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Abstract—Unmanned aerial vehicles (UAVs) have been widely

utilized to expand wireless network coverage and provide com-

putation service for Internet-of-Things (IoT) devices in signal-

blocked or shadowed environments. In this paper, we propose

a novel multi-UAV-enabled mobile edge computing (MEC) ar-

chitecture in which multiple UAVs provide both communication

and computation services for IoT devices that cannot directly

access the ground edge clouds. To achieve min-max fairness of

energy consumption among UAVs, we minimize the maximal

energy consumption among UAVs by jointly optimizing com-

putation offloading decisions, communication and computation

resource allocation, UAV positions, and task splitting decisions,

while meeting the delay requirement of all tasks. The required

optimization is a large-scale mixed-integer non-linear program

that is generally intractable. To solve this problem, we propose

an efficient iterative algorithm based on the successive convex

approximation (SCA). The simulation results show that the pro-

posed scheme outperforms various baseline schemes in processing

computation-intensive and latency-critical tasks.

Index Terms—Mobile edge computing, successive convex ap-

proximation, unmanned aerial vehicle, resource management.

I. INTRODUCTION

A
S Internet-of-Things (IoT) devices are flourishing as
never before, it is estimated that 79.4 zettabytes of data

will be generated by 2025 [1]. These data will cause an
enormous burden on traditional cloud computing networks.
Besides, the emerging artificial intelligence applications of
IoT devices, such as smart cities [2] and real-time video
analytics [3], [4], are typically computation-intensive and
latency-critical. It is challenging for traditional cloud comput-
ing systems to provide these services.

To meet the quality of service (QoS) requirement, mobile
edge computing (MEC) is a promising approach. Unlike
traditional cloud computing, which relies on remote cloud
servers for task processing, MEC handles tasks on small
cloud computing platforms (i.e., edge clouds) deployed at
the network edge. By relocating communication and compu-
tation resources in proximity to IoT devices where data are
generated, MEC can efficiently reduce network congestion,
provide low-latency computation service, and boost network
security [5]–[8]. Nevertheless, traditional terrestrial MEC is
still infeasible in signal-blocked or shadowed environments
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due to the immobility of infrastructure-based edge clouds
(ECs).

In recent years, UAV-enabled wireless networks have gained
increasing attention. By exploiting the high altitude and mo-
bility of UAVs, these networks can efficiently provide line-of-
sight (LoS) communication and real-time computation services
for IoT devices that are beyond the coverage of infrastructure-
based ECs. For instance, AT&T and Verizon have leveraged
UAVs to provide temporarily boosted Internet coverage for
Super Bowl and college football national championship [9].
There are two major challenges in UAV-enabled wireless
networks. One challenge is how to deploy UAVs to ensure
the quality of communication and computation services, while
another is how to achieve fair computation offloading and
resource allocation to reduce UAVs’ energy consumption.
There is a substantial literature to tackle these challenges.
However, most existing works either investigate the UAV-
enabled wireless networks in terms of communication aspect
while ignoring the computation capability provided by the
UAVs [10]–[13], or they just consider a single UAV for compu-
tation offloading [14]–[17]. Recently, a few studies have tried
to investigate a multi-UAV-enabled MEC system [18]–[24].
The multi-UAV-enabled MEC systems, where ground users
offload their computation tasks to UAVs for processing, have
been explored in [18], [19]. Furthermore, ongoing research is
studying how multiple UAVs and a ground EC can collaborate
to provide computational services to ground users, aiming
to optimize system latency [20] or energy efficiency [21].
Besides, reinforcement learning is widely used to optimize
system latency and energy consumption in MEC systems
involving multiple UAVs and ground ECs [22]–[24]. However,
managing a large number of UAVs, ground users, and ECs
can lead to exponential growth in the states (e.g., UAV posi-
tions) and actions (e.g., computation offloading decisions) of
reinforcement learning. This increase can significantly impair
convergence efficiency. Moreover, it’s important to note that
the objectives of the aforementioned studies are minimizing
energy consumption and/or task processing delay, overlooking
the fairness of energy consumption among UAVs.

This paper investigates how to achieve the min-max fairness
of energy consumption among UAVs in a novel multi-UAV-
enabled MEC system. In this system, multiple UAVs provide
both communication and computation services to ground IoT
devices that can not access ground ECs directly. Specifically,
each ground IoT device connects with a UAV and offloads its
computation-intensive and latency-critical tasks to that UAV.
Then, the UAV splits the tasks into two parts: one executed on
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the UAV and the other relayed to the more powerful compu-
tational ground ECs. We aim to minimize the maximal energy
consumption among UAVs jointly optimizing computation of-
floading decisions, communication and computation resource
allocation, UAV positions, and task splitting decisions, while
meeting the delay requirement of all tasks. The problem is
formulated as a mixed-integer non-linear program (MINLP),
which is generally intractable. To solve this problem, we
developed an efficient solution algorithm based on successive
convex approximation (SCA). Particularly, we adopt auxiliary
variables and convex approximation to transform the original
non-convex objective function and constraints into sequential
convex ones. By iteratively solving these approximated convex
problems, we obtain a suboptimal solution for the original
MINLP. The convergence of the proposed algorithm can be
guaranteed by the properly designed diminishing step-size
rule.

The main contributions of this paper are summarized as
follows.

• We propose a cutting-edge multi-UAV-enabled MEC sys-
tem where multiple UAVs and ground ECs cooperatively
provide communication and computation services to the
ground IoT devices.

• A joint optimization problem is formulated to minimize
the maximal energy consumption among UAVs subject
to the delay requirement.

• As the formulated problem is a MINLP, which is gener-
ally intractable, we reformulate it into a feasible one uti-
lizing convex approximation. Then, we design an efficient
SCA-based algorithm to obtain an approximate solution.

• We conduct extensive numerical experiments to evaluate
the performance of our proposed scheme. Simulation re-
sults show the proposed scheme outperforms the baseline
schemes, especially for processing computation-intensive
and latency-crucial tasks.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. The system model
and problem formulation are described in Section III. In
Section IV, we present the SCA-based algorithm to solve
the formulated problem. Simulation results are presented in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORKS

UAVs have been receiving significant attention in wireless
communication due to their mobility and high altitude. For
instance, UAVs can act as aerial base stations, flying over
designated areas to provide reliable downlink and uplink
communication for ground users [10]–[13]. In the last decade,
more and more studies have emphasized the computation ca-
pacity of UAVs [14]–[24]. However, most existing research has
focused on the scenario of a single UAV for computation of-
floading [14]–[17]. Due to limited battery life and computation
capacity, a single UAV may fall short of providing sufficient
computation service for emerging artificial intelligence appli-
cations. Therefore, exploring a MEC system where multiple
UAVs collaboratively provide computation services for ground
users is a more suitable approach [18]–[24]. A multi-UAV-
enabled MEC system usually consists of three entities, i.e,

M2U Uplink U2E Downlink

UAV

EC

User

MEC server

Fig. 1: The multi-UAV-enabled MEC system.

UAVs, ground users and base stations. The interactions of
communication and computation between multiple UAVs and
ground users have been analyzed in [18], [19], while the
collaboration involving multiple UAVs, ground users, and a
single base station has been explored in [20], [21]. Only a
few recent studies consider a multi-UAV-enabled MEC system
where multiple UAVs and ground ECs collaboratively provide
the computation service for ground users. Based on game
theory and reinforcement learning, Asheralieva et al. [22]
studied a computation offloading and cooperation problem
in a multi-UAV-enabled MEC system, where privately-owned
UAVs are deployed as quasi-stationary base stations to co-
operate with privately-owned ground base stations. Zhao et
al. [23] formulated a joint trajectory designing, computation
task offloading, and communication resource allocation prob-
lem with the goal of minimizing the sum of execution delay
and energy consumption. Chen et al. [24] jointly optimized
UAV trajectory, ground user association, and transmit power
to minimize the weighted sum of the overall system latency
and energy consumption.

However, multi-UAV-enabled MEC systems face new chal-
lenges. Typically, the operational cycle of these systems is
constrained by the UAV with the shortest battery life. Hence,
the fairness of energy consumption among UAVs is crucial
to maintain the normal operation of the systems. Based on
this motivation, we aim to minimize the maximal energy con-
sumption among UAVs by jointly optimizing computation of-
floading decisions, communication and computation resource
allocation, UAV positions, and task splitting decisions, while
meeting the delay requirement of all tasks. To the best of our
knowledge, this is the first paper to investigate the min-max
fairness of energy consumption among UAVs for a multi-UAV-
enabled MEC system involving multiple UAVs, ground ECs
and IoT devices.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a multi-UAV-enabled
MEC system which consists of a set of UAVs k 2 K =

{1, . . . ,K}, a set of ground ECs j 2 J = {1, . . . , J} and
a set of ground IoT devices i 2 I = {1, . . . , I}. The IoT
devices are referred to as mobile users (MUs) in the rest of our
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paper. The UAVs are deployed to assist the MUs by providing
both communication and computation services. Specifically,
each MU first offloads the computation tasks to the associated
UAV. Then, the UAV processes a portion of the tasks locally
and relays the remaining tasks to ECs, ensuring all tasks meet
their delay requirements. In this wireless network setup, we
consider a scenario where a network provider collects the
state of the UAV network, which includes communication and
computation resources, IoT device locations, and so on. Then,
the provider executes the proposed algorithm to minimize the
maximal energy consumption among UAVs. We focus on two
major communications: MU-to-UAV (M2U) uplink communi-
cation and UAV-to-EC (U2E) downlink communication.

Without loss of generality, we assume each UAV is equipped
with a limited computational edge server powered by its
embedded batteries. On the other hand, the ground ECs, i.e.,
cellular base stations, are endowed with sufficient compu-
tation capabilities and are able to provide ultra-high-speed
transmission rates with the grid power supply. Each MU i

has ongoing time-intensive and computation-intensive tasks
Gi = (Si, Ci, ⇠i), where Si denotes the size of each input
task, Ci represents the required CPU cycles for processing 1-
bit of input task, and ⇠i indicates the task arrival rate. Besides,
we assume that the input tasks are bit-wise independent and
can be processed in a partial offloading fashion [25].

We denote the association between UAV k and MU i as
�i,k 2 {0, 1}. �i,k = 1 indicates MU i is associated with UAV
k; otherwise �i,k = 0. Considering each MU i is associated
with only one UAV, we have

X

k2K
�i,k = 1, 8i. (1)

After establishing an association with MU i and completing
the task transmission, UAV k will split the task into two parts:
one part to be processed onboard, denoted as ↵i,k,0 2 [0, 1],
and the other to be relayed to ground EC j, denoted as ↵i,k,j 2
[0, 1]. This can be modeled as the following constraint:

↵i,k,0 +

X

j2J
↵i,k,j = �i,k, 8i, k. (2)

In this paper, we represent the locations of MUs, UAVs
and ECs through the 3D Cartesian coordinate system. The
locations of ground MU i and EC j are denoted as Qi =

(xi, yi, 0) and Qj = (xj , yj , 0), respectively. According to
[26]–[29], we assume the UAVs fly at a fixed height H and
denote the location of UAV k as qk = (xk, yk, H). To avoid
collisions, the distance between any two UAVs must maintain
a minimum distance L

min. Thus, another constraint holds:

kqk0 � qkk2 � L
min

, 8k 6= k
0
, (3)

where k·k denotes the Euclidean norm of a vector.

A. Communication Model

We consider both the large-scale and small-scale fadings for
the M2U and U2E channels in this multi-UAV-enabled MEC

network [30]. Hence, the channel gains of M2U and U2E can
be defined by

hi,k = g̃i,kh̃i,k

=
h0

kQi � qkk2

 r
K

K + 1
+

r
1

K + 1
gi,k

!2

, (4)

hk,j = g̃k,j h̃k,j

=
h0

kQj � qkk2

 r
K

K + 1
+

r
1

K + 1
gk,j

!2

, (5)

respectively, where {g̃i,k, g̃k,j} and {h̃i,k, h̃k,j} are the large-
scale and small-scale fading coefficients of M2U and U2E
channels, respectively. h0 is the channel gain at a reference
distance of 1 meter [31], [32]. {gi,k, gk,j} 2 CN (0, 1) and K

is the Rician factor that corresponds to the ratio between the
LoS power and the scattering power 1.

We assume the frequency division multiple access (FDMA)
protocols are adopted in the M2U and U2E communications.
Besides, channel overlapping and interference are not con-
sidered in our scenario. After establishing the association
with MU i, UAV k will allocate B

M2U
i,k bandwidth for the

communication. Since the sum of allocated bandwidth cannot
exceed the total bandwidth of UAV k, we have the following
constraint on B

M2U
i,k :
X

i2I
B

M2U
i,k  B

M2U
k , 8k, (6)

where B
M2U
k denotes the total M2U bandwidth of UAV k.

Based on Shannon’s theorem, the achievable data transmis-
sion rate r

M2U
i,k from MU i to UAV k is described as

r
M2U
i,k = B

M2U
i,k log2(1 +

hi,kP
M2U
i

�2
), (7)

where P
M2U
i denotes the transmission power of MU i, �2 rep-

resents the additive white Gaussian noise (AWGN). Similarly,
the achievable data transmission rate r

U2E
i,k,j from UAV k to EC

j for the task of MU i can be written as

r
U2E
i,k,j = B

U2E
i,k,j log2(1 +

hk,jP
TX
k

�2
), (8)

where P
TX
k denotes the transmit power of UAV k and B

U2E
i,k,j

denotes the preset bandwidth from UAV k to EC j for MU i.
1) Communication Delay: In our system model, MUs need

to offload the computation tasks to the associated UAVs for
processing. The transmission delay from MU i to UAV k is
expressed as

d
M2U
i,k =

�i,kSi

r
M2U
i,k

. (9)

After UAV k receives the task from MU i, it will transmit the
portion ↵i,k,j of the task to EC j. Therefore, the transmission
delay from UAV k to EC j for the task of MU i is described
as

d
U2E
i,k,j =

↵i,k,jSi

r
U2E
i,k,j

. (10)

1Typically, K depends on the elevation angle between the UAVs and MUs
or ECs. However, for the sake of tractable analysis, this study assumes it to
be constant, which has been widely adopted in UAV communication scenarios
[30], [33], [34].
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2) Communication Energy Consumption: For receiving the
task from MU i, the communication energy consumption of
UAV k can be described as

E
M2U
i,k = d

M2U
i,k P

RC
k =

�i,kSiP
RC
k

r
M2U
i,k

, (11)

where P
RC
k is the receiving power of UAV k. Besides, the

energy consumption of UAV k for transmitting the task of
MU i to EC j can be expressed as

E
U2E
i,k,j = d

U2E
i,k,jP

TX
k =

↵i,k,jSiP
TX
k

r
U2E
i,k,j

. (12)

B. Computation Model

In this paper, we assume both UAVs and ECs adopt dy-
namic voltage and frequency scaling (DVFS) techniques [35],
[36], which can adjust CPU-cycle frequency according to the
offloaded task. After receiving the task from MU i, UAV k

will assign computation resource (i.e, CPU frequency) f
UAV
i,k

to compute the portion ↵i,k,0 of the task on board. Considering
the limited computation capacity of each UAV, we have

X

i2I
f

UAV
i,k  F

UAV
k , 8k, (13)

where F
UAV
k is the maximum computation capacity of UAV k.

Similarly, EC j will allocate computation resource f
EC
i,k,j to

process the portion ↵i,k,j of the task from MU i via UAV k.
The sum of allocated computation resources cannot exceed the
total computation resources of EC j. Therefore, we have the
following constraint on f

EC
i,k,j :

X

k2K

X

i2I
f

EC
i,k,j  F

EC
j , 8j, (14)

where F
EC
j is the maximum computation capacity of EC j.

1) Computation Delay: The computation delay d
UAV
i,k for

UAV k to process the task of MU i is given as

d
UAV
i,k =

↵i,k,0SiCi

f
UAV
i,k

. (15)

Likewise, the computation delay d
UAV
i,k,j for EC j to process

the task from MU i via UAV k is written as

d
EC
i,k,j =

↵i,k,jSiCi

f
EC
i,k,j

. (16)

2) Computation Energy Consumption: Similar to [37], the
energy consumption of UAV k for processing the task of MU
i is expressed as

E
UAV
i,k = (f

UAV
i,k )

3
d

UAV
i,k = ↵i,k,0SiCi(f

UAV
i,k )

2
, (17)

where  indicates the effective switched capacitance, which
depends on the CPU architecture.

C. Problem Formulation

In this paper, we are interested in minimizing the maximal
energy consumption among UAVs, while meeting the delay
requirement of all tasks. To define the energy consumption of
each UAV, we make the following assumptions: (i) the UAVs
can execute computation and transmission in parallel; (ii) the
UAVs only partition the task after receiving the entire task of
associated MUs; (iii) the partition-process time is neglected
in our model since it is very short compared with the entire
process; (iv) UAVs and ECs only compute the task at the end
of the transmission. Based on the above assumptions, the task
processing delay of MU i is expressed as

Di =

X

k2K
⇠i

⇣
d

M2U
i,k +max

j2J
(d

UAV
i,k , d

EC
i,k,j + d

U2E
i,k,j)

⌘
. (18)

Furthermore, the total communication and computation energy
consumption of UAV k to serve all MUs can be written as

Ek =

X

i2I
⇠i(E

UAV
i,k + E

M2U
i,k +

X

j2J
E

U2E
i,k,j). (19)

Our problem becomes jointly optimizing the M2U uplink
bandwidth B

M2U
i,k , M2U offloading decision �i,k, task partition

variables ↵i,k,0 and ↵i,k,j , computation resource allocation
of the UAV f

EC
i,k,j and EC f

EC
i,k,j , and UAVs position qk to

minimize the maximal energy consumption among the UAVs,
while meeting the delay requirement of all tasks. Let E =

{BM2U
i,k ,�i,k,↵i,k,0,↵i,k,j , f

UAV
i,k , f

EC
i,k,j , qk}. This optimization

problem can be formulated as

P1 : min
E

max
k2K

Ek (20a)

s.t. Di  T, 8i (20b)
B

M2U
i,k , f

UAV
i,k � 0, 8i, k (20c)

f
EC
i,k,j � 0, 8i, k, j (20d)
↵i,k,0,↵i,k,j 2 [0, 1], 8i, k (20e)
�i,k 2 {0, 1}, 8i, k (20f)
(1), (2), (3), (6), (13), (14), (20g)

where T denotes the delay requirement for tasks 2. Constraint
(20b) ensures the task is executed within the required time
period. Constraints (20c) and (20d) guarantee the communi-
cation and computation resources are non-negative. Constraint
(20e) states the values of partition variables are between 0 and
1. Constraint (20f) shows the offloading decisions are binary
variables.

IV. SOLUTION METHODOLOGY

Problem P1 is a complicated min-max MINLP. To tackle
this problem, we first utilize auxiliary variables to reformulate
the original problem into a feasible one. Then, we leverage an
SCA-based algorithm to solve the reformulated non-convex
problem through convex approximation.

2For simplicity, we assume that the delay requirement for each task is
identical. However, this assumption can be easily adapted to scenarios where
the delay requirements vary for different tasks.
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A. Problem Reformulation

To address the min-max problem in the objective function,
we adopt the auxiliary variable u , maxk2K Ek. Meanwhile,
vi,k , maxj2J (d

UAV
i,k , d

EC
i,k,j + d

U2E
i,k,j) is defined for linearizing

the task processing delay of MU i. Moreover, we relax the
binary association variable �i,k into a continuous variable
e�i,k 2 [0, 1]. Finally, the problem P1 can be reformulated as

P2 : min
{E,u,vi,k}

u (21a)

s.t. u � Ek, 8k (21b)
vi,k � d

UAV
i,k , 8i, k (21c)

vi,k � d
EC
i,k,j + d

U2E
i,k,j , 8i, k, j (21d)

Ti �
X

k2K
⇠i(d

M2U
i,k + vi,k), 8i, k (21e)

X

k2K

e�i,k = 1, 8i (21f)

0  e�i,k  1, 8i, k (21g)

↵i,k,0 +

X

j2J
↵i,k,j =

e�i,k, 8k, i (21h)

(3), (6), (13), (14), (20c), (20d), (20e). (21i)

However, P2 is still hard to solve due to the non-convex
constraints (21b), (21c), (21d) and (21e).

B. Successive Convex Approximation

Instead of expensive searching for the globally optimized
solution, we develop an SCA-based algorithm to address the
non-convex problem. To generate proper convex approxima-
tions, we utilize the following lemmas:

Lemma 1 (Example 3 in [38]): Consider a non-convex
constraint g(x)  0 which satisfies the SCA condition [38,
Assumption 3] and can be written as g(x) = h1(x) � h2(x)
with continuously differentiable convex h1 and h2. For any
y in the domain of g(x), we can linearize the concave part
�h2(x) and write the convex upper approximation of g(x) as

g(x)  eg(x;y) , h1(x)� h2(y)�rxh2(y)
>
(x� y).

(22)

Lemma 2 (Example 4 in [38]) : Consider a non-convex
constrain g(x)  0 which satisfies the SCA condition [38,
Assumption 3] and can be written as g(x) = f1(x)f2(x) with
differentiable convex non-negative f1 and f2. For any y in the
domain of g(x), the convex upper approximation of g(x) is
given as

g(x)  eg(x;y) , 1

2
(f1(x) + f2(x))

2 � 1

2
(f

2
1 (y) + f

2
2 (y))

� f1(y)f
0
1(y)(x� y)� f2(y)f

0
2(y)(x� y)

(23)

Based on the above lemmas, the non-convex terms d
UAV
i,k in

constraint (21c) can be written as

d
UAV
i,k = SiCif1(↵i,k,0)f2(f

UAV
i,k ), (24)

where f1(↵i,k,0) = ↵i,k,0 and f2(f
UAV
i,k ) = 1/f

UAV
i,k . Given

the feasible solutions ↵i,k,0(n) and f
UAV
i,k (n) for the n-th

iteration of SCA-based algorithm, we can derive a convex
upper approximation of dUAV

i,k by utilizing Lemmas 2 as

d
UAV
i,k  edUAV

i,k

⇣
↵i,k,0, f

UAV
i,k ;↵i,k,0(n), f

UAV
i,k (n)

⌘
, SiCi

"

1

2

✓⇣
↵i,k,0 +

1

f
UAV
i,k

⌘2
�
⇣
↵i,k,0(n)

⌘2
�
⇣

1

f
UAV
i,k (n)

⌘2◆
�

↵i,k,0(n)

⇣
↵i,k,0 � ↵i,k,0(n)

⌘
+

⇣
1

f
UAV
i,k (n)

⌘3⇣
f

UAV
i,k �

f
UAV
i,k (n)

⌘#
.

(25)

In the non-convex constraint (21d), dU2E
i,k,j can be written as

a product of Si, ↵i,k,j and 1/r
U2E
i,k,j . We cannot directly apply

Lemma 2 since 1/r
U2E
i,k,j is non-convex. To address this non-

convexity, we define non-negative auxiliary variables �i,k,j to
replace r

U2E
i,k,j and obtain the following:

d
U2E
i,k,j = Sif1(↵i,k,j)f2(�i,k,j), (26)

where f1(↵i,k,j) = ↵i,k,j and f2(�i,k,j) = 1/�i,k,j . Then, we
can leverage Lemmas 2 and the feasible solutions ↵i,k,j(n),
�i,k,j(n) of problem P2 to derive a convex upper approxima-
tion of dU2E

i,k,j for the n-th iteration of SCA-based algorithm:

d
U2E
i,k,j  edU2E

i,k,j

⇣
↵i,k,j ,�i,k,j ;↵i,k,j(n),�i,k,j(n)

⌘
, Si

"

1

2

✓⇣
↵i,k,j +

1

�i,k,j

⌘2
�
⇣
↵i,k,j(n)

⌘2
�
⇣

1

�i,k,j(n)

⌘2◆
�

↵i,k,j(n)

⇣
↵i,k,j � ↵i,k,j(n)

⌘
+

⇣
1

�i,k,j(n)

⌘3⇣
�i,k,j�

�i,k,j(n)

⌘#
.

(27)

Similarly, we rewrite the non-convex term d
EC
i,k,j in con-

straint (21d) as

d
EC
i,k,j = SiCif1(↵i,k,j)f2(f

EC
i,k,j), (28)

where f1(↵i,k,j) = ↵i,k,j and f2(f
EC
i,k,j) = 1/f

EC
i,k,j . By apply-

ing Lemma 2 and utilizing the feasible solutions ↵i,k,j(n),
f

UAV
i,k,j(n) of problem P2, we can derive a convex upper

approximation of d
EC
i,k,j for the n-th iteration of SCA-based

algorithm:

d
EC
i,k,j  edEC

i,k,j

⇣
↵i,k,j , f

UAV
i,k ;↵i,k,j(n), f

UAV
i,k,j(n)

⌘
, SiCi

"

1

2

✓⇣
↵i,k,j +

1

f
EC
i,k,j

⌘2
�
⇣
↵i,k,j(n)

⌘2
�
⇣

1

f
EC
i,k,j(n)

⌘2◆
�

↵i,k,j(n)

⇣
↵i,k,j � ↵i,k,j(n)

⌘
+

⇣
1

f
EC
i,k,j(n)

⌘3⇣
f

EC
i,k,j�

f
EC
i,k,j(n)

⌘#
.

(29)
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To process the non-convex term d
M2U
i,k in constraint (21e),

we define r̄
M2U
i,k , log2(1 +

hi,kP
MU
i

�2 ) and substitute it with
a non-negative auxiliary variable µi,k, then rewrite the non-
convex term d

M2U
i,k as

d
M2U
i,k =

1

2
Si

h
(

1

B
M2U
i,k µi,k

+ �i,k)
2

| {z }
h1

�( 1

B
M2U
i,k µi,k

)
2 � (�i,k)

2

| {z }
h2

i
.

(30)

Note that h1 is convex and h2 is concave in (30), which
satisfies the requirement of Lemma 1. Given the feasible
solutions B

M2U
i,k (n), µi,k(n), and �i,k(n) of problem P2, we

can derive a convex upper approximation of dM2U
i,k for the n-th

iteration of SCA-based algorithm as

d
M2U
i,k  edM2U

i,k

⇣
B

M2U
i,k , µi,k,�i,k;B

M2U
i,k (n), µi,k(n),�i,k(n)

⌘
,

Si

"
1

2

✓⇣
1

B
M2U
i,k µi,k

+ �i,k

⌘2
�
⇣

1

B
M2U
i,k (n)µi,k(n)

⌘2
�

⇣
�i,k(n)

⌘2◆
�
⇣
�i,k(n)

⌘⇣
�i,k � �i,k(n)

⌘
+

⇣
B

M2U
i,k �B

M2U
i,k (n)

⌘

⇣
B

M2U
i,k (n)

⌘3⇣
µi,k(n)

⌘2 +
(µi,k � µi,k(n))⇣

µi,k(n)

⌘3⇣
B

M2U
i,k (n)

⌘2

#
.

(31)

Moreover, we can rewrite the non-convex term E
UAV
i,k in

constraint (21b) as

E
UAV
i,k = SiCif1(↵i,k,0)f3(f

UAV
i,k ), (32)

where f1(↵i,k,0) = ↵i,k,0 and f3(f
UAV
i,k ) = (f

UAV
i,k )

2. Using
Lemma 2 and the feasible solutions ↵i,k,0(n) and f

UAV
i,k (n) of

problem P2, we can derive a convex upper approximation of
E

UAV
i,k for the n-th iteration of SCA-based algorithm as

E
UAV
i,k  eEUAV

i,k

⇣
↵i,k,0, f

UAV
i,k ;↵i,k,0(n), f

UAV
i,k (n)

⌘
, SiCi

"

1

2

✓⇣
↵i,k,0 + (f

UAV
i,k )

2
⌘2
�
⇣
↵i,k,0(n)

⌘2
�
⇣
f

UAV
i,k (n)

⌘4◆
�

↵i,k,0(n)

⇣
↵i,k,0 � ↵i,k,0(n)

⌘
� 2

⇣
f

UAV
i,k (n)

⌘3⇣
f

UAV
i,k �

f
UAV
i,k (n)

⌘#
.

(33)

Additionally, we represent the convex upper approximation
of non-convex terms E

M2U
i,k and E

U2E
i,k,j using the derived edM2U

i,k

and edU2E
i,k,j :

E
M2U
i,k  eEM2U

i,k , edM2U
i,k P

RC
k , (34)

E
U2E
i,k,j  eEU2E

i,k,j , edU2E
i,k,jP

TX
k . (35)

Then, we obtain the convex approximation of the UAV energy
consumption Ek as

eEk ,
X

i2I
⇠i(
eEUAV
i,k + eEM2U

i,k +

X

j2J

eEU2E
i,k,j). (36)

Recall that we utilize auxiliary variables µi,k = r̄
M2U
i,k and

�i,k,j = r
U2E
i,k,j . In order to further tackle this non-convex

problem, we relax the auxiliary variables as

0  µi,k  r̄
M2U
i,k , (37)

0  �i,k,j  r
U2E
i,k,j . (38)

Note that r̄
M2U
i,k and r

U2E
i,k,j are non-negative convex functions

with respect to kQi � qkk2 and kQj � qkk2. Given the fea-
sible solutions qk(n) of problem P2, we can leverage the
first-order Taylor expansions of r̄M2U

i,k and r
U2E
i,k,j as their lower

bounds for the n-th iteration of SCA-based algorithm [39]:

r̄
M2U
i,k � r̄

M2U
i,k,LB

⇣
qk; qk(n)

⌘
, r̄

M2U
i,k

⇣
qk(n)

⌘

�
⇣i,k

⇣
kQi � qkk2 � kQi � qk(n)k2

⌘

ln 2

⇣
kQi � qk(n)k2

⌘⇣
⇣i,k + kQi � qk(n)k2

⌘ , (39)

where ⇣i,k , h0P
M2U
i

⇣q
K

K+1 +

q
1

K+1gk,j

⌘2
/�

2 and

r
U2E
i,k,j � r

U2E
i,k,j,LB

⇣
qk; qk(n)

⌘
, r̄

U2E
i,k,j

⇣
qk(n)

⌘

�
B

U2E
i,k,j⌘k

⇣
kQj � qkk2 � kQj � qk(n)k2

⌘

ln 2

⇣
kQj � qk(n)k2

⌘⇣
⌘k,j + kQj � qk(n)k2

⌘ , (40)

where ⌘k,j , h0P
TX
k

⇣q
K

K+1 +

q
1

K+1gk,j

⌘2
/�

2. Then we
can obtain the approximated convex constraints by replace
r̄

M2U
i,k and r

U2E
i,k,j with their lower bounds in (37) and (38):

0  µi,k  r̄
M2U
i,k,LB

⇣
qk; qk(n)

⌘
, (41)

0  �i,k,j  r
U2E
i,k,j,LB

⇣
qk; qk(n)

⌘
. (42)

Note that kqk0 � qkk2 are convex with respect to (qk0�qk).
Similarly, given two feasible UAV positions qk0(n) and qk(n),
we apply the first-order Taylor expansion to kqk0 � qkk2 and
obtain its lower bound for the n-th iteration of SCA-based
algorithm [39]:

kqk0 � qkk2 � Lk0,k,LB

⇣
qk0 , qk; qk0(n), qk(n)

⌘
,

� kqk0(n)� qk(n)k2 + 2

⇣
qk0(n)� qk(n)

⌘>⇣
qk0 � qk

⌘
.

(43)

Finally, we define the set of decision variables as  =

(B
M2U
i,k , e�i,k,↵i,k,0,↵i,k,j , f

UAV
i,k , f

EC
i,k,j , qk, µi,k,�i,k,j , u, vi,k).

Given a feasible solution  (n) of problem P2 for the n-th
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Algorithm 1 SCA-based algorithm

Input: Initialize  (0). Set n = 0,� = 0.5,✓(n) 2 (0, 1], and
a threshold �.

1: repeat

2: Compute  ̂( (n)), the solution of problem P3;
3: Set  (n + 1) =  (n) + ✓(n)( ̂( (n)) �  (n)), with

✓(n) = ✓(n� 1)(1� �✓(n));
4: Set n n+ 1.
5: until k (n+ 1)�  (n)k  �

Output:  
⇤.

iteration of the SCA-based algorithm, we reformulated
problem P2 as

P3 : min
 

u (44a)

s.t. u �
X

i2I
⇠i

✓
eEUAV
i,k

⇣
 ; (n)

⌘
+ eEM2U

i,k

⇣
 ; (n)

⌘

+

X

j2J

eEU2E
i,k,j

⇣
 ; (n)

⌘◆
, 8k (44b)

vi,k � edUAV
i,k

⇣
 ; (n)

⌘
, 8i, k (44c)

vi,k � edEC
i,k,j

⇣
 ; (n)

⌘
+ edU2E

i,k,j

⇣
 ; (n)

⌘
,

8i, k, j (44d)

Ti �
X

k2K
⇠i

✓
edM2U
i,k

⇣
 ; (n)

⌘
+ vi,k

◆
, 8i, k

(44e)

Lk0,k,LB

⇣
 ; (n)

⌘
� L

min
, 8k0 6= k (44f)

0  µ
M2U
i,k  r

M2U
i,k,LB

⇣
 ; (n)

⌘
, 8i, k (44g)

0  �U2E
i,k,j  r

U2E
i,k,j,LB

⇣
 ; (n)

⌘
, 8i, k, j (44h)

(6), (13), (14), (20c)� (20e), (21f)� (21h). (44i)

The problem P3 is a convex problem that can be easily
solved by the interior point method (IPM) [39]. We denote the
solution of this problem as  ̂( (n)) and summarize the SCA-
based algorithm in Algorithm 1. The proof for the convergence
of SCA can be found in [40], and the algorithm will terminate
after a finite number of iterations if a suboptimal solution
exists. If the association variable e�i,k in the solution of
problem P3 is integer, this means that the solution of problem
P1 has also been found. However, if the association variable
e�i,k in the solution of problem P3 is fractional, we cannot
simply round it off, as such solutions are not desirable and may
even be infeasible. Therefore, we develop a binary variables
recovery algorithm to obtain the approximated integer solution
for problem P1. In each iteration of the algorithm, we round
off the largest e�i,k to 1, because such an association is more
likely to be the optimal one. The details of the binary variables
recovery algorithm are shown in Algorithm 2.

V. NUMERICAL EXPERIMENTS

In this section, we conduct extensive numerical experiments
to evaluate the performance of our proposed SCA-based algo-

Algorithm 2 Binary variables recovery algorithm for problem
P1

Input: Set M = ;, j = 0.
1: while j  I do

2: Solve the problem P3 using Algorithm 1 with fixed
{e�i,k = 1|i 2M, k 2 K} and obtain  (j).

3: Find the maximum decision value {e�ĩ,k |̃i 2 I \M, k 2
K}.

4: Set M = M [ ĩ.
5: Set j = j + 1;
6: end while

Output:  ⇤ with the recovered binary variables {�i,k = 1|i 2
M, k 2 K} and {�i,k = 0|i 2 I \M, k 2 K}

rithm. All simulations are implemented in MATLAB R2020a
running on a desktop computer with a 3.2 GHz IntelR CoreTM

i7-8700 CPU and 16 GB of RAM with CVX [43].

A. Simulation Setup

In our simulation, a 1 ⇥ 1 km
2 square area is considered,

where 30 MUs are uniformly distributed, and 4 ECs are located
at each vertex. In order to guarantee the MUs complete their
tasks within the time period T = 2.5 s, 3 UAVs hover at the
fixed altitude H = 100 m to provide relaying and computation
services. Unless otherwise specified, the rest of our simulation
parameters are given in Table I.

As stated in Section I, our system setting, which comprises
multiple UAVs, ground MUs, and ECs, is different from prior
works. Moreover, our objective is also unique. Their proposed
approaches can not be directly applied to our scenario. There-
fore, we set four special cases as baselines: 1) Random UAV
position scheme (RUP): The UAVs are randomly deployed
without optimization; 2) Fixed computation resource alloca-
tion scheme (FCP): The computation resources of each UAV
are equally allocated to each task; 3) Fixed communication
resource allocation scheme (FCM): The communication re-
sources of each UAV are equally allocated to MUs; 4) Fixed
task splitting decisions scheme (FTS): The portions of tasks
that are processed at UAVs and ECs are equal. Note that
the baseline schemes also leverage the proposed algorithm to
optimize other variables.

B. Experimental Results

In this section, we first demonstrate the performance of the
proposed multi-UAV-enabled MEC system. Then, we analyze

TABLE I: simulation parameters

Parameters Values Parameters Values
PRC
k 0.1 W P TX

k 1 W

� 10
�3 T 2.5 s

 10
�28 [41], [42] Si [1,10] Mbits

Ci [50,200] CPU cycles/bit ⇠i 30 tasks/min

h0 -50 dB �2 -100 dBm

FUAV
k 3 GHz F EC

j [15,30] GHz

BM2U
k 10 MHz BU2E

i,k,j 1 MHz

Lmin 10 m
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1 2 4 6 8 10 12 14 16 18 20 22 24

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Fig. 2: Convergence of algorithm 1.

the impacts of various parameters on the system performance.
Finally, we compare our proposed multi-UAV-enabled MEC
system with the four baselines.

1) Performance of the multi-UAV-enabled MEC system:

Fig. 2 depicts the convergence of algorithm 1. As the ten-
dency shows, we keep optimizing the maximum energy con-
sumption among UAVs until reaching the stationary status.
Fig. 3 demonstrates the optimal position of UAVs in the
proposed system, where various colors represent the different
associations between UAVs and MUs. Particularly, we can
obtain the optimal position of UAVs with corresponding UAV
coordinates: (334, 490, 100), (619, 652, 100), and (564, 302,
100). Furthermore, Figure 4 illustrates the optimal ratios for
executing tasks in UAVs and ECs. As shown, the UAVs can
independently process small tasks (e.g., 1 Mbits from MU
15). However, for large tasks (e.g., 10 Mbits from MU 2),
a collaboration between the UAVs and ECs is necessary to
ensure the tasks are completed in time.

2) Impact of the delay requirement: In this part, we
investigate how the delay requirement of tasks affects the

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

ECs

UAV1

UAV2

UAV3

MUs-UAV1

MUs-UAV2

MUs-UAV3

Fig. 3: Simulation result of the proposed multi-UAV-enabled MEC
system (I = 30,K = 3, J = 4).

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

 i,k,1

 i,k,2

 i,k,3

 i,k,4

 i,1,0

 i,2,0

 i,3,0

Fig. 4: Optimal task splitting ratios of the UAVs ↵i,k,0 and ECs
↵i,k,j (k = 1, 2, 3, j = 1, 2, 3, 4) for MUs i (i = 1, 2, . . . , 30).

system performance in terms of the total energy consump-
tion, communication, and computation energy consumption
for each UAV. From Fig. 5(a), we can observe the total
energy consumption of each UAV remains at the same level
across various delay requirements. This result verifies that our
proposed algorithm can achieve min-max fairness of energy
consumption among UAVs under different delay requirements.
Meanwhile, Fig. 5(a) also indicates the total energy consump-
tion of each UAV decreases as the delay requirement increases.
As mentioned in Section III, the total energy consumption
comprises the communication and computation energy con-
sumption. Fig. 5(b) and Fig. 5(c) further demonstrate the
details of this. These two figures show that the computation en-
ergy consumption increases, while the communication energy
consumption decreases as the delay requirement increases.
The reason is that the total tasks cannot be processed on
the UAVs when the value of the delay requirement is small.
The UAVs have to further offload a large portion of tasks
that exceed their computing capacity to the ECs. When the
delay requirement increases, the UAVs have more time to
process tasks onboard, which enables them to offload fewer
tasks to the ECs. Moreover, these two figures also depict
that the communication and computation energy consumption
experience a slight fluctuation. The main reason is that our
objective is to minimize the maximal total energy consumption
among UAVs. Even though the value of objective function
monotonously decreases, the components (i.e., computation
and communication energy consumption) may fluctuate.

3) Impact of single UAV transmission power: In this part,
we study the impact of a single UAV transmission power on
the system performance in terms of total energy consumption,
communication, and computation energy consumption. To that
end, we increase the transmission power of UAV 3 from
1 to 5 W, while keeping the transmission powers of the
other two UAVs unchanged. As demonstrated in Fig. 6(a),
the total energy consumption of each UAV increases as the
transmission power of UAV 3 increases. This is due to the
fact that U2E energy consumption is an increasing function
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Fig. 5: The impact of delay requirement on the system performance.
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(a) Total energy consumption
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(b) Computation energy consumption
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1
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1.2

1.25

(c) Communication energy consumption

Fig. 6: The impact of UAV 3 transmission power on the system performance.

of the UAV’s transmission power. As the transmission power
of UAV 3 increases, it consumes more energy to offload the
same task to the ECs. To mitigate this energy cost, more
tasks are offloaded to the other two UAVs, and fewer tasks
are offloaded to UAV 3. Specifically, as shown in Fig. 6(b),
we can observe that the computation energy consumption of
UAV 3 reduces, while such energy consumption of the other
two UAVs slightly increases as the transmission power of UAV
3 increases. Moreover, unlike the significant fluctuation in
computation energy consumption shown in Fig. 6(b), Fig. 6(c)
indicates that the communication energy consumption of each
UAV monotonously increases as the transmission power of
UAV 3 increases. The reason is that the communication
energy consumption of each UAV dominates its overall energy
consumption.

4) Benefits of the multi-UAV-enabled MEC system: In this
part, we compare the system performance of the proposed
scheme with different baselines in terms of reducing the
maximum energy consumption among UAVs. Specifically,
we investigate how maximum energy consumption among
UAVs behaves as the delay requirement and a single UAV
transmission power change, respectively. As depicted in Fig. 7,
our proposed multi-UAV-enabled MEC scheme has the low-
est maximum energy consumption among all schemes under

various delay requirements. Particularly, the proposed scheme
can save up to 4.2%, 4.4%, 27.1%, and 59.0%, compared with
RUP, FCP, FCM, and FTS on maximum energy consumption
among UAVs, respectively. Furthermore, we observe that the
maximum energy consumption among UAVs of all schemes
decreases as the delay requirement increases, except for FTS,
which remains unchanged. The reason for this observation is
that the computation capacity of ECs is not fully utilized
when the task-splitting ratio is fixed. It also indicates that
optimizing the collaboration between UAVs and ECs brings
crucial performance gains. Moreover, we can see that RUP and
FCP perform better than the FCM. The reason is that com-
munication energy consumption dominates the overall energy
consumption and significantly affects the system performance.
Next, we explore how the system performance changes as
the transmission power of UAV 3 increases from 1 to 5

W. Fig. 8 shows that the proposed scheme performs best
among all schemes in the various UAV 3 transmission power
settings. Specifically, the proposed scheme can save up to
9.8%, 5.1%, 25.2%, and 37.4%, compared with RUP, FCP,
FCM, and FTS on maximum energy consumption among
UAVs, respectively. Additionally, we can observe that the
maximum energy consumption among UAVs increases as the
transmission power of UAV 3 increases. From the above two
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Fig. 7: Maximum energy consumption among UAVs as a function of
delay requirement assigned to tasks
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Fig. 8: Maximum energy consumption among UAVs as a function of
UAV 3 transmission power P TX

i,3,j (j = 1, . . . , 4 and i = 1, 2, . . . , 30)
while fixing the others at 1 W.

simulation results, it can be seen that our proposed scheme
significantly outperforms others in reducing the maximum
energy consumption among UAVs, which verifies the benefits
of the proposed scheme in processing computation-intensive
and latency-critical tasks.

VI. CONCLUSION

In this paper, we have proposed a multi-UAV-enabled MEC
architecture where multiple UAVs are deployed to facilitate
the communication and computation of ground IoT devices
in signal-blocked and shadowed environments. In order to
achieve the min-max fairness of energy consumption among
UAVs and prolong the service cycle for the multi-UAV-
enabled MEC system, we have formulated an optimization
problem to minimize the maximal energy consumption among
UAVs by jointly optimizing computation offloading decisions,
communication and computation resource allocation, UAV
positions, and task splitting decisions while meeting the delay

requirement of all tasks. The resulting optimization problem
is MINLP, which is hard to solve. To tackle this problem, we
have designed an efficient SCA-based algorithm to obtain a
suboptimal solution. Numerical results show that our proposed
multi-UAV-enabled MEC scheme outperforms various baseline
schemes in processing computation-intensive and latency-
critical tasks. The proposed scheme can provide valuable
insights into the cooperation between UAVs and ground ECs
in the next-generation wireless networks. In the future, we will
extend our work to the energy-efficient multi-UAV-enabled
MEC design considering UAV trajectory.
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