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Computationally Efficient Sampling Methods for Sparsity
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Abstract. Bayesian hierarchical models have been demonstrated to provide efficient algorithms for finding
sparse solutions to ill-posed inverse problems. The models comprise typically a conditionally Gauss-
ian prior model for the unknown, augmented by a hyperprior model for the variances. A widely used
choice for the hyperprior is a member of the family of generalized gamma distributions. Most of the
work in the literature has concentrated on numerical approximation of the maximum a posteriori
estimates, and less attention has been paid on sampling methods or other means for uncertainty
quantification. Sampling from the hierarchical models is challenging mainly for two reasons: The
hierarchical models are typically high dimensional, thus suffering from the curse of dimensionality,
and the strong correlation between the unknown of interest and its variance can make sampling
rather inefficient. This work addresses mainly the first one of these obstacles. By using a novel
reparametrization, it is shown how the posterior distribution can be transformed into one domi-
nated by a Gaussian white noise, allowing sampling by using the preconditioned Crank—Nicholson
(pCN) scheme that has been shown to be efficient for sampling from distributions dominated by a
Gaussian component. Furthermore, a novel idea for speeding up the pCN in a special case is devel-
oped, and the question of how strongly the hierarchical models are concentrated on sparse solutions
is addressed in light of a computed example.
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1. Introduction. A common problem in computational inverse problems is the estimation
of an unknown quantity that is a priori believed to be sparse, in the sense that it can be rep-
resented with only very few elements of a given basis or frame. In many cases, in particular
when the solution is computed numerically, sparsity is replaced by compressibility, meaning
that most of the coefficients in the representation are below a small threshold value. The
concepts of sparsity and compressibility are particularly important in the framework of com-
pressed sensing [17] and sparse dictionary learning [3]. From the very definition of sparsity
and compressibility, it is clear that these characterizations are qualitative in nature, as “most
of the coefficients” is to some extent arbitrary, depends on the dimensionality of the problem,
and is open to subjective interpretations. Standard methods for finding sparse solutions
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include the introduction of sparsity promoting penalties, the most popular being the ¢!-
penalty. Thus, if the data b € R™ are related to the vector x € R"™ whose entries are the
coefficients of the representation of the unknown in a given basis or frame by b= f(x) + noise,
the standard ¢'-penalized least squares solution is a minimizer of the functional

(1) Fo(z) = b= f(@)II* + allz]1,

where || - || denotes the Euclidian norm in R™, | - ||; the f!-norm in R", and o > 0 is a
regularization parameter. The problem is referred to as basis pursuit [13, 12], or LASSO [30],
depending on the context. For sparsity and wavelet techniques, we refer to [27]. The existence
and uniqueness of such solutions depend on the properties of the forward map f:R" — R™.
An alternative, but closely related, approach to sparsity is rooted in the Bayesian analysis
of inverse problems [11]. In the Bayesian framework, the prior belief of the sparsity of the
signal is encoded into a prior that favors sparse solutions, and single point estimates such
as the maximum a posteriori (MAP) or posterior mean estimates are generated in the hope
that they have the desired sparsity properties [10, 7]. In this article, we restrict our attention
to a particular family of Bayesian sparsity promoting priors, namely, hierarchical Gaussian
priors augmented with a hyperprior from the family of generalized gamma distributions [8],
reviewed in section 2. In that section, we also give a brief review of an algorithm to compute the
MAP estimates, the iterative alternating sequential (IAS) algorithm, which has been shown
to generate sparse, or compressible solutions at a relatively small computational cost. Under
certain conditions, the IAS algorithm has been demonstrated to converge to a unique solution
that approximates the ¢!-penalized solution [7]. The convergence properties are leveraged
in a hybrid algorithm that combines different choices of generalized gamma priors [9]. For
an alternative but related way of estimating the hyperparameters based on data, we refer to
[5, 31].

A pertinent question concerning the TAS solution or other MAP estimates and, in gen-
eral, algorithms searching for a single estimate, is how representative the sparse solution is.
A common criticism of the MAP estimate is that it may capture poorly the posterior distri-
bution and could be unstable with respect to perturbations in the data, in particular in the
case when the posterior density is multimodal, whereas the posterior mean estimate, when
calculated by means of Monte Carlo sampling from the posterior represents a more reliable
alternative as a single point estimator. The question is closely related to the wider question of
uncertainty quantification under sparsity constraints, often addressed by Markov chain Monte
Carlo (MCMC) sampling [21, 26]. While the use of MCMC methods to explore posterior
densities is rather standard, hierarchical sparsity promoting models are known to pose signif-
icant challenges to sampling methods. The problems are twofold: The problems are typically
high dimensional, and the typically strong correlation between the unknown of primary in-
terest and the hyperparameters leads to poor mixing and extremely slow convergence of the
samplers. Remedies to the latter problem have been proposed in the literature, including
appropriate changes of variables; see, e.g. [2, 4, 15, 18, 28, 29]. For contributions to quan-
tify the uncertainties in the inverse problems based on hierarchical prior models, we refer to
[2, 1, 32, 19].

In this article, we propose changes of variables specifically tailored for the hierarchical
Bayesian models that the IAS algorithm is based on. The main goal of this study is to address
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the problems arising from the high dimensionality of the problem. The change of variables that
we propose, combined with the preconditioned Crank—Nicholson (pCN) sampling algorithm
[14], leads to an easy to implement sampling algorithm that is fast and relatively easy to
tune. The algorithm provides an efficient sampling of the posterior, in particular when the
hypermodel is based on a gamma distribution or generalized gamma distributions near it.
Hypermodels with strong nonconvexity remain a challenge, although for the inverse gamma
hyperprior, we propose a particular radial parametrization generalizing the pCN sampler that
improves the convergence significantly. Another novel contribution of this work is an automatic
way to choose the hypermodel parameters in the hybrid TAS algorithm, thus completing the
work in [9]. The computed examples using this sampler to explore posterior with generalized
gamma hyperpriors seem to suggest a rather surprising result, namely, that while the MAP
estimate is itself very definitely compressible, neither the Monte Carlo samples around it nor
the corresponding posterior mean are necessarily sparse or compressible unless the hypermodel
is chosen to be strongly nonconvex. Therefore, one can argue that the MAP estimates based
on hierarchical Gaussian models are optimal when capturing the sparse nature of the unknown
is important.

2. Hierarchical models and sparsity. Consider the inverse problem of estimating an un-
known x € R™ from noisy observations of a linear transformation of it,

b=F(@)+e.

where f : R®™ — R is assumed to be a known function. In the Bayesian framework, all
parameters not known exactly are modeled as random variables. In the rest of the paper, we
denote random variables by capital letters, and their realizations by lowercase letters. The
stochastic extension of the observation model is therefore

(2) B=f(X)+E,

where it is assumed that X and E are mutually independent random variables. If the prob-
ability distribution of the noise F is given in terms of a probability density function 7g, the
likelihood model for B is

T x (b x) =7E(b— f(z)).

If we assume that E is a zero mean Gaussian noise with positive definite covariance matrix
Y € R™*™  we obtain the likelihood model

B X ~N(f(z),%)
or, in terms of the probability densities,

o 0) xexp (=50~ F@)TE b f(0))

Furthermore, by a standard whitening argument, multiplying both b and f by a symmetric
factor S of the precision matrix, ¥ ' = STS, we may assume without loss of generality that
> =l,,, the m x m identity matrix, and the likelihood model simplifies to

3 rox ] 2) xexp (~5l0 - F@IP).
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To express the sparsity or compressibility belief, we consider a conditionally Gaussian
prior model,

X;i10;~N(0,0;), 1<j<n (mutually independent),

with probability density

1 1/2 1 .2 1< 1
WX@($|9):<WM> exp —52— o exp —izf—§Zlogﬁj

Furthermore, we assume that the variances ©; are mutually independent and distributed
according to the generalized gamma distribution,

<.
Il
—

©; ~ GenGamma(r,3,9;) 1<j<n (mutually independent),

with densities

il 0\ 6\ .

where 7 # 0 and the shape parameter § > 0 is assumed to be the same for all j while the
scale parameter ¥; may differ for every j. Taking into account the mutual independency of
the variances, we can write the joint prior model in the form

Tx,0(x,0) =7xjo(z|0)me(0]V,5,r)
1 & $]2 " 0]' " 3 - 9]'
j=1"7 =1\ j=1 J

Next we proceed by nondimensionalizing the model. Introduce the nondimensional vari-
ables

(5) &=

and observe that after the change of variables, the components (§;, A;) are a priori independent
and identically distributed,

16 3,
(£j,)\j)~exp —irj—Aj-F 7“5—5 og)\j y
and the posterior density can be written as

n_ g2

1 1 - 3\
(6) Tzap(EAlb) ocexp [ —3 b= FOF*OIP = 5D =D N+ (rﬁ - 2) > logh; |
=1"7  j=1 j=1
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where Dy € R™" is a diagonal matrix with the vector ¥ along its diagonal. Observe that in
the case of a linear forward model, f(z) = Az, where A € R™*" we have

(7) F(D}*¢) = AD} ¢,

where the transformation A — ADII/ % is a column scaling of the forward map. In [6, 7], it
was demonstrated that this scaling, which is part of the prior, can be associated with the
sensitivity of the unknowns z; to the data. This notion will be further elaborated in the next
section.

3. Exploring the posterior density. In this section, after a brief review of the IAS algo-
rithm for estimating the MAP estimate, we proceed to discuss the exploration of the posterior
density using MCMC methods.

3.1. MAP estimate and the IAS algorithm. The MAP estimate corresponding to the
posterior density (6) is, by definition,
(€map, Avap) = argmax{m= A (£, A | 0)},

provided that such a maximizer exists. Equivalently, the MAP estimator, if it exists, is also
a minimizer of the Gibbs energy:

(8) E(&,N) = be FD2e)1? + ZA +ZM (r6—3>2110ng-
p=

The TAS algorithm searches for the MAP estimate through the alternating steps as follows.
Given an initial A", set the counter at ¢ = 1, and iterate the steps until a convergence criterion
is met:

(a) Update ¢ by defining

52
)\tfl

¢t = argmin{& (&, \'"1)} = argmin Hb f(D1/2§)|’2 3 Z

7=1

(b) Update A by defining

DN | =

n t\2 n n
A = argmin{&(¢',\)} = argmin Z &) + Z i — (rﬁ - ;) Zlog Aj
j=1

j=1 " j=1

(c) Advance the counter, t —t + 1 and check for convergence.
Observe that if the forward model is linear, the first step is a standard least squares problem,
and regardless of the linear model, the second step is a componentwise updating problem
requiring the solution of the first order optimality condition

(9) ai (“2) + A — <rﬁ—g>log)\j>—
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For certain values of r, (9) admits a closed form solution. When r =1 and n=/—3/2> 0,
corresponding to gamma hyperpriors, the updating formula for \! becomes

A§=%<n+\/m>, nzﬁ—g,

while, when r = —1, corresponding to inverse gamma hyperpriors, we have
1 [ (&)? 3
10 ANo== | 22 11 =B+=.
(10) i ( 5Tl m=8+3
For choices of r that do not admit closed form solutions, the values )\5- satisfy
X; = o€,
where the function ¢ : Ry — R solves the nonlinear initial value problem
2to(t) 3\/r
11 "(t) = ’ 0O=|[8-- ’
(1) )= gy $O=5-5

obtained from implicit differentiation of (9). The evaluation of the function ¢ at the points |¢}]
can be done efficiently by sorting the values |§§| in ascending order and solving the initial value
problem by any standard numerical integrator at those points. For details, we refer to [8].

The existence and uniqueness of the MAP estimate, as well as the convergence of the TAS
algorithm are not obvious. The following result has been proved in [7] for the case when r =1,
B >3/2, and A is linear.

Theorem 3.1. Assume that the forward map is linear, r =1, and n=3—-3/2>0. Then the
Gibbs energy functional (8) has a unique minimizer (§*,\*), and the IAS algorithm converges
to that minimizer. Moreover, it holds that

3 =5 (047 4 206)7) = 55(6),

and & is the unique minimizer of the functional

E() =8¢, f(€)).

Moreover,

. & 1 -
(12) Jim £(€)=5Ib— AD €| + V2 Ig)
j=1

and the IAS solution converges to the minimizer of the above right-hand side.

The above theorem underlines the role of the parameter n in promoting sparsity of
the solution. For other hyperparameter values, in particular for r < 1, the uniqueness of
the minimizer may not be guaranteed even in the linear case and, in fact, in some cases the
algorithm is known to converge to local minima. The sparsity promoting nature of the prior
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can often be understood by restricting the Gibbs energy functional to the manifold defined by
the minimization condition (b) for A. For instance, in the case of the inverse gamma model
r = —1, defining g;(¢;) through the formula (10), we obtain

n 2\
£(6.0(€) = 51b— F(DE)* + 3 log (1+§;) +eonstant, K=+ .

=1

The minimizer of the Gibbs functional above is also the MAP estimate corresponding to a
prior of the form

L 1
(13) =€) o || s
Jl;[l (1+¢€3/2)

which is strongly sparsity promoting. Observe that, setting 8 > 0 and xk > 3/2 to guarantee
a finite expectation, at the limit as 8 — 0+, Kk — %4—, thus (13) converges to the Student
distribution with v =2; see [8] for details.

To clarify the role of the hyperparameter ¥, consider first the regularization scheme (1),
which can be interpreted as the MAP estimate corresponding to a Laplace prior,

mx (z) ocexp (—a|z]1).

The above prior assumes a priori that the components are independent and equally distrib-
uted, which is a particular case of a more general assumption of exchangeability. Recall that
random variables are called exchangeable if their joint probability density is invariant under
permutations. While exchangeability is a good design principle for noninformative priors not
favoring any particular component, this is not the case in many applications such as in geo-
physics [22, 23] and medical imaging [24]. If the data are more sensitive to some components
than others, exchangeable priors favor solutions in which the data are primarily explained by
the components with highest sensitivity. In subsurface imaging in geophysics and biomedi-
cine, this means that the algorithm would bias the solution to mostly involve sources near the
receivers, thus ignoring possible deep sources. A popular fix is to replace the ¢'-penalty term
by a weighted version of it,

n n
(14) > lagl =D wylayl,
Jj=1 Jj=1

with the weights w; to be proportional to the sensitivity of the data with respect to the
corresponding components. In the case of a linear forward model, this is tantamount to
setting the jth weight,

(15) wy ocs; = |10, Acl = |Acs]| = ]

equal to the norm of the jth column of the forward map. Weighting is a common procedure
in optimization [16] for balancing the optimization problem. The scaling (15), however, not
only violates the exchangeability condition, but it is also problematic in the Bayesian context,
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because the prior is now informed by the measurement configuration. In particular, in the
applications above, this means that the prior favors deep sources, which may not be a defend-
able prior belief. A tenable Bayesian argument that justifies the weighting was presented in
[6, 7] along the reasoning presented below.

Given an observation model (2), the signal-to-noise ratio (SNR) is defined as

_ E(||B||*) _ signal power

SNR = = .
E(|E||?) noise power
Furthermore, assume that the variable X is supported in a set S C {1,2,...,n}, that is,
X; =0 for j ¢ S. When restricting the support of X to S, we denote the corresponding SNR
by SNRg.
In the cited articles, the following concept, weaker than the exchangeability, was intro-
duced.

Definition 3.2. The random variable satisfies the SNR-exchangeability condition with re-
spect to the observation model if

SNRgs=SNRg for all subsets S,S" €{1,2,...,n} with the same cardinality.

Exchangeability implies the weaker SNR-exchangebility, while the converse is not true.
The following theorem, however, shows that while the SNR-exchangeability does not imply
exchangeability, it does, at least in the case of a linear forward model, guarantee that each
component of x has an equal chance to explain the data.

Theorem 3.3. Assume that the random variable X satisfies the SNR-exchangeability condi-
tion with respect to the linear observation model (2) with (7), and the prior is the hierarchical
prior (4). Then the scaling parameters must satisfy

C

j= HGTHy C:C(Taﬁ)a

where a\9) € R™ is the jth column of the matriz A, and the constant C(r,B) depends on the
SNR.

In [8], an explicit formula for C' is given. Observe that substituting &; = x;/ \/E on the
right-hand side of (12), the penalty term assumes the sensitivity-weighted form (14)—(15) as
advocated in the literature, while the scaled version corresponds to a priori satisfying the
exchangeability.

Finally, we address the question of nonconvexity of the functional when r < 1. In [9]
a hybrid TAS algorithm was proposed and investigated. The idea behind the hybrid model
is to first run the IAS algorithm by using the parameter value » = 1 that is guaranteed to
converge in the linear case, then switching to a greedier scheme by choosing a generalized
gamma hyperprior with r < 1. When the switching occurs, the two hypermodels are matched
using the following two criteria:

1. Whenever z; = 0, we require that the baseline values for 6; coincide. This way, the
a priori variance of the background outside the support of x is consistently defined
independently of the model.

2. The marginal expected values for 6; are equal using both models.
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Let us denote by (r1,51,¢1) and (72, B2, ¢2) the hyperparameter values for two models,
where in practice r; = 1. From the initial condition in (11), we conclude that the compatibility
condition implies that

3 1/7‘1 3 1/7'2
(16) ’191 (51 - %> :792 (52 - %> .

Recalling the expectation of a generalized gamma distribution, the second condition can be
written as

T(B+ ) g T'(B2+ )
LBy 7 T(A)

The assumed finiteness of the expectation poses restrictions to possible parameter values. In
the section on computed examples, these conditions are discussed in detail for several special
cases. We point out that the second condition was not considered in the cited paper, and it
is introduced here for the first time to make the hyperparameter selection automatic.

In the following, we shall use the TAS algorithm, and the hybrid scheme in particular, to
find an appropriate initial point for the MCMC sampling.

(17) 9

3.2. Sampling with a Gaussian prior: pCN. In preparation of the reparametrization
of the hypermodels, we recall some known results concerning random draws from Gaussian
distributions. Let C € R™ ™ be a symmetric positive definite matrix. Assuming that a
symmetric factorization C = LTL, such as the Cholesky factorization of the matrix, is available,
independent random draws from the normal distribution N (x | 0,C) can be generated through
the formula

X=L"W, W~N(O1),

where |, is the n x n identity matrix. The independent sampling, while generating a sequence
X7 of independent draws from the distribution, does not provide any way to control the step
size || X7 — X771||. Step size control is fundamental when the Gaussian distribution is used as
a proposal distribution for exploring posterior distributions. A way to enable step size control
is to consider the sequence

XTI =V1-m2XT 4 hLTW, W~ N(O0,1,), X0~ N(0,0),

where 0 < h < 1. It is a straightforward matter to check by induction that X7 is a Gaussian
zero mean random variable, with covariance equal to C; therefore, the produced sequence is
distributed according to A(0,C). The parameter h controls the step size in the sense that

E|| X7 — X772 = trace(E(X? — X7 1)(X7 — x/~H)T)
=2(1- M) trace(C) ~ h? trace(C)

for h small. The disadvantage, compared to independent sampling, corresponding to h =1, is
that consecutive samples are correlated, since

E(X/HXHT) =1 - h2C.
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These results are well known in the literature. In [25], this observation was used to mod-
ify Gaussian mixtures so as to avoid artificial diffusion in the mixture model. In [14], this
observation is used to define a Metropolis—Hastings type algorithm that is efficient for high
dimensional inverse problems, known as the pCN algorithm, which is a key tool in this paper.
In the cited article, the authors consider distributions of the type

(X)) x e *@N (2 ]0,0C).

By defining a proposal i drawn from a nonsymmetric proposal A'(y|+/1 — h2z7=1 h2C), it is
easy to check that the Metropolis—Hastings acceptance ratio reduces to

a2 y) = @2,

that is, the potentially high dimensional Gaussian distribution does not appear in the accep-
tance ratio, thus avoiding the problems that in the high dimension limit lead to practically
automatic rejection, in line with the Cameron—Martin theorem.

3.3. Reparametrization. We are now ready to introduce a particular reparametrization
that makes it possible to take advantage of the pCN algorithm for MCMC sampling hierar-
chical models. Consider the posterior density (6) and let R*" = ®§V:1R2. In each subspace R?
introduce the new parameters (vj;,7;) such that

£2
==L =2\, \;>0.
Aj

In the transformation of the old variables (§;, ;) in terms of the new ones (vj,7;), we choose

the signs so that
2\ /7 1/2r 1
T U'|7"| /r
= L I\ — gt

The reparametrization in the probability density requires the determinant of the Jacobian in
each subspace R?:

N 0N 2 |rr 0

ot Ov: rol/r T 1=3r/2 |7 |3/T
J(v:. 1) = det J J = det J = —_—.
(vj,75) = de 2 94 ¢ R A rooT

or;  0Ov; r2l/2r o1/2r

The posterior density, written in terms of the new variables (v,7) then becomes

7TVT v, T ‘ b H U]aT] ’ﬂ-“ (5(’1),7'),)\(1),7') | b)
= 2 N
con{ (gt (-2 o
=
+ 3 tog =" = 2l - 3lr1?)
j=1

x efq)(”’T)/\/'(v, 710,l2,),
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where the products are understood to be componentwise, i.e.,
(wlr[V7); =wilmlT, 1< <,

and the potential function ® is defined as

B(0,7) = Hb 7 (0 M)H (26~ 1) Zlogm

In the following, we will consider four special cases: When r =1, the hyperprior is the gamma
distribution, and we have

r=1: ®(v,7)= Hb f<\@D1/2 v|T \)H (26 -1) Zlog]g]
7j=1

while if » = —1, the hyperprior is the inverse gamma distribution, and

2 n
r=-—1: (I)(U,T)Z;Hb—f <\[2D119/2:}-|>H — (26— 1)Zlog|Tj|.
j=1

In the case r =1/2, we have

2 n
r:%: (I)(U,T):;Hb—f (2D1/2(U7' ))H — (28— 1)Zlog|7j|,

=1

and for r=—1/2, we have

r:—%: B(v,7) = Hb f<2D1/2<72>>H (28-1) Zlogml

In the following section, we use the proposed reparametrization to explore the posterior den-
sities corresponding to these four choices of r.

4. Computed examples. In this section, we investigate numerically the effectiveness of
the reparametrization of the problem in combination with the pCN algorithm, with special
emphasis on the role of the parameter . We start by discussing the model problems used in
testing the proposed sampler.

4.1. Model problem. We consider here a linear inverse problem in the form of a one-
dimensional deconvolution. Let ¢ : [0,1] — R be the function to be estimated from noisy
observations of the convolution of the signal with a Gaussian kernel,

1
1
(18) bj:/ a(t; —s)g(s)ds +¢j, a(t):Aexp<—2w2t2>, O<t1<---<tpm<1,
0

of width w = 0.02 and amplitude A = 6.2. We discretize the convolution integral using a
piecewise constant approximation with n = 128 intervals, and assume that the observation
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points ¢; coincide with every sixth discretization node s, that is, t; = s16(j-1), 1 <j<m=
22. This yields the approximation

b=Az+e, AcR"™" 2z =g(s).

To generate the data, we assume that the generative model g is a piecewise constant function.
To avoid the inverse crime of using the same model for data generation and for the solution
of the inverse problem, the data are generated by using a fine discretization mesh with 1000
discretization intervals and, subsequently, Gaussian noise, ¢ from N'(0,02l,,) with o = 0.03
added to them. The generative model and the noisy data are shown in the top left panel of
Figure 1.

To find a sparse representation of the discrete signal z, let L € R™*" be the finite difference
matrix,

and express z in terms of x € R as Lz = x. Implicitly, we assume here a boundary condition
20 =¢g(0) = 0. Therefore, we can write the forward model as

b=AL 'z +e¢,

and after scaling the data and the forward map by 1/0,

b= lb, A= lAL—l,
g g

thus whitening the noise, we arrive at the expression of the problem in standard form,
(19) b=Az+e, e~N(0,ly).

We point out that the vanishing boundary value of the unknown z at the endpoint t =0
makes the data nonuniformly sensitive to the components of the vector x. The sensitivity
of the data to the components of the vector z is not addressed here: We refer to [7] for the
discussion of the topic.

4.2. Hypermodels and MAP estimates. We test the sampling algorithm with four dif-
ferent generalized gamma hypermodels, corresponding to 1 = 1, ro = 1/2, r3 = —1/2, and
r4 = —1. We denote the corresponding hyperparameter values by (5;,7;), 1 < j <4. Here, for
simplicity, we choose all components of the vectors 1, equal, so this parameter can be treated
as a scalar.

In order to initialize the MCMC algorithm without the need of a long burn-in run, we
first compute a MAP estimate for each case using the hybrid IAS algorithm:

1. Phase I: Run the TAS algorithm with values (r1, 31,191) until convergence criterion is
met.
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2. Phase II: If j > 1, continue the IAS iteration with values (r;, 8j,7;) until convergence
criterion is met.
The compatibility conditions (16)—(17) give an automatic way to set the hyperparameters for
j > 1. Recalling that by Theorem 3.1 for » = 1, a value (31 close to 3/2 promotes sparsity,
we write 81 = 3/2 + 7, where 1 > 0 is small. We also set the value 11, allowing automatic
selection of the hyperparameters for j > 1. The compatibility conditions with r1 =1 yield

3\ Y L(Bj++) 3 .
ﬁj(ﬁj_%> =1, ﬁjle)]:ﬁ1<n+2>y Jj=2,3,4.

Straightforward calculations based on the properties of the gamma function lead to the fol-
lowing formulas for the parameters:
Case ro =1/2: We have

_6m+1+\/48m+1 3

h =14+ —
Ba 2m—1) ,  where m —|—277,
and
n
Yo = ——.
t (B -3)?
Case r3 =—1/2: We have
6 4+ 3m +vm2 + 80m 3
B3 = , where m=1+ —,
2(m—1) 2n
and
Y3 = ’19177(&2 + 3)2.
Case r3 = —1: We have
5
54:14‘577
and
3
Uy =111 <ﬂ4 + 2) :

The numerical values used in the computations are give in Table 1.
In Phase II, the IAS iterations start with the final € of Phase I. In both phases, the IAS
iterations stop as soon as

16~ — 0"

< 0.005.
1671l

The MAP estimates computed by the TAS algorithm are shown in Figure 1, where the
number of iterations needed for satisfying the stopping criterion is indicated. Observe that
the MAP estimate with » =1 is the starting point for all the hybrid models with r < 1.
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Table 1
Hyperparameter values used in the computations. The values ¥ for the hybrid models are determined by
requiring that at x; =0, the values 0; given by the IAS algorithm are independent of the hypermodel, and that
the marginal expectations for 0; are independent of the model.

r=1 7‘:1/2 T‘:—]./2 r=-—1

Jé] 1.501 3.0918 2.0165 1.0017
9 5x 1072 5.9323 x 1073 1.2583 x 1073 1.2308 x 10~*

15 1.5 L5 18
r=1 r=1/2 r=-1/2 r=-1

1 1 1 !

05 05 05 05
L)

0 \./ 0 0 0
05 05 05 05

1 u -1 1A -1

iter = 72 | | iter=15 iter = 8 iter = 10
15 — 15 - 15 — 15 —
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

1.6 1.6 1.6 1.6
1.4 1.4 14 1.4
1.2 1.2 2 12

1 1 1 1
0.8 0.8 0.8 0.8

0.6 0.6 0.6 T 06

0.4 0.4 A 0 0.4 0.4

0.2 0.2 1 027 - 02

A Y O e e, W L
0.8 0.2 0.4

0 0.2 0.4 0.6 1 0 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1

Figure 1. The MAP estimates computed by the hybrid IAS algorithm for z (upper row) in red, the black
curves corresponding to the generative model, and for 0 (lower row). The noisy data are shown as blue dots in
the top left panel, the solid blue line indicating the noiseless convolution data. The left panels correspond to the
gamma hyperprior r = 1, or Phase I, and the result is the starting point for the Phase II iterations for r < 1.
The number of iterations for r < 1 refers to the iteration rounds of Phase II. The parameter values are given
in Table 1.

4.3. Sampling. We begin by applying the sampling algorithm with the gamma hyperprior
(r = 1) for the linear model (19), initiating the sample from the IAS-based MAP estimate.
After some preliminary tests, the step size control parameter is set to h = 0.05, yielding
consistently an acceptance rate close to 6.3%. Decreasing the step size increases the acceptance
rate, e.g., h = 0.02 yields an acceptance rate of 33%. The choice of the step size will be justified
momentarily.

The relatively small step size h implies that the draws in the sample are correlated, so to
improve the sample quality, we retain only a subsample: In our test, we choose the computed
sample size to be 10 000 000, and to decrease the dependency of the sample point, we keep
only every 1000th point, reducing the effective sample size to N = 10000. The run time in
a standard laptop is only 135 s, as the proposal density is pure white noise, and only one
matrix-vector product for deciding on the acceptance is required.
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Figure 2. Samples of two selected pairs (7j,v;) shown as scatter plots and histograms with hypermodel
r=1. On the right, j = 30, corresponding to a position where the generative function is constant, and j = 50
corresponding to a local minimum of the MAP estimate.

To analyze the mixing properties of the sampler, we select two indices, j; = 30 and jo = 50,
corresponding to values t;, ~0.23 and t;, ~ 0.39, the former corresponding to a position around
which the generative function is constant, and the latter near a jump where the MAP estimate
has a local minimum. Figure 2 shows the scatter matrices of the pair (7;,v;) for j = j; and
j = ja, respectively, as well as the time traces of the sample.

We observe that the distribution of 7; is bimodal, reflecting the fact that the physical scaled
parameter \; depends on Tj2 which is insensitive to the sign of 7;. Furthermore, at j = 30,
the sample is centered near the coordinate origin, indicating that the sampler recognizes the
point as belonging to the flat background. At j =50, the bimodal nature is visible, however,
the values of v; are predominantly negative, indicating a presence of a negative jump, since

1 1
szﬁl/Qﬁvj]Tj\, 0]':5197']-2.
However, the histogram of v; does not exclude the value v; = 0 corresponding to a background
value z; = 0, indicating uncertainty in identifying the jump unambiguously. Interestingly, if
the step size h is decreased to increase the acceptance rate, the sampler fails to identify the
bimodal nature of the distribution and samples only from the mode 7; > 0. This is not a
serious issue, as the bimodality is simply a result of coordinate representation; however, we
chose here to select the step size so that the feature becomes visible.

Figure 3 shows the autocorrelation functions of the retained sample of the components

(z;,0;), =30 and j = 50,
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Figure 3. Autocorrelation functions of the sample corresponding to the gamma hyperprior (two left columns)
and to the hypermodel with r = 1/2 (two right columns). The top row shows the autocorrelation functions of
the variables X; corresponding to a background value j = 30 and to a jump value j = 50, and the bottom row
the autocorrelation function for the corresponding varibles ©;.

where

N

LN ) 1/2
T =~ 2, ||xj||=(2(x§)> .

k=1 k=1

The autocorrelation plots give a sense of the independence of the subsampled draws. There
seems to be no significant difference between a background variable and one corresponding to
a jump.

Before analyzing the sample further, we run similar pCN sampling using the other hyper-
models. It turns out that as r decreases, the sampling becomes more challenging. We start
with r = 1/2. Using the same step size h = 0.05 as in the case r = 1 the acceptance rate falls to
4.8%, so we decrease the step size slighltly to h = 0.03, yielding an acceptance rate of 16.1%.
Generating a sample of size 10 000 000, retaining again every 1000th sample point, takes 131
s on a standard laptop. In this case, even with a larger step size, the sampler is unable to
detect the coordinate bimodality and samples only from the mode where 7; > 0, as shown by
the scatter plots in Figure 4.

The level of independence of the draws can be inferred from the autocorrelation functions
shown in Figure 3. We observe that the correlation level is not significantly different from
that corresponding to the gamma hypermodel.

Consider now the hypermodels with negative r, yielding a highly nonlinear Gibbs energy
functional with a strong sparsity promotion in the MAP estimation problems. It turns out
that these models pose a challenge for sampling as well. We start with » = —1/2. Using the
same step size as in the case r =1/2, h =0.03 the acceptance rate is as low as 0.12%, so it is

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/03/24 to 93.40.210.75 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

540 DANIELA CALVETTI AND ERKKI SOMERSALO

j=50

2 s 0 & N
4000 6000 8000 10000 2000 4000 6000 8000 10000

2000

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Figure 4. Samples of two selected pairs (7;,v;) shown as scatter plots and histograms, hypermodel corre-
sponding tor =1/2. On the right, j = 30, corresponding to a position where the generative function is constant,
and j =50 corresponding to a local minimum of the MAP estimate.
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Figure 5. Samples of two selected pairs (7;,v;) shown as scatter plots and histograms with hypermodel
r = —1/2. On the right, j = 30, corresponding to a position where the generative function is constant, and
j =050 corresponding to a local minimum of the MAP estimate.

reasonable to decrease the step size. After extensive testing, we found that h = 0.008 yields
a reasonable acceptance rate of 6%, and h = 0.005 gives a 12% acceptance. Since the former
figure is close to the values in the previous experiments, we set h = 0.008. To make the results
comparable to the previous ones, we keep the same sample size of 10 000 000, retaining every
1000th sample point. The computing times are close to the ones reported above, on the order
of 110 s.

Figure 5 shows the scatter plots and histograms of the parameters (7;,v;). We observe
that at 7 = 50, the points are concentrated near a parabolic curve, which is to be expected,
as the variables are related to each other through the formula
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Figure 6. Autocorrelation functions of the sample corresponding to the hyperprior with r=—1/2. The top
row shows the autocorrelation functions of the variables X;, j = 30, corresponding to a background value and
to a jump value, j = 50; the bottom row shows the autocorrelation functions for the corresponding variables ©;.

Vi
_ J
gj_27_'27

J

and at j =50, we expect that the likelihood favors combinations of (7;,v;) yielding a negative
value for §;.

The sample histories of 7; and v; do not indicate a good mixing, however, from the practical
point of view, the important question is how well the sample mixes the values (z;,60;). To
explore this question, we plot again the autocorrelation functions of the selected components
in Figure 6. Interestingly, while the autocorrelation functions of the xz-variables are decreasing
rather slowly, the #-variable autocorrelations indicate rather good mixing.

Finally, we consider the inverse gamma hyperprior, r = —1. Numerical tests indicate
that the proposed sampler struggles to find a reasonably well mixed sample. To demonstrate
this, we select first the step size to be h = 0.02, which leads to an acceptance rate as low as
0.001%, that is, one proposal of every 100 000 is accepted on average. We then generate a
sample of size 10®, keeping only every 10 000th point, i.e., we have a sample of size 10 000 in
which approximately 90% of the points are repeated values corresponding to rejections. The
computing time of this sample is less than 18 minutes. The (7;,v;) scatter plots for the two
selected values of j are shown in Figure 7.

The time traces of the samples reveal that the sample is of low quality, and reliable
conclusions could hardly be based on this sample. Numerical experiments show that decreasing
the step size does not improve significantly the sample quality. The plots show, however, some
features that may help in designing a better sampler. First, the scatter plot for j =50 shows
again that the coordinate transformation leads to a bimodal distribution, which is hard to
reproduce with a smaller step size. Second, we observe that the sampler proposes points
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Figure 7. Samples of two selected pairs (7;,v;) shown as scatter plots and histograms with hypermodel
r=—1. On the right, j =30, corresponding to a position where the generative function is constant, and j = 50
corresponding to a local minimum of the MAP estimate.

that lie along lines passing through the origin. Recalling that for » = —1, the coordinate
transformation implies that

&=V2 2,

751

the absolute value of the slope of the line determines the proposed value for §;. It turns
out that for j = 50, the sample history of &50 is quite satisfactory, with a relatively short
correlation length (not shown here.)

To improve the mixing in the case r = —1, we propose a modification of the pCN algorithm
based on a reparametrization of the pairs (7j,v;). Consider the problem of generating a
standard normal distribution in the plane R% Let X7~ ~ A(0,l3), and denote RI~! =
| X7=1|. We have

R~ ~ Rayleigh(1).

Let W = (W1, W) ~N(0,l3), and assume that W is independent of X7/~!. For any k > 0, we
define

. . ) 1/2
(20) R = ((1 — k) (R 4 2k/1 — K2ZRI-YW, + k2||W||2) .
We claim that
R’ ~ Rayleigh(1).

This is a direct consequence of the fact that

X7 =1 —E2X77 4 kW ~ N(0,15).
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Without loss of generality, we may assume that the coordinates are chosen so that Xg_l =0.
Then

R = X7

follows a Rayleigh distribution.
Let ®/~! be the phase angle of X7~

&/~ = atan(X] ', X7 71) ~ Uniform(R/27).
For an arbitrary h > 0, define
(21) =3 hQ, Q~N(0,1).

Then, ®/ ~ Uniform(R/27). Based on these observations, we introduce the following two-
phase proposal:

Given h >0, k>0, and the current point x7=1 = (7771 vi71) € R?,

1. set 71 = ||27 7| and

o = (=) (97 4+ 2k/T— R K2 l?) e N (0,1
2. set o L =atan(v/ 1, 7771 and
o =" 4 hw, w~N(0,1);
3. define
27 = (77,07) = (r/ cos 7,17 sin 7).

In this manner, the new variable X7 with realization 27 follows the same Gaussian distri-
bution as X7~ as in the standard pCN proposal, but we control separately the step size in
the radial and in the angular directions. The two free variables k and h add complexity to
the tuning process, but may lead to a chain with better mixing properties.

To demonstrate the viability of the proposed algorithm, we run the sampler with parameter
values h =0.001 and k = 0.05, yielding an acceptance rate of 1.5%. We compute a sample of
size 5 000 000, retaining every 500th realization. The computing time is slightly longer than
with plain pCN, requiring 91 s on a standard laptop. The scatterplots corresponding to this
sample are shown in Figure 8.

To assess the quality of the sample, we compute again the autocorrelation functions for
the selected variables; see Figure 9. We observe that while the autocorrelation indicates poor
quality of the sample of X3g, the autocorrelation of O3y decreases relatively rapidly. The
conclusion therefore is that if the sample-based estimate of ©3¢ is small, we may claim with
high certainty that Xsg is small, too.

To summarize the results of the samplers, in Figure 10 we plot the estimated posterior
means and 90% credible envelopes of the variables z, x, and # corresponding to the four
hypermodels.
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Figure 8. Samples of two selected pairs (7;,v;) shown as scatter plots and histograms with hypermodel
r = —1 using the modified pCN algorithm. On the right, j = 30, corresponding to a position where the generative
function is constant, and j =50 corresponding to a local minimum of the MAP estimate.
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Figure 9. Autocorrelation functions of the sample corresponding to the hyperprior with r = —1 corresponding
to the modified pCN sampler. The top row shows the autocorrelation functions of the variables X; corresponding
to a background value j =30 and to a jump value j =50, and the bottom row for the corresponding varibles ©;.

The results show that while the MAP estimates for all models can be considered sparse
solutions, the posterior means with » = 1/2 and r = 1 in particular, do not reflect the
sparsity promoting nature of the prior models. This suggests that the posterior mean is not a
particularly good representative summary of the posterior distribution, even if the individual
samples would reflect the sparsity prior.
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Figure 10. Posterior means (red curve) and the 90% credible envelopes for z (left), x (middle), and 6 (right)
with hypermodels r =1 (top), r=1/2, r=—1/2, and r = —1 (bottom). The inverse gamma sample is based on
the modified pCN algorithm.

The smoothness of the posterior mean raises the question to what extent profiles sampled
from the posterior density are compressible. To further investigate this issue, let 67 denote
the jth sample vector of the variance parameter, and define -compressibility by the formula

167)jo,5 = card{1 <k <n|6] > 6},
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Figure 11. Histograms of the number of components in the vectors 67 that are above the threshold value
0 (22), thus indicating the level of compressibility of the sample vectors. Observe that the number of nonzero
increments in the generative model is 5, corresponding to the mazimum for r =—1/2 and r=—1.

where ¢ > 0 is a given threshold. We set the threshold to correspond to one standard deviation
above the mean of the gamma distribution,

(22) 6= 319 + /B0

Figure 11 shows the histograms of the number of components in the vectors 67 exceeding
the threshold §. The samples based on models 7 =1 and r = 1/2 identify significantly more
increments above the threshold than the cardinality of the support of the generative model,
the maximum of the histograms being around twenty, while for both r = —1/2 and r = —1, the
maximum of the histogram is at 5, which coincides with the number of nonzero increments in
the generative model.

5. Discussion. The difficulties of sampling from posterior densities corresponding to hi-
erarchical Bayesian models are twofold: The curse of dimensionality makes efficient sampling
hard, and the strong correlation between the parameters at different levels adds an extra
bottleneck for samplers. In this article, the former problem has been addressed by transform-
ing the problem so that the pCN sampling scheme can be applied. As the examples with
strongly nonconvex energy functionals show, the transformation does not completely remove
the second problem; however, the transformation gives enough insight to allow further devel-
opments of the sampling strategy so that at least in the case of the inverse gamma hyperprior
model, a relatively efficient algorithm can be found. The proposed coordinate transformation
generates nonlinearities, potentially complicating the likelihood density. The effects of these
nonlinearities on the sampler are a topic for further studies. Moreover, a natural question
to be addressed in the future is if the proposed algorithm can be generalized for hyperprior
models more general than the inverse gamma distribution.

The sampling analysis for sparsity promoting hypermodels reveals that the concept of
sparsity promotion is more complex than the analysis of the maximum a posteriori estimates
reveals: The MAP estimate may identify the correct number of nonzero entries in a sparse
vector, but sampling from the posterior density may not consistently support the level of
sparsity. This was clearly demonstrated by the computed examples with parameter values
r =1 and r = 1/2: While the MAP estimates localize the discontinuities well, the draws
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from the posterior seem to have significantly more discontinuities. This finding underlines
also the observation that for sparse recovery, the MAP estimate may be a better summary
of the posterior than the posterior mean, which in our example resembles more a smooth
reconstruction than a discontinuous one.

The main focus of this article is to investigate to what extent the class of hierarchical
models that constitute the core of the TAS algorithm are concentrated on sparse solutions,
and the sampler proposed in this article is tailored for this particular class. We point out that
while efficient generic samplers for hierarchical models exist, e.g., HMC-NUTS [20], running
them in high dimensions is not without challenges. A comparison of the performance of
different samplers, as well as other bespoken methods for quantifying the uncertainty (e.g.,
[1]) in this class of hierarchical models is beyond the scope of this article and will be addressed
in future works.

Finally, we point out that the analysis above did not address the question of data sensitiv-
ity. It has been demonstrated that if the data have variable sensitivity to different components
of the unknown, both MAP and posterior mean estimates may fail to recognize some of the
nonzero components in the generative model. While the sensitivity analysis could have been
included in the discussion here, it was omitted in order to keep the focus on the sampling
techniques proposed in this article, but may be the topic of future work.
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