor in the trusses; Bottom
left: Target stress in the trusses; Bottom right: Target strength factor in the trusses].

Figs. 6.11 and 6.12 show the results obtained when starting from a uniform value of « = 1.0 for the case that the lower part of
the crane tower has been weakened to a = 0.5. As before, the top figures show the actual values while the bottom part shows the
expected strain and strength distribution in the trusses. The convergence of the cost function is shown in Fig. 6.13.

Displacement measurements with multiple loads
The same ‘weakened bottom’ scenario was also computed for the 10 displacement measurement points shown before, but with

3 load scenarios. The first is the same as before, the second induces a torsion of the mast and the third applies forces between the
mast and the end of the arm. Figs. 6.14 and 6.15 show the results obtained when starting from a uniform value of « = 1.0. In the
figures, the top left shows the computed strength factor, the top right the desired (exact) strength factor, while the bottom shows
the displacements (computed and desired overlapped) for the 3 load cases. Fig. 6.16 shows how the cost functions for all three load
cases go down with iterations. The objective function used for this optimization case is the sum of those quantities.
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Iteration: 490.000000

1 StrFac

Diff_Strain
01

0.0008
| |

| |
0.8

Fig. 6.9. Crane: Start: a = 0.5, Iteration: 490 [Top left: Stress in the trusses; difference of measured/current strains; Top right: Strength factor in the trusses;
Bottom left: Target stress in the trusses; Bottom right: Target strength factor in the trusses].

1e+00 Caat

1e-01 \

1e-02 \

n,
2
)
&

st Functio
@
o
N

Ste-05

1e-06

1e-07 \

108 0 fo0 T50 200 250 300 30 400 4.)0\50

Iteration

Fig. 6.10. Crane: Start: « = 0.5, cost function for the strain measured case.
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Iteration: 0.000000

Diff_Strain StrFac
0.0003 1

0.0002
| |

| |
0.8

Strain

o004

Fig. 6.11. Weakened Crane: Start: « = 1.0, Iteration: 0 [Top left: Stress in the trusses; difference of measured/current strains; Top right: Strength factor in the
trusses; Bottom left: Target stress in the trusses; Bottom right: Target strength factor in the trusses].

Iteration: 490.000000

Diff_Strain StrFac
0.0003 1

0.0002
| ] | |

0.

Strain

0004

Fig. 6.12. Weakened Crane: Start: « = 1.0, Iteration: 490; [Top left: Stress in the trusses; difference of measured/current strains; Top right: Strength factor in
the trusses; Bottom left: Target stress in the trusses; Bottom right: Target strength factor in the trusses].
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Fig. 6.13. Crane: Start: a = 1.0, cost function for the strain measured case with weakened bottom.

Table 6.1

Footbridge: Components.
Component # Shape. Dimensions in mm
1 Steel plate. t = 10
2 Steel beam. Hollow section 300 x 200 x 12
3 Steel beam. Hollow section 200 x 200 x 10
4 Steel beam. Hollow section 180 x 180 x 10
5 Steel beam. Hollow section 180 x 180 x 5
6 Steel beam. Hollow section 200 x 200 x 10
7 Steel beam. Hollow section 200 x 100 x 5

6.2. Footbridge

This case considers a typical footbridge and was taken from [31]. The different types of trusses and plates whose dimensions
have been compiled in Table 6.1, can be discerned from Fig. 6.17. Density, Young’s modulus and Poisson ratio were set to
p = 7800 kg/m3, E = 2 - 10! kg/sec?/m,v = 0.3 respectively. The structure was modeled using 136 shell and 329 beam elements.
The bridge is under a distributed load of 1 MPa in the downwards direction, applied to every plate, as well as gravity.

Fig. 6.18 shows the target case where one beam in the structure has been weakened to « = 0.1. In 6.18(a), the location of
the 8 sensors is shown, along with the target displacements. Starting from a uniform value of @ = 1.0, shown in Fig. 6.19, the
target case is nearly reproduced in 200 steepest descent iterations, as can be seen in Fig. 6.20. Fig. 6.20(a) shows the displacement
field (in m) with the label on the bottom right and the magnitude of the difference between target and actual displacements at the
measuring points (in m) with the label at the upper left. Fig. 6.20(b) shows the strength factor in the elements. The evolution of
the objective function is shown in Fig. 6.21. The optimizer is able to locate the weakened beam. The evolution of objective with
respect to optimization iteration appears smooth.

This case highlights the possibility of working with multiple element types with no extra difficulties. However, it has been verified
that in order to find weak spots in shell elements ones needs a larger number of sensors.

6.3. Plate with hole
The case is shown in Figs. 6.22-6.24 and considers a plate with a hole. The plate dimensions (in meters) are 0 < x < 60,
0<y<30,0<z<0.1. A hole of diameter d = 10 is placed in the middle (x = 30,y = 15). Density, Young’s modulus and Poisson

rate were set to p = 7800 kg/m?, E = 2-10'! kg/sec?/m, v = 0.3, respectively. 672 linear, triangular, plain stress elements were used.
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Iteration: 0.000000
Strength
1

abs(displacements) abs(displacements) abs(displacements)

10 10 10
- - z -

Fig. 6.14. Weakened Crane: Start: « = 1.0, Iteration: O [Top left: Strength factor in the trusses; Top right: Target strength factor in the trusses; Bottom left-right:
Displacement fields (target and current) for load cases 1-3].

The left boundary of the plate is assumed clamped (u = 0), while a horizontal line load of ¢, = 10° kg/sec? was prescribed at the
right end. The left part of the figures show the computed strength factor and displacements (in m), while the right part displays the
expected values (the strength factor range is 0.1 < « < 1). The 14 measurement points, together with the differences in displacements
between measured and computed values (in m) are also shown in the bottom right part. Fig. 6.24 shows the evolution of the cost
function.

As can be seen in the graph, the optimum solution is reached within 100 iterations. Furthermore, the weakened portion is very
accurately identified (Fig. 6.23).

6.4. L-shape

The case, taken from [16] is shown in Figs. 6.25 and 6.26 and considers an L-shaped block subjected to a vertical force. The
plate dimensions are (in meters): 0 < x < 0.6, 0 < y < 1.3, 0 < z < 0.30. The upper part extends up to x = 0.45, and the L-part extends
to y = 0.3. A fillet with radius r = 0.05 was added to avoid extreme stress concentrations. Density, Young’s modulus and Poisson
rate were set to p = 7800 kg/m?2, E = 2-10'! kg/sec?/m, v = 0.3, respectively. 14,622 linear, tetrahedral elements were used. The top
boundary of the block is assumed clamped (u = 0), while a vertical surface load of f, = -2 - 107 kg/sec?/m was prescribed at the
top of the L-shaped region (only the straight section, i.e. not the fillet).

The 10 visible measurement points (the other 10 are at the same x, y positions but on the other z-face), together with the target
displacements and strength factors are shown in Figs. 6.25(a)—(b) (the strength factor range again is 0.1 < « < 1). This case was
particularly challenging because the weakened region does not have a considerable influence on the displacements. Therefore, many
possible strength factor distributions can yield similar displacements. The smoothing of the gradient was a key tool for the optimizer
to arrive at the proper solution.

Figs. 6.25(c)—(d) show the initial conditions for the optimization loop. The results obtained after 100 steepest descent iterations
are displayed in Fig. 6.26 for multiple runs with different passes of gradient smoothing. Note that for ng,,on, < 3 the optimizer is
not able to arrive to a useful solution. Fig. 6.26(d) shows an optimized state that is almost satisfactory, but not sufficiently refined.
For the cases of ngyom = 4 and ngpoom = 35, Figs. 6.26(e)-(f) show a clearly accurate representation of the weakened area. The
objective history is shown in Fig. 6.27 for all cases. We observe a fast convergence for larger number of smoothing passes.
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Iteration: 490.000000
Strength
1

abs(displacements) abs(displacements) abs(displacements)
10 10 10
m 3 m < —
20

Fig. 6.15. Weakened Crane: Start: a = 1.0, Iteration: 490 [Top left: Strength factor in the trusses; Top right: Target strength factor in the trusses; Bottom
left-right: Displacement fields (target and current) for load cases 1-3].
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Fig. 6.16. Weakened Crane: Convergence history for the load cases.
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Fig. 6.17. Footbridge: Components.

(a) Target Displacements and Sensor Locations

N - .
(b) Target Strength Factor

Fig. 6.18. Footbridge: Target Conditions. The color bars at the bottom right correspond to the actual displacements and strength factors, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Conclusions and outlook

An adjoint-based procedure to determine weaknesses, or, more generally the material properties of structures has been presented.
Given a series of force and displacement/strain measurements, the material properties are obtained by minimizing the adequately
weighted differences between the measured and computed values. The approach is directly based on the finite element model of the
structure of interest, which can be arbitrarily complex and be composed out of any kind of element formulation and combinations
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(a) Initial Displacements and Sensor Values

| - .
(b) Initial Strength Factor

Fig. 6.19. Footbridge: Initial optimization iteration. Figure (a) shows the displacements and (b) corresponds to the strength factor. The color bar on top left
displays the magnitude of the difference between target and actual displacements at the measuring points (in m). Moreover, the color bars at the bottom right
correspond to the actual displacements and strength factors, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

thereof. This is especially advantageous in complicated real-world applications. As a consequence, the procedure can provide highly
resolved parameter distributions within the structure and allows for the localization of e.g. damage regions or other zones with
deviations from the planned configuration.

It was found that in order to obtain reliable, convergent results the gradient of the cost function has to be smoothed.

Several examples are included that show the viability, accuracy and efficiency of the proposed methodology using both
displacement and strain measurements for different types of elements and settings.

We consider this a first step that demonstrates the viability of the proposed adjoint-based methodology for system identification
and its use for digital twins [26,27]. Many questions remain open, of which we just mention two obvious ones:

- What sensor resolution is required to obtain reliable results?
- Will these techniques work under uncertain measurements? [32,33].

Furthermore, the steepest descent procedures may be improved by going to a quasi or full Newton solver. But: will they be faster?
The answers to these questions are currently under investigation as well as further methodological details and application fields
of this novel “twinning” strategy.
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[ - .
(a) Displacements Obtained

N - .
(b) Strength Factor Obtained

Fig. 6.20. Footbridge: Solution obtained at the 200-th optimization iteration. The upper panel shows the displacements and the lower one corresponds to the
strength factor. The color bar on top left displays the magnitude of the difference between target and actual displacements at the measuring points (in m).
Moreover, the color bars at the bottom right correspond to the actual displacements and strength factors. We observe that our optimization approach is able to
identify the weakened beam. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. An explanation for smoothing

Below, we provide one explanation for smoothing (for instance, (5.3)) with the help of a continuous form of the optimization
problem with elasticity equation as constraints. The main idea is that the discrete form of the gradient of the objective function
must respect the continuous form. In other words, it is critical to construct structure preserving discretizations.
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Fig. 6.21. Footbridge: Objective function history.
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Fig. 6.22. Plate with hole: Start: « = 1.0, Iteration: 0 [Top left: Strength factor; Top right: Target strength factor; Lower left: Displacement field; Lower right:

Target displacement field and difference target/current at measurement points].
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Fig. 6.23. Plate with hole: Start: « = 1.0, Iteration: 89 [Top left: Strength factor; Top right: Target strength factor; Lower left: Displacement field; Lower right:

Target displacement field and difference target/current at measurement points].
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Fig. 6.24. Plate with hole: Cost function history.
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I - I

(a) Target Displacements and Sensors (b) Target Strength Factor

s e

(¢) Initial Displacements and Sensors (d) Inmitial Strength Factor

Fig. 6.25. L-Shape: Target and initial conditions.

Let 2 be a bounded open domain with boundary I'. Let the boundary be divided into I';, (Dirichlet) and I'y (Neumann). Let
H'(2; I'p) be the Sobolev space of vector valued functions which vanishes on I';, and H'(£2) be the usual Sobolev space for scalars.
Consider the optimization problem:

min I(u,a) (A.1a)
(w,)eH (Q;T'p)xeH ! (Q)

subject to PDE constraints
—div(c(u;a)) = f in Q
u=0 on I} (A.1b)
c(u;a)v=0 on Iy,

where o is the stress tensor and f is the given load.
Consider the PDE solution map S : H!(Q) - H'(2; I'p) such that a — S(a) =: u solves (A.1b). Then, we can write the reduced
version of the minimization problem (A.1a) by eliminating the PDE constraints (A.1b)

min  {J(a) := I(S(a),a)} (A.2)
acH(Q)

i.e., the reduced minimization problem (A.2) only depends on «. Since,

J:H' @ ->R, a~ J)
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Fig. 6.26. L-Shape: Obtained strength factors for different passes of smoothing.
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Fig. 6.27. L-Shape: Objective function history for different passes of smoothing.
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therefore for « € H'(£2), we have that the directional derivative [22]
J'(a) € H'(Q)*

where H'!(Q)* is the dual space of H'(£2). Notice that J'(a) is precisely the directional derivative of the Lagrangian with respect to
a. To obtain the correct expression of the gradient in the primal space H'!(£2) we introduce the “Riesz map”, solving the following
Neumann problem

—V?a+a=J(a) in L,

(A.3)
Va-n=0 onT.

Then & is the correct gradient. This explains the smoothing in (5.3).
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