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A B S T R A C T

There are many factors in the current phase of the COVID-19 pandemic that signal the need for new modeling
ideas. In fact, most traditional infectious disease models do not address adequately the waning immunity, in
particular as new emerging variants have been able to break the immune shield acquired either by previous
infection by a different strain of the virus, or by inoculation of vaccines not effective for the current variant.
Furthermore, in a post-pandemic landscape in which reporting is no longer a default, it is impossible to have
reliable quantitative data at the population level. Our contribution to COVID-19 post-pandemic modeling
is a simple mathematical predictive model along the age-distributed population framework, that can take
into account the waning immunity in a transparent and easily controllable manner. Numerical simulations
show that under static conditions, the model produces periodic solutions that are qualitatively similar to the
reported data, with the period determined by the immunity waning profile. Evidence from the mathematical
model indicates that the immunity dynamics is the main factor in the recurrence of infection spikes, however,
irregular perturbation of the transmission rate, due to either mutations of the pathogen or human behavior,
may result in suppression of recurrent spikes, and irregular time intervals between consecutive peaks. The
spike amplitudes are sensitive to the transmission rate and vaccination strategies, but also to the skewness of
the profile describing the waning immunity, suggesting that these factors should be taken into consideration
when making predictions about future outbreaks.
1. Introduction

The outbreak of the COVID-19 pandemic in early 2020 dramatically
altered the landscape of public health, clinical and epidemiological
research, and changed profoundly the public perception of the risks
of the disease. While the level of immunity of the population to the
SARS-CoV-2 virus has been boosted by the production of effective
vaccines and widespread vaccination campaigns, expectations about
the long term fate of the pandemic have changed following the pe-
riodic discovery of new pathogen mutations with varying virulence
and transmissibility that can elude both vaccine-based and disease-
acquired immunity. Other important factors that need to be taken
into account when making predictions are that the evolution of the
public perception about the severity of the infection and a growing
level of mitigation fatigue have lowered the level of alertness and
protection against the disease. In several countries, in part because of
social and economic pressure, COVID-19 has been downgraded from a
health crisis to a health concern, and the almost ubiquitous removal
of the obligation to report test results, paired with widely available
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self tests have made almost all infection data at the population level
obsolete and unreliable. These changes in the pandemic landscape pose
new challenges to predictive mathematical models. In the current post-
pandemic period, there are several questions in need of fast answers,
including how the old models should be modified to be useful in the
current phase. Another question is what are the relevant questions that
mathematical models can answer, and what kind of data, if any, should
be used to estimate model parameters and validate model predictions.
A more fundamental question is if mathematical models still have a
predictive role in COVID-19 responses, whether the focus should shift
towards more qualitative goals. In this spirit, we consider in this paper
a model that gives a possible qualitative explanation to the observed
recurrence of infection peaks, and addresses the question of long term
asymptotics of COVID-19 as an endemic disease.

As the obligation to report new infections makes the reliability of
the available data quite questionable, it becomes necessary to look for
data sources that transcend voluntary reporting. Possible sources of
information that do not require an active role of the population include
the number of hospitalizations due to the disease, COVID-related death
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rates, and measurements of viral load in wastewater. All of these data
types lack direct information about the prevalence of new infections
in the population, thus estimates of detailed model parameters such
as transmission rate based on them could be highly unreliable and
uncertain. Although numerically unreliable, the information that could
be extracted from these data is whether the infections are increasing or
decreasing, and when the disease is expected to peak. Predictions about
the timing of the next infection peak, and its width could be used not
only to assess the reliability of a model, but also for streamlining public
health operations, e.g., planning the staffing of hospitals and estimating
the number of beds to be allocated for COVID-19 patients.

From the very onset of COVID-19, efforts to understand various
aspects of the transmission at individual and population level have
generated a huge corpus of modeling literature, see, e.g. [1] for a
meta-analysis of the approaches and objectives of the research. Most
contributions in the literature do not address the novel feature charac-
terizing the current phase of the pandemic, namely the role of interval
of time before immunity wanes and the arrival of new variants capable
of eluding the immunity provided by vaccination or by exposure to a
previous variant of the pathogen. However, traditional epidemiological
models based on ordinary differential equations such as the classical
SIR model can be modified to take into account the loss of immunity,
in particular, to model endemic diseases. The most straightforward
modification is to include a flux from the recovered compartment
back to the susceptible compartment (SIRS model), see, e.g., [2]. More
sophisticated models augment the SIRS model or its variants [3,4] by
dding a waning immunity compartment (W) accounting for those in-
ividuals who are either losing the immunity, or alternatively, may get
n immunity boost through a new exposure to the virus. For a review of
lassical SIRWS models for endemic diseases such as pertussis, we refer
o, e.g., [5–9]. These SIRWS models have been recently revisited in the
ontext of COVID-19, see [10–12]. A remarkable property of these mod-
ls is their ability to generate periodic solutions and recurrent infection
pikes even in short time intervals, reproducing the recurring waves
f infections shown in COVID-19 news outlets, through a mechanism
escribing the arrival of new variants and the gradual loss of acquired
mmunity over time.
In the current phase of COVID-19, the recurrence of infection waves

ontinues to draw attention from mathematical modelers and public
ealth officials alike. In light of the current reporting situation, overly
omplicated models depending on large number of parameters with
etailed hypothetical transmission mechanisms may not be practical
ue to the lack of reliable data allowing the model validation. The
resent article proposes a conceptually simple compartment model
ddressing waning immunity in terms of an easily interpretable profile
escribing the time evolution from immune to vulnerable. The model
ollows an age-distributed population model formalism based on Leslie
atrices describing the evolution of the immunity level. Computed
xperiments demonstrate that the immunity profile characteristic to the
isease’s current phase could be the key factor behind the infection
ecurrence. Other factors, including human behavior or infectivity of
he pathogen, while important for determining the amplitude of the
pikes, seem to have a secondary role, albeit not being without sig-
ificance. Moreover, it is shown that the intrinsic properties of the
mmunity loss may be determinant of the long term development of
he disease, either continuing to produce infection waves or reaching
n endemic limit. The rest of the paper is organized as follows. In
he next section we introduce the mathematical model and explain
he formalism utilized. Section 3 is dedicated to understanding the
odel parameters in terms of quantities that can be related to the
vailable data. The significance of the values of the model parameters
n determining the type of behavior of the pandemic, in particular in
elation to whether or not recurrent waves can be expected, is discussed
t length. Model simulations with different parameter values are used
o support the proposed causal relation. A discussion of the findings and
ome conclusions about the refocused role of mathematical models in
2

he post-pandemic era presented in Section 4.
2. Model

In this section, we develop a simple, discrete-time deterministic
infection model with an advection structure, resembling classical age-
structured population models based on the Leslie matrix formalism [13,
14]. We begin by describing a version of the model that does not
include vaccination, then later explain how that can be added.

Let 𝑁 = 𝑁(𝑡) denote the total population size at time 𝑡, where time
s discretized in units such as one day and assumed to take on integer
alues, with the understanding that the time units can be modified as
eeded.
We begin by subdividing the population into two cohorts, the

usceptible (S) and the infected (I) . The sizes of these cohorts at time
are denoted by 𝑆(𝑡) and 𝐼(𝑡), respectively, and

(𝑡) + 𝐼(𝑡) = 𝑁(𝑡), 𝑡 = 0, 1, 2,…

Consider first the susceptible population S. The underlying hypothesis
in the basic model is that immunity, acquired through disease exposure,
wanes as time from the last recovery increases. Therefore, we divide
the susceptible cohort into 𝐿 subgroups, S1,… ,S𝐿. If 𝑠𝓁(𝑡) denotes the
number of individuals in the 𝓁th subgroup S𝓁 at time 𝑡, or briefly, the
size of S𝓁 , where

𝓁 = min{𝐿, number of days from the last recovery},

then
𝐿
∑

𝓁=1
𝑠𝓁(𝑡) = 𝑆(𝑡).

Each subgroup is characterized by its vulnerability to infection, intended
as degree of lack of immunity. We denote the vulnerability of S𝓁 by 𝑤𝓁 ,
with

0 ≤ 𝑤𝓁 ≤ 1, 1 ≤ 𝓁 ≤ 𝐿,

where 𝑤𝓁 = 0 means full immunity to the disease, and 𝑤𝓁 = 1 means
a total lack of immunity. For simplicity, the vulnerabilities are not
time dependent. We assume that the vulnerability is a non-decreasing
function of 𝓁, that is, 𝑤𝓁 ≤ 𝑤𝓁+1. With this interpretation, 𝐿 can be
seen as an estimated upper bound for the duration of the immunity
protection.

In our model, we postulate the following guiding principles:

(1) The number of individuals in S𝓁 becoming infected in a unit time
interval [𝑡, 𝑡 + 1] is proportional to

(a) the vulnerability 𝑤𝓁 of S𝓁 ,
(b) the size 𝑠𝓁(𝑡) of S𝓁 ,
(c) the total fraction of infective individuals in the entire

population.

(2) The increase of vulnerability is described through advection with
a time step. When the last vulnerability class S𝐿 is reached, the
vulnerability no longer increases with time.

According to these assumptions, if at time 𝑡 individuals from the
subgroup S𝓁 get infected, they will be removed from the subgroup. If

𝛾𝓁(𝑡)𝑠𝓁(𝑡) = number of individuals in S𝓁 infected over time [𝑡, 𝑡 + 1],

then

𝛾𝓁(𝑡) = 𝛽(𝑡)
𝐼∗(𝑡)
𝑁(𝑡)

𝑤𝓁 ,

where 𝛽(𝑡) is the transmission rate, or pairwise infectious contact rate,
at time 𝑡, and 𝐼∗(𝑡) is the size of the subpopulation of the cohort I that
is infective, i.e., individuals with an active viral load. Here, we assume
that 𝛾𝓁(𝑡) < 1. Every individual in the group S𝓁 , 𝓁 < 𝐿, will be removed,
either by joining the infected compartment, or by being advected to the
next vulnerability class. Therefore, we conclude that
𝑠𝓁+1(𝑡 + 1) = (1 − 𝛾𝓁(𝑡))𝑠𝓁(𝑡), 1 ≤ 𝓁 < 𝐿 − 1. (1)
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Since the last vulnerability class S𝐿 contains those individuals who
were already in the class and did not get infected, and those arriving
from class S𝐿−1, the formula for the update of its size becomes

𝑠𝐿(𝑡 + 1) = (1 − 𝛾𝐿(𝑡))𝑠𝐿(𝑡) + (1 − 𝛾𝐿−1(𝑡))𝑠𝐿−1(𝑡). (2)

Before deriving the update formula for the size of the first class S1,
we consider the infected cohort I and subdivide it into 𝐾 subgroups,
1,… , I𝐾 . If we let 𝑖𝑘(𝑡) denote the number of individuals in the 𝑘th
ubgroup I𝑘, then
𝐾
∑

=1
𝑖𝑘(𝑡) = 𝐼(𝑡),

here

= min{𝐾, number of days from infection}.

e set the value of 𝐾 to the smallest number of time units after which
nfected individuals are no longer infective, so that the number of
nfective individuals at time 𝑡 is given by

∗(𝑡) =
𝐾−1
∑

𝑘=1
𝑖𝑘(𝑡).

ndividuals in each group I𝑘 either recover, die, or stay infected. We
ntroduce the recovery rate 𝜂𝑘 and the death rate 𝜇𝑘 of the subgroup I𝑘,

≤ 𝜂𝑘 ≤ 1, 0 ≤ 𝜇𝑘 < 1 − 𝜂𝑘,

ssuming that the rates are not time dependent. We postulate the
ollowing modeling principles.

(1) The number of individuals in I𝑘 that recover during [𝑡, 𝑡 + 1] is
proportional to

(a) the recovery rate 𝜂𝑘 of I𝑘,
(b) the size 𝑖𝑘(𝑡) of I𝑘.

(2) The number of individuals removed by death from each group
I𝑘 in the interval [𝑡, 𝑡 + 1] is proportional to

(a) the death rate 𝜇𝑘 of I𝑘,
(b) the size 𝑖𝑘(𝑡) of I𝑘.

(3) All non-recovered surviving individuals in I𝑘 𝑘 < 𝐾, are moved
automatically to the next infected group I𝑘+1.

(4) Individuals in group I𝐾 that do not recover or die remain in I𝐾 .

According to our assumptions, if the recovery and death rates are
invariant in time, we have

𝛿𝑘𝑖𝑘(𝑡) = number of individuals removed from 𝐼𝑘 over [𝑡, 𝑡 + 1],

where

𝛿𝑘 = 𝜂𝑘 + 𝜇𝑘 < 1.

Therefore, the updating formula for the size of the infected subgroups
is

𝑖𝑘+1(𝑡 + 1) = (1 − 𝛿𝑘)𝑖𝑘(𝑡), 1 ≤ 𝑘 < 𝐾 − 1,

hile for the last subgroup I𝐾 ,

𝑖𝐾 (𝑡 + 1) = (1 − 𝛿𝐾−1)𝑖𝐾−1(𝑡) + (1 − 𝛿𝐾 )𝑖𝐾 (𝑡).

Following the assumption that recovered individuals have the high-
est level of immunity and move to the group S1, we have that

𝑠1(𝑡 + 1) =
𝐾
∑

𝑘=1
𝜂𝑘𝑖𝑘(𝑡). (3)

On the other hand, all susceptible individuals who acquire the disease
over the time interval [𝑡, 𝑡 + 1] enter the infection group I1 hence

𝑖1(𝑡 + 1) =
𝐿
∑

𝛾𝓁(𝑡)𝑠𝓁(𝑡).
3

𝓁=1
Fig. 1 shows a flow chart schematics of the model.
We are now ready to collect all updating formulas. We have

𝑠1(𝑡 + 1) =
𝐾
∑

𝑘=1
𝜂𝑘𝑖𝑘(𝑡), (4)

𝑠𝓁+1(𝑡 + 1) = (1 − 𝛾𝓁(𝑡))𝑠𝓁(𝑡) + 𝛿𝓁,𝐿−1(1 − 𝛾𝐿(𝑡))𝑠𝐿(𝑡), 1 ≤ 𝓁 < 𝐿, (5)

𝑖1(𝑡 + 1) =
𝐿
∑

𝓁=1
𝛾𝓁(𝑡)𝑠𝓁(𝑡), (6)

𝑖𝑟+1(𝑡 + 1) = (1 − 𝛿𝑟)𝑖𝑟(𝑡) + 𝛿𝑟,𝐾−1(1 − 𝛿𝐾 (𝑡))𝑖𝐾 (𝑡), 1 ≤ 𝑟 < 𝐾. (7)

We introduce the matrices 𝖬𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2,

𝖬11(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0 0
1 − 𝛾1(𝑡) ⋮ ⋮

1 − 𝛾2(𝑡)
⋱

1 − 𝛾𝐿−1(𝑡) 1 − 𝛾𝐿(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝐿×𝐿,

(8)

𝖬12(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜂1 𝜂2 ⋯ 𝜂𝐾
0 0 ⋯ 0
⋮ ⋮
0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝐿×𝐾 ,

𝖬21(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1(𝑡) 𝛾2(𝑡) ⋯ 𝛾𝐿(𝑡)
0 0 ⋯ 0
⋮ ⋮
0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝐾×𝐿,

𝖬22(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0 0
1 − 𝛿1 ⋮ ⋮

1 − 𝛿2
⋱

1 − 𝛿𝐾−1 1 − 𝛿𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝐾×𝐾 ,

and define the Leslie matrix

𝖬(𝑡) =
[

𝖬11(𝑡) 𝖬12(𝑡)
𝖬21(𝑡) 𝖬22(𝑡)

]

∈ R(𝐿+𝐾)×(𝐿+𝐾).

The governing equations of our discrete time dynamic model can then
be expressed concisely as

𝑥(𝑡 + 1) = 𝖬(𝑡)𝑥(𝑡), (9)

where

𝑥(𝑡) =
[

𝑠(𝑡)
𝑖(𝑡)

]

, 𝑠(𝑡) =
⎡

⎢

⎢

⎣

𝑠1(𝑡)
⋮

𝑠𝐿(𝑡)

⎤

⎥

⎥

⎦

, 𝑖(𝑡) =
⎡

⎢

⎢

⎣

𝑖1(𝑡)
⋮

𝑖𝐾 (𝑡)

⎤

⎥

⎥

⎦

.

Observe that while we refer to the matrix 𝖬 as Leslie matrix because
of the formal similarity with linear models, (9) is not a linear evolution
model, because the factors 𝛾𝓁(𝑡) depend on the state vector 𝑥(𝑡), which
can be emphasized by writing

𝖬(𝑡) = 𝖬[𝑥(𝑡)].

2.1. Vaccination

Until now, it was assumed that immunity can be acquired only
through recovery from infection. The model can be modified to include
vaccination by adding shunt pathways from S𝓁 to S1. More precisely,
consider the compartment S𝓁 at time 𝑡 and let

𝜅𝓁𝑠𝓁(𝑡) = number of individuals in S𝓁 vaccinated in [𝑡, 𝑡 + 1].

We account for the removal of vaccinated individuals S𝓁 , by replacing
(1) with
𝑠𝓁+1(𝑡 + 1) = (1 − 𝛾𝓁(𝑡) − 𝜅𝓁)𝑠𝓁(𝑡), 1 ≤ 𝓁 < 𝐿 − 1, (10)
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Fig. 1. Schematic representation of the model. The blue boxes represent subsets of the susceptible population with a given level of immunity. As time goes by, the immunity level
anes, causing an advection flow towards the right for the part of the subpopulation that is not getting infected. The pink boxes represent subsets of the infected population, and
he advection to the right indicates simply the time of the infection. The gray box indicates the deceased population due to the infection. The two inserts showing details of the
chematics indicate the fluxes.
nd (11) by

𝑠𝐿(𝑡 + 1) = (1 − 𝛾𝐿(𝑡) − 𝜅𝐿)𝑠𝐿(𝑡) + (1 − 𝛾𝐿−1(𝑡) − 𝜅𝐿−1)𝑠𝐿−1(𝑡). (11)

Moreover, since all vaccinated individuals move to S1, we change (3)
to

𝑠1(𝑡 + 1) =
𝐾
∑

𝑘=1
𝜂𝑘𝑖𝑘(𝑡) +

𝐿
∑

𝓁=1
𝜅𝓁𝑠𝓁(𝑡). (12)

The addition of vaccination to the model requires only the modification
of the matrix 𝖬11, replacing (8) by

𝖬11(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜅1 𝜅2 ⋯ 𝜅𝐿−1 𝜅𝐿
1 − 𝛾1(𝑡) − 𝜅1 ⋮ ⋮

1 − 𝛾2(𝑡) − 𝜅2
⋱

1 − 𝛾𝐿−1(𝑡) − 𝜅𝐿−1 1 − 𝛾𝐿(𝑡) − 𝜅𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝐿×𝐿,

(13)

Observe that it is tacitly assumed that vaccination provides the
same kind of immunity as the recovery from the disease, a hypothesis
that may be challenged in the light of recent analysis [15]. Moreover,
with the arrival of new variants of the virus, recovery from infection
of one variant possibly may provide lower immunity against new
ones. Mathematical models including different variants together with
vaccination have been proposed in the literature, see, e.g., [16,17].
In the literature there are models assuming different immunity levels
depending on the age of the individuals [18]. The model that we are
proposing here can be generalized to account for different strains of the
virus and different types of immunity profiles through the additions of
subpopulation models, at the cost of increased complexity.
4

3. Effects of the model parameters

One of the aims of this contribution is to use the proposed model to
begin understanding the mechanisms that control the recurring infec-
tion waves observed since the onset of the pandemic. In this section,
the oscillatory structure is discussed in the light of model simulations.

To set up the computed experiment, we need to assign values to the
model parameters. We consider first the model without vaccination and
assume a total population size of 𝑁 = 106. Since the focus here is on the
infection dynamics, we set for simplicity 𝜇 = 0, so the population size
remains fixed. The number of infected classes is set to 𝐾 = 11, implying
that nobody remains infective for more than 10 days, observing that the
last class, I𝐾 is not considered infective. To set the recovery rates, we
assume that

𝜂𝑘 = 𝑣𝑘𝜂, 1 ≤ 𝑘 ≤ 𝐾,

where 0 < 𝑣1 < 𝑣2 < ⋯ < 𝑣𝐾 = 1, and 𝜂 is the recovery rate after 𝐾
days. We set 𝜂 = 0.7 days−1, which amounts to assuming that after 𝐾
days, recovery is expected in 1∕𝜂 ≈ 1.4 days. The increasing sequence
of weights 𝑣𝑘 follows a sigmoid, shown in the right panel of Fig. 2.

3.1. Effect of the transmission rate

The first set of simulations analyze the role of the transmission rate
𝛽(𝑡). Consider the susceptible population and assume that the immunity
wanes over a period of 𝐿 = 120 days. In the simulations, we use the
vulnerability profile with 0 < 𝑤1 < ⋯ < 𝑤𝐿 = 1 shown in Fig. 2.
The vulnerability profile is kept fixed, while the transmission rate 𝛽
is varied. The role of seasonality in COVID-19 recurrence, previously
discussed in the literature [19,20] is considered also in the light of the
current model.
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Fig. 2. The vulnerability profile 𝑤𝑘 with 𝐿 = 120 days (left) and the recovery weights 𝑣𝑘 (right) with 𝐾 = 11. The vulnerability profile assumes that the immunity is completely
ost after 𝐿 days. The recovery profile indicates how the expected recovery increases as time passes.
Fig. 3. Simulated results showing the number of new daily cases (black curve). The simulation covers four years, each year marked by a vertical dashed red line. Immunity is
assumed to wane in 120 days, or roughly one third of a year. In the left panel, the transmission rate (blue dashed curve) is held constant and set to 𝛽 = 0.4 days−1, while in
he middle and right panels, 𝛽 is assumed to be time dependent with a sinusoidal behavior. Due to the lower mean transmission rate in the right panel the third annual peak is
issing, because 𝛽 is too low to create a rebound of the infections.
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Case 1: In the first computed example, we assume constant trans-
ission rate, 𝛽 = 0.4 days−1. In Fig. 3, the plot of new daily infections
ver a period of four years, shows a periodic behavior, with spikes
epeating at regular intervals of approximately 𝐿 = 120 days. We
herefore conclude that with constant transmission rate, the periodicity
s determined by the time it takes for immunity to be lost.
Case 2: This protocol simulates seasonal variations of the transmis-

ion rate 𝛽. To this end, we define the time dependent parameter with
periodicity of one year.

(𝑡) = 0.4 (𝛼 + 0.1 sin(2𝜋𝑓𝑡)), 𝑓 = 1∕365 days−1.

e set first 𝛼 = 0.9, so that the maximum of 𝛽 is the value used in
ase 1. With this choice, the number of new infections retains the
tructure of three infection peaks per year, however, the amplitudes of
he peaks vary corresponding to the variation of the infectivity. Next we
et 𝛼 = 0.7. In this case, 𝛽(𝑡) during the third yearly peak is significantly
ower than during the first two peaks, and while the yearly periodicity
s retained, the third infection peak is missing. We therefore conclude
hat while the period of waning immunity still determines the periodic
tructure, seasonal changes may indeed lead to missing infection peaks.
Case 3: In the third protocol, we let the transmission rate vary ran-

omly. More precisely, we generate a Gaussian random process 𝑊𝑡 with
atèrn covariance with correlation length 𝜆 = 30 days (see, e.g., [21]),
hus modeling medium-range changes in the pathogen infectivity as
ell as changing patterns of human behavior, e.g., adherence to social
istancing and use of facial masks. The model for 𝛽 is given by

(𝑡) = 0.55 (1 + 0.5𝑊𝑡).

Fig. 4 show three realizations of the new infection cases, together
ith the random time courses of the corresponding realizations of 𝛽.
e observe that when the transmission rate becomes low, the spikes
5

v

ay not re-emerge. Furthermore, there is more variability in the spike
eparation. A long run with randomly varying transmission rate reveals
hat the spike separation tends to loose coherence.

.2. Vulnerability profile

The time constant defining the length of the waning immunity
eriod was shown to be a decisive factor for the return rate of the infec-
ion waves. A legitimate question is how much the period depends on
he actual vulnerability profile that was assumed to follow a sigmoidal
ehavior. To shed some light on this dependency, we run simulations
ith randomly varying vulnerability profile. More precisely, in our sim-
lations, we represent the vulnerability profile as a convex combination
f sigmoidal template profiles,

𝓁 =
𝑘
∑

𝑗=1
𝜉𝑗𝑤

(𝑗)
𝓁 ,

𝑘
∑

𝑗=1
𝜉𝑗 = 1,

here the templates 𝑤(𝑗)
𝓁 = 𝜎(𝓁 − 𝓁(𝑗)) are sigmoidal functions with

identical shape but shifted with respect to each other, with a ramp-up
time equal to a fraction of the waning time 𝐿. In our numerical simu-
lations, we use 11 template functions, each one having an approximate
ramping time of 10 days. Fig. 5 shows two realizations of the function
𝑤𝓁 , both being convex combinations of three template functions with
coefficients 𝜉𝑗 as indicated in the plot.

Fig. 6 shows four realizations of the vulnerability profiles with ran-
omly drawn weights 𝜉𝑗 and the corresponding computed new infection
ounts. Two characteristics of the outputs are worth highlighting. First,
he repetition frequency of the infection spikes is fairly insensitive
o the profile shape. The second observation is that in two of the
imulations, the oscillations flatten out towards an asymptotic constant
alue. The figure shows also the cumulative new infection count over
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Fig. 4. Three simulation corresponding to different realizations of the transmission rate 𝛽, modeled as a Gaussian process of Matèrn type, with correlation length 𝜆 = 30 days,
imulating variations of contagiousness of the pathogen and the human behavior. The peaks appear near, but not exactly where they occurred with constant transmission rate 𝛽.
ow transmission rate results in missing peaks. As time passes, the peak locations become less regular.
Fig. 5. Two realizations of the function 𝑤𝓁 composed by three template functions, the non-zero weights 𝜉𝑗 indicated in the figure. The vertical dotted lines indicate the positions
of the 11 template functions used in the simulations.
time. A natural question is, what feature of the vulnerability profile
determines the asymptotic behavior of the solution.

To answer this question, we normalize the vulnerability profile as a
cumulative distribution of a probability density 𝜋 over a unit interval
[0, 1],

𝑤𝓁 = ∫

𝓁∕𝐿

0
𝜋(𝑥)𝑑𝑥, 0 ≤ 𝑡 ≤ 𝐿,

nd compute the skewness of this density,

= ∫

1

0

(𝑥 − 𝜇
𝜎

)3
𝜋(𝑥)𝑑𝑥, (14)

where 𝜇 and 𝜎 are the mean and the standard deviation of the density 𝜋.
Simulations show that the damping of the oscillations depends strongly
on the skewness: for 𝑠 < 0, the oscillations show little or no damping,
while for 𝑠 > 0, the damping is significant. To demonstrate this effect,
we generate a sample of 𝑁 = 5000 vulnerability profiles by drawing
the coefficients 𝜉𝑗 from uniform distribution over [0, 1] and normalizing
them so that ∑

𝜉𝑗 = 1. For each simulated profile, we generate the
profile of new infections over a period of 4 years, and to indicate the
damping, we compute the ratio of the amplitudes of last and the first
infection spike. The plot in Fig. 7 show a strong dependency of the
damping factor of the skewness: Negative skewness means that the
vulnerability grows slowly at the beginning of the time interval and
strongly towards the end, and positive skewness implies the opposite,
a strong growth at the beginning and slower growth towards the end,
as suggested by the profiles in Fig. 6.

3.3. Effect of vaccination

To understand the role of vaccination, we ran simulations based on
the following two assumptions:
6

(1) Recovered population is vaccinated not earlier than 90 days from
the recovery from infection or previous vaccination;

(2) The vaccination rate of the eligible individuals is constant among
the subpopulations.

This is implemented by setting

𝜅𝓁 =
{

0, 1 ≤ 𝓁 < 90,
𝜅0 > 0, 90 ≤ 𝓁 ≤ 120.

The simulations considered the three different models for the transmis-
sion rate discussed in Section 3.1. While not surprisingly, the vaccina-
tion lowers the number of newly infected, it turned out that unless the
vaccination rate was not set at unrealistically high values (of the order
𝜅0 ≈ 0.02, requiring a constant vaccination program of the order of
0.5% of the uninfected population per day), the qualitative behavior
of the new infection count was retained. In the case of randomly
fluctuating transmission rate, vaccination even with moderate rate
values (𝜅0 ≈ 0.001) occasionally resulted in profiles of new infections
in which some of the low level infection peaks essentially vanished.
In summary, mathematical evidence from the model suggest that the
effect of vaccination in the current setting is equivalent to an effective
lower transmission rate.

4. Discussion and conclusions

In this paper we propose a simple model based on the paradigm of
age-structured population models and use it to provide an intuitive and
transparent explanation of the rebound mechanism of COVID-19 infec-
tion spikes. The model is controlled by two factors, the transmission
rate and the waning immunity profile.

One of the questions that we have addressed is whether seasonal
changes in the transmission rate are the primary explanation of the
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Fig. 6. Four realizations of random vulnerability profiles (left column) and the corresponding simulated new infections (center column), and the cumulative new infections (right
column). The skewness indicated in the plots refer to formula (14).
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cyclic nature of the infection spikes. A recent study [19] found SARS-
oV-2 to be temperature and humidity sensitive, suggesting a seasonal
ature of the disease. The study, however, was performed based on
arly COVID-19 data before the prevalence of new variants and signifi-
ant reinfections, and the authors admit that the conclusions, based on
he short observation period, may not be reliable. Another study [20]
ound that cold season contributes to the increase of COVID-19 cases.
7

hese findings are not in conflict with those in the present paper:
ncrease in 𝛽, e.g., through indoors gatherings, amplifies the peaks,
owever, the seasonal variability seems not to explain the cycle. The
odel proposed in this article and the simulation-based analysis indi-
ate that the spike separation is mainly controlled by the manner in
hich immunity wanes. Furthermore, simulations indicate that spikes
redicted by the immunity dynamics may be significantly damped or
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Fig. 7. Skewness of the generating distribution of the vulnerability profile versus the
amping factor, measured as the ratio between the last and the first spike amplitudes
ver a simulation period of four years.

e missing completely if the transmission rate drops, underlining the
mportance of mitigation measures. Simulations with a vaccination
rogram included in the model also showed a similar effect. A missing
pike, or several ones, may be accompanied by variability in spike
eparation times, thus suggesting that it may be difficult to retrieve
nformation about the immunity dynamics by observing the spike
eparation alone.
According to the proposed model, the trend of the spike amplitudes

epend on both the transmission rate and the vulnerability profile.
nder the assumption of constant transmission rate, the spike train
ay repeat itself without attenuation, or the spike amplitudes may
ecrease. We observed that details of the vulnerability profile describ-
ng the immunity waning need not to be known to explain the trend,
t is sufficient to have information about the robust statistics of the
nderlying fictitious probability measure that determines the profile.
In the post-pandemic era when the disease is becoming endemic

nd public health authorities have less tools to follow and control the
pread, and reliable high-quality infection data becomes unattainable,
itting detailed parametrized models to data may be less relevant for
isease prevention and control. Mathematical models continue to play
n important role in identifying factors that could explain the observed
nfection patterns, thus helping identify robust features of available
ata that contain pertinent but non-detailed information of the state of
he infection. Features that can be presumed to be extracted, e.g., from
astewater [22–24] and hospital data are the separation of the spikes
nd the trends in spike amplitude. The present contribution suggest
ow those features may be related to the infection dynamics.
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