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Abstract
Bayesian particle filters (PFs) are a viable alternative to sampling methods
such as Markov chain Monte Carlo methods to estimate model parameters
and related uncertainties when the forward model is a dynamical system, and
the data are time series that depend on the state vector. PF techniques are
particularly attractive when the dimensionality of the state space is large and
the numerical solution of the dynamical system over the time interval corres-
ponding to the data is time consuming. Moreover, information contained in
the PF solution can be used to infer on the sensitivity of the unknown para-
meters to different temporal segments of the data. This, in turn, can guide the
design of more efficient and effective data collection procedures. In this article
the PF method is applied to the problem of estimating cell membrane per-
meability to gases from pH measurements on or near the cell membrane. The
forward model in this case comprises a spatially distributed system of coupled
reaction–diffusion differential equations. The high dimensionality of the state
space and the need to account for the micro-environment created by the pH
electrode measurement device are additional challenges that are addressed by
the solution method.
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1. Introduction

The estimate of the parameters of a dynamical system from partial and indirect noisy observa-
tions of the time evolving state vector arises in numerous applications in science and engineer-
ing, including weather forecasting, epidemiology and process tomography. A common charac-
teristic in many of those applications is the non-linear dependency of the data on the paramet-
ers, often paired with a high computational complexity of the forward model. The nonlinear
relation connecting the data and the parameters to be estimated may render the problem too
challenging for simple optimization approaches: in many cases the objective functions turn out
to be non-convex, with no guarantee of a uniqueminimizer. An alternative approach is to recast
the inverse problem within a Bayesian framework, and to solve it using sampling techniques
such as Markov Chain Monte Carlo (MCMC) methods. Among the advantages over single
point estimates is the fact that sampling methods can deal better with non-uniqueness and in
additionmake it possible to quantify uncertainties in the estimates. On the other hand, the com-
putational complexity of the forward model typically is a bottleneck for sampling approaches,
because each proposal requires the computation of the full solution to be compared to the data.
A reasonable compromise is provided by Bayesian filtering techniques such as particle filter-
ing, a sequential sampling method that at each update requires the time propagation of the
forward model over a short time interval.

Although particle filters (PFs) are a natural choice when the number of parameters to be
estimated in a dynamical system is high, as is the case for distributed parameters, they may
be very effective also when the number of unknown parameters is low, but the forward model
poses significant computational challenges, as in the application of interest in this manuscript.
When the parameter space is low dimensional, it may be tempting to reduce the forward
model accordingly. It is not uncommon, however, that a reduced model is unable to repro-
duce the data, thus requiring the addition of details that in turn introduce additional nuisance
parameters of little or no interest that cannot be neglected because of their effect on the out-
put. Statistical marginalization of the nuisance parameters is possible, but, requires the use of
sampling methods.

In some applications the low dimensionality of the parameters to be estimated may also be
deceiving, as the complexity of the problem is determined by an underlying state space of high
dimensionality: while the data may depend on tiny fraction of it, the entire state space vari-
able must be computed to predict the output corresponding to the data. This is the case for the
target application in this article, addressing a fundamental problem in biophysics, namely the
estimation of a few parameters characterizing the properties of cell membranes, in particular
permeability to gases, from pH measurements near the membrane. While the number of sig-
nificant parameters is very low, the forward model comprises a spatially distributed reaction–
diffusion model posing several computational challenges.

In this article we formulate the inverse problem of estimating the model parameters of
cross-membrane gas transfer from the surface pH time series within the Bayesian framework,
and we solve it using particle methods for the simultaneous estimation of the state vector
and the parameters of interest. To the best of our knowledge, this is the first time that the
problem of cell membrane permeability to gases has been formulated as an inverse problem.
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A methodological contribution of this work is to show that the particle filtering approach is
a computationally feasible alternative for MCMC methods when the forward model is time
consuming. In addition, an analysis of the particle filtering results sheds some light on the
time dependent sensitivity of the data to the unknown parameters, with information about the
different parameters coming at different time instances. This suggests that the output of the PF
can be used to design experiments that minimize the number of measurements needed.

The rest of the paper is organized as follows. In section 2, we present the biophysical back-
ground of the problem, and provide an overview of the modeling approaches of the forward
problem proposed in the literature together with their pros and cons. We then concentrate
on the forward model that we will use for the solution of our inverse problem, and describe
some of the parameter transformations that we use in our computations. Next we formulate the
inverse problem of membrane permeability to gases, discuss various possible solution methods
to motivate our choice of the PF. Section 3 presents the details of the PF solution of the inverse
problem of membrane permeability and includes a detailed description of the algorithm. The
computed results are presented and analyzed in section 4. In section 5 we discuss our results
and present our conclusions and outline future work.

2. Forward and inverse problem

In this section we provide a biophysical motivation of the problem considered in this paper,
discuss the various modeling approaches proposed in the literature, and present the details of
the forward model that we are going to use.

2.1. Biophysical background

The problem that motivated the work for this article is understanding the mechanism of gas
transport across cell membranes, one of the fundamental processes for oxygen-based life
forms, as can be easily understood by following the trajectory of oxygen molecules from the
pulmonary alveoli to the cell mitochondria, or the reverse journey of carbon dioxidemolecules.
Of particular importance are the membrane properties of the red blood cells that play a central
role in the oxygen delivery. The classical theory of gas transport through membrane, known as
Overton’s rule, dating back to studies from the nineteenth century [20], is based on the notion
of gases dissolving in the lipid phase of the membrane and diffusing through the membrane
driven by the concentration gradient. The discovery of membranes that are practically imper-
meable to gases like CO2 [24] has been a great motivation for revisiting and possibly revis-
ing the theory: An alternative for the classical ‘Overton’s rule’ is the hypothesis that gases
permeate the cell membrane through specific gas channels associated with membrane bound
proteins, such as rhesus proteins (Rh) and, more prominently, aquaporins (AQPs), the latter
abundantly present in some of the membranes of key importance, erythrocyte and astrocytic
endfeet membranes. A detailed account of the history of the discovery can be found in [4]. For
a more complete recent review on the topic, see [15].

In addition to its role in cell respiration, the permeability of cell membranes to gases plays
a central role in another important life-supporting process, the pH regulation of cells: The
passage of carbon dioxide or ammonia through the membrane is effectively a way for the cell
to virtually move protons between the extracellular and intracellular space. More precisely, in
view of the limited permeability of the membrane to many solutes, including protons H+ and
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Figure 1. pH control through gas transport by a shuttle mechanism for the virtual trans-
port of a proton through cell membrane: The proton H+ outside the cell (gray) associates
with bicarbonate HCO−

3 to form carbonic acid H2CO3, subsequently dissociating into
CO2 and water. CO2 is driven by the concentration gradient through the membrane, and
the reverse reaction lowers the pH inside the cell (blue).

bicarbonate HCO−
3 , one way to regulate the pH is through the shuttle mechanism in figure 1,

comprising a sequence of chemical reactions. The observation that the pH balance depends
indirectly on the membrane permeability to carbon dioxide has led to the idea that pH data
could be used to estimate the membrane permeability [19, 22]. The formulation and solution
of the inverse problem of estimating themembrane permeability from pHmeasurements within
a Bayesian framework is the main contribution of this article.

The dependency of the surface pH on membrane properties and, in particular, on the pres-
ence of AQPs, has been well established experimentally and theoretically. The experimental
data presented in [17] was collected using the oocyte of the African clawed frog (Xenopus
laevis), a large cell that can be made to heterologously express membrane proteins such as
AQPs by injection of foreign RNA [7, 17–19]. While these experimental results provided
strong evidence for a role of AQPs in pH regulation, estimating the permeability of the mem-
brane requires the solution of an inverse problem that to our knowledge has never been system-
atically attempted. The successful solution of the inverse problem in turn depends on the avail-
ability of an accurate and computationally feasible mathematical model mapping the unknown
properties of the membrane to the observable surface pH data.

2.2. Review of earlier models

A number of mathematical models of cross-membrane gas transport and its connection to sur-
face pH have been proposed in the literature, see, e.g. [3, 9, 10, 16, 23]. In [22], the forward
gas transport problem including the diffusion and chemistry was solved by using a finite dif-
ference discretization of the spatial dependency in the diffusion equations. Taking advantage
of the spherical symmetry of the oocyte, the diffusion model was reduced to a single (radial)
space dimension, and the computational challenges are mostly related to the stiffness of the
system arising from the diffusion model as well as from the widely different time scales in
the reaction dynamics. While qualitatively correct, the model proposed in [22] was unable to
reproduce the dynamical range of the observed surface pH.More specifically, the predicted pH
increase on the membrane surface was less than one tenth of the observed one, strongly sug-
gesting that the model wasmissing some significant key factor. Themismatch between the data
and the model predictions raised the question whether the pH sensitive liquid electrode itself,
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used for measuring the pH would create a microenvironment where the observed pH differs
significantly from the free membrane pH addressed by themodel. In [5], the microenvironment
question was addressed by adding to the model a detailed description of the electrode tip. The
pHmeasurement device is a thin cylindrical liquid electrode pushed against the cell membrane,
and the pH is measured in the gap between the tip and the membrane. Numerical simulations
showed that if the replenishment of substances by diffusion in the domain below the elec-
trode tip is reduced by the electrode-membrane contact around the domain, the concentration
profiles in the resulting microenvironment will differ significantly from the free membrane
profiles, exhibiting a dynamical range similar to those experimentally observed. The detailed
model in [5] is computationally very costly due to the need for a fine scale spatial discretization
around the electrode tip, the multi-scale nature of the time dependency, and the introduction
of additional model parameters describing the contact that affect the output, but are poorly
known. These reasons made the model unsuitable for the inverse problem, as the simulation
of a single pH trace requiring more than ten hours on a standard computer, and motivated the
need for a computationally less demanding but quantitatively accurate model that would be
suitable for repeated evaluations. The approximate reduced model proposed in [2] is a one-
dimensional radial reaction-diffusion model, comprising a mini-compartment describing the
microenvironment under the electrode which exchanges solutes through the cell membrane
with the interior domain and with the exterior domain through a leak under the rim of the elec-
trode tip. The sensitivity of the model to various model parameters was tested systematically
in the cited article. The details of this model are presented in the following subsection.

2.3. Forward model

Consider a spherical oocyte of radius R> 0 centered at the origin of R3. The interior and
exterior domains are filled with homogeneous diffusive environment with N solutes with con-
centrations u±n (x, t), 1⩽ n⩽ N; the index ‘+’ referring to the exterior domain, |x|> R and
‘−’ to the interior domain, |x|< R. The reaction–diffusion equation satisfied by each of these
solutes is

∂u±n
∂t

=∇·κ±
n ∇u±n +

M∑
j=1

Snjφ
±
j , (1)

where κ±
n is the diffusion coefficient characteristic to the solute, φ±

nj = φ±
nj (x, t) is the reaction

flux of the jth chemical reaction and Snj is the corresponding stoichiometric matrix entry. We
assume that the initial concentration values at t= 0 are given, and at infinity |x| →∞ the
concentrations converge to known constant asymptotic values, u+n → u∞n for all n. In practice,
we assume that the asymptotic values are reached at some finite distance r= R∞ from the
origin, see figure 2. Before describing the boundary conditions at the interface |x|= R, we
fix the chemical system by specifying the solutes and the reactions included in the model.
We consider six solutes, present both inside and outside the cell: Carbon dioxide, [CO2] = u1,
carbonic acid, [H2CO3] = u2, bicarbonate, [HCO

−
3 ] = u3, proton, [H+] = u4, an unspecified

buffer, e.g. HEPES, denoted by HA, [HA] = u5, as well as the corresponding anion, [A−] = u6.
Six chemical reactions are included in the model, and they take place both inside and outside
the cell, namely

CO2 +H2O
k1⇌
k−1

H2CO3, (2)
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Figure 2. Description of the computational model (left panel): the oocyte is modeled as
a sphere of radius R, and the concentrations are assumed to reach the asymptotic values
at an artificial boundary at r= R∞. The cell membrane is characterized by Fick’s law
for CO2, while the membrane is assumed impermeable for other substances. The area
in the red square contains the microenvironment under the electrode (right panel).

H2CO3
k2⇌
k−2

HCO−
3 +H+, (3)

HA
k3⇌
k−3

A− +H+. (4)

The reaction fluxes are modeled using the mass action formulas, that is,

φ1(x, t) = k1u1(x, t), (5)

φ2(x, t) = k−1u2(x, t), (6)

φ3(x, t) = k2u2(x, t), (7)

φ4(x, t) = k−2u3(x, t)u4(x, t), (8)

φ5(x, t) = k3u5(x, t), (9)

φ6(x, t) = k−3u6(x, t)u4(x, t), (10)

where to simplify the notation we have suppressed the indication of exterior or interior
domains. In reality, the picture is slightly more complex due to the presence of carbonic anhyd-
rase (CA) inside and near the cell membrane outside the cell, catalyzing the reactions (2). The
amount and distribution of CA are poorly known, and estimating them is part of the inverse
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problem that we address in this paper. Here, to account for the action of CA we modify the
reactions (5) and (6) as

φ−
1 (x, t) = Ak1u

−
1 (x, t), φ+

1 (x, t) =

{
Ak1u

+
1 (x, t), forR< |x|< R+ δ,

k1u1(x, t), for |x|⩾ R+ δ,

where δ > 0 is a small constant and A> 1 is the enhancement factor of the reaction rate .
Similarly,

φ−
2 (x, t) = Ak−1u

−
2 (x, t), φ−

1 (x, t) =

{
Ak−2u

+
2 (x, t), forR< |x|< R+ δ,

k−2u1(x, t), for |x|⩾ R+ δ,

For simplicity, we assume that the enhancement factor A is fixed and known, and the thickness
δ of the layer where CA is active outside the cell is small enough that the effect of CA in the
computations can be limited to the immediate vicinity of the cell membrane.

Finally, to assign the boundary conditions at |x|= r= R, we assume that only carbon diox-
ide can cross the membrane, and that its flux is described by Fick’s law,

κ+
1
∂u+1
∂r

(x, t)

∣∣∣∣
r=R

= κ−
1
∂u−1
∂r

(x, t)

∣∣∣∣
r=R

=−λ
(
u+1 (x, t)− u−1 (x, t)

)∣∣
r=R

, (11)

while the other solutes have vanishing normal derivatives at the boundary. Assuming a per-
fectly spherical cell, we have u±n (x, t) = u±n (r, t), and the three-dimensional diffusion term
reduces to a radial model of the form

∂u±n
∂t

=
1
r2

∂

∂r

(
κ±
n r

2 ∂u
±
n

∂r

)
+

M∑
j=1

Snjφ
±
j , (12)

implemented in [22] using a finite difference semi-discretization of the spatial part. In [5], the
model was enhanced by placing a thin cylindrical electrodewith circular cross section along the
z-axis in the exterior domain, with the electrode tip almost touching the membrane. To account
for the limited diffusion between the exterior domain and the small cylindrical domain between
the electrode tip and the membrane, the diffusion coefficient is reduced by a multiplicative
factor within the finite elements under the electrode rim simulating the partial clamping caused
by the electrode pushing against the membrane. Although the presence of the electrode breaks
the spherical symmetry, the electrode axial symmetry still allows a dimension reduction to
two space dimensions. The geometric modeling of the tip region to sufficiently high accuracy
requires a significant mesh refinement, increasing the computational complexity to the point
of making the model impractical for solving the inverse problem. The detailed electrode tip
model demonstrates the importance of accounting for the tip domain, supporting the hypothesis
that the discrepancy between observations and model predictions could be explained by the
micro-environment unaccounted for in previous models.

Recently, a simplified approximate model also accounting for the presence of the electrode
was introduced in [2]. The main idea behind the reduced model is that the thin electrode dis-
turbs minimally the radial reaction–diffusion model away from the electrode, and the domain
under the tip can be modeled with sufficient accuracy by a homogenous mini-compartment
communicating with the interior domain through the membrane transport of CO2, and with
the exterior domain near the membrane by diffusion of all solutes with reduced diffusion. In
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practice, the model augments the reaction–diffusion model (11) and (12) with the equations
of the mini-compartment below the electrode tip

du0n
dt

(t) = δn1
λ

h

(
u0n(t)− u−n (R, t)

)
− 2γ

P

(
u+n (R, t)− u0n(t)

)
+

m∑
j=1

Smjφ
0
j (t). (13)

Here u0n = u0n(t) is the mean concentration of the nth solute in the mini-compartment, h is
the distance of the electrode tip from the membrane, P is the radius of the circular electrode tip,
and γ is a a fictitious permeability describing the partial clamping of the mini-compartment
from the exterior domain. The fact that the membrane is permeable only to carbon dioxide
is the reason for the presence of the Kronecker delta δn1 in the transport term. We model the
reaction fluxes φ0

j using mass action formulas similar to (5)–(10) in terms of average concen-
trations. Since CA was assumed to be active in the immediate vicinity of the membrane, but
not necessarily in the entire compartment, we write

φ0
1(t) = A0k1u

0
1(t), φ0

2(t) = A0k2u
0
2(t),

where 1⩽ A0 ⩽ A. We refer to [2] for additional details pertaining the derivation of the reduced
model.

2.4. Standard experiment and the inverse problem

In this section we describe the standard experiment carried out to measure the pH data. At
t= 0, both the inside and the outside domain of the radial model are in equilibrium, and the
concentrations in the exterior domain correspond to the asymptotic values at infinity:

u+n (x,0) = uextn = u∞n , u−n (x,0) = uintn , 1⩽ n⩽ 6,

where the initial values satisfy the equilibrium conditions: If the fluxes at t= 0 are calculated
by using the formulas (5)–(10), then

6∑
j=1

Snjφ
±
j = 0, 1⩽ n⩽ 6.

We assume that initially,

0= uint1 < uext1 ,

which implies, in particular, that the pH in the exterior domain is lower than in the interior
domain, and furthermore the concentrations in the electrode induced mini-compartment coin-
cide with those in the exterior domain, u0(0) = u∞. Before the experiment starts, the oocyte
is not in contact with the ambient fluid, and no diffusion or gas transport processes are active.
At t= 0, the oocyte is immersed in the ambient liquid, and the gas transport starts, guided by
the carbon dioxide gradient across the membrane. Asymptotically, the carbon dioxide con-
centration equilibrates, and the pH returns to the initial value in the exterior domain, while in
the interior domain, the asymptotic pH value is lower than the initial value. We refer to this
experiment as standard experiment.

The standard experiment implicitly defines the following inverse problem. Given the sur-
face pH in the mini-compartment corresponding to the standard experiment,

pH0(t) = log10 u
0
4(t), 0⩽ t<∞,

estimate the parameter vector (λ,A0,h,γ).
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Numerical experiments reported in [2] show that the pH curve at the membrane depends
only weakly on the parameter h. We believe that the size of the physical gap modeled here in
terms of h and the known radius P of the electrode tip affect the data in two indirect ways: first,
the closer the electrode dip is to the cell membrane, the stronger the clamping effect encoded
in parameter γ is.Second, the smaller the mini-compartment is, the closer to the CA-laden
membrane the reactions within the compartment take place, thus the average CA-enhancement
A0 becomes more pronounced as h decreases. For these reasons, we omit the parameter h from
the list of unknowns, and treat it as a nuisance parameter that is kept at a fixed value in the
computed examples.

Before going into further details, a discussion of the methodological choices available to
solve the inverse problem is in order. Numerical tests with a simple least squares optimization
yield estimates of the parameters that depends heavily on the initial values, indicating that
the forward map (λ,A0,γ) 7→ pH0(t) is non-convex. On the other hand without a good start-
ing point, an MCMC chain may require a long burn-in phase, which with the current model
that requires a few seconds of computing time to produce one full pH trace makes standard
Bayesian methods impractical. Particle filtering methods, on the other hand, require only the
propagation of each particle over a short time interval [tk−1, tk], where tk is the kth observation
time, making them an attractive alternative for an inverse problemwhere standard optimization
based approaches are unfeasible or unsuccessful.

The biophysics of the problem dictates that the unknown parameters must satisfy certain
conditions that can be either imposed as constraints, or implicitly enforced through suitable
changes of variables.We adopt the latter approach. The next subsection describes the parameter
transformations and the rationale behind them.

2.5. Transformations of the parameters

We express the unknowns of the inverse problem in terms of appropriately scaled dimension-
less particles corresponding to the prior understanding of the model. First, consider the mem-
brane permeability λ> 0. To obtain a reasonable upper bound, consider the value obtained by
thinking the cell membrane as of a water layer of the thickness of the membrane, which is then
pressed to a fictitious infinitely thin layer. Arguably, the non-resistant water layer is an ideal
barrier, and realistic values that take into account different factors resisting the gas transport
are smaller than the no-resistance value, denoted by λ0. We express these considerations by
writing

λ= ξλλ0, 0⩽ ξλ ⩽ 1.

Similarly, we account for the fact that CA cannot enhance the reactions in the mini-
compartment more than it does at the cell membrane by letting

A0 = ξA S, 0⩽ ξλ ⩽ 1.

To treat the fictitious transport parameter γ, we start by observing that, according to the numer-
ical simulations in [2], assigning a value γ ≈ γ0 = 1µms−1 will yield realistic increases in the
surface pH during the standard experiment, while a tenfold increase of γ will result in unreal-
istically low dynamical range of the pH change. These observations justify the logarithmic
bounds
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−0.5⩽ log10
γ

γ0
⩽ 1,

leading to the natural parametrization,

γ = γ0 10
[−0.5ξγ+(1−ξγ)], 0⩽ ξγ ⩽ 1.

In this manner, we have effectively reduced the range of all model parameters between 0 and
1, i.e. ξ = (ξλ, ξA, ξγ) ∈ [0,1]3. Since the presence of bound constraints would create technical
problem with sampling, we use the logit-transform,

logit : (0,1)→ R, logit(ξ) = log

(
ξ

1− ξ

)
,

with the inverse expit-transform,

expit : R→ (0,1), ξ = expit(s) =
exp(s)

1+ exp(s)
,

and formulate the inverse problem in terms of the unconstrained parameter vector

s= (s1,s2,s3) = (logit(ξλ), logit(ξA), logit(ξγ)) ∈ R3.

2.6. Reparametrization of the state variable

The state variable of our model, after semidiscretization in the spatial direction, is the vector of
all concentration values at the discretization nodes. Denote the concentration vector of a solute
by u(t), the dimension of the vector being equal to the number of the discretization points in
the FEM mesh. Since the concentrations need to be non-negative but imposing a hard bound
constraint is computationally inconvenient for random perturbations, we reparametrize the
state vector as follows. Introduce the new variable,

x(t) = log

(
δ+

u(t)
u

)
,

where u is a scalar representing a typical value of the concentration, and δ > 0 is a safeguard
parameter introduced to regularize in case u(t) = 0. The back-transform gives us

u(t) = u
(
ex(t) − δ

)
.

If x(t) is perturbed by an additive term η, we have

x(t)+ η = log

(
δ+

uη(t)
u

)
,

and solving for uη we obtain

uη(t) = u
(
ex(t)+η − δ

)
.

Observe that for δ > 0 small, the above formula yields

uη(t) = u(t)eη + δu(1− eη)≈ u(t)eη for δ � 1,

that is, an additive perturbation of the transformed quantity x translates into a multiplicative
perturbation of the concentration. However, in the numerical computations, we choose δ= 1,
leading in practice to well-behaving perturbations.
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3. Parameter estimation via PF

The forward model of our problem consists of an initial value problem model

du
dt

(t;s) = F(u(t;s),s), u(0;s) = U0, (14)

where u(t;s) ∈ Rn is the spatially discretized time-dependent state vector comprising all of the
concentrations at the nodal values of the FEMmesh and s is a vector of unknown parameters to
be estimated, that we assume to be time invariant. In the reminder of the paper we will denote
u(t;s) by u(t), thus omitting explicit reference to the parameter dependency. The measurement
data

bk = G(u(tk))+ εk, 1⩽ k⩽ K,

are functions of the state vector at discrete times tk , 0< t1 < · · ·< tK, and εk denotes the
observation noise vector at time tk, whose statistics we assume to be approximately known.

After the logarithmic transformation discussed in the previous subsection and a suitable
time discretization, the forward model can be expressed in terms of the variable x= x(t).
Numerical integration of the forward model (14) using, e.g. a standard numerical integrator
from tk−1 to tk yields a Markov model for the discrete transformed variable xk = x(tk) of the
form

xk =M(xk−1,s)+ ηk, (15)

whereM is a non-linear propagation operator, and ηk accounts for the numerical approximation
errors.

We write the observation model in terms of the approximate state vector xk,

bk = H(xk)+ εk, (16)

where H is the discretized version of the observation function G expressed in terms of xk. For
simplicity, the observation error is assumed to be the same as in the exact continuous model,
neglecting errors that might have been introduced by the discretization process.

In the Bayesian framework, the unknowns states xk, 1⩽ k⩽ K, and parameter vector s
are modeled as random variables Xk and Sk, respectively. Observe that while s is assumed
time invariant, the virtual time dependency of Sk is an indication of the temporal evolution
of the knowledge, or belief, about the value of s. The PF estimates the probability density
functions in a sequential manner, so that the probability density functions at the next time
instance are determined from the probability density functions at the current time instance and
the aggregate observations up to the current time.More precisely, assume that πk−1(xk−1,sk−1)
is the probability density of (Xk−1,Sk−1) at time tk−1. In the rest of the paper, our particles
consist of the concatenation of the state and parameter vectors.

The Bayesian filter estimation of πk(xk,sk) proceeds in two steps:

1. Prediction Step: Based on the Markov model (15) and the current distribution
πk−1(xk−1,sk−1), a predicted probability distribution πk|k−1(xk,sk) is determined.

2. Correction: As a new observation bk becomes available, the predicted distribution is cor-
rected based on the observation model (16), yielding the updated density πk(xk,sk).

The prediction step, which can be thought of as a push-forward of the current density using
the propagation model, can be computed by using the Chapman–Kolmogorov formula, while
the correction step, also referred to as analysis step, is based on an application of Bayes’
formula.

11
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In Bayesian particle filtering, the densities are approximated by Monte Carlo sampling,
making the computation of the push-forward map particularly attractive as it entails only a
propagation of sample points, referred to as particles. For details, we refer to [1, 6, 8, 11–14].

While the general ideas behind particle filtering are very straightforwards, successful imple-
mentations typically require addressing several questions, including how to organize the com-
putations efficiently when the forward model is computationally demanding, and how to
choose the initial cloud of particles.

In the following, we discuss the computational details related to the implementation of the
PF for our problem.We begin with addressing the problem of the selection of an initial particle
cloud, which for our application turned out to be particularly challenging.

3.1. Initialization

In the particle filtering algorithm, the current information about the state of the system is
encoded in the ensemble

Sk =
{
(x(1)k ,s(1)k ,w(1)

k ), . . . ,(x(N)k ,s(N)k ,w(N)
k )

}
,

where N is the ensemble size, and w( j)
k is the weight of the jth particle, specified later. In the

initial ensemble of particles, all the state vector portions x( j)0 are set equal to the known initial

conditions of the problem, listed in table 4. The initialization of the parameter portion s( j)0 of
the particles is less obvious and requires some careful considerations, because of the nature
of the problem. While, in principle, the values of the parameters could be assigned rather
arbitrarily over a wide range, assuming that the uncertainty decreases as the data becomes
available, a good coverage of a large interval leads easily to an ensemble size that for the
current model is computationally unfeasible. Feasible, yet not too committal initial intervals
for the parameters were determined partly on the basis of the biophysical information, partly
on preliminary numerical experiments. We draw the initial parameter vector ensemble from
a discrete uniform distribution over suitably selected support. More precisely, we start with a
uniform grid of size 40× 40× 40 over the domain

(ξλ, ξA, ξγ) ∈ [0.6,1]× [0.6,1]× [0,1] = Q , (17)

where the intervals have been chosen in a way that the curves generated with the corresponding
λ,A0 (with A= 20) and γ are compatible with the measurements reported in the literature.
In particular, γ can substantially change the shape of the curve, and initial values within the
selected interval yield responses whose shapes are in line with the experimental measurements
reported in the literature. The motivation for the choice of initial values for the parameter A0 is
based on the consideration that the CA action in the sensor micro-environment is unlikely to
be strongly different from that on the membrane and inside the cell. Finally, the permeability
to CO2 is assumed to take on any value less or equal to the theoretical no-resistance value λ0.

In light of the above considerations, the initial ensemble of parameter values are chosen
as a discrete subset of an equidistant grid over the parallelepiped Q (17). More specifically,
out ofm= (40)3 = 64000 parameter vectors regularly spaced over (17), we select N particles,
N<m, so as to cover evenly the parameter space. The choice of N depends on computational
resources, and will be specified when computed examples are discussed. Each particle in the
initial cloud is the concatenation of an initial state vector and a parameter vector, and since
a priori every particle is equally likely to be a realization, all particles are assigned the same
weight, w( j)

0 = 1/N.

12
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3.2. Prediction step

Assume that we have at our disposal and ensemble {(x( j)k−1,s
( j)
k−1,w

( j)
k−1)}Nj=1 of particles and cor-

responding weights such that
∑N

j=1w
( j)
k−1 = 1. The sample-based approximation of the prob-

ability distribution πk(xk−1,sk−1) can then be expressed in terms of point masses as

πk−1(xk−1,sk−1)≈
N∑
j=1

w(j)
k−1δx(j)k−1

(xk−1)δs(j)k−1
(sk−1),

the approximation being understood in the weak∗ sense for Radon measures. By propagat-
ing the particles using the evolution model, we obtain the approximate push-forward
distribution,

πk|k−1(x̂k, ŝk)≈
N∑
j=1

w( j)
k−1δ̂x( j)k

(x̂k)δ̂s( j)k
(̂sk), (18)

where the point mass centers x̂( j)k are computed by using the propagation model,

x̂(j)k =M(x(j)k−1,s
(j)
k−1), ŝ(j)k = s(j)k−1,

that is, the parameter particles s( j)k−1 are propagated as constants. In order to enrich the parameter
ensemble through resampling, following [6, 13], we compute the sample mean and covariance
of the parameter particles,

s=
N∑
j=1

w(j)
k−1 ŝ

(j)
k−1,

Cs =
N∑
j=1

w(j)
k−1

(
s(j)k−1 − s

)(
s(j)k−1 − s

)T
,

and replace the point mass approximation of the parameter density by a Gaussian mixture
model. Let h be a small positive constant, 0< h� 1, and let

s(j)k = âs(j)k − (1− a)s,

where

a=
√
1− h2.

The points s( j)k are obtained by contracting the prediction points ŝ( j)k slightly towards the
ensemble mean. It has been shown [6, 25] that the Gaussian mixture,

πGM(s,h) =
N∑
j=1

w(j)
k−1N (s | s(j)k ,h2Cs),

has the same mean and covariance as the corresponding point mass approximation corres-
ponding to the limit h→ 0. Based on this observation, we replace the approximation (18) by

πk|k−1(x̂k,sk)≈
N∑
j=1

w( j)
k−1δ̂x( j)k

(x̂k)N (sk | s( j)k ,h2Cs). (19)

This predicted density is further updated as the next observation arrives. Observe that this
model does not take into account the approximation error (15), which we add later. In the
following, the propageted variable is denoted by xk.

13
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3.3. Correction step

The correction step updates the probability density (19) determined in the prediction step in
light of the new observation bk. If we assume that the observation noise follows a Gaussian dis-
tribution with zero mean and symmetric positive definite covariance S, the likelihood density
is of the form

πBk|Xk,Sk(bk | xk,sk)∝ exp

(
−1
2
(bk−H(xk,sk))

TS−1(bk−H(xk,sk))

)
.

Considering the predicted density (19) as a prior, the posterior density can be written as

πk(xk,sk)∝
N∑
j=1

w( j)
k−1πBk|Xk,Sk(bk | xk,sk)δ̂x( j)k

(xk)N (sk | s( j)k ,h2Cs)

=
N∑
j=1

(
w( j)
k−1g

( j)
k

)(πBk|Xk,Sk(bk | xk,sk)
g( j)k

)
δ̂
x( j)k

(xk)N (sk | s( j)k ,h2Cs), (20)

where we introduce the fitness weights,

g(j)k = πB|X,S
(
bk | x̂(j)k ,s(j)k

)
∝ exp

(
− 1

2

(
bk− b̂(j)k

)T
S−1(bk− b̂(j)k

))
,

with

b̂(j)k = H
(
x̂(j)k , ŝ(j)k

)
.

These weights can be interpreted as a measure of how well the predicted particles are able to
explain the new data. To draw the next generation of particles, we first define the importance
weights

ŵ(j)
k =

w(j)
k−1 g

(j)
k∑m

j=1w
(j)
k−1 g

(j)
k

,

taking into account both the likelihood and the importance of the predicted particles. Next we
generate a new sample representation of the density πk by drawing N indices j1, j2, . . . , jN with
replacement from the index set {1,2, . . . ,N}, using the weights ŵ( j)

k as probabilities, so that
the resampled particles have equal weights.

Recalling the model (15), we introduce the approximation error and write

xk = x̂k+ ηk,

which is tantamount to replacing the point mass functions in (19) by a probability density
centered around the noiseless propagated value. Assuming that the innovation ηk is a realiz-
ation of a random variable Ek with probability density πEk , we draw the next generation of
particles,

x(j)k = x̂(j)k + η
j)
k , η

(j)
k ∼ πEk , s(k)j ∼N (sj | s(j)k ,h2Cs).

Finally, we correct the weights based on (20), defining

f (j) =
πBk|Xk,Sk

(
bk|x(j)k ,s(j)k

)
πBk|Xk,Sk

(
bk | x̂(j)k , ŝ(j)k )

,
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which, after normalization, become the new weights

w(j)
k =

f (j)∑N
j=1 f

(j)
.

This completes the correction step. The sequence of steps described here is summarized below
in the form of an algorithm.

Particle Filtering algorithm.

1. Initialize: Draw parameter values s( j)0 ∈ Q, set x
( j)
0 = x0, w

( j)
0 = 1

N , 1⩽ j⩽ N, Set the counter k= 1.
2. Repeat for k= 1 : T

(a) Prediction: Propagate the particles:

x̂( j)k =M(x( j)k−1,s
( j)
k−1), ŝ( j)k = s( j)k−1, ŵ( j)

k = w( j)
k−1.

(b) Correction:

i. Compute mean and covariance of the parameters:

sk =
N∑
j=1

ŵ( j)
k ŝk, Ck =

1
N− 1

N∑
j=1

ŵ( j)
k

(̂
s( j)k − sk

)(̂
s( j)k − sk

)T
.

ii. Shrinkage: With a=
√
1− h2, define

s( j)k = âs( j)k +(1− a)sk.
iii. Compute the fitness weights,

g( j)k = πB|X,S
(
bk | x̂( j)k ,s( j)k

)
,

and update the weights as

w( j)
k =

ŵ( j)
k g( j)k∑m

j=1 ŵ
( j)
k g( j)k

.

iv. Survival of the fittest resampling: Draw N indices j1, . . . , jN with replacement from
{1,2, . . . ,N} using the weights ŵ( j)

k as probabilities, and set(
x̂( j)k ,w( j)

k

)
←

(
x̂
(ℓj)

k ,w
(ℓj)

k

)
, 1⩽ j⩽ N.

v. Update the particles,

x( j)k = x( j)k + η
( j)
k , η

( j)
k ∼ πEk , s( j)k ∼N (s( j)k ,h2C).

vi. Update the weights,

f,( j)=
πBk|Xk,Sk

(
bk|x( j)k ,s( j)k

)
πBk|Xk,Sk

(
bk | x̂( j)k , ŝ( j)k )

, w( j)
k =

f ( j)∑N
j=1 f

( j)
.

3. Advance the counter: k← k+ 1.

In the following section, we use this algorithm to solve the membrane permeability inverse
problem.

4. Computed examples

In this section we test the particle filtering algorithm for estimating the membrane parameters
on synthetic data. The main goal is to demonstrate the viability of the approach, to understand
whether the parameters can be learned form the data, and to test whether there are differences
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Table 1. Parameters used in the generative model. CA strength A is assumed to be
known, while the other parameters are to be estimated from the data.

λ Membrane permeability 30.78µms−1 = 0.9 · 34.2µms−1

A CA factor 20
A0 CA factor (around sensor) 16= 0.8 ·A
γ quench factor 6.31 · 10−5µms−1 = 10−4.2µms−1

Table 2. Geometric parameters corresponding to non-resistant membrane hypothesis.

R Oocyte radius 650µm
R∞ External radius 800µm
w Radius of the electrode tip 10µm
h Distance of the electrode tip 10µm

Table 3. Diffusion coefficients κ of the substances.

Substance Inside ((µm)2 s−1) Outside ((µm)2 s−1)

CO2 1.71× 103 1.71× 103

H2CO3 1.11× 103 1.11× 103

HCO3
− 1.11× 103 1.11× 103

H+ 8.69× 103 8.69× 103

HA 1.56× 103 1.56× 103

A− 1.56× 103 1.56× 103

in the learning rates of the parameters. Moreover, we test the robustness of the method with
respect to the ensemble size, a detail of crucial importance for the computational time.

We generate the synthetic data using the parameter values listed in table 1. The other model
parameters such as the geometry, reaction rates, or initial concentrations are given in tables 2,
3, 4, and 5 and are assumed to be known.

We discretize the radial variable using a mesh refinement near the cell membrane to catch
the boundary effects, including the effect of the CA that is assumed to accelerate the reac-
tion rates in the exterior domain only in the immediate vicinity of the membrane. More pre-
cisely, adjacent to the membrane the element size is 0.1µm, and when moving away from
the membrane, the size is dilated by a factor of 1.05 at each step. This results in a state space
discretization of 205 nodal points for each of the six substances. With the addition of the six
concentrations in the microenvironment and the three model parameters, the dimensionality
of the state space becomes 1239. By comparison, the surface pH data is a function of only one
of the components but it is determined by the entire state vector, thus effectively making this
is a high dimensional problem. We assume that the pH is measured with 1Herz frequency, and
we add scaled white noise with standard deviation σ= 0.01 to the noiseless computed data, so
that the noise covariance matrix S is a scaled identity. The noiseless pH curve and the noisy
data are shown in figure 3.

To generate the initial particle cloud, we define a regular grid of size (40)3 = 64000 of the
parameter domainQ defined in (17), and subsample the grid values retaining every tenth point,
yielding a parameter ensemble of size N= 6400. The restriction of the sample size is needed
to keep the computing time feasible. We run the particle filtering algorithm over a time interval
of T = 500 s, estimating at each time step the particle mean as well as 75% and 90% quantiles
of each parameter.

16



Inverse Problems 39 (2023) 094004 A Bocchinfuso et al

Table 4. Initial values of the concentrations in the standard experiment. The model
assumes that at t= 0, the oocyte is added to the bath with the pH electrode already
in place.

Substance Inside (mM) Outside (mM)

CO2 0 0.4720
H2CO3 0 0.0013
HCO3

− 0 9.901
H+ (pH) 6.310× 10−5 (7.2) 3.162× 10−5 (7.5)
HA 12.09 2.500
A− 15.22 2.500

Figure 3. The simulated noiseless membrane pH curve generated with the paramet-
ers listed in table 1, along with the noisy data collected with 1 Herz sampling fre-
quency, indicated by the dots. The figure also shows the pH curve computed by using
the posterior mean estimates of the parameter corresponding to the particle sample size
N= 6400.

Figure 4 shows the results of the parameter estimation as quantile credible envelope plots.
The generative values given in table 1 are indicated in the plots by a horizontal line.

The plots in figure 4 show that the credible intervals of different parameters converge at
different times, indicating which part of the pH trace curve is sensitive to which parameter. We
observe that in this run, γ is the first parameter to converge around t= 150s, while λ and A0

converge at around t= 200s. Comparison of the results and the pH curve in figure 3 indicates
that all the parameters are learned well only after the pH has passed its peak The average over
the particle values from t= 200s until the end of the simulation (t= 500s) yields the mean
estimates for the parameters,

λ= 31.52µms−1 ,

A
0
= 15.57 ,

γ = 6.34 · 10−5µms−1 = 10−4.20µms−1 .

Observe that, as far as inferring on the membrane properties is concerned, A0 and γ are nuis-
ance parameters and therefore of secondary interest, and only the membrane permeability λ
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Figure 4. Particle filtering results of estimating the three model parameters. The figures
show the 25% and 75% quantiles corresponding to the darker envelope, and 10% and
90% quantiles corresponding to the lighter envelope. The values used in the generative
model are indicated by the horizontal dashed line. In the left column, the particle size
was N= 6400, and the experiment was run for T = 500 s, and on the right, N= 10000.

is of interest. Running the forward model using the estimated parameter values yields a pH
trace, plotted in figure 3, that reproduces well the noiseless data.

To test the robustness of the method with respect to the ensemble size, we perform an
independent run generating a new data set with the same parameter values, but with different
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Table 5. Reaction rates. Observe that we have two fast time scale parameters, ε and ε ′,
whose precise values are not well known. The reaction rates k±1 are enhanced by the
acceleration factor A.

Reaction kℓ k−ℓ K= kℓ/k−ℓ

CO2 +H2O
k1⇌
k−1

H2CO3 0.0302 (1 s−1) 10.9631 (1 s−1) 2.7547× 10−4

H2CO3
k2⇌
k−2

HCO−
3 +H+ ε= 10−9 (1 s−1) ε/K2 K2 = 0.2407 (mM)

HAin
k3⇌
k−3

A−
in +H+

in ε ′ = 10−6 (1 s−1) ε ′/KHA KHA = 7.9433× 10−5

(mM)

HAout
k3⇌
k−3

A−
out +H+

out ε ′ = 10−6 (1 s−1) ε ′/KHA KHA = 3.1623× 10−5

(mM)

realization of the noise. The data are collected again for T= 500swith known initial conditions
at time t= 0s, measurements and sampling step set like in the previous run, but with N=
10000 particles.

The estimates of the three parameters are not very different from those in the previous
experiment where the number of particles was smaller, as shown in the right column of figure 4.
In this particular run, the averaged values from 200 s to the end of the experiment are

λ= 30.86µms−1 ,

A
0
= 16.46 ,

γ = 6.79 · 10−5µms−1 = 104.17µms−1 .

We observe that the value of λ is slightly closer to the one used in the generative model. The
reproduced pH curve (not shown) is very similar to the one obtained in the previous run.

The sequential way in which the PF learns the parameters and how the parameters are cor-
related is summarized in figure 5, showing the scatter plots of the parameters at four different
time instances. Notice how the cloud of parameter values tighten up around the value used in
the generative model as time progresses.

As already pointed out, the fact that the number of unknown of interest is low and only
one of the state space components is defining the data, makes the problem seem very simple,
raising the question whether a simple optimization approach would yield reasonable estimates
for the parameters. To test whether this is the case, we implemented a simple Fletcher-Reeves
conjugate gradient algorithm, estimating the gradient of the standard least squares functional
by using a finite difference scheme. It turns out that while the algorithm converges relatively
fast, typically in less than 20 iterations, the outcome depends strongly on the initial point,
pointing towards a non-convexity of the underlying objective function. Of more concern is
that by starting at initial values relatively close to the generative values, the algorithm finds a
minimizer yielding an output pH curve that has a good overall fit to data, although the para-
meter values are significantly different from the generative ones. A closer inspection reveals
that the discrepancy between generative and estimated pH curves occurs at the very initial time
steps that, according to the particle filtering analysis, are crucial for the identification of the
parameters.
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Figure 5. Illustration of how the learning of the parameters of the model by the particle
filter progresses over time. The frames show the scatter plots of the parameters at six
different times instances. Notice how the spread of the clouds tightens up as time passes.
Top row: time instances t= 1 and t= 10; middle row: time instances t= 50 and t= 100;
bottom row: time instances t= 200 and t= 500.

5. Conclusions

Bayesian particle filtering methods for solving inverse problem with an underlying forward
model that has a structure of an evolution-observation model are a competitive alternative to
traditional MCMC sampling methods even in the case when the data needs not to be inter-
preted as time series arriving in a sequential manner. When the state space dimension is high

20



Inverse Problems 39 (2023) 094004 A Bocchinfuso et al

and the forward model is computationally demanding as in the example considered in this
article, the advantage of particle filtering algorithms is that the model needs to be propagated
only a short time step at a time for each particle, rather than requiring to compute the entire
time series to generate one proposal for the MCMC sampler. In the problem considered in
this article, the dimensionality of the state space is of the order of 1200, comprising about two
hundred nodal values for each of the six concentrations, and the computation time of produ-
cing one realization of length 500 s is about 2.5 s on a personal computer. MCMC algorithms,
even with a reasonably high acceptance rate, may become prohibitively slow, in particular if
there is no way to determined a good starting point for the chain, because a significantly long
burn-in sequence may be needed before the sampler starts to explore the underlying posterior
distribution. In the current application, the particle size was of the order N= 10000, which in
light of the 1/

√
N convergence law yields a reasonable accuracy for estimating the few para-

meters of interest. Moreover, from the practical point of view, the particle filtering algorithm
provides useful information by indicating when the algorithm starts learning the parameters:
In the present problem, the results indicate that after about 200–250 s, the parameter estimates
do not improve significantly, thus indicating that there is no need to measure the surface pH
further beyond that point.

Another natural question is whether a particle smoothing algorithm such as backward-
simulation particle smoothers [21] would be preferable. The problem with these methods in
the case where the state space dimensionality is high as in the present problem is the large
memory allocation needed, as the methods require that the particles are saved at each step.

This article is the first instance in which the fundamental question of how gasses cross the
cell membrane is formulated as an inverse problem. The successful solution of the inverse
problem using a forward model accounting for the mini-compartment created by the pres-
ence of the electrode pushing against the membrane is a demonstration of how sophisticated
inverse problems can help answer fundamental questions in biophysics. Computed examples
for synthetic realistic data show that the particle filter is able to estimate quite accurately the
generative values of the parameters of interest, in particular the surface permeability for CO2

in a simulated experiment. The outputs generated with the estimated parameters are very sim-
ilar to the simulated noiseless data using the generative parameter values, thus suggesting that
the filter is able to find combinations of λ, A0 and γ yielding a response close to that produced
by the generative model.

It is well known that particle filtering methods should be run with very large sample sizes.
While the computational complexity of the reduced forward model proposed in [2] is signi-
ficantly lower than that of detailed electrode tip model [5], the computing time of the forward
solution remains the limiting factor for the ensemble size. While the present article is not
addressing in depth the effect of the limited particle size on the results, however, the two test
runs shown here demonstrate good consistency of the results. We conclude by pointing out
that in the computed experiments reported in this article, the synthetic data was generated by
the same forward model that is used in the inversion. Therefore, while the article provides
primarily a proof of concept of the inverse solver, and demonstrates the identifiability of the
parameters of interest in the model, it does not include any analysis of the effects of the dis-
crepancy between the detailed and the reduced model or the model discrepancy between the
reduced model and measured data. Furthermore, the model contains parameters whose values
are assumed to be known, such as the CA activity within the cell and on the surface. It may
be of interest to investigate how robust the method is to perturbations in their values, and how
well the particle filter will be able to estimate the membrane permeability when the pH meas-
urement are not generated with the same additive model used to solve the inverse problem.
These are important questions that are left to be addressed in future work.
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