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Abstract

In recent years, the increasing complexity and safety-critical nature
of robotic tasks have highlighted the importance of accurate and reli-
able robot models. This trend has led to a growing belief that, given
enough data, traditional physics-based robot models can be replaced by
appropriately trained deep networks or their variants. Simultaneously,
there has been a renewed interest in physics-based simulation, fueled
by the widespread use of simulators to train reinforcement learning al-
gorithms in the sim-to-real paradigm. The primary objective of this
review is to present a unified perspective on the process of determin-
ing robot models from data, commonly known as system identification
or model learning in different subfields. The review aims to illumi-
nate the key challenges encountered and highlight recent advancements
in system identification for robotics. Specifically, we focus on recent
breakthroughs that leverage the geometry of the identification problem
and incorporate physics-based knowledge beyond mere first-principles
model parameterizations. Through these efforts, we strive to provide a
contemporary outlook on this problem, bridging classical findings with
the latest progress in the field.



1. INTRODUCTION

In recent years, the field of robotics has witnessed a significant increase in the complexity
and importance of safety in robotic tasks. Notable examples include legged robots capable of
running and performing highly athletic motions, as well as manipulators and multi-fingered
hands executing dexterous, non-prehensile manipulation tasks. The growing complexity of
these tasks has highlighted the necessity for accurate and dependable robot models.

Traditionally, physics-based dynamic models have been the go-to approach for approx-
imating the input-output behavior of robots. These models rely on principles derived from
classical mechanics to describe the robot’s motion and interaction with the environment.
Recently, pure data-driven approaches, e.g., from machine learning, have gained momentum
as they offer the possibility of learning robot models directly from data without explicitly
modeling the underlying physics. These approaches aim to reconstruct input-output behav-
ior solely based on observed data, leveraging the power of statistical learning techniques.
This shift towards pure data-driven models has sparked a discussion about their potential
to augment or even replace traditional physics-based models in certain contexts.

In fact, the problem of approximating the input-output behavior of a system from data,
referred to as the system identification or model learning problem, has a long history in
robotics. Earlier approaches to robot model identification aimed to improve the accuracy of
the physical parameters of physics-based models by collecting joint kinematics and torque
data. After all, the availability, coverage, and quality of the data samples play a central
role in accurately approximating reality in both physics-based and physics-free approaches.
Unfortunately, acquiring extensive and sufficiently rich data from real robotic systems can
be challenging, particularly for complex systems and when safety concerns arise. Even for
mechanics-based models, identifying a minimal set of parameters that represents the rigid-
body dynamics of a standard humanoid structure (often requiring hundreds of parameters)
becomes highly challenging, particularly in terms of generalizing the model predictions
across unforeseen initial states and system inputs.

One of the primary objectives of this review is to provide a unified perspective on the
system identification problem across the robotics and machine learning literature. It aims
to shed light on the challenges encountered in identifying accurate and reliable models for
different types of robots, as well as the recent advancements in system identification within
the robotics domain. The intended audience comprises individuals with a background in
machine learning who seek to comprehend the challenges and recent advances in system
identification for robotics, as well as those with a background in robotics who are interested
in the recent progress of methods that go beyond mechanics-based parameterizations for
modeling physical systems.

Of course, this review does not aim to provide an exhaustive review of all system identifi-
cation and model learning methods. Rather, it focuses on recent advances that appeal more
to incorporating domain-specific (physics-based) knowledge to develop sample-efficient and
robust methods that go beyond classical parameterizations, yet without treating system
identification as a complete black-box function approximation problem. By doing so, it
aims to provide a modern perspective on the problem.

The remainder of the paper is structured as follows. Section 2 gives a background on the
problem of model learning for nonlinear systems, emphasizing a general viewpoint on the
problem often adopted in the machine learning literature. We use this section to motivate
the main challenges facing dynamic modeling and identification, and then, in Section 3 detail
the more specific structure of the problem for robot model identification. We concentrate
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on the classical problem of identifying inertial parameters of a mechanism, and in Section 4
we describe recent advances that leverage the geometric structure of rigid-body inertial
parameters to improve the efficiency and learning of dynamic models. Section 5 then moves
beyond this classical setting and discusses more recent paradigms that are physics informed,
while offering more model-form flexibility. Section 6 concludes the article.

2. BACKGROUND ON DYNAMIC MODEL IDENTIFICATION AND
LEARNING

In this Section, we briefly overview the essential procedures and challenges for general
nonlinear system identification problems with the primary aim of bridging approaches to
system identification in robotics and model learning in machine learning.

Consider the true state-space nonlinear system dynamics of the form,

Ti41 = f(m’t,ut,wt) 1.

Yt h(:ct,ut,et)

where z; € X C R" is the state, us € U is the control input, w; € W is the process noise, and
yt € Y is the output measurement with ¢; € £ being the measurement noise. The system
identification problem typically begins by selecting the set of model candidates, which is
assumed to include within it the true system dynamics. Let us consider parametric model
classes My = {fo : XxUXW = X |0 € O} and M}, = {hg : X xUXE — YV | 0 € O} where
a particular instantiation of the system dynamics with parameter 6 is given as follows'?,

Ti4+1 = fg(xt,ut,wt) 2.

ye = ho(xe, ue, €)

By executing a series of control inputs wui1,--- ,un, one collects a finite number of data
samples, D = {u1,y1, -+ ,un,yn}, from the true system in the real world. Then, the goal
is to find the model parameter vector 6 that best matches the input-output behavior of
the true system dictated by the collected data and the selected model class M. For this,
it is essential to define an error criterion to be optimized between the true system and
the model based on the finite number of data samples. Such a criterion should provide a
statistically meaningful objective and/or be informed by the specific usage of the identified
model in practice. It is worth noting that, in reality, this process is often not a one-shot
ordeal. During validation of the identified model, deficiencies can be exposed due to multiple
factors such as the choice of model class M, quality and sufficiency of data samples, the
choice of error criterion, or even the parameter estimation algorithms employed.

1The present description of the model is often called a grey-box model in nonlinear control
systems literature (1). For a more general, comprehensive treatment of nonlinear system models
and the associated identification problem, readers are encouraged to refer to (2).

2 Also, we note that the collection of state variables x¢ or their representation within the dynamics
model may not generally be identical to the one for the true system. For example, one may choose
to neglect the effect of thermodynamics or aerodynamics for modeling the rigid body dynamics of
a robot manipulator. The state representation itself can also be auxiliary and learned from data,
which is common in learning-based approaches with camera images as outputs (3)
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2.1. Parameter Identifiability (...That Matters, or Does it?)

The concept of structural identifiability asks the question of whether different model in-
stances within the model class “uniquely” represent different input-output behaviors. More
formally, a particular parameterized model class is said to be structurally identifiable, if the
parameters can be uniquely determined from the input-output behavior, i.e., if y(61) = y(02)
for all inputs, then 6; = 62. This property naturally leads to the uniqueness and existence of
the solution 6 to the identification problem, yet with the conditions that the true system is
within the specified model class and an infinite amount of data that covers all cases is avail-
able. Given that the amount of data collectible from robots is always finite, a more viable
description of identifiability to practitioners may be described by accounting for the statis-
tical precision of the parameter estimates. Practically identifiable parameters for a given
dataset can be considered as ones with confidence intervals smaller than some threshold.

Meanwhile, it is noted that the concept of parameter identifiability pertains to a
parameter-centric view of the model identification process; how accurate do the estimated
parameters  revealed from data match the true values? This aspect is less relevant with
data-driven learning using black-box models such as deep neural network models since pa-
rameters therein are not interpretable, and do not often provide a unique construction of
input-output behavior. On the other hand, parameters within mechanics-based models,
such as mass, inertia, and stiffness, have tangible and physical meanings that analytically
relate to the global description of physical behaviors of a system.

Above all, system identification is all about the statistical approximation of the input-
output behavior of a system. Then, how can we systematically integrate our understanding
of physical parameters into statistical parameter identification of mechanics-based models
for improved robustness? Further, how can we construct an extended class of parameterized
models that globally relate to our understanding of physical behaviors of robotic systems?
Here, we hold our discussion (which is to be resumed in Sections 4 and 5), and from below,
we present generic formulations to the data-driven model identification problem and source
of errors in the identification process.

2.2. On the Choice of Error Criterion

Employing statistical motivations to construct the error criterion is common in system iden-
tification. To explain, one can define a joint probability density function for the output data
samples, pg(y1:~|u1:n), induced from the stochastic nonlinear dynamics model in Equations
2 and 3.® Then, the Maximum Likelihood Estimation (MLE) formulation for approximating
0 can be written as minimizing the negative log-likelihood function L(0), i.e.,

L(0) = —logpe(yi:n|uL:N) 3.

While the joint probability density function is, in general, computationally intractable, the
incorporation of practically viable structure in the model allows computationally tractable
algorithms for estimating 6 in practice. For instance, let us consider the case of a noise-free
full-state measurement model, i.e., zi41 = fo(x¢, ut,wi), y¢ = x¢. Then, the MLE objective

3Here, we omit the dependence of the joint probability density with respect to the initial state
o, and assume it is given.
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Equation error criteria consider the error in a one-step prediction, while simulation error criteria
consider the accumulation of model mismatch over trajectories or multi-step predictions. From a
continuous-time view, the equation error criteria correspond to the difference between the vector
fields of the dynamic models, while the simulation error is calculated based on the difference
between their integral curves.

can be decomposed as follows:

N
L(9) = _ZIOgPG(iﬂﬂl’tfhutfl), 4.

t=1

where the probability density function pg(z¢|zt—1,ut—1) can now be solely defined by the
dynamic model, Equation 2. A different likelihood function (given that x:+1 and w; is
one-to-one for every fixed z¢,ut¢) can be considered as4,

—Zlogp(wt), st.  xer1 = fo(ze, ut,we) for t=0,--- ,N—1 5.

These types of formulations are commonly referred to as employing an equation error or
one-step-ahead prediction error criteria. Loosely speaking, the parameters are optimized to
fit the average error in the local state transition dynamics.

On the other hand, another class of error criteria that deserves attention is the so-called
simulation error criterion, which aims at minimizing the deviation between the measured
outputs and the ones simulated or integrated using the model (4, 5, 6). To illustrate, the
simulation error criterion can be typically given in the form,

N
0) = l&: — (i, 0)II", 6.
i=1

where Z; is the state measurement and x,(7, 6) is the i-step ahead prediction of the state
by simulating with the model, i.e., z5(i,0) = fo(zs(i — 1,0),u;—1) for = 1,--- | N with
25(0,0) = zo. It should be noted that the simulation error also admits the maximum
likelihood interpretation under full-state measurement with white Gaussian noise and noise-
free state dynamics, i.e., T441 = f(xt,ut), Yo = &+ = x4 + €, where e, ~ N (0, 021). More

4The objective in Equation 5 is, in general, different from that in Equation 4, since
log po(xt+1|zt,ut) = logp(wt) — logdet (Oz¢41/0we). However, if Ox¢y1/0w: is constant, e.g.,
Ti+1 = fo(wt,ut) + we, they are identical.
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generally, an output error criterion can be defined as minimizing the simulated error on the
output, i.e., L(0) = Y10, [lyi — ho(zs(i,0))|.

Without statistical grounding, the simulation error criterion is inherently different from
the equation error criterion in that it reflects the parametric estimation error more globally,
rather than locally, by directly integrating the system dynamics model over time. In that
regard, the simulation error criterion better exposes the nature of the system identification
problem in that it is not simply a “static” estimation problem but involves dynamics that
relate to the sequential input-output behavior of the system. Some errors in the parameters
that contribute to minor effects in the equation error can lead to severe deviation from the
true system dynamics over time. For instance, consider a simple 1-D mass-damper system,
i.e., m§+ dq = 0, where m is the mass and d is the damping coefficient. While any possible
bounded estimation error on the mass and damping coefficients only leads to bounded equa-
tion error, errors that lead to negative values in any of these parameters lead to an unstable
forward simulation of the dynamics that can produce exponentially diverging simulation
error over time (i.e., ¢ = go exp (—td/m)). For this reason, minimizing simulation errors are
generally more appealing to increase the simulation fidelity or for use in receding-horizon
predictive control, or model-based RL. However, compared to equation error approaches,
they are usually highly computationally demanding, requiring iterative simulation of the
model in the computation loop, and are subject to a nonconvex optimization landscape,
which may not be suitable for, e.g., online identification or adaptive control.

2.3. Source of Errors

Suppose the true system dynamics is within the model candidate set, i.e., there exists § € ©
such that f = fz € My. Then, as the sample size tends to infinity and remains complete,
i.e., L(#) has a unique global minimum, the maximum likelihood estimate of 6 is known to
converge to #. In such a case, the estimator is said to be statistically consistent. However,
it should be noted that these assumptions rarely hold true in practice; 1) Modeling can
almost always be inaccurate to some degree (i.e., introducing structural error), 2) the data
can be noisy (i.e., introducing random error) and 3) incomplete. Below we discuss how
these problems manifest more specifically.

2.3.1. Structural Error. In scenarios where the problem of model mismatch, i.e., f ¢ My,
is prevalent, the conventional approach of conducting statistical analysis on parameter esti-
mation performance tends to be less viable. Even when abundant and comprehensive data
samples are available, uncorrectable biases in the model structure can corrupt parameter
estimates in unpredictable ways.

There are many components in real robotic systems that are difficult to model accurately
using standard mechanics-based models. For instance, complex frictions involving stick,
slip, and state-dependency, nonlinear hysteresis, and slackening effects from tendon-driven
mechanisms (7), as well as cascaded actuator dynamics (8), are among the components that
standard mechanics-based models struggle to describe with sufficient accuracy.

Also, it should be emphasized that the problem of model mismatch may arise not only
from factors related to difficult-to-model effects. If the fixed parameters in a physical model
actually contain significant errors, failure to identify them along with other parameters may
lead to structural bias issues. For instance, as noted in (9), kinematic parameter error in
the dynamics model can cause significant structural bias in estimating dynamic parameters.
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Figure 2

A conceptual picture of the source of errors. Through a mapping ¢ : © — M, the parameter 0 is

related to the dynamic model, i.e., f5 = @(é) € Mj. Its inverse mapping o~ 1 exists only if the

model is structurally identifiable. F represents the ambient space wherein the model set M is
embedded. The ground-truth description of the system f € F (denoted by the red star) is not

necessarily within the model set. The yellow gradation represents the probability distribution p(6)
of the estimated parameters that is induced by the stochasticity of the finite data samples and the

specific identification method employed, i.e., 8 = ID(D), D ~ p(y1.n|u1:n). Structural error
persists even when the random error is resolved with an infinite number of samples, i.e.,

féoo S Mf.

2.3.2. Data: Randomness and Incompleteness. Random error refers to the estimation error
or variance that is incurred by the stochasticity in the system dynamics or noise in the
output measurements. Apart from structural error, random error can, in principle, be
resolved by having a sufficient amount of and complete measurement data.

Then, given a diverse and complete sampling, one should be able to answer how many
data samples are needed to ensure a practically reliable estimation of the model parameters.
The Fisher information matrix is given as,

Z(0,u1:n) = Ep, [Ve log pe (y1:n|u1:n) - Ve log pe(yi:n|uin)” | 5} , 7.

which measures the amount of information that data samples carry about the unknown
true parameter vector §. This definition importantly relates to the Cramer-Rao bound
that sets the theoretically achievable estimation covariance of the parameters, i.e., Var[é} >
Z(6)~* when 6 denotes an arbitrary unbiased estimator for 6. Accordingly, this measure is
commonly used to discern a practically identifiable parameter set from data, or (as noted in
the sidebar titled Data Collection Problem) to guide the design of an optimal data collection
strategy before identification. Herein, we refer to data being incomplete in the case where
the information matrix Z(0) (conditioned on the specific data collection experiment u1.n)
being degenerate along certain subspaces within the structurally identifiable parameter
space, i.e., 67Z(0)6 =0 for § #0, 6 € RI™(®) - For example, when data is collected from
static postures of a robot, it inherently lacks complete information concerning the robot’s
inertial properties, irrespective of their structural identifiability.

3. SYSTEMS AND METHODS IN ROBOT MODEL IDENTIFICATION

In this Section, we review methods in robot dynamic identification that are based on tra-
ditional mechanics-based models, with a particular focus on rigid-link robots; interested
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THE DATA COLLECTION PROBLEM

The fact that the information matrix offers a measure of how the data samples impact the parameter
estimation performance makes it possible to optimize the data collection strategy, which is known as optimal
experimental design or the optimal excitation problem (10, 5); that is,

max o (I(é_?, ulzN)) .

Ul:N

. Rdim(@)xdim(@)—ﬂR{

An intricate issue regarding constructing a physically meaningful scalar measure o out

of the matrix-valued information measure Z() will be discussed in Section 4.4. The information matrix is
in general dependant on the unknown parameter 6, which, in practice, typically requires nominal values of
0 to proceed with optimization. We note that there are also experimental design criteria that are based on
the output prediction error variance (11), as opposed to parameter error variance, essentially by projecting
the influence of parametric error to some distribution of output predictions.

Meanwhile, it is worth noting that solving data collection problems for identifying unknown parameters
is somewhat akin to a chicken-and-egg problem in general robotics applications. Specifically, while we require
trajectory data samples that excite the full spectrum of the dynamics to obtain a good model estimate,
designing and executing dynamic motions safely without an accurate dynamics model can be challenging.
Consequently, optimal excitation of robot motions has mainly been studied on fixed-base, fully-actuated
robots, such as robot manipulators (5), which are less safety-critical than floating-base, underactuated
robots like humanoids (12). Considering safety in high-performance control under model uncertainty is
itself an important and active area of research, which readers can refer to in the recent review by (13).

readers may also consult the review on soft robot modeling in (14). The main focus of

this review herein is to highlight how generic identification formulations give rise to spe-

cific challenges for the identification of robotic systems, taking into account their unique

characteristics, and different applications. It is important to note that the presentation of

recent insights and advancements in robot dynamic identification methods, which follow

this section, are not mutually exclusive to the ones reviewed here but rather complement

them.

3.1. Systems without Contact or with Contact Force Measurements

3.1.1. Fixed-Base Systems. The seminal work (15) led to a popular linear least squares ob-

jective for robot dynamic model identification, which follows the equation error formulation

(Eq. 5). Their key contribution recognized that the mass-inertial parameters ¢ (Eq. 14)

of robot links and loads appear linearly in the “inverse” dynamics equation of rigid-body

systems. To illustrate, for a Np-link fixed-based robot manipulator with joint configuration

variables ¢ € R"™, joint input torque vector u € R™ with additive Gaussian noise w, i.e.,

w ~ N(0,3), the second-order inverse dynamic equation can be described as,

u+w= M(q,¥)§+blg,¢,%) =Y (q,4, ),

where M (q,v) € R™*" is the mass matrix, b(q, ¢,1%) € R™ denotes the vector of Coriolis
and gravitational forces, and ¥ = [¢1, - ,¢n,| denotes the complete set of mass and
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STRUCTURALLY IDENTIFIABLE PARAMETERS OF RIGID BODY DYNAMIC MODELS

Multi-body dynamics models of the form u + w = Y(q, 4, §)® are not structurally identifiable when
contains the ten standard inertial parameters of each body (17). This property is due to the fact that each
connecting joint creates ambiguity in how mass/inertia can be assigned to links on either side of the joint
without affecting the dynamics (16). Formally, the ambiguity can be characterized via the set:

N = {6 | Y(q7 q7 é)(s = 07vq’ q.7 q.} 11'

If ) denotes the true parameters, then any ) in the affine subspace ¥+ gives the same dynamic model and
measurements. To recover structural identifiability, a re-parameterization is often pursued using so-called
base parameters, denoted as 0. This task can be accomplished via choosing a basis for N+ (the orthogonal
complement of N) as follows. Suppose a fixed full-rank matrix B such that Range(BT) = N't. Then,
for this selection, 6; = 3 ; Bij; gives the i-th base parameter as an identifiable linear combination of the
standard parameters 1);. While N/ + is unique, the choice of B, and thus the choice of base parameters, is
not. B can be chosen in row-reduced echelon form (or similar) so that each base parameter represents a
regrouping (18) into a standard parameter, which can be desirable for efficient simulation (19).

Many methods exist to re-parameterize a model with base parameters. Base parameter sets can be
constructed using symbolic methods via the analysis of the dynamics equations (17, 18, 20), numerically via
QR or SVD decompositions applied to regressors of assumed maximally exciting data (21), or geometrically
via recursively characterizing how each link is able to be excited (16). Many symbolic methods do not
guarantee that the resulting re-parameterization is structurally identifiable except in special cases, while
numerical methods will underestimate the number of base parameters if the data used is not fully exciting.

inertial parameters of each of the links (and also typically includes joint Coulomb and
viscous friction parameters). A structurally identifiable set of parameters (see the sidebar
titled Structurally Identifiable Parameters of Rigid Body Dynamic Models) linearly lumps
together parameters in v , i.e., via § = B, and the terms in Equation 9 can be collected
and represented in the most compact form as (16),

u+w=M(q,0)i+b(q,4,0) =T(q, 4, ), 10.

where I'(¢q,4,§) = Y(q,q4,¢)B. Then, given the measurements of states y = = = (q,q)
and ¢ (through appropriate numerical differentiation and filtering) at multiple points ¢ =
1,---, N along some reference trajectory, the negative log-likelihood objective can be given
as L(0) = SN, —logp(wi) ~ SN IT(qi, Gi, Gi)0 — ul|Z-1 (c.f., Equation 5).

Such inherent linear-in-parameters property for the robot dynamics equation has
prompted the adoption of a rich class of robust identification techniques that rely on linear
models. Many of these approaches relax the noise-free assumptions on the regressor ma-
trix (22), the statistical independence assumption between the regressor matrix I'(q, ¢, §)
and the input u, (5, 23), impose a non-Gaussian distribution on w to derive robust linear
regression methods (24), or employ set membership uncertainty to estimate the parameter
error bound amenable within, e.g., robust control (25). To any extent, all these methods
concern with fitting the equation error that represents the local error of the dynamics.

There have also been methods that explore the use of simulation/output error criterion
(4) or composite ones (6) (e.g., approximating the simulation error solution in a compu-
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tationally efficient way using an equation error formulation) in the identification of robot
manipulators, and proven to result in more robust identification results compared to the
ones that are based purely on equation error. These methods are usually performed using a
closed-loop dynamics simulation, i.e., PD-controlled manipulator dynamics with a reference
trajectory signal as input, to enhance the stability of the forward simulation computation
within identification (26). For a more comprehensive review on parameter identification of
robot manipulators, readers are encouraged to refer to the review (27).

3.1.2. Floating-Base Systems. Floating-base systems like humanoid or quadruped robots
are inherently underactuated for which the dimension of configuration space ¢ = (g;,¢r) €
R™ is larger than the number of input torque actuation u € R", where ¢; € R™ denotes
the joint configuration and ¢, € R® ~ SE(3) represents the pose and orientation of a
floating base (root) link. The dynamic equation subject to (known) contact forces A; for

it =1,---,n. can be described as,
IO — mgoi b = D@D 0 gy
i=1 Jrzq FT(qvqaq)
where J{ = [J5;, J; ;] denotes the Jacobian of the contact points. As shown in the second

line of the equation above, a remarkable finding from (28) was that, in the case of open-
chain rigid-body systems, the structurally identifiable set of parameters 6 of the full dynamic
equation can be equally identified solely from the base-link dynamics, i.e., > ¢, J5.(q YA =
I'v(q,q, §)0. Identifying parameters without employing joint-space dynamics is partlcularly
appealing for systems in which joint torque input is unobservable like human subjects
(29) or when other structural errors such as from joint friction models can severely bias the
parameter identification. However, the reduced nature of identification without joint-torque
measurements generally implies a challenge in that there is less information to be employed
for accurately identifying the parameters in a way that generalizes to prediction with the
full dynamic model. Not surprisingly, a study by (30) demonstrates that the identification
using only contact force measurements generalized less accurately for predicting the joint
space dynamics than the identification employing contact force and joint torque data.

A fundamental challenge within generic system identification of floating-base systems,
as also noted in the sidebar titled The Data Collection Problem, is that collecting suffi-
ciently rich, dynamic data is often unattainable compared to the case for, e.g., fixed-based
robot manipulators. This can often lead to highly biased parameter estimates that are
not physically consistent and less generalizable for use within high-performance simulation
and control (31). Constrained optimization approaches to guarantee physically consistent
estimates (32, 33, 34) and regularized formulations to exploit the nominal parameter in-
formation, e.g., from CAD data, have been studied (35, 36). These methods were later
reimagined and improved following the geometric perspective presented in Section 4.

3.2. Systems with Contact and without Contact Force Measurements

System identification under contact without contact force measurements remains challeng-
ing due, in large part, to the non-smooth and hybrid nature of the dynamics,

Bu+ Y Ji(q)" X\ = M(q,0)G + b(q, 4, 0). 13.
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which is further confounded by redundancy for the contact forces in many contact scenarios.
Such a model encompasses the description of legged robots walking and running in contact
with the ground, non-prehensile manipulation of objects, etc. The fact that only the motion
of the system is observed , e.g., ¥y = (q,¢) + €, essentially results in added complexity to
the problem in which robust determination of the contact states, i.e., contact points, modes
and forces, has to be addressed within the parameter identification process.

In (37), the authors explored the use of a time-stepping linear complementarity problem
(LCP) formulation to determine the contact states within the equation error formulation.
Also, parameter identifiability was revealed under several cases with contact modes known a
priori. However, due to the nature of the equation error formulation, in which perfect, noise-
free, state measurements are implicitly assumed, the contact timing, mode, and points are
forced to be determined directly via the raw state measurements. Incorrect specification of
the contact states can bias the resulting parameter estimates, which further has a significant
impact on the accuracy of any forward simulations using the identified model.

To address this issue, it would be more appropriate to expose these contact uncertainties
incurred by the possible state measurement errors under the simulation error formulation,
in which the state estimation problem is implicitly involved (38) (c.f., Equation 6). Modern
differentiable physics simulators provide gradients of the state evolution with respect to
the model parameters, with which system identification of various (rigid and soft) robotic
systems undergoing contact has been studied. These methods are most often based on the
simulation error criterion and have primarily relied on shooting methods (39, 40, 41, 42,
43, 44, 45). However, reliable gradient-based optimization of state trajectories undergoing
contacts is, in general, an open problem due to the inherent discontinuous nature of the
contact dynamics and the associated combinatorial nature of optimization over contacts.
This area remains one of active research (45, 46, 47, 48).

4. GEOMETRIC TAKE ON ROBOT MODEL PARAMETERS
4.1. Revisiting Parameter-Centric View on ldentification Error

Continuing the discussion initiated in Section 2.1, in the context of the general model
parameter identification problem, it is difficult to foresee the impact of parameter errors on
model performance beyond the available limited and noisy data samples.

That being said, the physical nature of the parameters to be identified in physics-based
robot models offers a higher level of interpretability and predictability in the identification
process. To elaborate, mass-inertial parameters provide a quadratic representation of kinetic
energy in (interconnected) rigid-body systems. Stiffness parameters define components that
store elastic potential energy, while friction parameters describe the model of dissipative
forces. The inherent connection of these parameters to underlying physical phenomena can
guide the identification process, preventing identified models from overfitting to aberrant
aspects in the data. For instance, mass-inertial parameters resulting in a negative definite
mass matrix or negative values for friction or stiffness parameters would no longer accurately
capture inherent physical characteristics. Similarly, in the case of a humanoid robot, center
of mass parameters that deviate significantly from its physical body would not provide a
sensible estimate of the risk of falling. Given these considerations, a natural question arises:
Is there a systematic approach to measure the amount of information the data
samples carry about the parameters, yet in a way that accounts for their inherent
physical meanings?
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In this Section, we show how a geometric characterization of the space of physical pa-
rameters within robot dynamic models has facilitated the recent development of robust and
physically consistent identification methods. These methods have shown notable improve-
ments in generalization performance, particularly when dealing with limited and noisy data.
We begin by characterizing the space of physical parameters constituting robot dynamic
models (Section 4.2). This characterization provides a bridge to show how the mass-inertial
parameters of a robot reside in a curved Riemannian space (Section 4.3), which allows per-
turbations in the mass-inertial properties to be measured in a coordinate-invariant manner.
Then, in Section 4.4, we answer the question raised above by demonstrating a systematic
way to construct a set of geometric information measures, which can be used to derive
a physically meaningful, invariant confidence interval for assessing practical identifiability,
and also to proceed to generate optimal excitation trajectories for identification. Finally,
Section 4.5 discusses geometric regularization methods within the context of both offline
identification and online adaptive control.

4.2. Characterization of Physical Parameter Space

A direct approach to guaranteeing that the model produces physically consistent long-term
predictions is to restrict the parameters to those realizable in the physical world. That is,
we seek to define the space © so that every element is realizable in the physical world. For
instance, mass or joint stiffness and friction coefficients should always be positive, while a
spatial stiffness or damping matrix should be positive definite.

Things get a bit more involved in defining the correct necessary and sufficient condition
for mass-inertial parameters of a rigid body to be physically realizable. To illustrate, the
mass-inertial parameters ¢ of a single rigid body constitute ten parameters represented in
vectorized form as

¢ = [m,hT, 1 1% 177 17 1vF 17T e RY, 14.

where m € R is the mass, h = m - p € R? is the first mass moment with p being the
position of center of mass, I € R**® denotes the 3 x 3 symmetric tensor representation
of rotational inertia. A necessary condition for physical consistency was first employed
in the context of robot mass-inertial parameter identification by (49, 50, 51); that is, the
mass should be positive, m > 0, and the rotational inertia at the center of mass should be
positive definite, I — [h][h]Y/m = 0, where [] is a skew-symmetric representation of a 3-D
vector (52). This condition was later formalized by (32) as a linear matrix inequality (LMI)
constraint, which allowed the nonlinear physical consistency condition to be incorporated
within a convex semidefinite programming formulation for identification. Then, (33) pointed
out the complete necessary and sufficient condition for physical consistency condition on
inertial parameters, which can also be found in the rigid-body dynamics literature (53). The
remaining condition for sufficiency was the triangle inequality condition on the eigenvalues
of the rotational inertia tensor. More recently, (34) formalized the full physical consistency

> h]>—0. 15.
m

condition in an LMI as

where there exists a 1-1 linear correspondence between the above pseudo-inertia matrix
P(¢) and ¢ via & = 1tr(1)Is — I and I = tr(X)Is — X. Today’s modern robot simulators,
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such as MuJoCo (54), support built-in validation for inertial parameters to satisfy this
condition for improved simulation fidelity and better practice of model-based engineering.

4.3. Geometry of Physical Parameter Space

Importantly, the condition in Equation 15 precisely represents the fact that mass-inertial
parameters should be strictly realizable from a nonnegative mass density function of a rigid
body (34). Based on this enlightenment, (55) proposed a coordinate-invariant distance
metric on the mass-inertial parameters that measures perturbations to the underlying mass
distribution in a physically meaningful way. Specifically, the affine-invariant Riemannian
metric (56) between two mass-inertial parameter vectors ¢; and ¢2 can be given as,

d(9r,62)* = gt (Log (P(61) ' P(62))* ). 16.

where Log denotes the matrix Logarithm.

As noted in (57), while there can be many other possible choices of distance metric
that encode different useful physical meanings, coordinate invariance is firmly required
since an arbitrary choice of body-fixed coordinates or units can represent the mass-inertial
parameters. To explain, given a generic pseudo-inertia P € P(4) (i.e., the set of 4 x 4
positive definite matrices), any change of coordinate frame, or change in physical units/scale,
transforms the pseudo-inertia P to GPGT for some G € GL(4), where GL(n) denotes the
set of n X n invertible matrices (see Equations 10-13 in (55)). This operation represents a
GL(4) group action * on P(4) defined by G x P 2 GPGT. A key property of the affine-
invariant metric is that it is invariant under this group action (56)°. Since coordinate/scale
changes represent a subset of all such transformations GPGT, this property guarantees
coordinate and scale/unit invariance of the proposed metric in Eq. 16. While numeric
values transform according to the transformation of coordinates, the intrinsic measure of
how two mass-inertial parameters differ should not depend on this choice.

As will be discussed in the following Sections, some non-trivial convex approximations
to the Riemannian distance metric have proven to be useful for developing computationally
tractable and efficient algorithms. The Bregman divergence (57) associated with the neg-
ative log determinant F'(¢) = —log(|P(¢)|) provides a second-order approximation to the
squared Riemannian distance given as,

|P(¢2)|
[P(¢1)]

which is convex in its first argument. Also, a quadratic approximation can be given by

dr(¢1]l¢2)* = log +tr (P(¢2)" ' P(¢1)) —4, 17.

considering a constant (differential) Riemannian metric evaluated at some given nominal
value ¢ as,

do(61,62)° = 5tr ([(P(60) " P(61 — 62)]° ) = (91— 62) 9(90)(9n — 62), 18,

where g(-) is the pullback of the affine-invariant Riemannian metric on P(4) to R'® under the
mapping P(-). This squared metric is also a case of a Bregman divergence, but associated

5That is, given matrices P1, P> € P(n) and any G € GL(n), the geodesic distance dp(n) :
P(n) x P(n) — R corresponding to the affine-invariant Riemannian metric satisfies dp () (P1, P2) =
d'p(n)(G * P1,G x P2).
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originally defined on the standard parameter space W.
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with the function F(¢) = ¢7g(¢o)¢. Importantly, both of these approximate distance
measures admit the same coordinate invariance property as the Riemannian distance.

As previously mentioned, other physical parameters such as stiffness, friction, and damp-
ing can be readily identified as positive tensors. It is possible to demonstrate that the same
affine-invariant Riemannian metric and its approximations provide well-defined coordinate-
invariant distance measures for these parameters. Further, as noted in section 5.3 in (58)
the affine-invariant Riemannian manifold structure can be generalized to be imposed on an
arbitrary convex set of mass-inertial parameters. This generalization can be accomplished
by inducing a Riemannian metric as the Hessian of a strictly convex, twice differentiable
barrier function on the set, which then gives rise to a Hessian manifold structure. This
approach can be used, for example, to impose variable bounds or other linear constraints
on the parameters beyond those related to physical consistency (58).

4.4, Geometric Information Measure

Referring to Equation 8, selecting a meaningful scalar measure o(-) as a function of the
information matrix amounts to selecting a meaningful distance metric to quantify the vari-
ability of the estimation error in the parameter space. To explain, the so-called A-optimality
criterion (10) is constructed by choosing the inverse-trace operator for o, i.e., tr(Z(8)™1).
Noting that the inverse of the information matrix serves as the covariance matrix var[é] for
the efficient unbiased estimator 61 one can rewrite it as,

tr(var[f]) = E, [Hé - éHQ] . 19.

Clearly, the standard A-optimality criterion exhibits the standard Euclidean metric as a
distance metric on parameters. This choice is a sensible one if the representation of the
parameters 6 exhibits a canonical coordinate choice under which each entries of the pa-
rameters are in a similar scale. However, as mentioned earlier, physical parameters like
mass-inertial parameters, or more accurately the base parameters, exhibit arbitrary choice
of coordinates and linear reparametrizations by the user. The standard Euclidean metric is
not only coordinate-dependant but also does not capture the multi-scale nature of physical
parameters that come with different units and scales.

Instead, an A-optimality criterion that is akin to the form, E; [d(é, é)] , where d(-,-) be-
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ing some coordinate-invariant physically meaningful distance metric, is a more practically
appealing choice. In (59), various choices of existing coordinate-dependant optimality cri-
teria, including the alphabet-optimality criteria (10) and the condition number, have been
reformulated via definition as (c.f., Equation 8)

o (Z(0,uin) - Hy'), 20.

where o(X) denotes a symmetric function of the eigenvalues of matrix X, and the constant
normalization matrix Ho = (BG5'BT)™" can be understood as the projection of the con-
stant pullback metric Go (analogous to g(¢o) in Equation 18) defined over the standard
parameters ¥ = [¢1, -+ ,¢n] € U to the reduced structurally identifiable parameter space
under the particular base parameter representation B, i.e., § = By € ©. As shown in
Figure 3, this can also be viewed as the coordinate-invariant measure of how much the dis-
tribution of the parameter estimates is distorted in relative to the natural choice of metric
predefined over the parameter space ©. In effect, this geometric framework allows for a
formal, systematic way in which to normalize the information matrix so that the ensuing
optimal excitation trajectory generation problem leads to the consideration of lighter links
needing to be more “excited” than the heavier ones, as mass-inertial parameter values are
more likely to be negative definite under the same scale of estimation variance.

As noted in (59), the inverse of the eigenvalues® of the normalized information matrix
can also be used to assess the practical identifiability of the parameters based on a single
scale-free threshold value. Meanwhile, numerical studies provided in (59) have also shown
that the fraction of practically identifiable parameters, among the structurally identifiable
ones, is considerably restricted in practice, especially for high-dimensional systems such
as humanoid robots. This finding highlights the need for a regularized formulation of the
parameter identification problem to effectively mitigate such a practical identifiability issue
within purely “data-driven” parameter estimation by incorporating prior information.

4.5. Geometric Regularization Techniques

One unique aspect of physics-based models, in comparison to generic function approx-
imation models, is that obtaining reasonably accurate and physically plausible nominal
parameters is viable prior to collecting data. This can be achieved through various means
such as utilizing CAD data or making a rough guess. In light of the practical challenges
due to factors such as data sufficiency, noise, and structural errors, it is crucial for practi-
tioners to recognize that full precise identification of robot models is often impractical and
that the nominal model of a robot, in addition to input-output data samples, is a valuable
and viable source of information that can be leveraged in identification. More concretely,
many of these difficulties can be mitigated by appealing to appropriate regularization of
the parameter identification objective using the nominal parameters.

To explain, assuming that some prior distribution on the standard parameters v =
[p1,- -, dn,] is given as p(v), the Maximum a Posteriori (MAP) formulation (60) aims to
optimize the posterior distribution over 1, as, miny — log p(¢)|D) « L(B1w))—log p() , where
the previous MLE objective L(0) = L(Bv) (Equation 3) defined over the base parameters
is now regularized with the negative logarithm of the prior model over 1. Consequently, the

6They provide scale-free measure of parameter estimation variance projected along the corre-
sponding eigenvectors under the metric (BGalBT)*l.
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GEOMETRIC REGULARIZATION IN ADAPTIVE CONTROL

Bregman divergence measures (e.g., Eqs. 17 or 18) for geometric regularization in identification have

also played a key role in the design of recent geometric adaptive control laws (62, 61). In that context,

one can show stability of the adaptive laws using a Lyapunov function that includes terms D( % |[4)) :=
S dr( ;| $:)?, where 1) represents the parameter estimate. Remarkably, the asymptotic solution of the
adaptation laws developed therein implicitly reqularize the solution, in that persistently exciting (PE) tra-
jectory references lead to (61): lims_o0 th(t) = argmin,, . D(P || $(0)). More generally, in the absence
of PE references, the parameters converge to a minimizer within a (higher-dimensional) affine subspace that
contains 1 + N (see (61) for detail).

16

regularization term is chosen to be proportional to some distance measure to the nominal
parameters 1), i.e., the MAP optimization takes the form

min L(By) +7d(v, $o)". 21.

The base parameter estimate can be simply recovered by 6 = By, where 12) is given as the
solution of the regularized identification objective above.

Here, the choice of distance metric d greatly impacts the generalization performance,
which essentially dictates a scalar measure of how the multivariate parameter estimates
from data samples would deviate from the nominal parameters. The use of geometric dis-
tance metric in Equation 16 or its convex approximations in Equation 17 or 18 was shown
to be significantly more generalizable than, e.g., the standard Euclidean metric, as they
capture the perturbations in the mass-inertial parameters in a coordinate-invariant and
physically meaningful way (see Figure 2 of (57)). Recent theoretical breakthroughs regard-
ing implicit regularization (61) have likewise translated these benefits to adaptive control
settings (see Sidebar on Geometric Regularization in Adaptive Control). Overall, geometric
regularization methods have shown practical significance for robustness and generalization
performance in various systems and scenarios, which included online parameter identifi-
cation of robot manipulators with proprioceptive actuation, generalization of fixed-base
dynamics identification results for quadruped robot legs to the full floating-base dynamics
model, and reduced base-link dynamics identification for a humanoid structured human
model under significant levels of measurement noise.

5. REDUCING STRUCTURAL BIAS IN ROBOT MODELS

While previous section focused on system identification methods that exploit physical mean-
ings of parameters constituting a classical parametrization of robot dynamics models, this
section explores various extended classes of parameterized models that aim to alleviate the
structural errors (introduced in Section 2.3.1) in a physically meaningful way.

5.1. Kinodynamic Model Identification

Existing methods for robot identification generally separate kinematic identification from
dynamic identification; the kinematic parameters are either identified first or assumed to be
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provided by manufacturers (e.g., via computer-aided design), followed by the identification
of mass-inertial parameters. This separation is largely for reasons of convenience; given that
the dynamic model is nonlinear with respect to the kinematic parameters, the linearity-in-
parameter property fundamental to many existing robot model identification methods only
holds if the kinematic parameters are fixed.

These sequential approaches, however, could potentially introduce bias due to errors
in kinematic parameters. Specifically, as reported in (9), poorly identified kinematic pa-
rameters can lead to an uncorrectable bias in the dynamic model, leading to errors in the
mass-inertial parameters that are many times that of kinematic parameter errors. To ad-
dress this, the authors proposed a unified identification framework, which jointly identifies
the kinematic and dynamic model parameters by minimizing the sum of both errors as

min Layn (0dyn, Oxin) + o+ Liin (kin), 22.
0dyn,Okin
where Oayn, Oxin, Ldayn and Liin denote the dynamic and kinematic parameters(e.g., joint
screws) and identification objective functions, respectively. The kinematic identification
objective, for example, is an error between the end-effector poses measured by cameras and
the kinematic model estimates.

Formally, this approach can be derived by expanding the observation y in Equation 2
to include the kinematic measurement (e.g., y = (z,T) = (z,FKg,,, (z) + €) where T is
the end-effector pose measurement and FKy,, denotes the forward kinematics mapping)
and applying the maximum likelihood estimation argument (i.e., Equation 3). By allowing
for the update of kinematic parameters to reduce the dynamic error as well, the structural
error induced by the kinematic parameter error can be mitigated. Importantly, under the
maximum likelihood estimation argument, the weight o can be determined to represent the
relative accuracy of kinematic and dynamic sensors (e.g., camera and joint torque sensor)

g,
as a = o

o where oqyn and okin denote the sensor noise scales. This relationship im-
plies that when the kinematic sensor is highly inaccurate, o becomes zero (i.e., okin > 1),
rendering the kinematic error less critical in identifying the kinematic parameter. Con-
versely, if the kinematic sensor is noise-free (for example, with a high-performance motion
capture system), o approaches infinity, making the process similar to the traditional decou-
pled identification. This unified method is especially advantageous when precise kinematic
parameters or sensors are unavailable, and substantial model bias is otherwise introduced.

Alternatively, by substituting the error criterion with the simulation error (as in Equa-
tion 6), kinodynamic model identification for contact manipulation has been explored (38).
In this study, the dynamic parameters include contact model parameters (such as stiffness
and damping), with both state trajectories and model parameters estimated concurrently.

Note that while the kinodynamic model identification has extended the candidate model
set to deal with the structural error, it still consists of only physically-interpretable param-
eters and strictly adheres to first principles (i.e., the dynamics of articulated rigid-body
systems). In the subsequent sections, we will explore more data-driven methods designed
to compensate for residual errors that the existing laws of physics cannot fully address.

5.2. Discrepancy Modeling Approaches

Data-driven modeling approaches that partly augment existing physics-based models have
proven more generalizable and data-efficient than relying on neural networks or other generic
function approximators to model the complete robot kinematics and dynamics.
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Some of these methods directly append deterministic data-driven models to the forward
or inverse dynamics equations. These methods are designed to model residual forces acting
on the bodies or joints that are difficult to model analytically, such as nonlinear state-
dependent frictions or aerodynamic drag forces, or to capture non-Markovian phenomena
such as hysteresis, backlash, or unmodeled elasticity with memory-based models. Examples
of such methods include (7, 63, 64, 65). In addition, (8) proposed a technique to learn
a nonlinear recurrent neural network mapping from low-level actuator commands to more
conventional inputs (e.g., joint torques) accepted by existing physics-based simulators. This
approach has been shown effective for modeling complex input-output dynamics of actuators
subject to nonlinear elasticity, such as series-elastic actuators. Stochastic models based on
deep generative models (66) or nonparametric models such as Gaussian Processes (67) have
also been used to model the uncertainty in the residual error.

Although discrepancy modeling approaches significantly reduce the extent to which
data-driven models need to learn from data compared to pure data-driven models, they
do not necessarily ensure the preservation of many system characteristics inherent to the
original physics-based model. Therefore, it is essential to carefully validate the model on
a wide distribution of test samples to ensure its reliability and accuracy. In addition, the
deliberate incorporation of inductive biases in the augmented data-driven model can also
be a practical and viable solution. In the subsequent section, we highlight some notable
approaches in this direction for modeling contact dynamics, which build upon the classic
contact mechanics in a way that explicitly ensures the non-penetration of colliding bodies.

5.3. Putting Physics in Data-Driven Model Learning

Up to this point, we have identified physics-based models as those that characterize the
input-output behavior of physical systems using fundamental principles or laws of physics.
These models explicitly represent physical parameters, such as mass-inertia, joint screws,
and stiffness, which are all tangible and measurable. On the other hand, data-driven mod-
eling approaches (67) typically refer to bottom-up methods of deducing new laws from
experimental observations, with the caveat that the parameters within these models do
not necessarily possess an explicit physical meaning. However, this observation doesn’t
mean that data-driven models must be arbitrarily complex in order to learn everything
from data. Recent works have shown that a new class of models can be constructed to
deliberately exhibit some essential characteristics, via so-called inductive biases, of physical
systems.

Below we classify a range of beneficial inductive biases pertinent to the modeling of
robotic systems. While the majority of these attributes are currently satisfied and incor-
porated within established physics-based models, the overarching technical objective is to
reconstruct these inductive biases with enhanced flexibility, thereby facilitating the model-
ing of an expanded repertoire of complex physical systems.

5.3.1. Energy Conservation. Embracing the concept of energy has played a pivotal role in
the implementation of model-based engineering approaches within traditional mechanics-
based robot models, such as those employing Lagrangian mechanics to characterize coupled
rigid bodies. Key elements of these methodologies include developing stable integrators
(68, 69, 70) and energy-based controllers (71, 72). Recent advancements in data-driven
modeling techniques have shown ways to construct a new class of deep neural networks
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that explicitly inherit essential properties, such as energy conservation and passivity, of
Hamiltonian and Lagrangian mechanics by constructing a valid kinetic energy function of
the system (73), i.e., E = %q'TMg(q)q > 0. These models straightforwardly demonstrate
that the aforementioned energy-based methodologies can be applied in a manner comparable
to their traditional counterparts (74). More recently, these models have been extended to be
augmented with classical contact dynamics to model legged robots and robotic manipulators
involving contacts and collisions, which introduce discontinuities in the states (75).

5.3.2. Energy Dissipation. Robotic systems consist of several components that contribute
to the dissipation of energy in complex ways. One of the primary factors that leads to
energy dissipation is friction, which can be highly nonlinear and state-dependent. Despite
its complexity, the presence of friction is often found to be useful for control applications,
mainly due to its dissipative nature. Specifically, the energy £ of an uncontrolled system
with generalized coordinates ¢ should dissipate over time, i.e., E = qTf(q, G) < 0, where
f(q,q) represents the generalized forces of friction. A data-driven configuration-dependent
friction model has proven effective for modeling complex tendon-driven robots, in which the
coupling of joints forming closed kinematic chains can cause non-linear variations of friction
coefficients (7). For dynamic friction effects subject to, for instance, hysteresis or stick-
slip motions, a more general condition can be derived from the strict passivity condition,
ie., ¢Tf(z,q,¢) > W(z(t)) for all ¢, where W is a positive storage function of the internal
state z. While energy-dissipative models for dynamic friction have primarily been studied
in one-dimensional systems (76), it is potentially viable to explore a more general class of
multi-dimensional dynamic friction models that satisfy strict passivity.

5.3.3. Contact. Several studies have shown that standard rigid contact solvers used in state-
of-the-art rigid-body dynamics simulators fail to precisely capture the contact behavior in
the real-world (48). While there have been many data-driven modeling approaches to
directly learn the contact dynamics from data, these approaches often fail to guarantee
the most salient properties of contact interactions which are nonpenetration of bodies and
energy dissipation subject to contact friction.

One of the major issues in simulating contact behaviors lies in the robust and accurate
determination of contact points/normals and modes. Also, some of the ad-hoc heuristics
adopted in off-the-shelf rigid body simulators are partly driven by real-time computational
constraints rather than fully prioritizing simulation accuracy (77). Recently, data-driven
models have augmented the classical contact solvers in a non-trivial way to preserve the non-
penetrating and dissipative behavior of contact while being flexible enough to match reality.
These methods include data-driven learning of robust contact mode switch detection(78)
as well as contact clustering (77). Also, data-driven learning for the smooth representation
of shapes has been studied within the identification of contact dynamics to alleviate shape
uncertainty and contact-induced discontinuities. These data-driven shape representations
include inter-body signed distance functions (79) and neural density fields (80), which can
be straightforwardly adopted in standard differentiable physics engines.

5.3.4. Topology and Graph. It is evident that robots with articulated bodies possess an
inherent graphical structure due to their physical connectivity. Additionally, the contact
interactions between robots and their surrounding environments also exhibit a graphical
structure dictated by the intermittent kinematic structure of contact (81). Recently, Graph
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Neural Network (GNN) models have gained popularity as they explicitly aim to capture
and leverage this relational inductive bias. These models impose this structure by appropri-
ately assigning state variables to each node in the graph and constraining computations to
propagate through pre-specified (or potentially learnable) edge connections. However, these
methods are currently limited to simulation experiments (82), and scenarios involving sim-
ple particle/object interactions (83, 84). We believe one of the significant advantages that
comes with the way graphical structure is embedded in classical mechanics-based models
lies in their compositionality. For example, if one has a completely separate pair of models
for a robot and an object, it becomes possible to evaluate their interactions in a zero-shot
manner. In that regard, whether these graphically structured data-driven models can ef-
fectively demonstrate generalization performance within arbitrary compositions of graphs
remains an open problem.

5.3.5. Invariance and Symmetry. It is important to note that while the choice of coordinate
frames to describe the physical output variables, such as end-effector poses, or parameters,
such as mass-inertia and shapes, is entirely up to the user, the results are completely invari-
ant, or more precisely equivariant’, to these choices. This property essentially makes the
universal adoption of standard robot description formats, such as URDF, MJCF, and SDF,
with arbitrary coordinate choices viable. Indeed, the result of any physical phenomenon
must not be affected by the particular choices of coordinate one adopts to describe them
numerically. While this may sound somewhat obvious, such a property is not easily attain-
able in many data-driven models that do not exhibit invariance or equivariance properties
subject to certain group transformations on the input-output variables and/or parameters.
Recent group-equivariant networks are beginning to be adapted to various dynamics learn-
ing problems in robotics, and have shown superior generalization performance and sample
efficiency with respect to the variations in shapes and poses. The current applications range
from grasp quality prediction (85), table-top object pushing and the learning of interaction
dynamics (86, 87), and dynamic modeling of multi-legged robots (88).

6. CONCLUSION

Constructing accurate and reliable descriptions of robotic systems interacting in the real
world is naturally posed as a data-driven learning problem from input-output data sam-
ples. Starting from the generic black-box system identification view of the dynamic model
identification and learning problem, this review has pointed out various practical concerns
across stages of the system identification process. As applied to robotics, we have primarily
focused on addressing the availability of a sufficient amount of data and the generalizability
of the modeling and identification methods.

It remains firmly established that robotics continues to deal with problems related to
interactions that occur in the physical world. Undoubtedly, physics represents the most
powerful domain knowledge and useful inductive bias inherent in this setting. In light of this
view, we have shown how explicit considerations of physics-based knowledge in statistical

A mapping f : X — ) is equivariant under the transformation group G, if it satisfies the
relation, Sgoy = f(Tgox), forallz € X,y € Y, and g € G where Tg : X - X and Sy : Y — Y
are the group actions of g on X and Y respectively. Normally, these group actions are given as
the coordinate transformation rules on the respective spaces. If Sy is an identity mapping, f is an
invariant mapping.
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data-driven approaches to system identification have unpinned many recent advances for
enhanced robustness and generalizability in the face of limited and noisy data. Below are
the main summary points of this review.

1. A recent geometric perspective on the mass-inertial parameters of rigid robot dy-
namics model has facilitated the development of robust and physically consistent
identification methods that led to notable improvements in model generalization,
particularly when dealing with limited and noisy data.

2. We identify and correct some longstanding issues with the established practice of
first performing kinematic identification, followed by mass-inertial parameter iden-
tification. Specifically, poorly identified kinematic parameters can lead to an un-
correctable bias in the dynamic model, leading to errors in the dynamic parameters
that are many times that of kinematic parameter errors. A unified kinodynamic
identification method was described that leads to more accurate identification of
both the kinematic and dynamic parameters.

3. We described ways in which robot models can be augmented with data-driven mod-
els or entirely reconstructed in such a way to respect some of the important physics-
based inductive biases with enhanced flexibility; thereby facilitating the modeling
of an expanded repertoire of complex physical systems.

In conclusion, it is important to recognize that system identification should not be
considered an ultimate goal in and of itself, but rather a valuable tool for a wide range
of targeted robotics applications. In line with this understanding, the controls and rein-
forcement learning community is increasingly committed to developing system identification
methods that are directly aligned with control and task objectives (26, 89, 90). While this
review article did not extensively explore these ideas, they represent exciting prospects for
the field’s future. Through these and other advancements, we hold hope that ongoing de-
velopments will facilitate the promotion of robust, sample-efficient, and generalizable robot
models that are well-equipped to support the complex tasks robots are expected to per-
form. As these systems interact with and navigate the physical world, we have a growing
opportunity to leverage the vast structural richness it provides.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings
that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Frank C. Park is supported in part by NRF-MSIT grant RS-2023-00208052, IITP-MSIT
grant 2021-0-02068 (SNU AI Innovation Hub), KIAT-MOTIE grant P0020536 (HRD Pro-
gram for Industrial Innovation), IITP-MSIT grant 2022-0-00480 (Training and Inference
Methods for Goal-Oriented AI Agents), SNU-AIIS, SNU-IAMD, SNU BK21+ Program in
Mechanical Engineering, and SNU Institute for Engineering Research. Patrick M. Wensing

www. annualreviews.org ¢ Robot Model Identification and Learning: A Modern Perspective

21



22

was supported in part by NSF award CMMI-2220924 with a sub-award to the University
of Notre Dame.

LITERATURE CITED

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kristensen NR, Madsen H, Jgrgensen SB. 2004. Parameter estimation in stochastic grey-box
models. Automatica 40(2):225-237

. Schoukens J, Ljung L. 2019. Nonlinear system identification: A user-oriented road map. I[EEE

Control Systems Magazine 39(6):28-99

. Wu P, Escontrela A, Hafner D, Abbeel P, Goldberg K. 2023. DayDreamer: World Models for

Physical Robot Learning. In Proceedings of The 6th Conference on Robot Learning, ed. K Liu,
D Kulic, J Ichnowski, pp. 2226-2240, vol. 205 of Proceedings of Machine Learning Research,
pp- 2226-2240. N.p.: PMLR

. Brunot M, Janot A, Carrillo F, Cheong J, Noél JP. 2020. Output error methods for robot

identification. Journal of Dynamic Systems, Measurement, and Control 142(3):031002

. Swevers J, Ganseman C, Tukel DB, De Schutter J, Van Brussel H. 1997. Optimal robot exci-

tation and identification. IEEE transactions on robotics and automation 13(5):730-740

. Gautier M, Janot A, Vandanjon PO. 2012. A new closed-loop output error method for parameter

identification of robot dynamics. IEEE Transactions on Control Systems Technology 21(2):428—
444

. Choi K, Kwon J, Lee T, Park C, Pyo J, et al. 2020. A hybrid dynamic model for the ambidex

tendon-driven manipulator. Mechatronics 69:102398

. Hwangbo J, Lee J, Dosovitskiy A, Bellicoso D, Tsounis V, et al. 2019. Learning agile and

dynamic motor skills for legged robots. Science Robotics 4(26):eaaub872

. Kwon J, Choi K, Park FC. 2021. Kinodynamic model identification: A unified geometric ap-

proach. IEEE Transactions on Robotics 37(4):1100-1114

Pukelsheim F. 2006. Optimal design of experiments. STAM

Pronzato L. 2008. Optimal experimental design and some related control problems. Automatica
44(2):303-325

Bonnet V, Fraisse P, Crosnier A, Gautier M, Gonzéilez A, Venture G. 2016. Optimal exciting
dance for identifying inertial parameters of an anthropomorphic structure. IEEE Transactions
on Robotics 32(4):823-836

Brunke L, Greeff M, Hall AW, Yuan Z, Zhou S, et al. 2022. Safe learning in robotics: From
learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and
Autonomous Systems 5:411-444

Yasa O, Toshimitsu Y, Michelis MY, Jones LS, Filippi M, et al. 2023. An overview of soft
robotics. Annual Review of Control, Robotics, and Autonomous Systems 6(1):1-29

Atkeson CG, An CH, Hollerbach JM. 1986. Estimation of inertial parameters of manipulator
loads and links. The International Journal of Robotics Research 5(3):101-119

Wensing PM, Niemeyer G, Slotine JJE. 2017. Observability in inertial parameter identification.
arXiv preprint arXiv:1711.03896

Mayeda H, Yoshida K, Osuka K. 1988. Base parameters of manipulator dynamic models. In
Proceedings. 1988 IEEE International Conference on Robotics and Automation, vol. 3, pp.
1367-1372

Gautier M, Khalil W. 1988. A direct determination of minimum inertial parameters of robots.
In Proceedings. 1988 IEEFE International Conference on Robotics and Automation, pp. 1682—
1687. IEEE

Khalil W, Kleinfinger JF. 1987. Minimum operations and minimum parameters of the dynamic
models of tree structure robots. IEEE Journal on Robotics and Automation 3(6):517-526

Ros J, Iriarte X, Mata V. 2012. 3d inertia transfer concept and symbolic determination of the
base inertial parameters. Mechanism and machine theory 49:284-297

Lee et al.



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gautier M. 1991. Numerical calculation of the base inertial parameters of robots. Journal of
robotic systems 8(4):485-506

Van Huffel S, Vandewalle J. 1991. The total least squares problem: computational aspects and
analysis. STAM

Janot A, Vandanjon PO, Gautier M. 2013. A generic instrumental variable approach for indus-
trial robot identification. IEEE Transactions on Control Systems Technology 22(1):132-145
Janot A, Vandanjon PO, Gautier M. 2009. Using robust regressions and residual analysis to
verify the reliability of LS estimation: Application in robotics. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1962—-1967. IEEE

Ramdani N, Poignet P. 2005. Robust dynamic experimental identification of robots with set
membership uncertainty. IEEE/ASME Transactions on Mechatronics 10(2):253-256

Gevers M. 2005. Identification for control: From the early achievements to the revival of exper-
iment design. Furopean journal of control 11(4-5):335-352

Leboutet Q, Roux J, Janot A, Guadarrama-Olvera JR, Cheng G. 2021. Inertial parameter
identification in robotics: A survey. Applied Sciences 11(9):4303

Ayusawa K, Venture G, Nakamura Y. 2014. Identifiability and identification of inertial param-
eters using the underactuated base-link dynamics for legged multibody systems. The Interna-
tional Journal of Robotics Research 33(3):446-468

Venture G, Ayusawa K, Nakamura Y. 2008. Motion capture based identification of the human
body inertial parameters. In 2008 30th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pp. 4575-4578. IEEE

Ogawa Y, Venture G, Ott C. 2014. Dynamic parameters identification of a humanoid robot
using joint torque sensors and/or contact forces. In 2014 IEEE-RAS International Conference
on Humanoid Robots, pp. 457-462. IEEE

Del Prete A, Mansard N. 2016. Robustness to joint-torque-tracking errors in task-space inverse
dynamics. IEEE transactions on Robotics 32(5):1091-1105

Sousa CD, Cortesao R. 2014. Physical feasibility of robot base inertial parameter identification:
A linear matrix inequality approach. The International Journal of Robotics Research 33(6):931—
944

Traversaro S, Brossette S, Escande A, Nori F. 2016. Identification of fully physical consistent
inertial parameters using optimization on manifolds. In 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 5446-5451. IEEE

Wensing PM, Kim S, Slotine JJE. 2017. Linear matrix inequalities for physically consistent iner-
tial parameter identification: A statistical perspective on the mass distribution. IEEE Robotics
and Automation Letters 3(1):60-67

Jovic J, Escande A, Ayusawa K, Yoshida E, Kheddar A, Venture G. 2016. Humanoid and
human inertia parameter identification using hierarchical optimization. IEEE Transactions on
Robotics 32(3):726-735

Ayusawa K, Venture G, Nakamura Y. 2011. Real-time implementation of physically consistent
identification of human body segments. In 2011 IEEE International Conference on Robotics
and Automation, pp. 6282—6287. IEEE

Fazeli N, Kolbert R, Tedrake R, Rodriguez A. 2017. Parameter and contact force estimation
of planar rigid-bodies undergoing frictional contact. The International Journal of Robotics
Research 36(13-14):1437-1454

Kolev S, Todorov E. 2015. Physically consistent state estimation and system identification
for contacts. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids), pp. 1036-1043. IEEE

Jatavallabhula KM, Macklin M, Golemo F, Voleti V, Petrini L, et al. 2021. gradsim:
Differentiable simulation for system identification and visuomotor control. arXiv preprint
arXi:2104.02646

Hu Y, Anderson L, Li TM, Sun Q, Carr N, et al. 2019. Difftaichi: Differentiable programming

www. annualreviews.org ¢ Robot Model Identification and Learning: A Modern Perspective

238



24

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

for physical simulation. arXiv preprint arXiv:1910.00935

Xu J, Chen T, Zlokapa L, Foshey M, Matusik W, et al. 2021. An end-to-end differentiable
framework for contact-aware robot design. arXiv preprint arXiw:2107.07501

Degrave J, Hermans M, Dambre J, et al. 2019. A differentiable physics engine for deep learning
in robotics. Frontiers in neurorobotics :6

Hahn D, Banzet P, Bern JM, Coros S. 2019. Real2sim: Visco-elastic parameter estimation from
dynamic motion. ACM Transactions on Graphics (TOG) 38(6):pap. 236

Geilinger M, Hahn D, Zehnder J, Bacher M, Thomaszewski B, Coros S. 2020. Add: Analytically
differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on
Graphics (TOG) 39(190):pap. 190

Werling K, Omens D, Lee J, Exarchos I, Liu CK. 2021. Fast and feature-complete differentiable
physics engine for articulated rigid bodies with contact constraints. In Proceedings of Robotics:
Science and Systems XVII, ed. DA Shell, M Toussaint, MA Hsieh, pp. pap. 34. N.p.: Robot.
Sci. Syst. Found

Suh HJ, Simchowitz M, Zhang K, Tedrake R. 2022. Do differentiable simulators give better
policy gradients? In Proceedings of the 39th International Conference on Machine Learning,
pp- 20668-20696. N.p.: PMLR

Antonova R, Yang J, Jatavallabhula KM, Bohg J. 2023. Rethinking optimization with differ-
entiable simulation from a global perspective. In Proceedings of The 6th Conference on Robot
Learning, pp. 276-286. N.p.: PMLR

Lidec QL, Jallet W, Montaut L, Laptev I, Schmid C, Carpentier J. 2023. Contact models in
robotics: a comparative analysis. arXiv preprint arXiv:2304.06372

Li W, Slotine JJE. 1989. An indirect adaptive robot controller. Systems & Control Letters
12(3):259-266

Yoshida K, Osuka K, Mayeda H, Ono T. 1996. When is the set of base-parameter values
physically impossible? Journal of the Robotics Society of Japan 14(1):122-130

Yoshida K, Khalil W. 2000. Verification of the positive definiteness of the inertial matrix of
manipulators using base inertial parameters. The International Journal of Robotics Research
19(5):498-510

Lynch KM, Park FC. 2017. Modern robotics. Cambridge University Press

Wittenburg J. 1980. Dynamics of multibody systems. In Proceedings, XVth IUTAM/ICTAM
Congress. Springer

Todorov E, Erez T, Tassa Y. 2012. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033. IEEE
Lee T, Park FC. 2018. A geometric algorithm for robust multibody inertial parameter identifi-
cation. IEEE Robotics and Automation Letters 3(3):2455-2462

Moakher M. 2005. A differential geometric approach to the geometric mean of symmetric
positive-definite matrices. SIAM journal on matriz analysis and applications 26(3):735-747
Lee T, Wensing PM, Park FC. 2019. Geometric robot dynamic identification: A convex pro-
gramming approach. IEEE Transactions on Robotics 36(2):348-365

Lee T. 2019. Geometric methods for dynamic model-based identification and control of multi-
body systems. Seoul National University

Lee T, Lee BD, Park FC. 2021. Optimal excitation trajectories for mechanical systems identi-
fication. Automatica 131:109773

Presse C, Gautier M. 1992. Bayesian estimation of inertial parameters of robots. In Proceed-
ings 1992 IEEE International Conference on Robotics and Automation, pp. 364-365. IEEE
Computer Society

Boffi NM, Slotine JJE. 2021. Implicit regularization and momentum algorithms in nonlinearly
parameterized adaptive control and prediction. Neural Computation 33(3):590-673

Lee T, Kwon J, Park FC. 2018. A Natural Adaptive Control Law for Robot Manipulators. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

Lee et al.



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

http://doi.org/10.1109/TR0OS.2018.8593727

Zeng A, Song S, Lee J, Rodriguez A, Funkhouser T. 2020. Tossingbot: Learning to throw
arbitrary objects with residual physics. IEEE Transactions on Robotics 36(4):1307-1319
Golemo F, Taiga AA, Courville A, Oudeyer PY. 2018. Sim-to-real transfer with neural-
augmented robot simulation. In Proceedings of The 2nd Conference on Robot Learning, pp.
817-828. N.p.: PMLR

Heiden E, Millard D, Coumans E, Sheng Y, Sukhatme GS. 2021. NeuralSim: Augmenting differ-
entiable simulators with neural networks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9474-9481. IEEE

Ajay A, Wu J, Fazeli N, Bauza M, Kaelbling LP, et al. 2018. Augmenting physical simula-
tors with stochastic neural networks: Case study of planar pushing and bouncing. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3066—
3073. IEEE

Nguyen-Tuong D, Peters J. 2011. Model learning for robot control: a survey. Cognitive process-
ing 12:319-340

Marsden JE, West M. 2001. Discrete mechanics and variational integrators. Acta numerica
10:357-514

Lee J, Liu CK, Park FC, Srinivasa SS. 2020. A linear-time variational integrator for multibody
systems. In Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics,
pp. 352-367. Springer

Kim M, Lee Y, Lee Y, Lee D. 2017. Haptic rendering and interactive simulation using passive
midpoint integration. The International Journal of Robotics Research 36(12):1341-1362
Spong MW. 1996. Energy based control of a class of underactuated mechanical systems. IFAC
Proceedings Volumes 29(1):2828-2832

Spong MW. 2022. An historical perspective on the control of robotic manipulators. Annual
Review of Control, Robotics, and Autonomous Systems 5(1):1-31

Lutter M, Ritter C, Peters J. 2019. Deep lagrangian networks: Using physics as model prior
for deep learning. arXiv preprint arXiv:1907.04490

Lutter M, Listmann K, Peters J. 2019. Deep Lagrangian Networks for end-to-end learning of
energy-based control for under-actuated systems. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7T718-7725. IEEE

Zhong YD, Dey B, Chakraborty A. 2021. Extending lagrangian and hamiltonian neural net-
works with differentiable contact models. Advances in Neural Information Processing Systems
34:21910-21922

Johanastrom K, Canudas-De-Wit C. 2008. Revisiting the lugre friction model. IEEE Control
Systems Magazine 28(6):101-114

Yoon J, Lee M, Son D, Lee D. 2022. Fast and accurate data-driven simulation framework for
contact-intensive tight-tolerance robotic assembly tasks. arXiv preprint arXiv:2202.13098
Jiang Y, Sun J, Liu CK. 2022. Data-augmented contact model for rigid body simulation. In
Proceedings of The 4th Annual Learning for Dynamics and Control Conference, pp. 378-390.
N.p.: PMLR

Pfrommer S, Halm M, Posa M. 2021. Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. In Proceedings of the 2020 Conference on Robot Learning,
pp. 2279-2291. N.p.: PMLR

Le Cleac’h S, Yu HX, Guo M, Howell T, Gao R, et al. 2023. Differentiable physics simulation of
dynamics-augmented neural objects. IEEE Robotics and Automation Letters 8(5):2780-2787
Mason MT. 2018. Toward robotic manipulation. Annual Review of Control, Robotics, and
Autonomous Systems 1(1):1-28

Sanchez-Gonzalez A, Heess N, Springenberg JT, Merel J, Riedmiller M, et al. 2018. Graph
networks as learnable physics engines for inference and control. In Proceedings of the 35th
International Conference on Machine Learning, pp. 4470-4479. N.p.: PMLR

www. annualreviews.org ¢ Robot Model Identification and Learning: A Modern Perspective

25



26

83.

84.

85.

86.

87.

88.

89.

90.

Battaglia P, Pascanu R, Lai M, Jimenez Rezende D, et al. 2016. Interaction networks for learning
about objects, relations and physics. Advances in neural information processing systems 29
Allen KR, Guevara TL, Rubanova Y, Stachenfeld K, Sanchez-Gonzalez A, et al. 2023. Graph
network simulators can learn discontinuous, rigid contact dynamics. In Proceedings of The 6th
Conference on Robot Learning, pp. 1157-1167. N.p.: PMLR

Zhu X, Wang D, Biza O, Su G, Walters R, Platt R. 2022. Sample Efficient Grasp Learning Using
Equivariant Models. In Proceedings of Robotics: Science and Systems XVIII, ed. K Hauser, D
Shell, S Huang, pp. pap. 71. N.p.: Robot. Sci. Syst. Found

Kim S, Lim B, Lee Y, Park FC. 2023. SE (2)-Equivariant Pushing Dynamics Models for
Tabletop Object Manipulations. In Proceedings of The 6th Conference on Robot Learning, pp.
427-436. N.p.: PMLR

Han J, Huang W, Ma H, Li J, Tenenbaum J, Gan C. 2022. Learning physical dynamics with
subequivariant graph neural networks. Advances in Neural Information Processing Systems
35:26256—-26268

Lee Je, Lee J, Bandyopadhyay T, Sentis L. 2023. Sample efficient dynamics learning for sym-
metrical legged robots: Leveraging physics invariance and geometric symmetries. IEEE Inter-
national Conference on Robotics and Automation

Richards SM, Azizan N, Slotine JJE, Pavone M. 2021. Adaptive-control-oriented meta-learning
for nonlinear systems. In Robotics: Science and Systems

Singh S, Richards SM, Sindhwani V, Slotine JJE, Pavone M. 2021. Learning stabilizable non-
linear dynamics with contraction-based regularization. The International Journal of Robotics
Research 40(10-11):1123-1150

Lee et al.



