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ABSTRACT. The aim of Electrical Impedance Tomography (EIT) is to deter-
mine the electrical conductivity distribution inside a domain by applying cur-
rents and measuring voltages on its boundary. Mathematically, the EIT re-
construction task can be formulated as a non-linear inverse problem. The
Bayesian inverse problems framework has been applied extensively to solutions
of the EIT inverse problem, in particular in the cases when the unknown con-
ductivity is believed to be blocky. Recently, the Sparsity Promoting Iterative
Alternating Sequential (SP-IAS) algorithm, originally proposed for the solu-
tion of linear inverse problems, has been adapted for the non linear case of EIT
reconstruction [10] in a computationally efficient manner. Here we introduce a
hybrid version of the SP-IAS algorithms for the nonlinear EIT inverse problem,
consisting of a sequence of two optimization problems. The unique solution of
the first problem is a suitable initial guess for the second one, which is non-
convex and is expected to more effectively promote sparsity in the distribution
of the increments of the blocky targets. We provide a detailed description of
the implementation details of the proposed scheme, with a specific focus on
parameters selection. The SP-IAS method is applied to the 2023 Kuopio To-
mography Challenge dataset. A comprehensive report of the running times for
the different cases and parameter selections is presented.

1. Introduction. Electrical Impedance Tomography (EIT) is a noninvasive imag-
ing technique aimed at estimating the unknown conductivity of the interior of a
domain by injecting currents and measuring the voltages at the boundary. The EIT
imaging modality, although typically characterized by lower spatial resolution than
other tomographic techniques such as computed tomography, has the advantage
of very fast acquisition times, relatively inexpensive hardware and lack of ionizing
radiations, making it a versatile tool in many application fields, e.g., in medicine
[1, 3, 21] and in geophysics [2, 22].

The mathematical formulation of the EIT problem in its forward and inverse par-
adigm, and the related properties have been widely explored in literature. The aim
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of the EIT forward problem is to compute the voltages at the boundary correspond-
ing to given current injection patters when the conductivity map of the inside of
the body is known. The EIT inverse problem, which seeks to recover the unknown
conductivity distribution from the currents/voltages, presents all the challenges of
an ill-posed problem, amplified by the fact that the forward operator is nonlinear.

The difficulty of reconstructing meaningful conductivity maps has motivated a
variety of different regularization techniques for the EIT inverse problem. In gen-
eral, the aim of regularization approaches is to promote meaningful solutions by
penalizing traits that are either unfeasible or not aligned with the expected nature
of the sought solution. In the EIT inverse problem, it is often assumed that the
unknown conductivity map is piecewise constant, or, equivalently, that the conduc-
tivity gradient distribution is characterized by a sparse structure [5, 16, 17, 15].

The blocky assumption also applies to the data of the Kuopio Tomography Chal-
lenge 2023 (KTC23)!. The goal of the KTC23 is to provide segmentations of the
reconstructed conductivities for a certain number of targets with increasing levels of
difficulty, each level being represented by a different number of measured boundary
voltages available.

Our approach to the KTC23 is to formulate the EIT reconstruction problem
within a hierarchical Bayesian framework with the a priori belief of piecewise con-
stant unknown conductivity. The blocky prior is formulated as a sparsity assump-
tion of the vector of the increments between values of the conductivity at adjacent
loci in the body domain. Recently [10], the authors have generalized a computation-
ally efficient sparsity promoting Bayesian hierarchical model originally designed for
linear inverse problems [6, 8, 7, 9], to non-linear scenarios. More specifically, they
have extended the Iterative Alternating Sequential (IAS) algorithm for computing
the Maximum a Posteriori (MAP) estimate for the sparsity promoting Bayesian hi-
erarchical model to the EIT inverse problem, and started to analyze its properties.
This new algorithm is the basis of our solver for the EIT inverse problems in the
context of the KTC23.

The goal of this work is twofold: the first is to advance and solidify the gener-
alization of the Sparsity Promoting IAS (SP-TAS) algorithm to non-linear settings.
Following [10], we provide an extension of a hybrid version of TAS, originally pro-
posed for linear forward operators in [11], where it was demonstrated to be capable
of combining the sparsity enhancement of non-convex optimization with the robust
convergence properties of the convex setup. The second goal is to provide a detailed
description of how the proposed algorithm can be tailored to the KTC23 dataset.
Special attention is given to parameter selection and comparison of computational
running times.

The paper is organized as follows. In Section 2 we discuss the EIT forward and
inverse problem, both in continuous and discrete settings. The formulation of the
EIT inverse problem together with an analysis of the TAS algorithm is provided in
Section 3. In Section 4 we outline the hybrid TAS algorithm with a detailed analysis
of the numerical steps and provide some insight on how to select the parameters.
The results of extensive numerical tests with the KTC23 datasets are presented in
Section 5. Finally, we draw some conclusions in Section 6.

2. The EIT forward and inverse model. Let Q C R? be a bounded simply
connected domain with boundary 9. The electrical conductivity distribution is
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denoted by function o € L> () which is assumed to be strictly positive, i.e., there
exists two finite constants 01,09 > 0 such that for each x € Q, 01 < o(z) < 09. In
the EIT acquisition setup, injected currents {7, 4}12L=1 are applied through L electrodes
{eg}le on the boundary 02 of the domain, with e, modeled as non-overlapping
intervals, i.e. e;Ne; =0,4,5 =1,...,L, i # j. The injected currents induce a static
electric voltage potential u : 2 — R inside the domain, as well as a voltage vector
U at the electrodes.

The behavior of w is governed by the second order elliptic partial differential
equation

V- (o(2)Vu(2) =0, z€Q, (1)
with Neumann-type boundary conditions
ou ou

U%F—O7 LZU%ds—Ig,£—17...,L, (2)

where I' = 90\ UeLzleg. The uniqueness of u can be guaranteed by augmenting the
set of conditions in (2) with the additional requirement

Lo
u ngan

with Uy representing the voltage at the electrode e;. The condition above accounts
for the formation of a thin, highly resistive layer between the electrode e, and the
body, characterized by a contact impedance denoted by z,.

Equations (1)-(3) together with the conditions

L L
D Ue=0, Y IL=0, (4)
=1 =1

constitute what is typically referred to as the Complete Electrode Model (CEM)
[19]. The aim of the EIT forward problem is to determine the potential u in  and
U, at the electrode es, £ = 1,...,L, when the currents {Ig}%zl are applied, and
the contact impedance z as well as the conductivity map o are given. Under these
conditions, the CEM model is known to have a unique solution that can be found
by solving the weak form of the original problem: we refer to [19] for the details.
The weak formulation allows to naturally introduce a finite element paradigm for
the solution of the forward problem in discrete settings. More specifically, consider
a triangular tessellation 7, = {K,},L; of Q, with h > 0 a parameter denoting

=U,, (=1,...,L, (3)

€r

v=1
the mesh size discretization, and let {E;};—;' be a basis for the space of real L-
dimensional vectors satisfying the conditions in (4). Then, as shown in details in
[10], the boundary voltages are given by

U=R,.1I, (5)

where R, , € is the resistance matrix presenting a non-linear dependence on
the conductivity o and the contact impedance z.

The inverse problem related to the forward formulation in (5) can be stated as
follows.

RLXL

Problem. Given a frame {Iz}fz_l1 of linearly independent L-dimensional currents

. ) N L—
applied on the boundary of Q, and the set of corresponding measured voltages {U*} ;!

ﬁndasuchthatUzszzle—Fee, £=1,...L—1, (6)

where €' is a realization of an L-variate zero-mean Gaussian random variable.
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Above, for the sake of definiteness, it is assumed that the set of current patterns
form a basis. In practice, the set of injected current patterns may be an arbitrary
set of vectors satisfying the condition (4). Moreover, the voltages are often not
measured on every electrode, i.e., the data may consist of a subsample of the full
set of voltage data. In general settings, one could be also interested in the estimation
of the contact impedances which here are assumed to be known.

We begin by assuming that the conductivity can be written as

o(z) =09 + do(x), (7)

where oy > 0 is a presumably known constant, and the perturbation do vanishes at
the boundary 0f). In particular, o} o0 = 0o- Given a triangular tessellation 7, the
conductivity ¢ is approximated by a piecewise linear function,

o(2) = o0+ 3 & (@), (8)
v=1

where ¢, is a piecewise linear nodal-based Lagrange basis function, i.e., for each
node p, € £ of the mesh,

Sﬁu(pu) = 5vw & = 60(py), 9)

and n is the number of interior nodes, as do is assumed to vanish at the boundary
09Q. We point out that in [10], an element-based discretization of the conductivity
was used, while in the current setting, the discretization mesh for the conductivity
and the voltage are not coinciding. Therefore, instead of seeking a function o €
L*>°(Q) suitably bounded and satisfying (6), the discretized problem is to estimate
the vector £ € R™ representing ¢ in the given tessellation.

The Bayesian formulation of the EIT discrete inverse problem that we solve
numerically is obtained by collecting the measurements into a single column vector

Ul
b= eR™, m=L(L-1),
ULfl
and writing the observation model
R(,.,ZI1 el
Rg ZILfl ELfl

The computational forward model is parametrized by the integrals of o over the
triangles. Since our main focus is the estimation of the variable £, to simplify the
notation we omit the reference to the dependency on oy and z, and assume € to

be drawn from a zero mean Gaussian distribution N(0, %), with covariance matrix
Y e RmMX™,

3. Bayesian formulation of the EIT inverse problem. In this section, we
formulate the nonlinear EIT inverse problem in (10) in the Bayesian paradigm
where all unknown parameters are modeled as random variables.

In the Bayesian setting, the likelihood probability density function (pdf) encodes
the likelihood of the observed data if the conductivity were known in terms of
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the noise statistics. Assuming that the noise is additive and follows a zero-mean
Gaussian distribution with covariance matrix ¥, the likelihood can be written as

Tye(b | €) o< exp (;|}21/2(b F(g))||2) : (11)

where || - || denotes the Euclidean norm. The a priori information or beliefs on the
unknown are described by the prior pdf. Motivated by the nature of the Kuopio
tomography challenge data, we design a prior accounting for the blocky nature of
the target conductivity by expressing a sparsity assumption for the increments in
the conductivity o, i.e. in the coefficient vector &.

Let N be the number of edges in the tessellation 7; connecting nodes such that
al least one of them is an interior node. Define a sparse matrix L € RV*" with
full-column rank mapping the coefficient vector £ into the vector of increments on
the mesh. More precisely, if Ey = {p,,p,} is an edge connecting the nodes p, and
Py, we define

Loy = L(pu), Lo = —t(py),

where «(ps;) = 1 for interior nodes p, ¢ 9Q and «(p,) = 0 for boundary nodes
pr € 00, and other entries in the ¢th row vanish. This way, the matrix L is sparse,
having at most two non-zero entries in each row, and it is easy to verify that L is
of full rank n. We define

(=LEeRY, ¢=LT¢=(LTL)7'L"¢, (12)

where Lt is the pseudoinverse matrix of L. For a finite element interpretation of the
variable ¢, we refer to [4].

In the Bayesian framework, a prior expressing the sparsity of a random variable
can be formulated in the form of a conditionally Gaussian prior of the form

1 1L ¢
Telo(C | 6) o WGXP —iga , CER(L). (13)

The conditionally Gaussian prior (13) is a restriction of the N-dimensional Gaussian
density N(0,Dg) to the range of the matrix L, where

Dg = diag(@l, .. .,91\[).

If 0; is small, then a priori the component (; is close to its zero mean, thus the
prior model promotes sparsity if only few of the prior variances are of significant
size. It has been shown in [14, 12] that a computationally convenient suitable
choice for sparsity promotion is to model # as a random variable with mutually
independent components following a fat-tailed distribution, such as a generalized
gamma distribution,

mo(0) = f[lmj (0), me,;(0;) = F(g)'ﬁj (zi)?“ﬂ_lexp (_ (2)”") 7 (14)

where 7 # 0, ¥; > 0 is a scale parameter, and 8 > 0 is a shape parameter, the roles
of which will be revisited below. Combining formulas (13) and (14), we can write
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the joint prior of the pair ({,0) as
m¢,0(C,0)=m¢1o(C | 0)mo(6)

Ten ¢ L6\ 3\ o=, 0;

xexp —52—]—2 —j + ?"ﬂ—§ Zlog% , CER(L).
;< Y : 9
j=1"7 j=1 J j=1 J

It follows from Bayes’ formula that the posterior density can be written as

Wﬁ,@\b(C7 0 | b) = exp( - G(Ca 9))3 C € R(L)a (16)
where the quantity

1 2 1. Ko\ 3\ o, 0,
e s g (8] (o2 ot o
o= N j=1 i

Jj=1

(15)

is called the Gibbs energy.

Often the information encoded in the posterior pdf (16)-(17) is summarized by
the maximizer of the distribution, known as the Maximum A Posteriori (MAP)
estimator. The main motivation for collapsing the entire posterior into a single
vector is to mitigate the computational burden associated to the exploration of the
full posterior distribution. In our application the MAP estimate solves

{¢*,0"} € argmin G((,0). (18)

CeR(L), RN

Efficient computational schemes for the computation of the MAP estimate of the
posterior (16) in the case of linear forward model operators, i.e., F(§) = A&, have
been proposed in the literature [14, 8, 11]. In these works, the authors minimize
the corresponding Gibbs functional by means of the Iterative Alternating Sequential
(TAS) algorithm, where at each iteration the ¢ and 6 blocks of variables are updated
separately by setting

(1) ¢-update:

¢Fl e arg Cnrlﬂi@n G(¢;0%) (19)
c N
(2) f-update:
6"+ ¢ arg min G(9; ¢*H) (20)
RN

By organizing the computations appropriately, the constraint ( € R(L) can be
made automatic. In the linear case it has been shown that when the hyperprior is
a gamma distribution, i.e. » = 1, the Gibbs energy functional is strictly convex and
the TAS iterates converge to its unique minimizer - see [14].

An analytical study of the convexity of the Gibbs functional and corresponding
sparsity promotion for generalized gamma hyperpriors [11] has inspired the design
of hybrid versions of the original IAS. The starting point for hybrid TAS schemes is
the observation that when r > 1, the Gibbs functional is convex in the (-domain,
while for 0 < r < 1, the convexity of G is restricted to a proper subset of the
domain. The price for the greedier sparsity promotion corresponding to r < 1 is
the presence of local minima. To combine the advantages of a unique minimizer
and strong sparsity promotion, it was suggested in [9] to run the TAS with r = 1
until the iterates approach enough the unique minimizer, then continue the TAS to
minimize the Gibbs energy corresponding to a hyperprior with 0 < r < 1 with the
understanding that the algorithms will stop at a local minimizer.
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Our goal here is to present the implementation details of the recent extension
[10] of the sparsity promoting IAS algorithm for the solution of the nonlinear EIT
inverse problems with the (generalized) gamma hyperprior and with the hybrid IAS
version, and to systematically test its performance with the 2023 Kuopio tomogra-
phy challenge dataset.

4. Sparsity promoting IAS for the nonlinear EIT inverse problem: im-
plementation details. We begin this section with the formulation of the hybrid
version of the TAS scheme for the nonlinear EIT inverse problem proposed in [10],
focusing specifically on the role of the parameters.

As for the case of linear problems, the hybrid TAS for nonlinear problems can
be thought of as seeking to solve a sequence of two optimization problems, whose
solutions are MAP estimates corresponding to the conditionally Gaussian posteriors
with hyperprior distributions characterized by the parameters

(7n(1)7ﬂ(1)719(1))7 P — 1, and (7"(2)76(2)719(2)>7 0<r® < 1, (21)

with S, 32 > 0 and 9V, 92 € RN. The properties of the hybrid IAS scheme
defined by the parameters in (21) for a linear forward model are well-understood:
as recalled at the end of Section 3, the MAP estimate corresponding to the first pa-
rameters selection, i.e. to (1) = 1, amounts to solve a globally convex optimization
problem, with the TAS iterates converging to the unique minimizer. Therefore IAS
with the first set of parameters after a certain number of iterations return as output
an approximate solution of the convex MAP problem, hence of the target signal.
The approximate solution of the convex minimization problem is a reasonable initial
guess for the second stage. In that case the objective function to minimize, corre-
sponding to the second set of parameters in (21), is only locally convex objective,
hence susceptible to local minima. On the one hand, the lack of global convexity
may cause several problem in the optimization process, that can be partially mit-
igated with a robust initialization. On the other hand, the non-convexity of the
selected objective function is compensated for by stronger sparsity promotion in
the final solution. In the nonlinear case, the strict convexity of the Gibbs energy
functional for the gamma hyperprior does not hold in general, however, a partial
characterization of the convexity properties of the Gibbs functional corresponding
to the gamma hyperprior has been established in the case of noiseless measurements:
see, e.g., [10, Theorem 7.2].

In spite of the lack of comprehensive theoretical results, the numerical tests
presented in Section 5 suggest that the robustness and the sparsifying properties of
the hybrid IAS for the EIT nonlinear problem are similar to those for the linear case.
Regardless of the hyperprior, each TAS iteration alternates between the update of
the increments ¢ in (19) with fixed variances and the update of the variance vector
0 in (20) with the increments fixed at the updated values. Since the forward model
depends only on (, the linearization steps are only performed inside the nonlinear
least squares problem to be solved for the update of the increments (.

A schematic overview of the algorithm is shown in Figure 1. In the following
subsections, we discuss in detail how each step can be implemented and how the
parameters can be selected for the KTC23 dataset.

1. Input. In general, the input of hybrid IAS algorithm, schematically depicted
in Figure 1, consists of the information related to the acquisition setup, that is
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{ 1. Input }

2a. Subjective parameters

/

2. Parameters selection 2b. Algorithmic parameters

\

2c¢. Tailored parameters

3a. Multiple model
linearizations
and &-updates

3. Hybrid TAS: phase I

3b. f-update

linearizations
and &-updates

4. Hybrid IAS: phase II

4a. Multiple model

4b. f-update

{ 5. Output }

FIGURE 1. Overview of the hybrid IAS algorithm for the EIT
nonlinear inverse problem. The apricot boxes contain the input
and the output stages. The red and reddish boxes are related to
the process of selection of parameters, either in an automatic or
manual fashion. The purple and purplish boxes contain the actual
body of the algorithm, i.e. the sequence of the two phases and,
within each phase, the alternation between the (- and the f-update.

the number L of electrodes, their position on the boundary of the domain, the
vector of measured voltages b, and the vector of contact impedances z. In the case
of the KTC23 dataset, the conductivity of the water chamber is also available as
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a reference measurement. Moreover, the mesh used for the discretization of the
continuous domain is given as input to our algorithm, together with a routine that
solves the CEM forward model (1)-(3). In other words, for any given conductivity
map and injected current pattern, the solver returns as output the voltages measured
at the boundary and the Jacobian of the forward model.

2. Parameter selection. The parameters that need to be assigned can be
grouped into three classes, depending on their nature and role. More specifically,
the subjective parameters are involved in the expression of the hyperprior, the al-
gorithmic parameters control the stopping criterion and the number of iterations
in the alternating scheme, and, finally, the tailored parameters, more specific to the
problem to be solved, are mostly related to the definition of the likelihood distribu-
tion and to the measurements at hand.

2a. Subjective parameters. This class comprises the parameters in (21) defining
the hybrid hyperprior, i.e. defining the two hyperpriors corresponding to the sets of
parameters in (21) - to be plugged into the pdf expression in (14) - and underlying
the design of the hybrid scheme. In the hybrid IAS paradigm, typically r() = 1,
that is the minimization in the first phase of the algorithm is driven by a gamma
hyperprior, which, when () = MM —3/2 — 0% acts akin to an £;-type of
penalization. In general, the value of 7(?) is chosen in the interval (0, 1), although
popular choice for this parameter include r(?) = —1 - corresponding to an inverse
gamma hyperprior for which there is a closed form for the f-update in step 4b -
and 7(®) = 1/2, a choice that that has been proven to work very well in practice
in linear scenarios - see, e.g., [9]. Often, instead of selecting a value for (1), it is
more natural to assign the value of the related parameter for n(1), also referred to
as focality parameter, according to how sparse the solution is believed to be. In
fact, it has been shown that for the linear case the global degree of sparsity of the
primary unknown is encoded in the value of the parameter n(!): the smaller n(),
the sparser the increments vector ( is expected to be. The selection of the vector of
parameter 91, inspired by the role of this vector in the linear case, can be related
to the sensitivity of the data to each component of ¢ - see [11, 10]. More specifically,
we set

(1) _ v
T FLIG) | ol

(22)

with ¥* being a positive scalar parameter, and %F(LTCJ) lc=0 being the j-th
column of the Jacobian matrix of the forward model operator computed at { = 0,
that corresponds to the case in which there are no objects immersed in the water
chamber. The scaling factor ¥* is manually tuned: in the linear case it may be
related to the signal to noise ratio, but we have no information about that in
the KTC23 dataset. Finally, the scalar parameter () - or, equivalently, n® =
B2 —3/2 - and the vector of parameters ¥(*) are automatically determined
by the following two conditions introduced to guarantee consistency of the switch
between the two hyperpriors [13]:

1. Whenever (; = 0, the baseline values for §; coincide, which yields

e ﬁ
r(@)

1/7“(1) 1/7,(2)

(2)
_a@ ("
=@ (M) : (23)
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2. The marginal expected value for 0; is equal using both hypermodels, that is,
9 s +1/rm) _ 9@ r(p® +1/r®)
r(pw) r'(p®)

Finally, notice that, in order for the first phase to be performed, it is necessary to
initialize the variance vector ; in our case, we set §9 = 9.

(24)

2b. Algorithmic parameters. The TAS iterations for both hyperpriors can be
stopped as soon as either the relative change of the variances at each stage is below
a given tolerance, or a maximum number of iterations has been reached. In other
words, denoting by k > 0 the IAS iteration index, we stop iterating as soon as

N AR )
I: (591 = W <tol or k 2 kmax;
1112
25
o 1057 — 65| ) 25)
II: 005 = ———+—= <tol or k2>kyl;
165112 -

with 61, 03 denoting the vector of estimated variances in phase I and II, respectively.
Finally, the number of the linearizations and (-update in steps 3b, 4b should also
be fixed.

2c. Tailored parameters. We conclude with a short discussion of the parameters
related to the data to be processed, in particular the covariance matrix ¥ arising
in the definition of the likelihood model in (11). Since this information is not
part of the KTC23 dataset, we assumed additive zero mean scaled white Gaussian
noise, thus letting ¥ = w?l. Due to the lack of information about the noise in the
data, w has been hand-tuned. Same considerations hold for setting the value of the
background conductivity oyp.

3. Hybrid IAS: phase I In analogy to the case of linear problems, the first stage
of the hybrid TAS is aimed to design a suitable initial guess for the minimization
problem addressed in the second stage, which is expected to more strongly promote
sparsity in the solution.

3a. Forward model linearization and (-update. Let k denote the iteration
index in the first stage of the hybrid IAS. The updated ¢(¥*!, according to (19),
solves

N I 1,
¢+t e anguin { S1IE 20— FUO)P + 10,2} (20
with
Dgr = diag(6¥,...,0%). (27)

It follows from our assumption about the statistics of the noise that ¥ ~1/2 = (1/w)l.
Introduce the auxiliary variable a € RN defined as

a=D,"?¢=D,"?Le = Ly¢, with Ly =D, "L, (28)

and
¢=Li¢c="L}a. (29)

Problem (26) can be reformulated as

a1 € argmin { I==12(b — F(L},0))|2 + ||a||2} . (30)
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Following the derivations in [10], we linearize the forward model operator in a
neighborhood of o* = De‘,}”g’“ to get

F(Ll,a) = F(L],a") + DF(L}, "L, (o — o), (31)

where DF (Lgk a¥) denotes the Jacobian matrix of the forward model operator with
respect to ¢ evaluated at ¢F = L;kak. Defining

y =X V2(b— F(L],a*) + DF(L],a*)L], o)

(32)
A=3"'2DF(L}, a")L],
we can write (30) compactly as
ot € argmin {||ly — Aa|]® + [|a|®} . (33)
[0

It is straightforward to see that the solution is
oftt = (ATA+|N>_1(ATy), Sk _ L;kak-l-l. (34)

As pointed out in [10], when the dimensionality m of the data is smaller than the
number N of increments, as is the case in the present problem, it may be convenient
to observe that a*t! = ATw, where w is the solution of the adjoint problem

(AAT +1,)w =y. (35)

Summarizing, in Step 3a the update of (, i.e. the update of £, is performed by
iterating in an alternating way steps (32) and (34) for a certain small number
iterations, i.e. 2,3.

3b. f-update. The way in which the f-update in (19) is performed does not change
when passing from linear to nonlinear settings. Fach 6; can be updated separately,
and the new values must satisfy the first order optimality condition on the cost
function, that for a general set of parameters reads

1G 0\ 3 0;
081 ¢ argmin { =L + <]> - (rﬁ - ) log 2 & . (36)
J 0; 2 Gj ?9j 2 19j

Differentiation with respect to 6; shows that the updated value of 6; solves a one-
dimensional non-linear equation, that for (r, 3,9) = (r®), (1) 9(M)) takes the form

LGN (9j>T(1)_1_ ) (W1); _
2 (9]) (191)] +r (ﬁl)j n 9]_ =0. (37)

For 7)) = 1, the solution is available in closed form.

4. Hybrid TIAS: phase 2 In phase 2, the TAS is run for solving the MAP
optimization problem (17)-(18) with the second set of parameters in (21). The
variance vector returned as output of phase 1 is chosen as the initial value of the
variance vector in the second stage. In this manner, the current stage takes ad-
vantage of what has been learnt in the previous one. The steps performed at the
stage 4a are identical to the ones described above, as the cost functional that is
minimized for the (-update does not involve the parameters defining the second
hyperprior. For what concerns the update of the variances, problem (36) is solved
with (r, 8,9) = (r®), 32 9(2); also in this case each 9;“ can be updated sepa-
rately by solving a one-dimensional linear equation of the same form as the one in
(37); a closed form solution is available for 7(2) = —1.
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FIGURE 2. Tessellation used for solving the inverse problem, with
the L = 32 circular arcs representing the areas on the boundary of

the circular domain spanned by the electrodes.

5. Output In general settings, the output of the hybrid scheme is the vector &£
in (29) and the corresponding conductivity map. When applying our approach for
the KT(C23, an interpolation of the resulting conductivity map is performed on the

mesh and a segmentation algorithm is then applied to the final result.

5. Numerical tests on the KTC2023 dataset. In this section, we test the spar-

sity promoting hybrid TAS algorithm for the nonlinear EIT problem discussed in

details in Section 4 on the KTC23 dataset?.

The data were collected in the Pro-

cess Tomography Laboratory at the University of Eastern Finland, with a current-
injection voltage-measurement electrical impedance tomography device [18].
jects with different conductivity/resistivity have been immersed in a circular water

Ob-

chamber, around which L = 32 stainless electrodes have been installed, with 16 of
them used for current injection. The electrodes are labelled with numbers from 1 to
32 in the counterclockwise direction, with electrode 1 being at 12 o’clock position.

The angle spanned by each electrode and the distance between adjacent electrodes

is @ = 5.625°. For solving the inverse problem, a mesh of 1602 nodes has been pro-
vided. In Figure 2, we show the domain tessellation together with the equidistant

The number of interior nodes is 1473 which is also the actual dimen-

sionality of the inverse problem, as the values {; corresponding to the boundary
nodes are set equal to 0. Also, the entries of the contact impedance vector z are

electrodes.

1 x 1076,

The goal of the KTC23 challenge is to recover a segmented image of the conduc-

assumed to be all equal to a fixed value zg

we first run the hybrid IAS algorithm, then apply

the Otsu’s method to get the required segmentation, which automatically divides
the histogram of the o-values into two or three classes - depending on the target

b

To this purpose

tivity maps.

at hand; subsequently, a 0 value is assigned to the water class, 1 to the resistive

inclusion, and 2 to the conductive inclusion.

The stopping criterion of the IAS algorithm has been based on the iterations
number: more specifically, in (25) we selected kmax = 5, so that the overall scheme

performs a total of 10 iterations. Also, the number of linearizations embedded in

the (-update is set equal to 2.

2https://www.fips.fi/KTCdata.php
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The algorithm has been tested on the reconstruction of the conductivity maps
induced by 3 different phantoms. For each phantom, 7 different experimental set-
ups are adopted, each characterized by a different number of active electrodes. At
the lowest difficulty level, for each injection pattern, voltages have been measured
between adjacent electrode pairs, for a total of 31 pairs for 32 electrodes. In subse-
quent tests with increasing levels of difficulty, electrodes are progressively removed.
More specifically, at the 7 level, 7 = 1,...,7, the electrodes from 1 to 2(7 — 1) are
neglected. The number Nj,; of injected currents also decreases, and the quality of
the reconstructions is expected to decay. The number of injections and the number
of electrodes for each test can be found in Table 1. Notice that the dimension m of
data vector b is given by Ny,; x (L —1), L — 1 being the number of electrode pairs
for each configuration.

The values of the noise level and of the background conductivity have been hand-
tuned; in all computed tests, we set w = 0.004 and oy = 0.79.

The output reconstructions are compared to the ground-truth segmentations,
that have been obtained by photographing each target with a digital camera and
performing a segmentation afterwards. The quality of the reconstruction is assessed
by means of a metric based on the structural similarity index (SSIM) [20], taken
separately for the conductive and non-conductive inclusions.

All the tests have been performed under Windows 11 in MATLAB R2024a on
an Dell PC with an Intel Core i7-13700H @2.4Ghz processor and 16 GB of RAM.

The first phantom, whose target segmentation is shown in the bottom left panel of
Figure 4, comprises two inclusions of different shapes: notice that for all phantoms
the blue region corresponds to the water, while the yellow and the green region
detects the conductive and the resistive inclusion, respectively. As a preliminary
test, we aim to assess the performance of the hybrid TAS scheme with respect to
IAS with a single hyperprior. More specifically, for L = 32 and N;,; = 76, we
run the single hyperprior IAS with » = 1 and r = 1/2, respectively; we set nM =
3 x 10~* and ¥* in (22) equal to 0.03 , while the parameters identifying the second
hyperprior are set according to the conditions (23)-(24). Although our intuition
in nonlinear settings is not currently supported by a solid theoretical analysis, we
do expect weaker sparsity promotion for » = 1, and stronger, possibly overbearing
sparsification for r = 1/2. The output reconstructions, after an interpolation on
the mesh, are shown in the left and middle panels in Figure 3. One can notice that
the gamma hyperprior is not capable of flattening out the background; nonetheless
the two objects can be clearly distinguished. On the other hand, the generalized
gamma hyperprior with » = 1/2 produces a solution with sharper edges whose
shapes however seem to be less consistent with those of the original targets. Finally,
the reconstruction computed by the hybrid TAS scheme, displayed in the right panel,
is characterized by a well cleaned background and, in the foreground, by two objects
whose dimensions and shapes more accurately resemble the ones of the targets.

As a further analysis, in the top panels of Figure 4 we show the o-estimates
during Phase I (first row) and Phase IT (second row), with the iteration number
of the overall hybrid scheme annotated in each subplot. The panels in the second
row show how the highly sparsifying characteristics of the functional minimized in
Phase II help in flattening the background. The segmentation corresponding to the
10th and last iteration of the hybrid IAS scheme is shown in the bottom right panel.
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FIGURE 3. Output reconstruction obtain with the single hyper-
prior TAS algorithm with » = 1 (left), » = 1/2 (middle), and by
the hybrid IAS (right) for phantom #1 and N; = 76.
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FIGURE 4. Iterative estimates of the conductivity map for phan-
tom #1 with N;,; = 76 obtained with the hybrid IAS in the first
phase with (1) = 1 (top panels) and in the second with r(?) = 1/2
phase (middle panels). In the bottom, target (left) and output seg-
mentation (right) corresponding to the 10-th iteration of the overall
hybrid scheme.

Notice that the polygonal structure of the second highly conductive object seems
to be well captured.
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Level 7 | L | Nin; | phantom #1 | phantom #2 | phantom #3
1 32| 76 0.6915 0.8978 0.7628
2 30| 56 0.7031 0.8987 0.7908
3 28 | 52 0.6981 0.8939 0.7912
4 26 | 48 0.6308 0.8774 0.7651
5 24 | 44 0.5582 0.8987 0.8093
6 22| 30 0.5781 0.6978 0.7206
7 20| 27 0.6361 0.6341 0.6317

TABLE 1. Values of the SSIM-based scores achieved for the three
different phantoms and for different difficulty levels 7, i.e. for dif-
ferent numbers N;y,; of injective currents and different number L
of electrodes.

Figure 5 shows the output reconstruction and the corresponding segmentation
for Nin; € {56,52,48,44,30,27}. Notice that the only parameters that need to be
tuned are the focality parameter n(V), i.e. the shape parameter 51, of the first
hyperprior, and the scaling parameter ¥* arising in the expression of the sensivities
Y1) in (22). Extensive tests indicate that both sets of parameters have an effect
on the output solutions, therefore we provide general guidelines for the selection of
their values. As the number of injections decreases, the value of n*) should also
decrease; this can be explained in light of the fact that smaller n-value encode a
stronger sparsity belief for the increments vector, and facilitates the flattening of
spurious artifacts generated by the limited amount of information available. For
the first phantom, in the different acquisition scenarios, the value of n(*) is selected
from the interval [107°,107%]. For what concerns the scaling parameter 9¥*, our
experiments suggest that its value should be increased as N;,; decreases; in fact,
as the number of available electrodes gets smaller, the influence of the likelihood
model in the overall functional becomes weaker and the prior model takes over;
¥* can thus be interpreted as a regularization parameter that helps preserving the
contrast between the water chamber and the inclusions. For the first phantom
across the different difficulty levels, ¥* has been chosen from the interval [0.03,0.5].
Comparison of the segmented reconstruction with the target in Figure 4 shows that
for N;,; > 44 the dimensions of the phantoms and the profile of the polygonal
object are preserved, while for N;,; = 30,27 - corresponding to the case when 22
and 20 electrodes, respectively, are employed - the shapes of the objects seem to be
less sharp, although still clearly distinguishable.

The values of the achieved SSIM scores are reported in Table 1.

Next we consider the reconstruction of the conductivity map induced by the
second phantom, whose target segmentation is shown in the bottom left panel of
Figure 6. In the top rows of the same figure we show the behavior of the two
phases of the hybrid IAS scheme with parameters n*) = 5 x 107¢ and ¥* = 0.4
for N;,; = 76: as in the previous case, the last iteration is characterized by a
drastic flattening out of the background. From the output segmentation shown in
the bottom right panel, one can conclude that the algorithm is capable of preserving
a partial profile and the orientation of the object.

The output reconstruction and the related segmentation obtained for different
values of Ny,;, with parameters n),9* ranging in the intervasls [1077,107°] and
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FIGURE 5. Pairs of output o-estimates and corresponding segmen-
tations for phantom #1 as functions of different numbers Ny, ; of
injected currents.

[0.4,0.6], respectively, are shown in Figure 7, while the scores achieved are reported
in the fourth column of Table 1.

We finally consider the third phantom, with target segmentation shown in the
bottom left panel of Figure 8. In this case the inclusion is near the center of the water
chamber, which may mitigate the artifacts that tend to arise when the object is close
to the boundary. The concave shape of the inclusion, however, poses a challenge,
especially when considering the uniform meshes that we use for the reconstructions.
For Nj,; = 76, the hybrid IAS was run with parameters nM =5 x 10~* and
¥* = 0.05. The iteratively estimated conductivity maps are shown in the first
two rows of Figure 8. The final reconstruction and the corresponding segmentation
confirm that the background is correctly flattened out, while the shape of the object
is very close to the target.

The performance is consistent even with a smaller number of injections, in par-
ticular for N;,; > 44, as shown in Figure 9. For these tests, the hybrid IAS was
run with ) € [10~ 5, 10~%] and 9¥* € [0.05,0.15]. The stability in the shape of the
reconstructions is also reflected by the SSIM scores that are reported in the fifth
column of Table 1.

As highlighted at the beginning of this section, the stopping criterion selected
for the algorithm is only based on the iteration number, as high quality results
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FIGURE 6. Iterative estimates of the conductivity map for phan-
tom #2 with N;,; = 76 computed with the hybrid IAS scheme in
the first phase with () = 1 (top panels) and in the second with
72} = 1/2 phase (middle panels). The bottom row displays the
target (left) and output segmentation (right) corresponding to the
10-th iteration of the hybrid scheme.

can be recovered in the very first iterations of the scheme. However, it is also
worth analyzing the behavior of the relative changes 661, §05 defined in (25), which
are shown in Figure 10 for the three phantoms for L = 32 active electrodes, i.e.,
Nin; = 76 current injections. Notice the overall decreasing behavior, suggesting
robust convergence properties of the algorithm.

We conclude this section reporting the average computing times over 10 runs of
the hybrid TAS for the three phantoms and different numbers of current injections
in Figure 11, together with the dispersion bands (+ one standard deviation from
the mean). Combining such analysis with the scores reported in Table 1, one can
conclude that high-quality results can be obtained removing up to 8 electrodes from
the original setup with a gain in terms of computing times of about 20%. We also
highlight that for L < 28, i.e. N;,; < 52, the linear system solved in steps 3a, 4a,
is underdetermined, so that the overall scheme takes advantage of formula (35).

6. Conclusions. In this work we addressed the solution of the non-linear EIT
inverse reconstruction problem with a priori sparsity information. More specifically,
after recasting the task in Bayesian terms, we provided a detailed description of the
sparsity promoting IAS algorithm when applied in the non-linear settings. A specific
attention was given to the parameter selection, and on how the latter can be tailored



204 MONICA PRAGLIOLA, DANIELA CALVETTI AND ERKKI SOMERSALO

Ninj = 56 Nipj = 52
4
3
2
1
-0.1 0 0.1
Nipj = 48 ij =44
-0.1 0 0.1
’L’I’L] - 30 zn] = 27

Uﬂ 1"

FIGURE 7. Pairs of output o-estimates and corresponding segmen-
tations for phantom #2 as functions of different numbers N, ; of
injected currents.

so as to successfully process the 2023 Kuopio Tomography challenge dataset. Our
analysis highlights the efficiency and the flexibility of the discussed algorithm.
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