
Robot Model Identification
and Learning: A Modern
Perspective

Taeyoon Lee,1 Jaewoon Kwon,2 Patrick M.
Wensing,3 and Frank C. Park4

1Naver Labs, Seongnam, South Korea, 13561; email: ty-lee@naverlabs.com
2Naver Labs, Seongnam, South Korea, 13561; email:

jaewoon.kwon@naverlabs.com
3Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame,

Indiana, USA, 46556; email: pwensing@nd.edu
4Mechanical Engineering, Seoul National University, Seoul, South Korea, 08826;

email: fcp@snu.ac.kr

Annu. Rev. Control Robot. Auton. Syst.

2024. 7:1–26

https://doi.org/10.1146/((please add

article doi))

Copyright © 2024 by the author(s).

All rights reserved

Keywords

system identification, model learning, geometry, inductive bias

Abstract

In recent years, the increasing complexity and safety-critical nature

of robotic tasks have highlighted the importance of accurate and reli-

able robot models. This trend has led to a growing belief that, given

enough data, traditional physics-based robot models can be replaced by

appropriately trained deep networks or their variants. Simultaneously,

there has been a renewed interest in physics-based simulation, fueled

by the widespread use of simulators to train reinforcement learning al-

gorithms in the sim-to-real paradigm. The primary objective of this

review is to present a unified perspective on the process of determin-

ing robot models from data, commonly known as system identification

or model learning in different subfields. The review aims to illumi-

nate the key challenges encountered and highlight recent advancements

in system identification for robotics. Specifically, we focus on recent

breakthroughs that leverage the geometry of the identification problem

and incorporate physics-based knowledge beyond mere first-principles

model parameterizations. Through these efforts, we strive to provide a

contemporary outlook on this problem, bridging classical findings with

the latest progress in the field.
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1. INTRODUCTION

In recent years, the field of robotics has witnessed a significant increase in the complexity

and importance of safety in robotic tasks. Notable examples include legged robots capable of

running and performing highly athletic motions, as well as manipulators and multi-fingered

hands executing dexterous, non-prehensile manipulation tasks. The growing complexity of

these tasks has highlighted the necessity for accurate and dependable robot models.

Traditionally, physics-based dynamic models have been the go-to approach for approx-

imating the input-output behavior of robots. These models rely on principles derived from

classical mechanics to describe the robot’s motion and interaction with the environment.

Recently, pure data-driven approaches, e.g., from machine learning, have gained momentum

as they offer the possibility of learning robot models directly from data without explicitly

modeling the underlying physics. These approaches aim to reconstruct input-output behav-

ior solely based on observed data, leveraging the power of statistical learning techniques.

This shift towards pure data-driven models has sparked a discussion about their potential

to augment or even replace traditional physics-based models in certain contexts.

In fact, the problem of approximating the input-output behavior of a system from data,

referred to as the system identification or model learning problem, has a long history in

robotics. Earlier approaches to robot model identification aimed to improve the accuracy of

the physical parameters of physics-based models by collecting joint kinematics and torque

data. After all, the availability, coverage, and quality of the data samples play a central

role in accurately approximating reality in both physics-based and physics-free approaches.

Unfortunately, acquiring extensive and sufficiently rich data from real robotic systems can

be challenging, particularly for complex systems and when safety concerns arise. Even for

mechanics-based models, identifying a minimal set of parameters that represents the rigid-

body dynamics of a standard humanoid structure (often requiring hundreds of parameters)

becomes highly challenging, particularly in terms of generalizing the model predictions

across unforeseen initial states and system inputs.

One of the primary objectives of this review is to provide a unified perspective on the

system identification problem across the robotics and machine learning literature. It aims

to shed light on the challenges encountered in identifying accurate and reliable models for

different types of robots, as well as the recent advancements in system identification within

the robotics domain. The intended audience comprises individuals with a background in

machine learning who seek to comprehend the challenges and recent advances in system

identification for robotics, as well as those with a background in robotics who are interested

in the recent progress of methods that go beyond mechanics-based parameterizations for

modeling physical systems.

Of course, this review does not aim to provide an exhaustive review of all system identifi-

cation and model learning methods. Rather, it focuses on recent advances that appeal more

to incorporating domain-specific (physics-based) knowledge to develop sample-efficient and

robust methods that go beyond classical parameterizations, yet without treating system

identification as a complete black-box function approximation problem. By doing so, it

aims to provide a modern perspective on the problem.

The remainder of the paper is structured as follows. Section 2 gives a background on the

problem of model learning for nonlinear systems, emphasizing a general viewpoint on the

problem often adopted in the machine learning literature. We use this section to motivate

the main challenges facing dynamic modeling and identification, and then, in Section 3 detail

the more specific structure of the problem for robot model identification. We concentrate
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on the classical problem of identifying inertial parameters of a mechanism, and in Section 4

we describe recent advances that leverage the geometric structure of rigid-body inertial

parameters to improve the efficiency and learning of dynamic models. Section 5 then moves

beyond this classical setting and discusses more recent paradigms that are physics informed,

while offering more model-form flexibility. Section 6 concludes the article.

2. BACKGROUND ON DYNAMIC MODEL IDENTIFICATION AND
LEARNING

In this Section, we briefly overview the essential procedures and challenges for general

nonlinear system identification problems with the primary aim of bridging approaches to

system identification in robotics and model learning in machine learning.

Consider the true state-space nonlinear system dynamics of the form,

xt+1 = f(xt, ut, ωt) 1.

yt = h(xt, ut, ϵt)

where xt ∈ X ⊆ Rn is the state, ut ∈ U is the control input, ωt ∈ W is the process noise, and

yt ∈ Y is the output measurement with ϵt ∈ E being the measurement noise. The system

identification problem typically begins by selecting the set of model candidates, which is

assumed to include within it the true system dynamics. Let us consider parametric model

classes Mf = {fθ : X×U×W → X | θ ∈ Θ} and Mh = {hθ : X×U×E → Y | θ ∈ Θ} where

a particular instantiation of the system dynamics with parameter θ is given as follows12,

xt+1 = fθ(xt, ut, ωt) 2.

yt = hθ(xt, ut, ϵt)

By executing a series of control inputs u1, · · · , uN , one collects a finite number of data

samples, D = {u1, y1, · · · , uN , yN}, from the true system in the real world. Then, the goal

is to find the model parameter vector θ that best matches the input-output behavior of

the true system dictated by the collected data and the selected model class M. For this,

it is essential to define an error criterion to be optimized between the true system and

the model based on the finite number of data samples. Such a criterion should provide a

statistically meaningful objective and/or be informed by the specific usage of the identified

model in practice. It is worth noting that, in reality, this process is often not a one-shot

ordeal. During validation of the identified model, deficiencies can be exposed due to multiple

factors such as the choice of model class M, quality and sufficiency of data samples, the

choice of error criterion, or even the parameter estimation algorithms employed.

1The present description of the model is often called a grey-box model in nonlinear control
systems literature (1). For a more general, comprehensive treatment of nonlinear system models
and the associated identification problem, readers are encouraged to refer to (2).

2Also, we note that the collection of state variables xt or their representation within the dynamics
model may not generally be identical to the one for the true system. For example, one may choose
to neglect the effect of thermodynamics or aerodynamics for modeling the rigid body dynamics of
a robot manipulator. The state representation itself can also be auxiliary and learned from data,
which is common in learning-based approaches with camera images as outputs (3)
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2.1. Parameter Identifiability (...That Matters, or Does it?)

The concept of structural identifiability asks the question of whether different model in-

stances within the model class “uniquely” represent different input-output behaviors. More

formally, a particular parameterized model class is said to be structurally identifiable, if the

parameters can be uniquely determined from the input-output behavior, i.e., if y(θ1) ≡ y(θ2)

for all inputs, then θ1 = θ2. This property naturally leads to the uniqueness and existence of

the solution θ to the identification problem, yet with the conditions that the true system is

within the specified model class and an infinite amount of data that covers all cases is avail-

able. Given that the amount of data collectible from robots is always finite, a more viable

description of identifiability to practitioners may be described by accounting for the statis-

tical precision of the parameter estimates. Practically identifiable parameters for a given

dataset can be considered as ones with confidence intervals smaller than some threshold.

Meanwhile, it is noted that the concept of parameter identifiability pertains to a

parameter-centric view of the model identification process; how accurate do the estimated

parameters θ̂ revealed from data match the true values? This aspect is less relevant with

data-driven learning using black-box models such as deep neural network models since pa-

rameters therein are not interpretable, and do not often provide a unique construction of

input-output behavior. On the other hand, parameters within mechanics-based models,

such as mass, inertia, and stiffness, have tangible and physical meanings that analytically

relate to the global description of physical behaviors of a system.

Above all, system identification is all about the statistical approximation of the input-

output behavior of a system. Then, how can we systematically integrate our understanding

of physical parameters into statistical parameter identification of mechanics-based models

for improved robustness? Further, how can we construct an extended class of parameterized

models that globally relate to our understanding of physical behaviors of robotic systems?

Here, we hold our discussion (which is to be resumed in Sections 4 and 5), and from below,

we present generic formulations to the data-driven model identification problem and source

of errors in the identification process.

2.2. On the Choice of Error Criterion

Employing statistical motivations to construct the error criterion is common in system iden-

tification. To explain, one can define a joint probability density function for the output data

samples, pθ(y1:N |u1:N ), induced from the stochastic nonlinear dynamics model in Equations

2 and 3.3 Then, the Maximum Likelihood Estimation (MLE) formulation for approximating

θ can be written as minimizing the negative log-likelihood function L(θ), i.e.,

L(θ) = − log pθ(y1:N |u1:N ) 3.

While the joint probability density function is, in general, computationally intractable, the

incorporation of practically viable structure in the model allows computationally tractable

algorithms for estimating θ in practice. For instance, let us consider the case of a noise-free

full-state measurement model, i.e., xt+1 = fθ(xt, ut, ωt), yt = xt. Then, the MLE objective

3Here, we omit the dependence of the joint probability density with respect to the initial state
x0, and assume it is given.
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Figure 1

Equation error criteria consider the error in a one-step prediction, while simulation error criteria

consider the accumulation of model mismatch over trajectories or multi-step predictions. From a
continuous-time view, the equation error criteria correspond to the difference between the vector

fields of the dynamic models, while the simulation error is calculated based on the difference

between their integral curves.

can be decomposed as follows:

L(θ) = −
N∑
t=1

log pθ(xt|xt−1, ut−1), 4.

where the probability density function pθ(xt|xt−1, ut−1) can now be solely defined by the

dynamic model, Equation 2. A different likelihood function (given that xt+1 and ωt is

one-to-one for every fixed xt, ut) can be considered as4,

L(θ) = −
N∑
t=1

log p(ωt), s.t. xt+1 = fθ(xt, ut, ωt) for t = 0, · · · , N − 1 5.

These types of formulations are commonly referred to as employing an equation error or

one-step-ahead prediction error criteria. Loosely speaking, the parameters are optimized to

fit the average error in the local state transition dynamics.

On the other hand, another class of error criteria that deserves attention is the so-called

simulation error criterion, which aims at minimizing the deviation between the measured

outputs and the ones simulated or integrated using the model (4, 5, 6). To illustrate, the

simulation error criterion can be typically given in the form,

L(θ) =

N∑
i=1

∥x̂i − xs(i, θ)∥2, 6.

where x̂i is the state measurement and xs(i, θ) is the i-step ahead prediction of the state

by simulating with the model, i.e., xs(i, θ) = fθ(xs(i − 1, θ), ui−1) for i = 1, · · · , N with

xs(0, θ) = x0. It should be noted that the simulation error also admits the maximum

likelihood interpretation under full-state measurement with white Gaussian noise and noise-

free state dynamics, i.e., xt+1 = f(xt, ut), yt = x̂t = xt + ϵt, where ϵt ∼ N (0, σ2I). More

4The objective in Equation 5 is, in general, different from that in Equation 4, since
log pθ(xt+1|xt, ut) = log p(ωt) − log det (∂xt+1/∂ωt). However, if ∂xt+1/∂ωt is constant, e.g.,
xt+1 = fθ(xt, ut) + ωt, they are identical.
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generally, an output error criterion can be defined as minimizing the simulated error on the

output, i.e., L(θ) =
∑N
i=1 ∥yi − hθ(xs(i, θ))∥2.

Without statistical grounding, the simulation error criterion is inherently different from

the equation error criterion in that it reflects the parametric estimation error more globally,

rather than locally, by directly integrating the system dynamics model over time. In that

regard, the simulation error criterion better exposes the nature of the system identification

problem in that it is not simply a “static” estimation problem but involves dynamics that

relate to the sequential input-output behavior of the system. Some errors in the parameters

that contribute to minor effects in the equation error can lead to severe deviation from the

true system dynamics over time. For instance, consider a simple 1-D mass-damper system,

i.e., mq̈+ dq̇ = 0, where m is the mass and d is the damping coefficient. While any possible

bounded estimation error on the mass and damping coefficients only leads to bounded equa-

tion error, errors that lead to negative values in any of these parameters lead to an unstable

forward simulation of the dynamics that can produce exponentially diverging simulation

error over time (i.e., q̇ = q̇0 exp (−td/m)). For this reason, minimizing simulation errors are

generally more appealing to increase the simulation fidelity or for use in receding-horizon

predictive control, or model-based RL. However, compared to equation error approaches,

they are usually highly computationally demanding, requiring iterative simulation of the

model in the computation loop, and are subject to a nonconvex optimization landscape,

which may not be suitable for, e.g., online identification or adaptive control.

2.3. Source of Errors

Suppose the true system dynamics is within the model candidate set, i.e., there exists θ̄ ∈ Θ

such that f = fθ̄ ∈ Mf . Then, as the sample size tends to infinity and remains complete,

i.e., L(θ) has a unique global minimum, the maximum likelihood estimate of θ is known to

converge to θ̄. In such a case, the estimator is said to be statistically consistent. However,

it should be noted that these assumptions rarely hold true in practice; 1) Modeling can

almost always be inaccurate to some degree (i.e., introducing structural error), 2) the data

can be noisy (i.e., introducing random error) and 3) incomplete. Below we discuss how

these problems manifest more specifically.

2.3.1. Structural Error. In scenarios where the problem of model mismatch, i.e., f /∈ Mf ,

is prevalent, the conventional approach of conducting statistical analysis on parameter esti-

mation performance tends to be less viable. Even when abundant and comprehensive data

samples are available, uncorrectable biases in the model structure can corrupt parameter

estimates in unpredictable ways.

There are many components in real robotic systems that are difficult to model accurately

using standard mechanics-based models. For instance, complex frictions involving stick,

slip, and state-dependency, nonlinear hysteresis, and slackening effects from tendon-driven

mechanisms (7), as well as cascaded actuator dynamics (8), are among the components that

standard mechanics-based models struggle to describe with sufficient accuracy.

Also, it should be emphasized that the problem of model mismatch may arise not only

from factors related to difficult-to-model effects. If the fixed parameters in a physical model

actually contain significant errors, failure to identify them along with other parameters may

lead to structural bias issues. For instance, as noted in (9), kinematic parameter error in

the dynamics model can cause significant structural bias in estimating dynamic parameters.
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Figure 2

A conceptual picture of the source of errors. Through a mapping φ : Θ → Mf , the parameter θ is

related to the dynamic model, i.e., fθ̂ = φ(θ̂) ∈ Mf . Its inverse mapping φ−1 exists only if the
model is structurally identifiable. F represents the ambient space wherein the model set Mf is

embedded. The ground-truth description of the system f ∈ F (denoted by the red star) is not

necessarily within the model set. The yellow gradation represents the probability distribution p(θ̂)
of the estimated parameters that is induced by the stochasticity of the finite data samples and the

specific identification method employed, i.e., θ̂ = ID(D), D ∼ p(y1:N |u1:N ). Structural error

persists even when the random error is resolved with an infinite number of samples, i.e.,
fθ̂∞ ∈ Mf .

2.3.2. Data: Randomness and Incompleteness. Random error refers to the estimation error

or variance that is incurred by the stochasticity in the system dynamics or noise in the

output measurements. Apart from structural error, random error can, in principle, be

resolved by having a sufficient amount of and complete measurement data.

Then, given a diverse and complete sampling, one should be able to answer how many

data samples are needed to ensure a practically reliable estimation of the model parameters.

The Fisher information matrix is given as,

I(θ̄, u1:N ) = Epθ̄
[
∇θ log pθ(y1:N |u1:N ) · ∇θ log pθ(y1:N |u1:N )T | θ̄

]
, 7.

which measures the amount of information that data samples carry about the unknown

true parameter vector θ̄. This definition importantly relates to the Cramer-Rao bound

that sets the theoretically achievable estimation covariance of the parameters, i.e., var[θ̂] ⪰
I(θ̄)−1 when θ̂ denotes an arbitrary unbiased estimator for θ. Accordingly, this measure is

commonly used to discern a practically identifiable parameter set from data, or (as noted in

the sidebar titled Data Collection Problem) to guide the design of an optimal data collection

strategy before identification. Herein, we refer to data being incomplete in the case where

the information matrix I(θ) (conditioned on the specific data collection experiment u1:N )

being degenerate along certain subspaces within the structurally identifiable parameter

space, i.e., δTI(θ)δ ≡ 0 for δ ̸= 0, δ ∈ Rdim(Θ). For example, when data is collected from

static postures of a robot, it inherently lacks complete information concerning the robot’s

inertial properties, irrespective of their structural identifiability.

3. SYSTEMS AND METHODS IN ROBOT MODEL IDENTIFICATION

In this Section, we review methods in robot dynamic identification that are based on tra-

ditional mechanics-based models, with a particular focus on rigid-link robots; interested

www.annualreviews.org • Robot Model Identification and Learning: A Modern Perspective 7



THE DATA COLLECTION PROBLEM

The fact that the information matrix offers a measure of how the data samples impact the parameter

estimation performance makes it possible to optimize the data collection strategy, which is known as optimal

experimental design or the optimal excitation problem (10, 5); that is,

max
u1:N

σ
(
I(θ̄, u1:N )

)
. 8.

An intricate issue regarding constructing a physically meaningful scalar measure σ : Rdim(Θ)×dim(Θ)→R out

of the matrix-valued information measure I(θ̄) will be discussed in Section 4.4. The information matrix is

in general dependant on the unknown parameter θ̄, which, in practice, typically requires nominal values of

θ to proceed with optimization. We note that there are also experimental design criteria that are based on

the output prediction error variance (11), as opposed to parameter error variance, essentially by projecting

the influence of parametric error to some distribution of output predictions.

Meanwhile, it is worth noting that solving data collection problems for identifying unknown parameters

is somewhat akin to a chicken-and-egg problem in general robotics applications. Specifically, while we require

trajectory data samples that excite the full spectrum of the dynamics to obtain a good model estimate,

designing and executing dynamic motions safely without an accurate dynamics model can be challenging.

Consequently, optimal excitation of robot motions has mainly been studied on fixed-base, fully-actuated

robots, such as robot manipulators (5), which are less safety-critical than floating-base, underactuated

robots like humanoids (12). Considering safety in high-performance control under model uncertainty is

itself an important and active area of research, which readers can refer to in the recent review by (13).

readers may also consult the review on soft robot modeling in (14). The main focus of

this review herein is to highlight how generic identification formulations give rise to spe-

cific challenges for the identification of robotic systems, taking into account their unique

characteristics, and different applications. It is important to note that the presentation of

recent insights and advancements in robot dynamic identification methods, which follow

this section, are not mutually exclusive to the ones reviewed here but rather complement

them.

3.1. Systems without Contact or with Contact Force Measurements

3.1.1. Fixed-Base Systems. The seminal work (15) led to a popular linear least squares ob-

jective for robot dynamic model identification, which follows the equation error formulation

(Eq. 5). Their key contribution recognized that the mass-inertial parameters ϕ (Eq. 14)

of robot links and loads appear linearly in the “inverse” dynamics equation of rigid-body

systems. To illustrate, for a NL-link fixed-based robot manipulator with joint configuration

variables q ∈ Rn, joint input torque vector u ∈ Rn with additive Gaussian noise ω, i.e.,

w ∼ N (0,Σ), the second-order inverse dynamic equation can be described as,

u+ ω =M(q, ψ)q̈ + b(q, q̇, ψ) ≡ Y (q, q̇, q̈)ψ, 9.

where M(q, ψ) ∈ Rn×n is the mass matrix, b(q, q̇, ψ) ∈ Rn denotes the vector of Coriolis

and gravitational forces, and ψ = [ϕ1, · · · , ϕNL ] denotes the complete set of mass and

8 Lee et al.



STRUCTURALLY IDENTIFIABLE PARAMETERS OF RIGID BODY DYNAMIC MODELS

Multi-body dynamics models of the form u + w = Y (q, q̇, q̈)ψ are not structurally identifiable when ψ

contains the ten standard inertial parameters of each body (17). This property is due to the fact that each

connecting joint creates ambiguity in how mass/inertia can be assigned to links on either side of the joint

without affecting the dynamics (16). Formally, the ambiguity can be characterized via the set:

N = {δ | Y (q, q̇, q̈)δ = 0, ∀q, q̇, q̈} 11.

If ψ denotes the true parameters, then any ψ in the affine subspace ψ+N gives the same dynamic model and

measurements. To recover structural identifiability, a re-parameterization is often pursued using so-called

base parameters, denoted as θ. This task can be accomplished via choosing a basis for N⊥ (the orthogonal

complement of N ) as follows. Suppose a fixed full-rank matrix B such that Range(BT ) = N⊥. Then,

for this selection, θi =
∑
j Bijψj gives the i-th base parameter as an identifiable linear combination of the

standard parameters ψj . While N⊥ is unique, the choice of B, and thus the choice of base parameters, is

not. B can be chosen in row-reduced echelon form (or similar) so that each base parameter represents a

regrouping (18) into a standard parameter, which can be desirable for efficient simulation (19).

Many methods exist to re-parameterize a model with base parameters. Base parameter sets can be

constructed using symbolic methods via the analysis of the dynamics equations (17, 18, 20), numerically via

QR or SVD decompositions applied to regressors of assumed maximally exciting data (21), or geometrically

via recursively characterizing how each link is able to be excited (16). Many symbolic methods do not

guarantee that the resulting re-parameterization is structurally identifiable except in special cases, while

numerical methods will underestimate the number of base parameters if the data used is not fully exciting.

inertial parameters of each of the links (and also typically includes joint Coulomb and

viscous friction parameters). A structurally identifiable set of parameters (see the sidebar

titled Structurally Identifiable Parameters of Rigid Body Dynamic Models) linearly lumps

together parameters in ψ , i.e., via θ = Bψ, and the terms in Equation 9 can be collected

and represented in the most compact form as (16),

u+ ω =M(q, θ)q̈ + b(q, q̇, θ) ≡ Γ(q, q̇, q̈)θ, 10.

where Γ(q, q̇, q̈) ≡ Y (q, q̇, q̈)B. Then, given the measurements of states y = x = (q, q̇)

and q̈ (through appropriate numerical differentiation and filtering) at multiple points t =

1, · · · , N along some reference trajectory, the negative log-likelihood objective can be given

as L(θ) =
∑N
i=1 − log p(ωi) ∼

∑N
i=1 ∥Γ(qi, q̇i, q̈i)θ − u∥2Σ−1 (c.f., Equation 5).

Such inherent linear-in-parameters property for the robot dynamics equation has

prompted the adoption of a rich class of robust identification techniques that rely on linear

models. Many of these approaches relax the noise-free assumptions on the regressor ma-

trix (22), the statistical independence assumption between the regressor matrix Γ(q, q̇, q̈)

and the input u, (5, 23), impose a non-Gaussian distribution on ω to derive robust linear

regression methods (24), or employ set membership uncertainty to estimate the parameter

error bound amenable within, e.g., robust control (25). To any extent, all these methods

concern with fitting the equation error that represents the local error of the dynamics.

There have also been methods that explore the use of simulation/output error criterion

(4) or composite ones (6) (e.g., approximating the simulation error solution in a compu-
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tationally efficient way using an equation error formulation) in the identification of robot

manipulators, and proven to result in more robust identification results compared to the

ones that are based purely on equation error. These methods are usually performed using a

closed-loop dynamics simulation, i.e., PD-controlled manipulator dynamics with a reference

trajectory signal as input, to enhance the stability of the forward simulation computation

within identification (26). For a more comprehensive review on parameter identification of

robot manipulators, readers are encouraged to refer to the review (27).

3.1.2. Floating-Base Systems. Floating-base systems like humanoid or quadruped robots

are inherently underactuated for which the dimension of configuration space q = (qj , qr) ∈
Rn+6 is larger than the number of input torque actuation u ∈ Rn, where qj ∈ Rn denotes

the joint configuration and qr ∈ R6 ≃ SE(3) represents the pose and orientation of a

floating base (root) link. The dynamic equation subject to (known) contact forces λi for

i = 1, · · · , nc can be described as,[
u

0

]
+

nc∑
i=1

[
Jcj,i(q)

T

Jcr,i(q)
T

]
λi = M(q, θ)q̈ + b(q, q̇, θ) ≡

[
Γj(q, q̇, q̈)

Γr(q, q̇, q̈)

]
θ, 12.

where Jci = [Jcj,i, J
c
r,i] denotes the Jacobian of the contact points. As shown in the second

line of the equation above, a remarkable finding from (28) was that, in the case of open-

chain rigid-body systems, the structurally identifiable set of parameters θ of the full dynamic

equation can be equally identified solely from the base-link dynamics, i.e.,
∑nc
i=1 J

c
r,i(q)

Tλi =

Γr(q, q̇, q̈)θ. Identifying parameters without employing joint-space dynamics is particularly

appealing for systems in which joint torque input is unobservable like human subjects

(29) or when other structural errors such as from joint friction models can severely bias the

parameter identification. However, the reduced nature of identification without joint-torque

measurements generally implies a challenge in that there is less information to be employed

for accurately identifying the parameters in a way that generalizes to prediction with the

full dynamic model. Not surprisingly, a study by (30) demonstrates that the identification

using only contact force measurements generalized less accurately for predicting the joint

space dynamics than the identification employing contact force and joint torque data.

A fundamental challenge within generic system identification of floating-base systems,

as also noted in the sidebar titled The Data Collection Problem, is that collecting suffi-

ciently rich, dynamic data is often unattainable compared to the case for, e.g., fixed-based

robot manipulators. This can often lead to highly biased parameter estimates that are

not physically consistent and less generalizable for use within high-performance simulation

and control (31). Constrained optimization approaches to guarantee physically consistent

estimates (32, 33, 34) and regularized formulations to exploit the nominal parameter in-

formation, e.g., from CAD data, have been studied (35, 36). These methods were later

reimagined and improved following the geometric perspective presented in Section 4.

3.2. Systems with Contact and without Contact Force Measurements

System identification under contact without contact force measurements remains challeng-

ing due, in large part, to the non-smooth and hybrid nature of the dynamics,

Bu+

nc∑
i=1

Jci (q)
Tλi =M(q, θ)q̈ + b(q, q̇, θ). 13.
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which is further confounded by redundancy for the contact forces in many contact scenarios.

Such a model encompasses the description of legged robots walking and running in contact

with the ground, non-prehensile manipulation of objects, etc. The fact that only the motion

of the system is observed , e.g., y = (q, q̇) + ϵ, essentially results in added complexity to

the problem in which robust determination of the contact states, i.e., contact points, modes

and forces, has to be addressed within the parameter identification process.

In (37), the authors explored the use of a time-stepping linear complementarity problem

(LCP) formulation to determine the contact states within the equation error formulation.

Also, parameter identifiability was revealed under several cases with contact modes known a

priori. However, due to the nature of the equation error formulation, in which perfect, noise-

free, state measurements are implicitly assumed, the contact timing, mode, and points are

forced to be determined directly via the raw state measurements. Incorrect specification of

the contact states can bias the resulting parameter estimates, which further has a significant

impact on the accuracy of any forward simulations using the identified model.

To address this issue, it would be more appropriate to expose these contact uncertainties

incurred by the possible state measurement errors under the simulation error formulation,

in which the state estimation problem is implicitly involved (38) (c.f., Equation 6). Modern

differentiable physics simulators provide gradients of the state evolution with respect to

the model parameters, with which system identification of various (rigid and soft) robotic

systems undergoing contact has been studied. These methods are most often based on the

simulation error criterion and have primarily relied on shooting methods (39, 40, 41, 42,

43, 44, 45). However, reliable gradient-based optimization of state trajectories undergoing

contacts is, in general, an open problem due to the inherent discontinuous nature of the

contact dynamics and the associated combinatorial nature of optimization over contacts.

This area remains one of active research (45, 46, 47, 48).

4. GEOMETRIC TAKE ON ROBOT MODEL PARAMETERS

4.1. Revisiting Parameter-Centric View on Identification Error

Continuing the discussion initiated in Section 2.1, in the context of the general model

parameter identification problem, it is difficult to foresee the impact of parameter errors on

model performance beyond the available limited and noisy data samples.

That being said, the physical nature of the parameters to be identified in physics-based

robot models offers a higher level of interpretability and predictability in the identification

process. To elaborate, mass-inertial parameters provide a quadratic representation of kinetic

energy in (interconnected) rigid-body systems. Stiffness parameters define components that

store elastic potential energy, while friction parameters describe the model of dissipative

forces. The inherent connection of these parameters to underlying physical phenomena can

guide the identification process, preventing identified models from overfitting to aberrant

aspects in the data. For instance, mass-inertial parameters resulting in a negative definite

mass matrix or negative values for friction or stiffness parameters would no longer accurately

capture inherent physical characteristics. Similarly, in the case of a humanoid robot, center

of mass parameters that deviate significantly from its physical body would not provide a

sensible estimate of the risk of falling. Given these considerations, a natural question arises:

Is there a systematic approach to measure the amount of information the data

samples carry about the parameters, yet in a way that accounts for their inherent

physical meanings?
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In this Section, we show how a geometric characterization of the space of physical pa-

rameters within robot dynamic models has facilitated the recent development of robust and

physically consistent identification methods. These methods have shown notable improve-

ments in generalization performance, particularly when dealing with limited and noisy data.

We begin by characterizing the space of physical parameters constituting robot dynamic

models (Section 4.2). This characterization provides a bridge to show how the mass-inertial

parameters of a robot reside in a curved Riemannian space (Section 4.3), which allows per-

turbations in the mass-inertial properties to be measured in a coordinate-invariant manner.

Then, in Section 4.4, we answer the question raised above by demonstrating a systematic

way to construct a set of geometric information measures, which can be used to derive

a physically meaningful, invariant confidence interval for assessing practical identifiability,

and also to proceed to generate optimal excitation trajectories for identification. Finally,

Section 4.5 discusses geometric regularization methods within the context of both offline

identification and online adaptive control.

4.2. Characterization of Physical Parameter Space

A direct approach to guaranteeing that the model produces physically consistent long-term

predictions is to restrict the parameters to those realizable in the physical world. That is,

we seek to define the space Θ so that every element is realizable in the physical world. For

instance, mass or joint stiffness and friction coefficients should always be positive, while a

spatial stiffness or damping matrix should be positive definite.

Things get a bit more involved in defining the correct necessary and sufficient condition

for mass-inertial parameters of a rigid body to be physically realizable. To illustrate, the

mass-inertial parameters ϕ of a single rigid body constitute ten parameters represented in

vectorized form as

ϕ = [m,hT , Ixx, Iyy, Izz, Ixy, Iyz, Izx]T ∈ R10, 14.

where m ∈ R is the mass, h = m · p ∈ R3 is the first mass moment with p being the

position of center of mass, I ∈ R3×3 denotes the 3 × 3 symmetric tensor representation

of rotational inertia. A necessary condition for physical consistency was first employed

in the context of robot mass-inertial parameter identification by (49, 50, 51); that is, the

mass should be positive, m > 0, and the rotational inertia at the center of mass should be

positive definite, I − [h][h]T /m ≻ 0, where [·] is a skew-symmetric representation of a 3-D

vector (52). This condition was later formalized by (32) as a linear matrix inequality (LMI)

constraint, which allowed the nonlinear physical consistency condition to be incorporated

within a convex semidefinite programming formulation for identification. Then, (33) pointed

out the complete necessary and sufficient condition for physical consistency condition on

inertial parameters, which can also be found in the rigid-body dynamics literature (53). The

remaining condition for sufficiency was the triangle inequality condition on the eigenvalues

of the rotational inertia tensor. More recently, (34) formalized the full physical consistency

condition in an LMI as

P (ϕ) ≜

[
Σ h

hT m

]
≻ 0 . 15.

where there exists a 1-1 linear correspondence between the above pseudo-inertia matrix

P (ϕ) and ϕ via Σ = 1
2
tr(I)I3 − I and I = tr(Σ)I3 − Σ. Today’s modern robot simulators,
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such as MuJoCo (54), support built-in validation for inertial parameters to satisfy this

condition for improved simulation fidelity and better practice of model-based engineering.

4.3. Geometry of Physical Parameter Space

Importantly, the condition in Equation 15 precisely represents the fact that mass-inertial

parameters should be strictly realizable from a nonnegative mass density function of a rigid

body (34). Based on this enlightenment, (55) proposed a coordinate-invariant distance

metric on the mass-inertial parameters that measures perturbations to the underlying mass

distribution in a physically meaningful way. Specifically, the affine-invariant Riemannian

metric (56) between two mass-inertial parameter vectors ϕ1 and ϕ2 can be given as,

d(ϕ1, ϕ2)
2 =

1

2
tr
(
Log

(
(P (ϕ1)

−1P (ϕ2)
)2 )

, 16.

where Log denotes the matrix Logarithm.

As noted in (57), while there can be many other possible choices of distance metric

that encode different useful physical meanings, coordinate invariance is firmly required

since an arbitrary choice of body-fixed coordinates or units can represent the mass-inertial

parameters. To explain, given a generic pseudo-inertia P ∈ P(4) (i.e., the set of 4 × 4

positive definite matrices), any change of coordinate frame, or change in physical units/scale,

transforms the pseudo-inertia P to GPGT for some G ∈ GL(4), where GL(n) denotes the

set of n× n invertible matrices (see Equations 10-13 in (55)). This operation represents a

GL(4) group action * on P(4) defined by G ∗ P ≜ GPGT . A key property of the affine-

invariant metric is that it is invariant under this group action (56)5. Since coordinate/scale

changes represent a subset of all such transformations GPGT , this property guarantees

coordinate and scale/unit invariance of the proposed metric in Eq. 16. While numeric

values transform according to the transformation of coordinates, the intrinsic measure of

how two mass-inertial parameters differ should not depend on this choice.

As will be discussed in the following Sections, some non-trivial convex approximations

to the Riemannian distance metric have proven to be useful for developing computationally

tractable and efficient algorithms. The Bregman divergence (57) associated with the neg-

ative log determinant F (ϕ) = − log(|P (ϕ)|) provides a second-order approximation to the

squared Riemannian distance given as,

dF (ϕ1∥ϕ2)
2 = log

|P (ϕ2)|
|P (ϕ1)|

+ tr
(
P (ϕ2)

−1P (ϕ1)
)
− 4 , 17.

which is convex in its first argument. Also, a quadratic approximation can be given by

considering a constant (differential) Riemannian metric evaluated at some given nominal

value ϕ0 as,

d0(ϕ1, ϕ2)
2 =

1

2
tr
( [

(P (ϕ0)
−1P (ϕ1 − ϕ2)

]2 ) ≡ (ϕ1 − ϕ2)
T g(ϕ0)(ϕ1 − ϕ2), 18.

where g(·) is the pullback of the affine-invariant Riemannian metric on P(4) to R10 under the

mapping P (·). This squared metric is also a case of a Bregman divergence, but associated

5That is, given matrices P1, P2 ∈ P(n) and any G ∈ GL(n), the geodesic distance dP(n) :
P(n)×P(n) → R corresponding to the affine-invariant Riemannian metric satisfies dP(n)(P1, P2) =
dP(n)(G ∗ P1, G ∗ P2).
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Figure 3

Illustration of how the parameter estimation variance or information (indicated as yellow dashed ellipsoid) can be

quantified relative to the metric H0 = (BG−1
0 BT )−1 (indicated as blue dashed ellipsoid) inherited from the metric G0

originally defined on the standard parameter space Ψ.

with the function F (ϕ) = ϕT g(ϕ0)ϕ. Importantly, both of these approximate distance

measures admit the same coordinate invariance property as the Riemannian distance.

As previously mentioned, other physical parameters such as stiffness, friction, and damp-

ing can be readily identified as positive tensors. It is possible to demonstrate that the same

affine-invariant Riemannian metric and its approximations provide well-defined coordinate-

invariant distance measures for these parameters. Further, as noted in section 5.3 in (58)

the affine-invariant Riemannian manifold structure can be generalized to be imposed on an

arbitrary convex set of mass-inertial parameters. This generalization can be accomplished

by inducing a Riemannian metric as the Hessian of a strictly convex, twice differentiable

barrier function on the set, which then gives rise to a Hessian manifold structure. This

approach can be used, for example, to impose variable bounds or other linear constraints

on the parameters beyond those related to physical consistency (58).

4.4. Geometric Information Measure

Referring to Equation 8, selecting a meaningful scalar measure σ(·) as a function of the

information matrix amounts to selecting a meaningful distance metric to quantify the vari-

ability of the estimation error in the parameter space. To explain, the so-called A-optimality

criterion (10) is constructed by choosing the inverse-trace operator for σ, i.e., tr(I(θ̄)−1).

Noting that the inverse of the information matrix serves as the covariance matrix var[θ̂] for

the efficient unbiased estimator θ̂, one can rewrite it as,

tr(var[θ̂]) = Eθ̂
[
∥θ̄ − θ̂∥2

]
. 19.

Clearly, the standard A-optimality criterion exhibits the standard Euclidean metric as a

distance metric on parameters. This choice is a sensible one if the representation of the

parameters θ exhibits a canonical coordinate choice under which each entries of the pa-

rameters are in a similar scale. However, as mentioned earlier, physical parameters like

mass-inertial parameters, or more accurately the base parameters, exhibit arbitrary choice

of coordinates and linear reparametrizations by the user. The standard Euclidean metric is

not only coordinate-dependant but also does not capture the multi-scale nature of physical

parameters that come with different units and scales.

Instead, an A-optimality criterion that is akin to the form, Eθ̂
[
d(θ̄, θ̂)

]
, where d(·, ·) be-
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ing some coordinate-invariant physically meaningful distance metric, is a more practically

appealing choice. In (59), various choices of existing coordinate-dependant optimality cri-

teria, including the alphabet-optimality criteria (10) and the condition number, have been

reformulated via definition as (c.f., Equation 8)

σ
(
I(θ̄, u1:N ) ·H−1

0

)
, 20.

where σ(X) denotes a symmetric function of the eigenvalues of matrix X, and the constant

normalization matrix H0 = (BG−1
0 BT )−1 can be understood as the projection of the con-

stant pullback metric G0 (analogous to g(ϕ0) in Equation 18) defined over the standard

parameters ψ = [ϕ1, · · · , ϕn] ∈ Ψ to the reduced structurally identifiable parameter space

under the particular base parameter representation B, i.e., θ = Bψ ∈ Θ. As shown in

Figure 3, this can also be viewed as the coordinate-invariant measure of how much the dis-

tribution of the parameter estimates is distorted in relative to the natural choice of metric

predefined over the parameter space Θ. In effect, this geometric framework allows for a

formal, systematic way in which to normalize the information matrix so that the ensuing

optimal excitation trajectory generation problem leads to the consideration of lighter links

needing to be more “excited” than the heavier ones, as mass-inertial parameter values are

more likely to be negative definite under the same scale of estimation variance.

As noted in (59), the inverse of the eigenvalues6 of the normalized information matrix

can also be used to assess the practical identifiability of the parameters based on a single

scale-free threshold value. Meanwhile, numerical studies provided in (59) have also shown

that the fraction of practically identifiable parameters, among the structurally identifiable

ones, is considerably restricted in practice, especially for high-dimensional systems such

as humanoid robots. This finding highlights the need for a regularized formulation of the

parameter identification problem to effectively mitigate such a practical identifiability issue

within purely “data-driven” parameter estimation by incorporating prior information.

4.5. Geometric Regularization Techniques

One unique aspect of physics-based models, in comparison to generic function approx-

imation models, is that obtaining reasonably accurate and physically plausible nominal

parameters is viable prior to collecting data. This can be achieved through various means

such as utilizing CAD data or making a rough guess. In light of the practical challenges

due to factors such as data sufficiency, noise, and structural errors, it is crucial for practi-

tioners to recognize that full precise identification of robot models is often impractical and

that the nominal model of a robot, in addition to input-output data samples, is a valuable

and viable source of information that can be leveraged in identification. More concretely,

many of these difficulties can be mitigated by appealing to appropriate regularization of

the parameter identification objective using the nominal parameters.

To explain, assuming that some prior distribution on the standard parameters ψ =

[ϕ1, · · · , ϕNL ] is given as p(ψ), the Maximum a Posteriori (MAP) formulation (60) aims to

optimize the posterior distribution over ψ, as, minψ − log p(ψ|D) ∝ L(Bψ)−log p(ψ) , where

the previous MLE objective L(θ) = L(Bψ) (Equation 3) defined over the base parameters

is now regularized with the negative logarithm of the prior model over ψ. Consequently, the

6They provide scale-free measure of parameter estimation variance projected along the corre-
sponding eigenvectors under the metric (BG−1

0 BT )−1.

www.annualreviews.org • Robot Model Identification and Learning: A Modern Perspective 15



GEOMETRIC REGULARIZATION IN ADAPTIVE CONTROL

Bregman divergence measures (e.g., Eqs. 17 or 18) for geometric regularization in identification have

also played a key role in the design of recent geometric adaptive control laws (62, 61). In that context,

one can show stability of the adaptive laws using a Lyapunov function that includes terms D(ψ ∥ ψ̂ ) :=∑
i dF (ϕi ∥ ϕ̂i )

2, where ψ̂ represents the parameter estimate. Remarkably, the asymptotic solution of the

adaptation laws developed therein implicitly regularize the solution, in that persistently exciting (PE) tra-

jectory references lead to (61): limt→∞ ψ̂(t) = argminψ∈ψ+N D(ψ ∥ ψ̂(0) ). More generally, in the absence

of PE references, the parameters converge to a minimizer within a (higher-dimensional) affine subspace that

contains ψ +N (see (61) for detail).

regularization term is chosen to be proportional to some distance measure to the nominal

parameters ψ0, i.e., the MAP optimization takes the form

min
ψ
L(Bψ) + γd(ψ,ψ0)

2. 21.

The base parameter estimate can be simply recovered by θ̂ = Bψ̂, where ψ̂ is given as the

solution of the regularized identification objective above.

Here, the choice of distance metric d greatly impacts the generalization performance,

which essentially dictates a scalar measure of how the multivariate parameter estimates

from data samples would deviate from the nominal parameters. The use of geometric dis-

tance metric in Equation 16 or its convex approximations in Equation 17 or 18 was shown

to be significantly more generalizable than, e.g., the standard Euclidean metric, as they

capture the perturbations in the mass-inertial parameters in a coordinate-invariant and

physically meaningful way (see Figure 2 of (57)). Recent theoretical breakthroughs regard-

ing implicit regularization (61) have likewise translated these benefits to adaptive control

settings (see Sidebar on Geometric Regularization in Adaptive Control). Overall, geometric

regularization methods have shown practical significance for robustness and generalization

performance in various systems and scenarios, which included online parameter identifi-

cation of robot manipulators with proprioceptive actuation, generalization of fixed-base

dynamics identification results for quadruped robot legs to the full floating-base dynamics

model, and reduced base-link dynamics identification for a humanoid structured human

model under significant levels of measurement noise.

5. REDUCING STRUCTURAL BIAS IN ROBOT MODELS

While previous section focused on system identification methods that exploit physical mean-

ings of parameters constituting a classical parametrization of robot dynamics models, this

section explores various extended classes of parameterized models that aim to alleviate the

structural errors (introduced in Section 2.3.1) in a physically meaningful way.

5.1. Kinodynamic Model Identification

Existing methods for robot identification generally separate kinematic identification from

dynamic identification; the kinematic parameters are either identified first or assumed to be
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provided by manufacturers (e.g., via computer-aided design), followed by the identification

of mass-inertial parameters. This separation is largely for reasons of convenience; given that

the dynamic model is nonlinear with respect to the kinematic parameters, the linearity-in-

parameter property fundamental to many existing robot model identification methods only

holds if the kinematic parameters are fixed.

These sequential approaches, however, could potentially introduce bias due to errors

in kinematic parameters. Specifically, as reported in (9), poorly identified kinematic pa-

rameters can lead to an uncorrectable bias in the dynamic model, leading to errors in the

mass-inertial parameters that are many times that of kinematic parameter errors. To ad-

dress this, the authors proposed a unified identification framework, which jointly identifies

the kinematic and dynamic model parameters by minimizing the sum of both errors as

min
θdyn,θkin

Ldyn(θdyn, θkin) + α · Lkin(θkin), 22.

where θdyn, θkin, Ldyn and Lkin denote the dynamic and kinematic parameters(e.g., joint

screws) and identification objective functions, respectively. The kinematic identification

objective, for example, is an error between the end-effector poses measured by cameras and

the kinematic model estimates.

Formally, this approach can be derived by expanding the observation y in Equation 2

to include the kinematic measurement (e.g., y = (x, T ) = (x,FKθkin(x) + ϵ) where T is

the end-effector pose measurement and FKθkin denotes the forward kinematics mapping)

and applying the maximum likelihood estimation argument (i.e., Equation 3). By allowing

for the update of kinematic parameters to reduce the dynamic error as well, the structural

error induced by the kinematic parameter error can be mitigated. Importantly, under the

maximum likelihood estimation argument, the weight α can be determined to represent the

relative accuracy of kinematic and dynamic sensors (e.g., camera and joint torque sensor)

as α =
σdyn
σkin

where σdyn and σkin denote the sensor noise scales. This relationship im-

plies that when the kinematic sensor is highly inaccurate, α becomes zero (i.e., σkin ≫ 1),

rendering the kinematic error less critical in identifying the kinematic parameter. Con-

versely, if the kinematic sensor is noise-free (for example, with a high-performance motion

capture system), α approaches infinity, making the process similar to the traditional decou-

pled identification. This unified method is especially advantageous when precise kinematic

parameters or sensors are unavailable, and substantial model bias is otherwise introduced.

Alternatively, by substituting the error criterion with the simulation error (as in Equa-

tion 6), kinodynamic model identification for contact manipulation has been explored (38).

In this study, the dynamic parameters include contact model parameters (such as stiffness

and damping), with both state trajectories and model parameters estimated concurrently.

Note that while the kinodynamic model identification has extended the candidate model

set to deal with the structural error, it still consists of only physically-interpretable param-

eters and strictly adheres to first principles (i.e., the dynamics of articulated rigid-body

systems). In the subsequent sections, we will explore more data-driven methods designed

to compensate for residual errors that the existing laws of physics cannot fully address.

5.2. Discrepancy Modeling Approaches

Data-driven modeling approaches that partly augment existing physics-based models have

proven more generalizable and data-efficient than relying on neural networks or other generic

function approximators to model the complete robot kinematics and dynamics.
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Some of these methods directly append deterministic data-driven models to the forward

or inverse dynamics equations. These methods are designed to model residual forces acting

on the bodies or joints that are difficult to model analytically, such as nonlinear state-

dependent frictions or aerodynamic drag forces, or to capture non-Markovian phenomena

such as hysteresis, backlash, or unmodeled elasticity with memory-based models. Examples

of such methods include (7, 63, 64, 65). In addition, (8) proposed a technique to learn

a nonlinear recurrent neural network mapping from low-level actuator commands to more

conventional inputs (e.g., joint torques) accepted by existing physics-based simulators. This

approach has been shown effective for modeling complex input-output dynamics of actuators

subject to nonlinear elasticity, such as series-elastic actuators. Stochastic models based on

deep generative models (66) or nonparametric models such as Gaussian Processes (67) have

also been used to model the uncertainty in the residual error.

Although discrepancy modeling approaches significantly reduce the extent to which

data-driven models need to learn from data compared to pure data-driven models, they

do not necessarily ensure the preservation of many system characteristics inherent to the

original physics-based model. Therefore, it is essential to carefully validate the model on

a wide distribution of test samples to ensure its reliability and accuracy. In addition, the

deliberate incorporation of inductive biases in the augmented data-driven model can also

be a practical and viable solution. In the subsequent section, we highlight some notable

approaches in this direction for modeling contact dynamics, which build upon the classic

contact mechanics in a way that explicitly ensures the non-penetration of colliding bodies.

5.3. Putting Physics in Data-Driven Model Learning

Up to this point, we have identified physics-based models as those that characterize the

input-output behavior of physical systems using fundamental principles or laws of physics.

These models explicitly represent physical parameters, such as mass-inertia, joint screws,

and stiffness, which are all tangible and measurable. On the other hand, data-driven mod-

eling approaches (67) typically refer to bottom-up methods of deducing new laws from

experimental observations, with the caveat that the parameters within these models do

not necessarily possess an explicit physical meaning. However, this observation doesn’t

mean that data-driven models must be arbitrarily complex in order to learn everything

from data. Recent works have shown that a new class of models can be constructed to

deliberately exhibit some essential characteristics, via so-called inductive biases, of physical

systems.

Below we classify a range of beneficial inductive biases pertinent to the modeling of

robotic systems. While the majority of these attributes are currently satisfied and incor-

porated within established physics-based models, the overarching technical objective is to

reconstruct these inductive biases with enhanced flexibility, thereby facilitating the model-

ing of an expanded repertoire of complex physical systems.

5.3.1. Energy Conservation. Embracing the concept of energy has played a pivotal role in

the implementation of model-based engineering approaches within traditional mechanics-

based robot models, such as those employing Lagrangian mechanics to characterize coupled

rigid bodies. Key elements of these methodologies include developing stable integrators

(68, 69, 70) and energy-based controllers (71, 72). Recent advancements in data-driven

modeling techniques have shown ways to construct a new class of deep neural networks
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that explicitly inherit essential properties, such as energy conservation and passivity, of

Hamiltonian and Lagrangian mechanics by constructing a valid kinetic energy function of

the system (73), i.e., E = 1
2
q̇TMθ(q)q̇ > 0. These models straightforwardly demonstrate

that the aforementioned energy-based methodologies can be applied in a manner comparable

to their traditional counterparts (74). More recently, these models have been extended to be

augmented with classical contact dynamics to model legged robots and robotic manipulators

involving contacts and collisions, which introduce discontinuities in the states (75).

5.3.2. Energy Dissipation. Robotic systems consist of several components that contribute

to the dissipation of energy in complex ways. One of the primary factors that leads to

energy dissipation is friction, which can be highly nonlinear and state-dependent. Despite

its complexity, the presence of friction is often found to be useful for control applications,

mainly due to its dissipative nature. Specifically, the energy E of an uncontrolled system

with generalized coordinates q should dissipate over time, i.e., Ė = q̇T f(q, q̇) ≤ 0, where

f(q, q̇) represents the generalized forces of friction. A data-driven configuration-dependent

friction model has proven effective for modeling complex tendon-driven robots, in which the

coupling of joints forming closed kinematic chains can cause non-linear variations of friction

coefficients (7). For dynamic friction effects subject to, for instance, hysteresis or stick-

slip motions, a more general condition can be derived from the strict passivity condition,

i.e., q̇T f(z, q, q̇) ≥ Ẇ (z(t)) for all t, where W is a positive storage function of the internal

state z. While energy-dissipative models for dynamic friction have primarily been studied

in one-dimensional systems (76), it is potentially viable to explore a more general class of

multi-dimensional dynamic friction models that satisfy strict passivity.

5.3.3. Contact. Several studies have shown that standard rigid contact solvers used in state-

of-the-art rigid-body dynamics simulators fail to precisely capture the contact behavior in

the real-world (48). While there have been many data-driven modeling approaches to

directly learn the contact dynamics from data, these approaches often fail to guarantee

the most salient properties of contact interactions which are nonpenetration of bodies and

energy dissipation subject to contact friction.

One of the major issues in simulating contact behaviors lies in the robust and accurate

determination of contact points/normals and modes. Also, some of the ad-hoc heuristics

adopted in off-the-shelf rigid body simulators are partly driven by real-time computational

constraints rather than fully prioritizing simulation accuracy (77). Recently, data-driven

models have augmented the classical contact solvers in a non-trivial way to preserve the non-

penetrating and dissipative behavior of contact while being flexible enough to match reality.

These methods include data-driven learning of robust contact mode switch detection(78)

as well as contact clustering (77). Also, data-driven learning for the smooth representation

of shapes has been studied within the identification of contact dynamics to alleviate shape

uncertainty and contact-induced discontinuities. These data-driven shape representations

include inter-body signed distance functions (79) and neural density fields (80), which can

be straightforwardly adopted in standard differentiable physics engines.

5.3.4. Topology and Graph. It is evident that robots with articulated bodies possess an

inherent graphical structure due to their physical connectivity. Additionally, the contact

interactions between robots and their surrounding environments also exhibit a graphical

structure dictated by the intermittent kinematic structure of contact (81). Recently, Graph
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Neural Network (GNN) models have gained popularity as they explicitly aim to capture

and leverage this relational inductive bias. These models impose this structure by appropri-

ately assigning state variables to each node in the graph and constraining computations to

propagate through pre-specified (or potentially learnable) edge connections. However, these

methods are currently limited to simulation experiments (82), and scenarios involving sim-

ple particle/object interactions (83, 84). We believe one of the significant advantages that

comes with the way graphical structure is embedded in classical mechanics-based models

lies in their compositionality. For example, if one has a completely separate pair of models

for a robot and an object, it becomes possible to evaluate their interactions in a zero-shot

manner. In that regard, whether these graphically structured data-driven models can ef-

fectively demonstrate generalization performance within arbitrary compositions of graphs

remains an open problem.

5.3.5. Invariance and Symmetry. It is important to note that while the choice of coordinate

frames to describe the physical output variables, such as end-effector poses, or parameters,

such as mass-inertia and shapes, is entirely up to the user, the results are completely invari-

ant, or more precisely equivariant7, to these choices. This property essentially makes the

universal adoption of standard robot description formats, such as URDF, MJCF, and SDF,

with arbitrary coordinate choices viable. Indeed, the result of any physical phenomenon

must not be affected by the particular choices of coordinate one adopts to describe them

numerically. While this may sound somewhat obvious, such a property is not easily attain-

able in many data-driven models that do not exhibit invariance or equivariance properties

subject to certain group transformations on the input-output variables and/or parameters.

Recent group-equivariant networks are beginning to be adapted to various dynamics learn-

ing problems in robotics, and have shown superior generalization performance and sample

efficiency with respect to the variations in shapes and poses. The current applications range

from grasp quality prediction (85), table-top object pushing and the learning of interaction

dynamics (86, 87), and dynamic modeling of multi-legged robots (88).

6. CONCLUSION

Constructing accurate and reliable descriptions of robotic systems interacting in the real

world is naturally posed as a data-driven learning problem from input-output data sam-

ples. Starting from the generic black-box system identification view of the dynamic model

identification and learning problem, this review has pointed out various practical concerns

across stages of the system identification process. As applied to robotics, we have primarily

focused on addressing the availability of a sufficient amount of data and the generalizability

of the modeling and identification methods.

It remains firmly established that robotics continues to deal with problems related to

interactions that occur in the physical world. Undoubtedly, physics represents the most

powerful domain knowledge and useful inductive bias inherent in this setting. In light of this

view, we have shown how explicit considerations of physics-based knowledge in statistical

7A mapping f : X → Y is equivariant under the transformation group G, if it satisfies the
relation, Sg ◦ y = f(Tg ◦ x), for all x ∈ X , y ∈ Y, and g ∈ G where Tg : X → X and Sg : Y → Y
are the group actions of g on X and Y respectively. Normally, these group actions are given as
the coordinate transformation rules on the respective spaces. If Sg is an identity mapping, f is an
invariant mapping.
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data-driven approaches to system identification have unpinned many recent advances for

enhanced robustness and generalizability in the face of limited and noisy data. Below are

the main summary points of this review.

SUMMARY POINTS

1. A recent geometric perspective on the mass-inertial parameters of rigid robot dy-

namics model has facilitated the development of robust and physically consistent

identification methods that led to notable improvements in model generalization,

particularly when dealing with limited and noisy data.

2. We identify and correct some longstanding issues with the established practice of

first performing kinematic identification, followed by mass-inertial parameter iden-

tification. Specifically, poorly identified kinematic parameters can lead to an un-

correctable bias in the dynamic model, leading to errors in the dynamic parameters

that are many times that of kinematic parameter errors. A unified kinodynamic

identification method was described that leads to more accurate identification of

both the kinematic and dynamic parameters.

3. We described ways in which robot models can be augmented with data-driven mod-

els or entirely reconstructed in such a way to respect some of the important physics-

based inductive biases with enhanced flexibility; thereby facilitating the modeling

of an expanded repertoire of complex physical systems.

In conclusion, it is important to recognize that system identification should not be

considered an ultimate goal in and of itself, but rather a valuable tool for a wide range

of targeted robotics applications. In line with this understanding, the controls and rein-

forcement learning community is increasingly committed to developing system identification

methods that are directly aligned with control and task objectives (26, 89, 90). While this

review article did not extensively explore these ideas, they represent exciting prospects for

the field’s future. Through these and other advancements, we hold hope that ongoing de-

velopments will facilitate the promotion of robust, sample-efficient, and generalizable robot

models that are well-equipped to support the complex tasks robots are expected to per-

form. As these systems interact with and navigate the physical world, we have a growing

opportunity to leverage the vast structural richness it provides.
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