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ABSTRACT. The soft SVD is a robust matrix decomposition algorithm and a
key component of matrix completion methods. However, computing the soft
SVD for large sparse matrices is often impractical using conventional numerical
methods for the SVD due to large memory requirements. The Rank-Restricted
Soft SVD (RRSS) algorithm introduced by Hastie et al. addressed this issue by
sequentially computing low-rank SVDs that easily fit in memory. We analyze
the convergence of the standard RRSS algorithm and we give examples where
the standard algorithm does not converge. We show that convergence requires
a modification of the standard algorithm, and is related to non-uniqueness of
the SVD. Our modification specifies a consistent choice of sign for the left
singular vectors of the low-rank SVDs in the iteration. Under these conditions,
we prove linear convergence of the singular vectors using a technique motivated
by alternating subspace iteration. We then derive a fixed point iteration for
the evolution of the singular values and show linear convergence to the soft
thresholded singular values of the original matrix. This last step requires a
perturbation result for fixed point iterations which may be of independent
interest.

1. The rank-restricted soft SVD. In this paper we consider the following rank-
restricted matrix decomposition problem,

1
e S1X = ABTIE + S (141 + | BI) (1)
where X € R™*™ is considered the input to the problem, and A € R"™*" and
B € R™*" are considered the outputs (all matrices in this manuscript will be
assumed to have real entries). The rank restriction is given by r < p = min{m,n},
since the size of A and B naturally restricts their rank, and A is a regularization
parameter. The product ABT is an approximation of X in the Frobenius norm
with rank at most r. In [11, 9] it was shown that when A, B solve (1) the product
ABT solves,

1
i —IIX = Z||% + )| Z]|. 9
Z:rarr?kl(nZ)Sr 2” ||F+ ” ” ( )
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where the nuclear norm || Z||, is the sum of the singular values of Z. The relationship
between these solutions suggests that AB ' is a robust low-rank approximation to
X. This approximation is a key component of many matrix completion algorithms
[9, 11, 4, 5]. In this paper we will analyze a numerical method for solving (1)
proposed by Hastie et al. in [9]. We will show that a modification is required to
obtain convergence, and we give the first complete proof of convergence.

The problem (1) is called the Rank-Restricted Soft SVD (RRSS) because the
solution involves soft-thresholding of the singular value decomposition (SVD). Given
the reduced SVD, X = USVT (U € R™*P, § € RPXP| V € R™*P where p =
min{m,n}), the solution to (1) is found by first soft-thresholding the singular values,
which means that A is subtracted from each singular value and if the result is
negative it is set to zero. These soft-thresholded values are then stored in a diagonal
matrix D given by,

D =+/(S — \)* = y/max{0,5 — \}.

The optimal solution to (1) is then given by defining Aope = UDI,y, and Bopy =
VDT, [9]. When X is full matrix, a standard or partial SVD can be used to
obtain this solution. However, in many applications such as matrix completion, X
is a sparse matrix that is too large to be stored as a full matrix. Motivated by these
applications, in [9] Hastie et al. introduced a fast and memory efficient alternating
ridge regression algorithm shown as Algorithm 1 below. In this implementation
we use a simple stopping condition based on the matrix norm given by the largest
absolute entry, namely for X € R™*™, we define || X||max = maxi<i<n,i<j<m | Xij|.

Algorithm 1 Alternating Directions Optimization for (1)

Inputs: An n X m matrix X, rank restriction r, regularization parameter X\, and
convergence tolerance tol
Outputs: An n X r matrix A and an m X r matrix B

Initialize A as a random n x r matrix and A, = B, = B =0

. A=Ay llmax | [|1B—Bp|lmax
Whlle HAHmax + ||BHIW‘~x - tOI do

A,=A B,=B

Update B leaving A fixed:
B+ XTAATA+ Ayr)7 !

Update A leaving B fixed:
A« XB(B"B+ M,y)7 !

end while

We first consider a simplistic approach to solving (1) shown in Algorithm 1. This
method is motivated by the alternating directions method of optimization [12, 2].
The objective function in (1) is not convex as a function of both A and B together,
however, when either A or B is fixed the objective function is convex and quadratic
in the other. For example when A is fixed, we can rewrite the objective function in
(1) as,

m
i=1

A 1
1X; = ABi|3 + SIBil3 +e1 = Y 5B (ATA+ M) Bi = Bl AT X + e

i=1

| =
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where X, is the i-th column of X and B; is the i-th column of BT (c1,co are
constants with respect to B). The optimization problems for each column of BT are
independent and the optimal solution is B; = (AT A + Al,.«,) ' AT X;. Combining
these columns we find the optimal solution for B for a fixed A. Thus, when A is
fixed, the objective function in (1) is minimized by setting B equal to X T A(AT A+
AM,.)~1, in other words,

1
argmin  —|| X — ABT||% +
BGR’"LX’!' 2

| >

(IAIE + I1BII%) = X TA(AT A+ Myp) ™!

If we then hold B fixed, we have a similar optimization problem for A with optimal
solution X B(B' B + A,x,)”!, meaning

. 1 A _
argmin FIX - ABT|% + 5(HAH% +[|1B|F) = XB(BT B+ Myx,)
6 mxXr

The idea of the alternating directions method is to compute these two explicit
solutions iteratively and then repeat until convergence as described in Algorithm 1.
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Ficure 1. For a full-rank X matrix (left) Algorithms 1 and 3
have similar performance, however when X is approximately low-
rank (right) Algorithm 3 is significantly faster. In both examples
X is 500 x 500 and we set » = 10 and A = 0.5 and the minimum
cost is computed using Agpt, Bope. In the left panel the entries of
X are independent standard Gaussian random variables. In the
right panel A, B are 500 x 10 matrices with independent standard
Gaussian entries and X = ABT + 10X where X is 500 x 500 with
standard Gaussian entries.

While the alternating directions method does converge, as shown in Figure 1(right
panel) it has slow convergence even when X is approximately low-rank . Hastie et al.
noticed that the Algorithm 1 looks like a power iteration method, since at each step
we multiply the current A or B by either X or X T respectively [9]. Thus, motivated
by the idea of orthogonal power iteration, Hastie et al. introduced the idea of using
an SVD between each alternation in order to orthogonalize the columns of A and
B. Notice that A and B are m x r and n x r respectively, so for r < min{m,n}
these SVDs will often be computable even when the full SVD of X is impractical.
These insights led Hastie et al. to introduce Algorithm 2 in [9]. The authors in [9]
suggested that the approach used to show convergence of orthogonal power iteration
(see for example [8] Theorem 8.2.2, also [1]) could be applied to Algorithm 2. In
Section 2 we will confirm that the method of [8] can indeed be adapted to show
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convergence of the singular vectors. However, a more detailed analysis is required
to show convergence of the singular values, as we will show in Section 3. Moreover,
Algorithm 2 can fail to converge or converge to a non-optimal stationary point due
to a subtle issue involving the non-uniqueness of the SVD. We will address these
convergence issues by introducing Algorithm 3 which will be discussed in the next
section and is presented next to Algorithm 2 below for ease of comparison.

Algorithm 2 Rank-Restricted Soft Algorithm 3 Modified Rank-Restricted
SVD [9] Soft SVD

Inputs: An n x m matrix X,
Rank restriction r,
Regularization parameter \,
and convergence tolerance tol

Outputs: An n X r matrix A and

An m x r matrix B

Initialize D = I«

Initialize U € R™"*" a random
orthonormal matrix

Initialize A = UD

Initialize A, = B, =B =0

[A—=Ap [[max + IB—Bpllmax

while
[[Almax [[Bllmax

tol do
Set A, =A, B,=DB
Update B leaving A fixed:
B+ XTA(D? + M) ™?
Find the SVD: BD =USV' T
D+ S3
B+ UD
Update A leaving B fixed:
A<+ XB(D? + M) !
Find the SVD: AD =USVT
D+ S3
A« UD
end while

Inputs: An n X m matrix X,
Rank restriction r,
Regularization parameter A,
and convergence tolerance tol

Outputs: An n X r matrix A and

An m x r matrix B

Initialize D = I,.«,

Initialize U € R™*" a random
orthonormal matrix

Initialize A = UD

Initialize A, = B, =B =0

[|A=Ap||max B—Bp ||max

I
Tl T BT > tOL

while
do
Set A, =A, B,=D
Update B leaving A fixed:
B+ XTA(D? + M,.»,)7!
Find the SVD: BD =USV "
D« Sz, W = diag(sign(V 1))
B+ UWD
Update A leaving B fixed:
A<+ XB(D? + M)t
Find the SVD: AD =USV T
D« Sz, W = diag(sign(V 1))
A+~ UWD
end while

1.1. Proposed algorithm. Despite the similarity of Algorithm 2 to orthogonal
power iteration, there is a key difference which can cause Algorithm 2 to fail to
converge. Orthogonal power iteration uses the QR factorization, which is naturally
unique when you specify that the the diagonal entries of R are non-negative. The
SVD on the other hand does not have a natural choice of sign for the singular
vectors [3]. The SVD is only unique up to a choice of sign since for any matrix W
which is diagonal with diagonal entries in {—1,1} we have,

USVT =uwswvT =U0sv".

This non-uniqueness means that many SVD algorithms will return different choices
of W each time they are run (due to random initialization). This can lead to failure
of Algorithm 2 to converge, simply due to oscillations in A and B caused by varying
implicit choices of W in the SVD steps. Moreover, as we will show in Section 4, the



CONVERGENCE OF THE RANK-RESTRICTED SOFT SVD 5

different choices of W correspond to alternate stationary points of the cost function
in (1).

To address these issues, we introduce Algorithm 3 which is a modification of
Algorithm 2. The new aspect of Algorithm 3 is that, after each SVD, we make a
unique choice of sign for the left singular vectors. This seemingly minor addition
proves critical for convergence as shown in Figure 2 and as we will prove analytically
in Section 3 below. In fact, we will show that this choice of sign insures that the
matrices V' of right singular vectors converge to the identity matrix and that this
choice is required to obtain the optimal solution of (1).
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FIGURE 2. Comparison of Algorithm 2 from [9] with our new
Algorithm 3 on the same full-rank (left) and approximately low-
rank (right) examples from Figure 1.

We will formalize Algorithm 3 mathematically since Algorithm 2 can then be
obtained by simply redefining the choice of W. Based on Algorithm 3 we make the
following recursive definitions,

Biy1 = X "UWy Dy (D3 + XI)7! (3a)

U Wi D2W,.V,] = Bjy1 Dy (3b)

Apy1 = XU WDy (D? + XI) ™1 (3¢)
Up+1Wis1Di s Wi Vil = Agga Dy (3d)

where (3b) and (3d) define all the quantities on the left hand side by computing
the SVD of the right hand side. We initialize D_1 = Dy =W,y =1I and choose Uy
to be a random orthonormal n x r matrix and set Ay = UgWyDy.

The matrices Wy, W}, are diagonal matrices where each diagonal entry is either
1 or —1. These matrices define the choice of signs for the left and right singular
vectors resulting from the SVD computation. In fact, due to random initializations
of most SVD algorithms, the matrices Wy, W}, are typically random and will be
different each time the SVD algorithm is run. As we will see, this will be the cause
of the erratic behavior of the cost function in Algorithm 2 as shown in Figure 2.

A more concise iteration can be obtained by solving (3d) (at the previous step)
for U,W Dy, = Akbk,leWlezl and substituting into (3a) we have,

Biy1 = X T Ay Dy 1 Vi Wy DY (D? + )7L (4)
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Similarly, solving (3b) for UW,. Dy, = Bk+1Dk‘~/kaDk_1 and by substituting into
(3¢) we can write,

Apy1 = XBpy1 DpViWi D H(DE 4+ M) (5)

Here we can immediately see that the product Ak+1B;;r+1 will not converge unless
the signed right singular vectors Vi, Wy, Wi V.| of (3b),(3d) converge since,

Ap1Bl 1 = XBry1 DLViW, DY (DE + M) 7D} + M) D "WV, Dy A6 X
This explains the jumps of Algorithm 2 shown in Figure 2.

1.2. Overview. In Section 2 we will show that, in an appropriate sense, we have
U, — U and Uk — V. Then, in Section 3, we turn to the singular values and
show that Dy, ﬁk both converge to I.x,DI,x, given by the softmax function D =
/(S = AI)*. Finally, in Section 4 we will show that Vi, V) converge to diagonal
matrices determined by the choice of Wy, Wy. We will see that any convergent
choice for the diagonal sign matrices Wy, Wy will yield a convergent algorithm.
These results will culminate in Theorem 4.2 which reveals that, assuming Wj, — W,
and Wy — W,, we have the limiting matrices,

Ay — A, = USD(D? + X)L . W,
By, — B, = VSD(D? + X)L, W.

for Algorithm 3. Moreover, the dependence of the first term of the cost function
(1) on the sign matrices is given by,

X - A*BIHF =15 - SQDQ(DQ + )‘I)_QIPXTW*W*ITXPHF (6)

and only the choice W,.W, = I will minimize the cost. When A < S,,. the above
cost simplifies to,

1X = AB]|lp = IS = (S = N F Ly W WLy | 7

which is optimal when W,W, = I. This explains the large cost values for Algorithm
2 shown in Figure 2 since the random Wk,Wk essentially replace W*,W* with
random sign matrices. Of course, occasionally these random sign matrices yield
WiW;, = I, which explains why the cost sometimes jumps down to the optimal
cost. This also justifies our choice in Algorithm 3 where Wy, W, are chosen to
insure that the sum of each of the columns of W}, Vi, and W), Vj, are positive (meaning
S (WiVi)ij > 0 for each j). As Vi, Vi converge to diagonal matrices, this choice
will guarantee that WW, =1 , thereby obtaining the minimal cost solution.

2. Convergence of the singular vectors. The first part of proving the conver-
gence of Algorithm 3 is showing that the sequences Uy, and Uy, defined in (3b) and
(3d) converge to the top r left and and right singular vectors of X respectively.
In other words, if X = USVT is the SVD of X then loosely speaking we have
Ur — U1y and Vi, — V(y,,,) where the subscript (1 : r) indicates the first through
r-th columns of the matrix. The reason we say ‘loosely speaking’ is due to the
non-uniqueness of sign in the singular vectors, even for unique singular values (for
repeated singular values we only have uniqueness up to orthogonal linear trans-
formations). Thus, the first column of Uy could alternate between that of U and
its negative and this would still be considered convergence since we would have
obtained the correct subspace.
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We define convergence in terms of the norm of the matrix of inner products
|U Ufrs1:) || converging to 0. In this case, any matrix norm can be used since
this always implies U ];r U(r41:m) 18 zero. For the remainder of the paper the symbol
|| - || applied to a matrix without any subscript will indicate an arbitrary matrix
norm. Since UpU, ,;'— = I,«,, the columns of U span an r-dimensional subspace, so
if UkT U(r41:m) = 0 this subspace is orthogonal to the subspace spanned by the last
n—r columns of U. Thus, ||U,] U, (r+1:n)|lmax — 0 implies that the subspace spanned
by the columns of Uy is aligning with the subspace spanned by the first r columns
of U. As shown in Figure 3 we have ||U/ U 41.n)|lmax — 0 for both Algorithm 2
and Algorithm 3.

In this section we will prove that this convergence is independent of the choice
of Wi, Wy, and show that the convergence rate is determined by the ratio of the
(r 4+ 1)-st and r-th squared singular values of X. In particular, when X is low-
rank or approximately low-rank, this will imply the fast convergence observed in
Figure 1. We first note that the iteration (3a)-(3d) is rank preserving in the generic
case when X is full-rank.

C 10%k — Algorithm 2 1 100 —Algorithm 2
e \ - -Algorithm 3 g - -Algorithm 3
Ll 5 --Theoretical Rate|| W 5 --Theoretical Rate
5 10 1 5 107
(&) (&)
) )
> >
S 0710 810710
> -
(@) (@)
= =
0107 L 0 107°
0 2000 4000 0 2000 4000
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FiGUure 3. Comparison of the convergence of the singular vectors
on the same full-rank (left) and approximately low-rank (right)
examples from Figure 1. Error is measured by ||U," Utr+1:n) | Imax;
where U, 1 1., is the matrix containing the (7 + 1)-st through n-th

2
columns of U. The theoretical convergence rate ( shown is

Sr41
proven in Theorem 2.3 . Notice that the singular vectors converge

for both Algorithm 2 from [9] and our new Algorithm 3 .

Lemma 2.1. Let X € R"™*™, have full rank, namely rank(X) = min{m,n}, then
for all k the matrices Ay, By, Uy, Wi, D, Vi, Uk, Wk, Dk, Vi defined by the iteration
(3a)-(3d) are all full rank.

Proof. The algorithm is initialized with Ag = UyWyDy, where Uy is a random
matrix and thus generically full rank and Dy = Wy = I is full rank. By (3a)
we have Bjy1 = X " Ax(D? + X)~! and since X and D? + Al are full rank, we
have rank(Bj1) = rank(Ay). This establishes the base case, and if we inductively
assume Ay, Dy are full rank we immediately find that By is full rank and thus
By41Dy is also full rank. Since the right-hand-side of (3b) is full rank, all the
matrices Uk, W;€7 Dk, Vi on the left-hand-side of (3b) are full rank since they are
defined to be the SVD of a full rank matrix. By (3c) we have Ay written as a
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product of full rank matrices and thus Ay, is full rank. Finally, the right-hand-side
of (3d) is now full rank which implies that all the matrices on the left-hand-side,
Uk+1, Wi1, Dk+1, Vi1 are all full rank. This completes the induction. O

When X is not full rank, generically the random initial matrix Uy will not be
orthogonal to the subspace spanned by the rows of X and since B; = X T Ag/(1+\)
we find rank(B;) = min{rank(X),rank(Ap)}. Note that since Dy = I we have
(D2 + MI)7' = I/(1 + A). When rank(X) > r we expect all of the matrices in
Lemma 2.1 to have rank r and when rank(X) < r they should all have rank equal
to rank(X). However, showing that U does not evolve to become orthogonal to
the span or the rows of X requires Theorem 2.3 below.

The next step is to make a connection between the iteration (3a)-(3d) and the
SVD of X. In the next lemma we show how the (3a) followed by (3c) is related to
multiplication by XX T and similarly (3c) followed by (3a) is related to multiplica-
tion by X " X.

Lemma 2.2. Let X € R"*™  and using the notation of (3a)-(3d) define
Pyi1 = D} VL (DE + MD)WV D2(D7 + W,
Pri1 = DE Vil (D iy + ADWia Vi1 D2 (D] + MD)W,
then
XX"Uy = Upy1Pes (XX Uy =Py --- P
XTXUy = Upg1 Prpa (XTX)Uy = UpPy--- P
and the products
Qr=D Py Py

k—1
=V, (H([)? + AW, V,"(D? + M)WJ/J) (D2 + X)WoV, (14 A)
i=1
Qk = D;ka <. Pl = VkT(D]% + )\I)Wka
are invertible with inverses bounded by ||Qx || < A\'=2%, and ||Q; ]| < A2~%k.
Proof. We first solve (3a) for X Uy, = Byy1(D} + M) D; ' Wy, to obtain,
XX Uy = XByy1(D} + \)D, ' Wy,
= Ap11(D} + XI) D, WV, D (D7 + M) Dy ' Wy,
= U1 D Vilet (D} + MD)WV, DD} + MD)Wy (7)
where the second equality follows from (5) and the last follows from (3d) after
rearranging the diagonal matrices. The definition of Py then immediately yields
XxXu, = Uk4+1Pry1 and a s~imilar computation shows XX'U, = Uk+1Piy1-
The formulas for Q) and Q) follow by a simple induction using the formulas for
Py, P;. Note that Qk,Qy are products of diagonal matrices (with non-zero diag-

onal entries), sign matrices and orthogonal matrices and thus are both invertible.
Moreover, since A > 0 we have the upper bound,

k—1
_ 1 1 _
e < | I 7= . — <A
i1 IDF + MI[[DF + M| ) [[Dg 4 M|(1+A)

d N—1 < HQ}?IH < /\2—2k O
an ||Qk || < DZ+AI]] = .
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In order to connect the iteration (3a)-(3d) to the singular vectors of X we will
use the formulas,

(XX *Uy = Uy DiQy, (X" X)*Uy = U D}Qx
which follow from Lemma 2.2. Substituting the SVD of X = USV " results in,
US**U Uy = U, D3 Qx, VSV T, = U,D?Qy

and using the invertibility of the D, Di, Qr, Q) matrices we have,
U'U, = S*UTU,D?Q VU, = S*VTUD Q. (8)

Notice that we have again rearranged the diagonal matrices.

The key to leveraging (8) for analyzing the convergence of Uy, Uy, is to split the
true singular vectors, U, into two groups by choosing an arbitrary ¢ € {1,...,p — 1}
where p = min{m,n}. We then split U = [U(;) U(a)] where U(y) contains the first ¢
columns of U, and similarly V' = [V{1) V()] and finally we split the diagonal matrix
S1 0

0 S ) where S7 is ¢ x ¢ and contains the first /¢
2

of singular values as S = (
singular values.

Theorem 2.3. Let X € R™™ have SVD X = USV" and set p = min{m,n}
then, using the notation of Lemma 2.2, for any splitting of the singular vectors
Le{l,...p— 1} we have

U(Tl) Uk = kaU(Tl)Uo,eZk,z U(Tg)Uk,e = SgkU(Tg)Uo,eZk,z 9)
Vi Upe = kaV(I)Uo,eZk,e Vid) Upe = S%’W&)Uo,eZk,e (10)

where Uy, ¢, Uk,e are the first ¢ columns of Uy, Uy, respectively and Zk,g,Zk,g are the
first £ rows of D;Qlel, D,;2Q,:1 respectively. Moreover, as k — oo, we have

[]—r ) 2k VT Uk[ 2k
”@7’”9[ <Sf+1> o I @Y al Sée(sé-&-l) o
||U(1)Uk,€|| Se ||V(1)Uk,e|| Se

where ¢y = ||U(T2)UO,Z(U(T1)U074)_1|| and ¢ = HV(E)UO,Z(V(I)UQ@”H are independent
of k.

Proof. From (8) we have,
Ul 2%k Ul
(T) S 0 ) (_%) —2—1
Ur = UoD
( U(Q) ) k < 0 Sk U(2) 0D 7@y
which immediately splits into the equations (9) and a similar splitting occurs for

V which yields (10). Next we solve the left equation of (9) for Zj , and substitute
into the right equation of (9) to find,

UiyUk,e = S3"U & Uo (U3 Uo,0) T ST2MU L Uk e
and obtain the upper bound,
2k
- Se+1
05 Uall < 538l 1S40, 0l = (2422 100

where the constant ¢, is determined by the inner products with Uy, and is inde-
pendent of k. O
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The power of Theorem 2.3 is that the splitting ¢ was arbitrary. In the generic
case of distinct singular values, £ = 1 immediately implies that the first column
of Uy becomes orthogonal to the last p — 1 left singular vectors of X (columns of
U) and hence must lie in the space spanned by the first left singular vector of X.
Then, ¢ = 2 implies that the second column of Uy must be orthogonal to the last
p — 2 left singular vectors. Moreover, the definition of Uy via the SVD in (3d)
implies that the second column of Uy is orthogonal to the first column of Uy and
hence must be in the subspace spanned by the second left singular vector of X.
Inductively, this shows that the columns of Uy converge to lie in the subspaces
spanned by the corresponding columns of U. In the generic case of distinct singular
values, this means that the columns of Uy are converging to those of U up to sign.
Moreover, in the non-generic case of a repeated singular value, Theorem 2.3 shows
the convergence of the corresponding columns of Uy, to the subspace spanned by the
singular vectors corresponding to the repeated singular value. We can now turn to
the convergence of the singular values.

3. Convergence of the singular values. We can combine (3a) and (3b) into a
single equation (and similarly for (3c¢) and (3d)),

UWieSiWi V' = X TU WSk (Sy + M)} (11)

Upt1 Wiet1 Sk W1 Vi1 = XU Wi S (Sy, + M)~ (12)

where Sy = D? and Sy, = D7 and the terms on the left-hand-side of (11) and (12) are

defined to be the singular value decomposition of the right-hand-side. Substituting
the singular value decomposition of X = USV T we have,

ﬁkVNngkaVkT = VSUTUkaSk(Sk + /\I)_l (13)

U1 Wit 1Sk41 W1 Viloy = USV T U Wi Si (S + AL (14)

We first consider the simplified iteration where the singular vectors are set equal to
their limits, namely, Uy = U(1.) and Uy = V(1. Since Uy — U,y and Uy — V(1.
we will be able to use a perturbation argument to extend this simplified case to the
true Uy, Uy sequences. In the simplified iteration, U TU, = VU, = I,,x, where

I, %, is an r-by-r identity matrix concatenated with an (n — r)-by-r matrix of all
zeros. In this case we obtain

ﬁkaSkaVkT = VInXTWkSSk(Sk + /\I)_1 (15)
Uk 1 W 1Skt1 Wit 1 Vi = UL WSS (Sg + M) L. (16)

Note that the left-hand-sides of (15) and (16) are defined to be the unique SVD
qf the right-hand-sides. This implies that Uy = VI,x, and Ugy1 = Ul,x, and
V.l =V, = I, which shows that this is a fixed point for the singular vectors.
Moreover, we obtain the following iteration for the singular values,
Sk = SSk(Sk +\I)~* (17)
Spy1 = SSk(Sp + A)7L. (18)
Since these are all diagonal matrices, we can focus on the fixed point iteration for
a single diagonal entry s; = (Si);; and s = S;; we find,

9 Sk SSk S”Sk
=5"— A = 19
Skt ssk+)\(sk+)\+ ) Sp(s+ A) + A2 (19)
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for any i € {1,...,7}.

Lemma 3.1. For any s, \, s9 € R with s # X the iteration (19) converges locally to
the softmazx function,

sp — (s — A)T = max{0,s — A},
which is the only stable fized point.

Proof. The fixed points of this iteration are the solutions § of § =
implies

25 .
m which
3(5(s + N+ A2 —sH) =0
so the fixed points are § = 0 and § = s — A. Next we analyze the stability of the

fixed points by computing the derivative of the iteration,

d 528y C (sk(s+A) + A2)s% — sZsp(s + \)
dsp \si(s+A)+X2) (sp(s+A) + A2)2

and evaluating at the fixed point sy = § = 0 we find

(s
dsi \ sp(s+ )+ A2

and at the fixed point s = § = s — A we find

d 525y, (=N N =P (s =N (s+A) N
dsi \ sk(s+ A) + A2 N ((s = A)(s+ ) + A2)2 82
Thus we see that when s < A the fixed point § = 0 is stable and when s > A the
fixed points § = s — A is stable. In other words, when s — X is positive the stable

fixed point is s — A and when s — X is negative the stable fixed point is zero, thus
we see that the iteration converges to the soft-max function,

82

a2

SkZO

Sp=8—M\

s — max{0,s — \}

This completes the proof. O

The case A # s is generic, however, we note that for the case of s = A we have
the simplified iteration sgi11 = 2:;% and inductively we have, s = (2,3% SO
unless so = —3; for some k € N, we again have s, — 0 = max{0,s — A}.

Lemma 3.1 holds for any real s # A and any initial condition sg including negative
numbers. Of course, in our current application, these are all constrained to be non-
negative. When any of them are zero the iteration is trivial, so in the next lemma
we consider the case when s, \,sg > 0 and show a stronger convergence property
that will be required for the perturbation result.

Lemma 3.2. For any s,\,so € (0,00), with s # A, there exists a ¢ € [0,1) such
that

skt — (s = N)F| < elsp — (s = N7
and the iteration (19) converges globally on (0,00) to the softmaz function, sp —

(s —A)T.

Proof. Note that s, A\, sg > 0 implies s > 0 for all £ by a simple induction.
2
First consider the case when A > s so that (s —A\)* = 0. Setting ¢; = §5 <1 we

have
2

2
525 s
t = <ﬁsk:cl\sk—(s—)\)

. S5TSk +
sk(s+ ) + A2 .

[sge1 — (s = A)
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Next consider the case where A < s so that (s — A\)T = (s — \) and

828 — (82 =A%) = A% (s — \) A2
(Sk41 = (s =) sk(s+A) + A2 sk(s+ ) + A2 (s = (s = A))
(20)
Since W <1, (20) implies |sg+1 — (s — A)| < |sx — (s — A)| and inductively

skt — (s = V| < [so — (s = M|

which means that the sequence can never move further away from s — A\. Moreover,
the sequence can never move to the other side of s— A, namely, since W >0,
if s > s — A then (20) implies that sg > s > s — A for all k, and if sg < s — A then
so < s < s— Afor all k.

Now if sg < s — A then we have s > sq for all k£ and setting ¢y = e <1,

)\2
so(s+A)
(20) implies,
= Nsk = (s = M| _ AIsk = (s = V)|

sk(s+ X))+ A2 7 so(s+A) + A2
On the other hand, if sg > s — X\ then we have sqg > s > s — A for all k£, and
setting c3 = i‘—z < 1, (20) implies
(o M= (=N Vs = (s =)
SE(s+A)+A2 7 (s=N)(s+ )+ A2

So in each case we have [sg+1 — (s — A\) 1| < c|sp — (s — A\)T| for some ¢ € [0,1). O

+|.

[sp+1 — (s = A) =co|sp — (s — )

+‘.

[Sk41 = (s — A) =cslsk — (s =)

The above lemma establishes a linear convergence rate which is crucial when we
consider the perturbed iteration below which will be critical to establishing conver-
gence of the full iteration (13) and (14). We first establish a general perturbation
results for convergent sequences.

Lemma 3.3. Consider an iteration 41 = f(x) with a fized point x* such that
for some ¢ € [0,1) we have

|f(z) — 2" < clz — z7|

for all x. Consider a sequence of perturbations ey, such that for some a € [0,1) we
have leg+1| < aleg| then the perturbed sequence wiy1 = f(wy) + e converges to x*
for any wy.
Proof. First, since * = f(2*) we have,

(w1 — 2% = [f(wi) +ex — 2| < [f(wp) — f(@")] + [ex] < clwp — 2% + [ex]
and a simple induction shows that w11 —z*| < Zf:o c'lex—q|. Since |exy1] < alek]
for all k, we have |ex_;| < a*~?|eg| and thus,

k k k+1

, S a*tt —¢
|w1 — ¥ < ch|ek_i| < |wgs1 — 2™ < eo| chakﬂ = |leg| ——— —= 0
i=0 i=0 a=c
since ¢, a, € [0,1), so wg — x*. O

Note that when applying Lemma 3.3 to the sequence s of singular values, the
required inequality on f holds only on (0, 00), however the sequence of perturbations
cannot cause the sequence to leave this set since the perturbed sequence is also a
sequence of singular values.
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3.1. Perturbation of singular values. We can now show that as Uy — U, the
singular values of (13) and (14) are a perturbation of the iteration in Lemma 3.1.
This perturbed sequence will satisfy the assumptions of Lemma 3.3 and thus will
still converge to the softmax, (s — \)™.

Returning to (13), when Uy # U by Theorem 2.3 we can write Uy = U + Ej
where the perturbations Fj decay linearly to zero, ||Ex+1]| < a||Ex|| — 0 for some
a € 10,1). We can write (13) as

UkangNVkaT = VSUTUkaSk(Sk + )\I)_l
=VSU" (U + Ep)WiSk(Sk + XI)~1
=VSUTUWSk(Sk + M)t + VSU " B, W3Sy (S + M) !

The first term above will be the same as right-hand-side of (15) and will simplify
to give the right-hand-side of (17). The second term has bound

IVSU T ExWiSk(Sk + M) ~HI < ISIHIERIISk(Sk +AD ™| < [1S1]| Exl]

since V,U T, W}, are orthogonal and Sy(S) + AI)~! is diagonal with diagonal entries
less than 1. By Weyl’s law for the stability of singular values under perturbation (see
for example Theorem 1 of [13]) the singular values §, on the left-hand-side of (15)
are given by a perturbation ey of the right-hand-side (17) bounded by ||S||||Ek]|-
The iteration for the true singular values becomes,

S = SSk(Sk + )\)_1 + eg (21)
ka1 = 885 (8 + )7L+ &g (22)

where |eg| < ||S||||Ex|| and by a similar we find a perturbation argument we have
lex| < 11S]|||Ek||- Finally, the iteration (19) becomes,

?sp(sp +A) "+ e . s2sp + ex(sk + ) .
Sk4+1 = — ex = 5 + ek
ssp(sk+A)"t+ep+ A sp(s+A) + A2 +ep(sk+A)
s2s

sp(s+ )+ A2
where
. (5 + M(sk(s + A = 5%) + A7) .
B Tsk(s T A) + A2)(sk(s + N) + A2 + ex (s + N)
Noting that si(s + A — s%) + A? < s(s + A\) + A%, we can estimate & as,
S+ A
sk(s+A) + A2 +ep(sk + )

ér =

x| < lex] + [ék|

Since e, — 0, for k sufficiently large we have —\ < e < A\. We can bound the
above denominator by, sg(s+A) + A2 +eg (s +A) > sp(s+A) + A2 = A(sp+A) = sps.
Then,

« Sg+ A
x| < ek

+ |€x| < clex| + |éx]

since s is bounded. Since e and e have linear convergence, this implies that éj
has linear convergence as well. Thus, by Lemma 3.3 the true singular values, sg, Si
converge to the same limit as the unperturbed singular values, namely the soft max,
(s=A)T.
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4. Effect of sign matrices on the cost functional. We can now show that the
matrices of right singular vectors Vi, Vi from the SVDs in (3b) and (3d), converge
to diagonal sign matrices when A < S,...

Theorem 4.1. Let X € R™ ™ have SVD X =USV . For A > 0 let Vk,Vk be the
sequence of matrices defined by (3b) and (3d), then

1V = T (S = AD)* + AT)S ™ Ly Wil s — 0

and when Wy, converges to a limit W, then Vi — Lisp(S=AD) T+ XS L, Wi
When A < Sy we have ||V, — Wi||max — 0 and when Wy, — W, we have Vi, — W.,.

Proof. Substituting (3a) in (3b) we have,
ﬁkaD,%WkaT = XTUkaDk(Dz + )\I)_le

where X T Uy is n x 7 with » < p = min{m,n}. In order to solve for f/kT we multiply
both sides by U,] X since U,) XX "Uj, = U] US?U "Uy, is invertible so that,

U XU W D?Wy, = U] US?U T U, Wy, Dy,(D? + XI) " DV,
and solving for V, yields,

Vi = DZ2(DE + XDW,, (U, US*U TU,) YUl USV T UL D3
By Theorem 2.3 we have U,;'—U — Irxp and VTﬁk — Ipxr as k — oo and as
shown in Section 3 we have Dy, — I« pDIxr = L5 p(S — M) T I, and also Dy, —
IrxpDI,xr. Substituting these limits into the above equation gives the desired

result. Notice that when A < S, the maximum with zero has no effect and thus
(S = AXI)T + X)S~! =TI so that ||V — Wi||max — O. O

A similar argument shows that when A < S, we have ||V}, — V~Vk||max — 0 so
that both Vj, Vj are converging to diagonal sign matrices. We can now characterize
the convergence of Algorithm 3.

Theorem 4.2. Let X € R™ ™ have SVD X = USV . For \ > 0, the iteration
(32)-(3d) converges whenever the sign matrices Wy, Wy, are chosen so that they
converge to limits Wi, — W, and Wy — W,. The cost (1) of the limiting matrices
Ay, B, of the iteration is

1X = A BT |5 = IS = (8 = A)*S2((S = M) + AD) 2L, WaWo Ly |
and when \ < S, it is
11X = A BT [ = IS = (S = A Ly, WaWo L |
and only W*W* = I will minimize the cost.

Proof. If we make a convergent choice for the sign matrices Wy — W, and W, — W,
equation (3a) defines a steady state,

B, = X"UW.D,(D? + \XI)™' = VSD(D? + M) "' I, W.
where D, = I+, DI,x, as shown in Section 3. Similarly (3c) defines a steady state,
A, = XUW.D.(D? + \I)"' = USD(D? + X)L, W..
Thus we find the low rank approximation of X to be given by,
A.B] = US*D*(D? + A\I) 2Ly, W WL ) VT
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and when A < S,.,. this reduces to
AB] =U(S — A L, W W, L ) V.

Notice that when W,W, = I this is the optimal solution of (1) and (2). In the
general case, we find the first part of the cost functional is given by,

| X = AB]||p = [USVT —U(S = X)Ly, W WL,V ||
= [|S = S2D*(D? + A\I) 2Ly e W WL || ¢
and when A < S,.,- we have,
1X = ABlr =I5 = (S = N e W Wl -

Since W, and W, are diagonal sign matrices, so is W, W, and any negative entries
would change the subtraction to addition in the above cost functional, so the solution
A, B, is optimal only when W, W, = I. O

Finally, since W, and W, are both sign matrices, the way to insure W, W, = I
is to choose W, = W,. In other words, we need to ensure that the choice of
sign matrices in (3b) and (3d) are the same. Algorithm 3 does this by choosing
the diagonal entries of W}, to be the signs of the sums of the columns of V}, and
similarly for W}, in terms of V. Since Theorem 4.1 show that Vj, Vj, are converging
to diagonal matrices (independent of the choice of Wk, W) these choices of Wk, Wy
will insure that both Wk f/k—'— and W,V converge to the identity matrix. In fact, it
does not matter which unique sign choice is made in the SVDs in (3b) and (3d)
as long as the same choice is made for both SVDs. Effectively, the choice of sign
matrices is how the right singular vectors of (3b) and (3d) contribute to the iteration
in Algorithm 3, whereas they are not used at all in Algorithm 2.

5. Conclusions and future work. In this paper we introduced Algorithm 3 as
a new rank-restricted soft SVD method and we have proven convergence to the
optimal solution of (1). We have shown that the standard method, Algorithm 2,
can fail to converge or can converge to a non-optimal stationary point. Moreover,
we have derived the convergence rate of Algorithm 3 based on the singular values
of the matrix X which shows how Algorithm 3 can obtain much faster convergence
than the naive alternating directions approach of Algorithm 1. Since Algorithm
3 is only one component of the matrix completion method introduced in [9], an
important future direction is analyzing the entire matrix completion algorithm.
Moreover, the choice of the rank restriction, r, and regularization parameter A are
critical for obtaining the best matrix completion. Investigating methods of selecting
these parameters, possibly based on cross-validation, is another critical direction for
future research. Finally, while Algorithm 3 is of significant interest due to its use
in matrix completion problems [9, 11, 4, 5], it could also be used as a partial SVD
algorithm and comparison to state-of-the-art SVD methods [6, 7, 10] could yield
future insights or improvements.
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