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Multitask learning is frequently used to model a set of related response
variables from the same set of features, improving predictive performance
and modeling accuracy relative to methods that handle each response vari-
able separately. Despite the potential of multitask learning to yield more
powerful inference than single-task alternatives, prior work in this area has
largely omitted uncertainty quantification. Our focus in this paper is a com-
mon multitask problem in neuroimaging, where the goal is to understand the
relationship between multiple cognitive task scores (or other subject-level as-
sessments) and brain connectome data collected from imaging. We propose
a framework for selective inference to address this problem, with the flexi-
bility to: (i) jointly identify the relevant predictors for each task through a
sparsity-inducing penalty and (ii) conduct valid inference in a model based
on the estimated sparsity structure. Our framework offers a new conditional
procedure for inference, based on a refinement of the selection event that
yields a tractable selection-adjusted likelihood. This gives an approximate
system of estimating equations for maximum likelihood inference, solvable
via a single convex optimization problem, and enables us to efficiently form
confidence intervals with approximately the correct coverage. Applied to both
simulated data and data from the Adolescent Brain Cognitive Development
(ABCD) study, our selective inference methods yield tighter confidence inter-
vals than commonly used alternatives, such as data splitting. We also demon-
strate through simulations that multitask learning with selective inference can
more accurately recover true signals than single-task methods.

1. Introduction. Humans exhibit a diversity of cognitive abilities, which can be cate-
gorized as either fluid or crystallized. Fluid abilities are rooted in problem solving and ma-
nipulation of information, independent of prior learning (Blair (2006), Gray, Chabris and
Braver (2003)). Examples include the ability to store and manipulate items in short-term
memory (working memory) and detect subtle patterns in sequences (matrix reasoning). Crys-
tallized abilities are rooted in determinate facts that are trained through prior learning (Cattell
(1943), Horn and Noll (1997)), including reading comprehension and vocabulary. According
to proponents of a general ability model, although fluid tasks are superficially quite different
from crystallized tasks, there is an underlying shared ability that drives performance on both
kinds of tasks (Carroll et al. (1993), Humphreys (1979), Spearman (1961)). The question
of whether cognitive abilities are better understood in terms of a single, general ability or
separate fluid and crystallized abilities has been debated for over 100 years without a firm
consensus emerging.

Functional neuroimaging offers new opportunities to noninvasively investigate the neuro-
logical organization of cognitive abilities, avoiding the need to rely solely on behavioral data.
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Recent efforts have focused on using neuroimaging data to predict performance across cogni-
tive tasks and enhance cartographic understanding by linking cognitive functions to particular
brain networks. Cartographic maps for various cognitive abilities could add evidence for the
general ability hypothesis if they show spatial overlap. Alternatively, these maps might show
that individual cognitive abilities exhibit spatially distinct patterns in the brain, strengthening
the case for neurally separate abilities.

In this paper we leverage multitask learning (MTL) to advance both predictive and car-
tographic goals in the study of cognitive abilities. MTL is an important tool for modeling
related response variables, such as performance on cognitive tasks, that have common pre-
dictors and potentially common patterns of dependence between the predictors and responses.
Algorithms that use MTL are known to improve predictive accuracy by accounting for shared
information between the tasks. Many different MTL algorithms have been developed, in-
cluding regression methods that impose inter-task dependence through shared sparsity or
low-rank constraints on the multitask regression coefficients; see Zhang and Yang (2021) and
references therein for a thorough survey on the topic. We utilize a regression-based MTL
method to identify a potential common neurological basis for fluid and crystallized abilities.

In addition to predicting performance across different cognitive tasks and visualizing the
involvement of different brain regions, we also address an important question that has been
neglected: statistical inference for the selected neurological models. We introduce a novel,
two-step procedure that can recover shared signals in neuroimaging data and, subsequently,
quantify uncertainty via selective inference. The first step in our procedure entails using a
randomized MTL algorithm with a sparsity-inducing penalty to jointly identify a model for
each of the cognitive tasks. In stage two we conduct selective inference in the model chosen
from the estimated sparsity structure, enabling us to test the significance of the shared signals
recovered in the first step. This hypothesis testing framework, which offers the flexibility
of choosing the model under which to conduct inference after examining the data, has the
potential to significantly expand our understanding of the relationship between cognition and
neurological features extracted from imaging data.

1.1. Contributions to the Adolescent Brain Cognitive Development (ABCD) study. The
behavioral and brain data we study come from the Adolescent Brain Cognitive Develop-
ment (ABCD) study, one of the most extensive efforts to track the brain development of a
large cohort of children in the United States, with close to 12,000 children enrolled across 23
research sites. The ABCD study includes an 11-task neurocognitive battery (Luciana et al.
(2018)), primarily based on the NIH Toolbox for the Assessment of Neurological and Behav-
ioral Function, with several additional tasks to ensure comprehensive coverage across cog-
nitive domains. Importantly, the ABCD battery includes two classic crystallized ability tasks
(picture vocabulary and reading comprehension) as well as two classic fluid ability tasks (list
working memory and matrix reasoning). It also uses multiple imaging modalities to track
the participants’ brain development (Hagler et al. (2019)). Our focus is resting-state fMRI,
which captures patterns of spontaneous activation throughout the brain while subjects are at
rest in the scanner, yielding maps of functional connectivity. Previous studies have investi-
gated the role of functional connectivity in general cognitive ability (Anderson and Barbey
(2023), Finn et al. (2015), Hearne, Mattingley and Cocchi (2016), Sripada et al. (2021), Tong
et al. (2022)) as well as specific abilities, like working memory (Markett et al. (2018)) and
matrix reasoning (Fraenz et al. (2021)).

Few previous studies have jointly modeled performance across cognitive domains to im-
prove predictive performance or to better understand the spatial relationships between tasks.
One notable exception is Adeli et al. (2019), who used MTL to jointly predict the develop-
ment of general and specific cognitive abilities in infants and young children over time. Other
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studies have implicitly leveraged joint model selection to predict performance on individual
cognitive domains using connections associated with general ability (Anderson and Barbey
(2023), Tong et al. (2022)). In contrast to these previous studies, we do not use any measure
of general ability computed from behavioral data. Our method relies on MTL to uncover
the relationships between tasks from brain-behavior patterns, providing a new framework to
assess the shared and distinct neural contributions to fluid and crystallized intelligence.

A further limitation of the studies mentioned above as well as most previous methodologi-
cal developments for MTL is an emphasis on prediction over inference. Prediction is typically
not the final goal in cognitive neuroscience applications, however, since directly measuring
cognitive ability from behavioral data is easier and less expensive than acquiring brain imag-
ing data. Furthermore, predictive accuracy has limited explanatory value by itself since very
different models can sometimes achieve similar predictive performance. A combination of
prediction and statistical inference could shed light on the neurobiological basis of cognition,
identifying brain-behavior relationships and measuring both the strength and the degree of
confidence for each relationship.

1.2. Novel contributions to selective inference. Selective inference has been studied ex-
tensively for single-task prediction. A common approach to selective inference, described by
Fithian, Sun and Taylor (2017), accounts for bias from model selection by conditioning on
the chosen model. The key to this approach is characterizing the selection event in a suffi-
ciently simple form. For models chosen based on the LASSO, Lee et al. (2016) developed the
influential polyhedral method, reducing the selection event to a series of linear inequalities
in the response variable. Many different model selection events for a Gaussian response vari-
able have subsequently been identified with a similar set of inequalities, yielding conditional
distributions that can be used for inference (Liu, Markovic and Tibshirani (2018), Suzumura
etal. (2017), Tanizaki et al. (2020), Taylor and Tibshirani (2018), Zhao and Panigrahi (2019),
among others).

Despite the convenience of the polyhedral method, the resulting confidence intervals can
have infinite expected length for Gaussian regression (Kivaranovic and Leeb (2018)). The
loss in inferential power can be remedied by applying conditional inference to a randomized
problem, for example, by adding random noise to the response variable (Tian and Taylor
(2018)) or by holding out some samples during selection, known as data carving (Fithian, Sun
and Taylor (2017), Panigrahi (2018)). Under randomized versions of single-task algorithms,
such as the LASSO, Tian and Taylor (2018) obtained a pivot for each selected parameter
after eliminating other (nuisance) parameters. More recently, Panigrahi and Taylor (2022)
and Panigrahi et al. (2023), Panigrahi and Taylor (2018), Panigrahi, Taylor and Weinstein
(2021) build on the polyhedral method to introduce a tractable likelihood that allows for both
frequentist and Bayesian selective inference, using a prior in conjunction with the likelihood
for the latter.

Unfortunately, the polyhedral methods for single-task algorithms do not generalize well
to the multitask setting because the usual conditioning event for single-task methods does
not have a simple characterization under joint model selection. Remarkably, there is a proper
subset of the usual conditioning event that makes selective inference feasible for our partic-
ular MTL procedure without sacrificing much power, leading to an easy-to-solve system of
estimating equations. To the best of our knowledge, this is the first selective inference method
for the multitask setting.

The remaining paper is organized as follows. Section 2 presents our algorithm for esti-
mating the shared sparsity structure. Section 3 develops our method for MLE-based selective
inference. In Section 4 we apply our methods to the ABCD study data for identifying the
neurobiological underpinnings of fluid and crystallized intelligence. A brief discussion in
Section 5 concludes our paper.
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2. Multitask learning for joint model selection.

2.1. The two-stage model selection and inference protocol. For ease of presentation, we
first review the two-stage protocol for model selection and subsequent selective inference
for the (single-task) randomized LASSO described in Panigrahi and Taylor (2022). Suppose
we observe a predictor matrix X € R"*” with fixed entries, a random response vector y ~
N(u, ) € R" with u unknown and ¥ known, and an independent randomization variable
o~ N (0, Q) € R? with known €. In the first stage we identify a sparse linear model through
arandomized LASSO regression. We estimate the regression coefficients, ® € R”, by solving

o~

(D O =argmin L(O; y, X, w) + [AO]1,
®

where A € RP*P represents a diagonal matrix of feature-specific tuning parameters. The
randomized loss L(-; y, X, w) is given by

1 €
@) L(©:y, X, 0) =]y = XOI3 — /O + |03,

We use M’ to denote the transpose of a matrix M. The ridge term in the loss function, with a
small €, is included to ensure the existence of an optimal solution; see Tian et al. (2016). The
estimated support set, E = Supp(@), is treated as random, reflecting the fact that different
samples of y and w will yield different active sets. Suppose we observe E (y,w) = E on our
specific data. We use X € R"*IE| to represent the restriction of X to the columns indexed
by the set E.

After observing the active set E, we assume a linear model of the form y ~ N(XEgBEg,
o2lI,), where o is fixed and I, is the n x n identity matrix. This is a simple way to specify a
model based on the active set, but selective inference affords us the flexibility to choose from
a range of specifications. For instance, the two-stage protocol we describe here can also be
used for other linear models, such as those involving linear combinations of basis functions
constructed from the active features.

In the second stage, we aim to construct 100(1 — «)% confidence intervals for the best
linear coefficients,

3) BE =argmin E[|ly — XgB113],
BeRIE

under the selected model. We note that some recent postselection work by Hong, Kuffner
and Martin (2018), Panigrahi, Wang and He (2022), Wang, He and Xu (2020) has focused
on overfitting bias from model selection. However, the parameters in (3) are well-defined
regardless of model misspecification, which could be either due to underfitting or overfitting
bias.

A conditional likelihood for B is obtained by conditioning upon the partition

Pr=|yeR", weR’:E(y,0) = E}
that contains all instances, leading us to observe the estimated support set E. Letting po(x;
u, 2) be the multivariate normal density function with mean vector y and covariance €2, we
can write this likelihood as
p(y; XEBE, 0°1n)
Jpp 0 XEBE, 021n) - p(;0, Q) dB dy
The likelihood in (4) does not have a closed form since the normalizing constant is intractable.

Instead, a tractable version of the likelihood function, called the selection-adjusted likelihood,
is obtained by conditioning on a proper subset of the actual selection event,

[S(y,0) =S} C{E(y,w) = E}.

) YIE=E
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The refined conditioning event, on the left-hand side of the previous display, can be charac-
terized by the polyhedral partition

{[yeR" weR’:Ay+ Bw <c}

for fixed matrices A, B, and c. For example, Lee et al. (2016) identify a polyhedral partition
by conditioning further on the active signs of the LASSO solution, alongside the estimated
support set E.

Approximate inference is then obtained by centering interval estimates around the max-
imum likelihood estimate (MLE) of the selection-adjusted likelihood, B évILE, and using the
observed Fisher information matrix, 7(3 év[LE), to estimate the variance. This yields postse-
lection confidence intervals for Sg of the form

2 MLE 71,2 MLE :
E,j iZl—a/Z\/Ijj ( E )s JEE,

where v; is the jth entry of the vector v, M;; is the (i, j)th element of a matrix M, and z, is
the gth quantile of the standard normal distribution.

2.2. An objective function with shared sparsity for MTL. We next set up the objective
function in the multitask setting. Suppose we have K regression tasks, with K distinct re-
sponse variables and a common set of p predictors. For k € [ K], let ny denote the sample size
available for task k, y(k) € R denote the response vector for the kth task, and X *) ¢ Rrxp
denote the corresponding predictor matrix. We assume that the predictors in each task have
been centered and do not include intercept terms in the regression. Consistent with the two-
stage procedure described in Section 2.1, we introduce a randomization variable for each task.
Let o® € R? denote a Gaussian randomization variable such that: (i) ® ~ N(0, Q%) for
k € [K], (i) ©® is independent of o®) for all K/ # k, and (iii) o® is independent of y(k/)
forall k' € [K].

For each task we assume that the set of nonzero coefficients is sparse and use penalized
multitask regression to identify the relevant features. We impose a specific intertask struc-
ture on the joint regression by assuming that the coefficients @, ... ©K) ¢ R? can be
represented as the product of a common parameter that is shared between all tasks and a
task-specific parameter that is unique to an individual task; namely,

(5) W =1,y forjelpl.kelKl.

A similar multiplicative parameterization has been used for joint estimation in a number
of penalized MTL algorithms (Bi et al. (2008), Lozano and Swirszcz (2012), Wang et al.
(2016)). To avoid a sign ambiguity, we take 7; > 0 for j € [p]. We do not impose any further

constraints to ensure that the two components, 7; and y ;k), are each identifiable since our
interest lies in estimating the sparsity structure of their product. Note that t; determines the

sparsity at the global level, as ; = 0 implies that ®§k) = 0 for all k € [K]. The parameter

y j(k) controls the task-specific sparsity, with yj(k) = 0 indicating that @;k) =0 for task k.

We proceed to fit a sparse model by minimizing the penalized objective function

K 4 P K
©®) VGG CRRCI NS SRS ob o HCT)
k=1 j=1 j=lk=1

subject to the constraint 7; > 0 for j € [p]. The minimizers T € R, y® e RP will clearly
both be sparse due to the £; penalties in the objective function. To optimize the objective (6),
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we note that its solution will yield coefficients O©® for k € [K] that could be obtained from
an equivalent formulation

K 1/2
(7 argmin Z L£©O®; y® x® ) +2’\Z{Z ®(k)|} ’
(O} jetprkerk1 k=1 =1 L=t

where A = ,/n1n2. This equivalence was established in previous work; see, for example, Guo
et al. (2011) and Lozano and Swirszcz (2012).

Following the approach of Zou and Li (2008) and Guo et al. (2011), we use an iterative
local linear approximation to the penalty term in (7), centered at the absolute value of the
previous iterate,

1/2 K |®(k)|
J

K
2 Sje] ey
it k=1 Zf:ﬂ(@;-k))(’)l

The constant ¢’ depends only on the previous iterate and can be ignored in the correspond-
ing optimization problem. With this approximation the multitask objective conveniently de-
couples by task. The successive estimates of the regression coefficients can be computed by
solving a LASSO problem separately for each of the K tasks, dependent on the previous
iterate only through the penalty weights

1 . k
A;H_ ):mm{)»o, <Z| ( ) (Z)|)

Here A is a prespecified large positive constant used for numerical stability, and A is a tuning
parameter. The iterative procedure is summarized in Algorithm 1.
Upon convergence of Algorithm 1, we obtain

(8) E; = Supp(0®) = E, fork e [K].
Let the cardinality of Ex C [p] be equal to 8, and let 6 =81 + --- + 0.

I\)I>—‘

}, J€lpl

Algorithm 1 Estimating Shared Sparsity

1: fork=1,....Kdo

2 nitialize (©%)© — argmingu (L(OD; y® x®_o®) £ 3578 101)

3: end for

4: procedure ITERATE UNTIL CONVERGENCE

5: Letr=0

6: while convergence < tol do

7: for j=1,...,pdo

8: A = minfrg, 4 - (CK, 1@ 3

9: end for

10: fork=1,...,K do

11: LASSO:

12: Solve (O©®)H+D) = argmingw (L(OW; y® x® ,®y 4
p (f+1)|®(k)|)
Jj= 1

13: end for

14: t=t+1

15: end while

16: end procedure
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3. Maximum likelihood inference post MTL. Next, we proceed to specify a model
with the sparsity structure estimated through (6) and quantify uncertainty in the effects of
selected predictors with respect to this model. We restrict our search to linear models of the
form

) YO =XPBY +er,  fork e [K],

where ¢ is a vector of errors with length ny, mean 0, and variance okz. We assume that the
errors are independent across samples and across tasks. We fit this model by maximizing the
corresponding normal likelihood, which can be viewed as a general M -estimation procedure.
For the inference step, the postselection confidence intervals for ,Bg? will be based on the
normal assumption for the error distribution.

3.1. Some preliminaries. We use boldface capital letters to denote stacked quantities
across tasks. Let

/ / 1)/ K)/
Y=0"" %Y, E={E.... E).  Be=(By ...BL ).

Without loss of generality, we can reorder each predictor matrix and randomization instance
to have the active components precede the inactive components,

®)
b_[x® y® W _ ( “E

xO=[x® x4 1] o _<w<"}f_>’
— Lk

where —A denotes the complement of set A. For each predictor j € [p], we use ;k to denote
the index of this predictor in task k after the permutation. Let b*) € R% denote the absolute
values of the estimated nonzero multitask regression coefficients for task k € [K] under this
permutation, that is,

b%j) — |@§,’<)| whenever |@§~k)! #0,
and let
B=(" ... 6%,

We let s© € R% and u® € RP~% represent the active and inactive components of the
subgradient vector of the £;-norm for the multitask regression coefficients when evaluated at
the solution, that is,

('u®y =Dg|(©f) 0L )|, fork < K],

Note that the vector s gives the signs of the active multitask coefficients for the kth task,
and u® satisfies ||u® | o < 1. To reference the active and inactive components, respectively,
of all the evaluated £-norm subgradients, we define

S=(V . s®Y, U= @V W™

We next introduce some notation to account for information shared between tasks. Suppose
there are r predictors, ji, ..., j, that are active in one or more tasks. Define I' € R” by

r = (F(jl) o F(jr))/’

where

K

r =310 forje{ji.....jrk
k=1
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Let the set of tasks where predictor j is active be given by

k()= {k: [0 %0},

with dj = |« (j)| and elements k| < - - - < kgq; arranged in increasing order. For the active pre-

dictors ji, ..., jr, we define v/ to be a vector representing the first (d i — 1) corresponding
coefficients,
) _ (1A ~(ka;-1) C .
v = (|@j”1 | ]9 |) for j € {j1..... jr}.

The vector v/ collects the absolute value of the nonzero coefficients for predictor j across
tasks, excluding the coefficient for the last task where predictor j is nonzero. For most predic-
tors in the active set, we expect that d; > 2 due to the shared sparsity across tasks; however,
if we estimate d; = 1, then v is empty and can be disregarded. After accounting for all but
the last active coefficient corresponding to each predictor, we let

V= (U 0y,

Note that there is a bijective mapping between B and (V, I'). We introduce a matrix D €
R"*@=") to record which elements of V correspond to each of the r active predictors, with
rows given by

D= (%1 - Yoy - Oy, 1) forielrl.

For some permutation matrix A € R?*9, the relationship between B and (V, T') is given by

v
B=A<I‘—DV)'

Let the matrix H € R**©®~") and the vector g € R® be given by

_ (Y0 _ (06-r
=), e=(%)

To enforce the § linear inequalities, given by Hv > g, we use the following barrier function:

8
1
log(l + 7) if Hv > g,
P15 (V) = ; Hjv—g;
o0 else,

where H; is the jth row of H and g; is the jth component of g.

3.2. Estimating equations for approximate MLE-based inference. A natural starting
point for selective inference in the multitask setting is the law for Y, conditioning on the
event

(10) {(E=E,S=S}.

This conditional prescription results in practical selective inference procedures for other £1-
regularized algorithms by constraining the response to fall within a polyhedral partition of
the sample space. Consider, for example, the randomized LASSO procedure described in
Section 2.1. The event (10), characterized through the K.K.T. conditions, induces an affine
map from the randomization variable w to the absolute coefficients b and subgradient u at
the optimal solution. Under this transformation the Jacobian contributes only a proportional-
ity constant to the conditional law of (y, b, u), given (10), yielding a multivariate Gaussian
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distribution truncated to a polyhedral partition. The distribution for y that results from con-
ditioning upon u and marginalizing over b can be used to facilitate approximate MLE-based
inference (Panigrahi and Taylor (2022)).

Unfortunately, this conditional prescription does not generalize well to the MTL setting.
Note that the stationary map for the model selection procedure in Algorithm 1, given E and S,
induces a relationship between W = (w(l)/ oK )/)’ , the collection of randomization vari-
ables, and (B, U). This relationship implies a transformation of the form

W=(n(1>(b(1>,u(1>) @@ u®) .. n<K>(b(K>,u<K>)),
where
(k) <k>
0 (p0_ 1, @) = _ x @',k T D] Dl (s0)p®
" B", u) = —|—|: (k) $® Diag(s")b
—Ek Ek
(11) + Diag( A(k) ( )

K
A(k) = mln{ko, A (Z ®(k)| }, jelpl

Observe that this transformation is nonaffine since the penalty term is now related to the solu-
tion. The change-of-variables Jacobian, given in Proposition 1 of the Supplementary Material
(Panigrahi et al. (2024)), is a complicated function of (B, U). Deriving estimating equations
for maximum-likelihood inference using the law of (Y, B, U), conditional upon (10), would
require closed-form expressions for the partial derivatives of the Jacobian, which are not
available. For completeness sake we provide the likelihood based on this conditional law in
Proposition 2 under the Supplementary Material.

Instead, we propose a different approach that can bypass the intractable Jacobian and avoid
cumbersome numerical integrations to easily facilitate maximum likelihood inference. We
will work with an exact selection-adjusted likelihood, derived by conditioning on the refined
event

(12) (E=E,S=S,T=TI,U=U},

which is a proper subset of the event in (10). We form our estimating equations for maximum
likelihood inference in terms of the least squares estimator based on the selected predictors
for each task,

Note that the estimator in (13) is the naive MLE that we would have used if the sets Ej were
specified before looking at the data. Dependent on X ®)"y®) the event of selection also relies
on

k k I\ T
B = (x0) (1, — X&) (x§)")y P,

the ancillary statistic we obtain through a projection of the response onto the subspace or-
thogonal to the span of the selected predictors X fgkk)

Lemma 3.1 first identifies an equivalent representation for the refined conditioning event
in terms of V, I', and U that we observe after solving the MTL Algorithm 1; please see
Section 3.1 for a complete list of definitions.
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LEMMA 3.1. Suppose V, T are defined as above. Then the event (12) is equivalent to the
event

(V>0,T=T, T-DV>0, U=U}.

The proof can be found in the Supplementary Material. Consider the bijective mapping
W 4 : RKP — RXP gych that
/

(B U)=w4(V T U)=Diag(AIkp-s)(V (T'-DV) UY.
Applying a change of variables via the composite mapping,

(I_IX/YO‘J/A)_1

(14) W— (VT U,

we obtain an exact selection-adjusted likelihood in Theorem 3.2 after conditioning on the
event in (12). The alternate characterization for the refined conditioning event in terms of
the new variables V, I, and U yields a selection-adjusted likelihood function that no longer
involves the Jacobian, the term which previously hindered our attempts to solve the estimating
equations. The normalizing constant for our refined conditioning event is simply a Gaussian
integral over a support set that is characterized by exactly § linear inequalities.

THEOREM 3.2. Consider the model in (9). The likelihood obtained from the law of the

least squares estimates, based on {X g{k) , y(k)}f: | after conditioning upon the event in Lemma
3.1, is given by

-1
(/ p(B; LBg+m, %) -p(Vi PB+q,A) - 1(HV = g)dVdﬂ) -p(Bg: LBg +m, X).

Expressions for the matrices L, m, X, P, g, and A are provided in the Supplementary
Material. To develop an easily solvable system of estimating equations for the MLE and the

inverse observed Fisher information matriX,T_I, we bypass the integration in the normalizer,
simply approximating it with the mode of the integrand in the selection region. That is,

tog [ (B LBg+m. %) p(V; PR+q,8)- 1(HT = g)dV df

1 e
(15) %—éfl‘g{i(ﬁ—LﬂE—m)z YB — LBg —m)

1 ~ ~ ~ ~ ~
43V = PE—q)87 T = PR - )+ (7))

ignoring an additive constant. The approximation in (15) then lends itself toward tractable

. . ~MLE : . . . .
equations for the selective MLE, By, and the inverse observed Fisher information matrix,

=1, given in Theorem 3.3.

THEOREM 3.3. Under the modeling assumptions in Theorem 3.2, the approximate se-
lective MLE and the observed information matrix satisfy the following system of estimating
equations:

B =L B+ L' 'SP A (PBg+q—V) — L™ 'm,

T =L 'S 4 L7'S(PAT' P P A (A 4+ V2%u (V) 'AT P)SL Y,
where V is obtained Jfrom solving

—~ 1 ~ —~ ~ —~ ~
(16) V=argmin_(V = PRy — )’ A~ (V = PBg — ) + pu o (V).
\%4
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Algorithm 2 Multitask model selection and inference

17: Record the values for E, S, T, and U at convergence of Algorithm 1

18: From the estimated sparsity structure, compute B(Ekk ) and BY ) for k € [K]
19: Specify a significance level o

20: Compute P, g, and A

21: Optimize (16) with gradient descent to compute v

22: Compute the matrices L, m, X

23: procedure MAXIMUM LIKELIHOOD INFERENCE

24: Find E%ALE and ™' based on the estimating equations in Theorem 3.3
25: for j €{1,...,8}do

26: Compute interval ﬁgH;E * 21—a2yl; jl (ﬁévl LE)

27 end for

28: end procedure

With these estimators for the approximate MLE and the inverse observed Fisher informa-
tion matrix, it is now possible to use maximum likelihood inference to form 100 - (1 — «)%
confidence intervals for the parameters within the MTL model (9). Algorithm 2 summarizes
our procedure for post-MTL inference by reusing the same data.

4. Analysis of neurocognitive data from the ABCD study. The Adolescent Brain Cog-
nitive Development (ABCD) study, discussed in the Introduction, is a large longitudinal study
undertaken to characterize typical cognitive development in adolescence (Karcher and Barch
(2021), Luciana et al. (2018), Volkow et al. (2018)). Researchers are interested in better
understanding the organization of cognitive abilities during childhood development, that is,
whether there is a single, general ability or separable fluid and crystallized abilities. Existing
work has relied almost exclusively on behavioral data and has reached equivocal findings.
Some studies have found evidence for a single strong, general factor of cognitive ability in
youth (Gignac (2014), Juan-Espinosa et al. (2000)). Other studies have concluded that a two-
factor model of intelligence performs better than a single-factor model for children and ado-
lescents, with fluid intelligence and crystallized intelligence becoming more differentiated
with age (Simpson-Kent et al. (2020)).

Studies that leverage neurological data in studying the organization of cognitive abilities
are extremely rare. Two exceptions are Tadayon, Pascual-Leone and Santarnecchi (2020)
and Simpson-Kent et al. (2020), who examined cortical morphology and white matter, re-
spectively. These structural modalities, however, tend to have much weaker associations with
cognitive abilities than resting-state fMRI (Chen et al. (2022), Marek et al. (2022)). In addi-
tion, these studies used traditional mass univariate approaches, treating all edge weights as
a bag of features. We instead adopt a multitask approach that, as we have argued, is better
suited for the dual goals of prediction and cartographic mapping.

4.1. Multitask framework for studying ABCD data. Applied to the ABCD data, our mul-
titask learning and selective inference procedure, MTL + SI, offers a novel approach to iden-
tifying the neurobiological underpinnings of fluid and crystallized intelligence in the devel-
oping brain. We have applied MTL + SI to the second ABCD release (the study is ongoing),
using the same inclusion/exclusion criteria as Sripada et al. (2021). This leaves data for 5937
subjects from 19 different research sites throughout the U.S. We limit the analysis to four of
the tasks from the ABCD neurocognitive battery, two measuring fluid intelligence (the List
Sorting Working Memory Test from the NIH Toolbox for the Assessment of Neurological
and Behavioral Function and the Matrix Reasoning subtest from the Wechsler Intelligence
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Test for Children) and two measuring crystallized intelligence (the Picture Vocabulary Test
and the Reading Comprehension Test from the same NIH Toolbox).

The predictors in our multitask regression are neurological factors extracted from resting-
state fMRI data by estimating the connections between 418 regions of interest (ROIs or
nodes) in the brain. These ROIs were identified based on the Gordon cortical parcellation
(Gordon et al. (2016)), augmented with additional subcortical and cerebellar atlases. The
418 ROIs are further classified into 15 functional groups, ranging in size from four to 54
nodes; see Table 3 for a complete list. These groups of ROIs, equivalent to communities in
the statistical network analysis literature, are themselves called networks in neuroimaging, an
unfortunate terminology overload.

To assess the strength of connection between each pair of ROIs, the Pearson correlation
coefficient is computed between the fMRI blood oxygen level dependent (BOLD) signals
at those ROIs. We use the internode correlations from Sripada et al. (2021), computed after
pre-processing the fMRI time series data to correct for nuisance covariates, such as physio-
logical noise and head motion, through a standard pipeline that includes FreeSurfer normal-
ization, ICA-AROMA denoising, CompCor correction, and omission of high-motion frames.
With 418 nodes, each scan corresponds to 418 x 417 / 2 = 87,153 features. A standard
approach to resting-state fMRI data is to replace the edge weights with top principal compo-
nent scores (Cordes and Nandy (2006)), which both reduces dimensionality and helps with
the low signal-to-noise ratio. We retain the first 500 principal component scores computed
from the correlations to use as features in multitask learning. Previous work has shown that a
small number of components is typically sufficient to capture most interindividual variation
in functional connectivity (Sripada et al. (2019)) and predict differences in cognition (Sripada
et al. (2020)).

After standardizing the response variables, we consider two different ways of identifying
the principal components for each task through multitask learning. One approach, which we
refer to as joint, is to apply Algorithm 1 to all four tasks. This is the default approach to
multitask learning on both the simulated and real data when not otherwise specified. The al-
ternative approach, which we refer to as pairwise, is to apply Algorithm 1 separately to the
two tasks that measure fluid intelligence and the two tasks that measure crystallized intelli-
gence. Comparing the two approaches allows us to assess how much joint learning of the fluid
and crystallized tasks can improve detection of shared neurological structure. We proceed to
fit a multitask model on the selected principal components for each approach and construct
confidence intervals for the best linear coefficients using Algorithm 2. A consistent plug-in
estimator is used to approximate the noise level, following the recommendation of Tian and
Taylor (2018). We use 80% of the original data for model selection and inference, hold out
another 10% for selecting the tuning parameter for penalized multitask regression, and use
the last 10% as test data.

4.2. Validation of MTLA-SI through simulation. 'We first use synthetic data with the same
dimensions and estimated sparsity level as the fMRI features to investigate the efficacy of
MTL + SI in recovering signals and estimating their strength. We generate data from the
linear regression model in (9) with K = 4 and noise variance 1. Each predictor matrix is
simulated by drawing 6000 samples from a multivariate Gaussian distribution of dimension
p = 500, with all means equal to zero and covariance given by the identity matrix. Simulation
results with non-Gaussian errors are reported in Section 3 of the Supplementary Material.

The coefficients 8 € R”*X in the MTL model are chosen based on two parameters, the
global sparsity level sg and the task-specific sparsity level s7, both numbers between 0 and
1. We define the global sparsity as the percentage of predictors that are zero for all of the
tasks. The task sparsity, meanwhile, quantifies the average number of tasks that do not share
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any one of the global signals. Note that a task-level sparsity value s7 = 0 would mean that
all tasks have the same active predictors, and higher levels of s7 indicate that the predictors
used by each task are more heterogeneous. For given levels of s and s, the entries of 8 are
determined as follows:

1. Select [sg p] predictors to be globally null for every task, and set the corresponding
rows of 8 to zero.

2. For the remaining set of globally active predictors, set an average of [s7 K] entries of
each row of 8 to zero.

3. For each predictor j € [p], specify the corresponding nonzero coefficients by sam-
pling without replacement from an equally-spaced sequence of values covering the interval

[\/210g(p), \/610g(p)].

Randomly assign each coefficient a sign drawn from {—1, 1}.

The task sparsity level is of primary scientific interest for its ability to measure the extent
of feature-sharing between tasks, so we investigate the consequences of varying sr while
fixing sg. Our results from applying MTL 4 SI jointly to the four ABCD tasks, presented in
the following sections, indicate that 77 of the top 500 principal components are significant
for one or more tasks following selective inference, so we fix sg = 0.85. We estimate that
the task sparsity level of the real data is s7 = 0.416, but we consider three different task
sparsity levels for our simulations: 0.25, 0.375, and 0.5. The simulations with a task sparsity
level of 0.25 and 0.5 are designed so that each predictor in the globally active set is shared
by three tasks and two tasks, respectively. For the simulations with a task sparsity level of
0.375, the globally active predictors are specified so that half are shared by three tasks and
the remaining half are shared by two tasks. We conduct 100 simulation repetitions under
each of the three data-generating models, corresponding to the three different sparsity levels.
The tuning parameter is chosen to minimize the average MSE on the validation set across
iterations, and the results are reported at that tuning parameter value for all 100 iterates.

To assess both multitask learning and selective inference when there is shared structure
across tasks, we compare MTL + SI against two alternative approaches, MTL with data
splitting and single-task LASSO with selective inference. Each procedure is described below:

1. MTL(v) + SI: Our proposed approach. Use Algorithm 1 to select an MTL model
based on independent Gaussian randomization variables, ®® ~ N (0, v?¢? - 1) for k € [K],
and construct selective inference (SI) confidence intervals by Algorithm 2.

2. Data splitting (DS(s)): Divide the training data into two parts, using [sny] samples
from each task k € [K] for model selection with the usual multitask algorithm, and reserve
the rest for inference about the selected predictors, as described in Cox (1975).

3. LASSO(v) + SI: Apply the randomized LASSO separately to each task using in-
dependent randomization variables, w® ~ N (0, v2ia?. I) for k € [K], and proceed with SI
using the maximum likelihood approach of Panigrahi and Taylor (2022).

We consider two common choices for the data splitting parameter, s = 0.5 and s = 0.67.
Panigrahi, Taylor and Weinstein (2021) show that there is a rough equivalence between data
splitting and a randomization variable with variation parameter v = /(1 — s)/s for a Gaus-
sian response. We find that the variation parameter v = 0.7, corresponding to s = 0.67, strikes
a slightly more optimal balance between the quality of model selection and the quality of in-
ference than the variation parameter v = 1.0, corresponding to s = 0.5. Thus, we set v = 0.7
for all selective inference methods.

We use several metrics to evaluate the performance of each method. The empirical cov-
erage rate (CR) of the confidence intervals is computed for the nonzero coefficients, defined
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This rate is further averaged over replications. We assess the inferential power of each method
by reporting the confidence interval lengths for the selected parameters. To measure the over-
all accuracy of model selection and subsequent inference, we compute the F1 score, defined
as

Fl— 2precision x recall

precision + recall

For our purposes precision is the proportion of truly active predictors among those that were
both selected into the model and deemed significant, that is, the effects with confidence in-
tervals that did not cover zero. Recall is the proportion of all truly active predictors that were
both selected into the model and deemed significant after inference. Letting Eq be the set of
true active predictors,

[EoN{jeE:0¢Cg ;)

EoNn{jeE:0¢Cs .
: A ’ Recall _ | 0 {] ¢ E,j}l
{jeE:0¢Cg ;)

|Eo

Precision =

Figure 1 shows the distribution of coverage, interval length, and F1 score for MTL(0.7) +
SI and the alternative methods. We observe that all methods achieve a nominal coverage level
of 90%. In terms of interval length, MTL(0.7) 4+ SI has a large advantage over DS(0.67),
which asymptotically reserves a similar amount of information for inference. MTL(0.7) + SI
also has similar or better performance than DS(0.5) in terms of interval length, even though
the latter method asymptotically reserves more information for inference. Of the metrics we
report, the F1 score provides the most direct comparison between the approaches, captur-
ing both the validity of the chosen model and the significance of the results. We find that
MTL(0.7) + SI achieves a higher median F1 score than all three alternatives for each task
sparsity level. This indicates that similar tasks should be trained together whenever possi-
ble and that selective inference is a more optimal method for quantifying the uncertainty in
models chosen through joint learning than sample splitting. Additional simulations which
vary other parameters in the design—dimensions and global sparsity—are collected in the
Supplementary Material; please see Section 3.
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Finally, we compare the results of applying MTL(0.7) + SI jointly to four simulated tasks
against the results of applying MTL(0.7) + SI separately to two pairs of simulated tasks
when: (a) there is shared structure across all tasks and (b) when the shared structure is only
present within the two pairs. To test setup (a), we randomly assign each active predictor to
two tasks, ensuring that any two of the four tasks have roughly the same number of common
predictors. To test setup (b), we instead specify the active predictors so that the two related
tasks share a common set of predictors and the unrelated pairs have no common predictors.
Note that s7 = 0.5 in both setups, with only the relationship between tasks changing. Figure 2
indicates that the joint approach produces shorter intervals and a higher median F1 score
under setup (a), while the joint and pairwise approaches have a similar median confidence
interval length and F1 score under setup (b). These results confirm that the joint approach
improves the quality of model selection and inference when there is common structure across
tasks, without doing any real harm when there is no shared structure.

4.3. Assessing the neurological organization of different cognitive abilities. We now ap-
ply our methods to the ABCD data, again comparing the joint and pairwise approaches to

MTL(0.7) + SI. The left panel of Figure 3 shows the predictive performance of each method
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FIG. 3. Left: The predictive r for the joint and pairwise approaches to MTL(0.7) + SI. Right: The distribution
of confidence interval lengths across tasks for the joint and pairwise approaches to MTL(0.7) + SI.
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TABLE 1
Predictive correlations computed on the testing data for the joint and pairwise approaches, where MTL(0.7) +
SI is applied, respectively, to all four tasks or separately to the pairs of fluid/crystallized tasks

Joint predictive r Pairwise predictive r
NIH Tlbx RC 0.335 0.321
NIH Tlbx PV 0.470 0.451
Matrix Reasoning 0.283 0.273
NIH Tlbx LS 0.354 0.317

on validation data. Following the convention in the neuroimaging literature (Sripada et al.
(2021), Sripada et al. (2020)), we measure the predictive performance of each method by the
so-called predictive r, the correlation between predictions and observed responses on out-of-
sample data. All tuning parameters are chosen to maximize the average predictive r across
tasks on the validation data. Table 1 reports the final performance of each method on the
testing data. The joint approach generally maintains some advantage across all tasks, and the
observed correlations are consistent with the expectations of domain experts and previous
findings (Sripada et al. (2021)).

The benefit of training all four tasks together is even more apparent when comparing the
inferential power of the two methods. The right panel of Figure 3 shows the confidence
interval lengths obtained under each approach. We observe that applying MTL(0.7) 4+ SI
jointly to all four tasks results in a substantially smaller median confidence interval length
than applying MTL(0.7) + SI separately to the two crystallized and the two fluid intelligence
tasks. Overall, the results indicate that the joint approach can better detect some neurological
features while also matching or exceeding the predictive performance of the two separate
multitask models for fluid and crystallized intelligence.

Although the predictive advantage of the joint approach is slight, the chosen features are
quite different from those recovered through the pairwise approach. Training all of the tasks
together yields four very similar models, indicating that many of the same neurological fea-
tures could underlie different cognitive abilities. To quantify the structural overlap between
any two tasks, we use the Jaccard index to measure the similarity of the significant features
for those tasks, where significant features are the PCs with confidence intervals that do not
contain zero. Figure 4 shows the Jaccard similarity of the four tasks under both the joint and
the pairwise approaches to model selection and inference. When applied separately to the
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FIG. 4. Similarity of selected models for the four tasks. Left: Jaccard index between sets of significant PCs
recovered through the joint approach. Right: Jaccard index between sets of significant PCs recovered through the
pairwise approach.
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two pairs of tasks, MTL(0.7) 4 SI reveals a significant amount of shared structure between
the two crystallized intelligence tasks and the two fluid intelligence tasks as well as a lesser
but still notable amount of shared structure across the two pairs of tasks. The joint approach
to model selection and inference, however, reveals a significant amount of common structure
between any two of the four tasks. Selective inference seems to confirm the existence of the
shared signals identified through joint model selection, suggesting that there may be a com-
mon neurological basis for different cognitive abilities that can be best understood through
joint multitask learning.

We have also compared MTL(0.7) + SI to data splitting, applying DS(0.67) and DS(0.5)
jointly to all four tasks. MTL(0.7) 4 SI seems to improve model selection relative to data
splitting, with more of the selected features surviving inference. As shown in Figure 5,
MTL(0.7) + SI also yields a shorter median confidence interval length than data splitting,
both overall and for predictors that are selected by both MTL(0.7) + SI and either DS(0.67)
or DS(0.5). Note that some of the predictors vary between approaches since each method
performs its own model selection; however, rough comparisons may still be possible when
there is substantial overlap in the selected sets. Table 2 reports the average number of fea-
tures selected and further deemed significant across the four tasks for each method as well
as the average number of shared features between selective inference and each data splitting
procedure. The overlap is significant, making the comparison more meaningful.

4.4. Neurological interpretation of selected models. We now offer an interpretation of
the shared structure identified through multitask learning and validated through selective in-
ference. Since experts are ultimately interested in understanding the effects of the connec-
tome, we aim to translate the results back into the original 87,153-dimensional connectome

TABLE 2
Comparison of selected models, in average number of predictors per task

# selected # significant
MTL (0.7) + SI 89.25 45.00
DS (0.67) 114.25 39.75
Common 69.50 29.25
DS (0.5) 78.75 35.50

Common 53.25 30.50
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TABLE 3
Names and abbreviations for the 15 groups of ROls, known as regions/networks

Abbreviation Full region/Network name Abbreviation Full region/Network name
SMH Somatomotor-Hand SMM Somatomotor-Mouth

CO Cingulo-Opercular AUD Auditory

DMN Default VIS Visual

FPN Frontoparietal SAL Salience

SC Subcortical VAN Ventral Attention

DAN Dorsal Attention CER Cerebellum

NONE Not Named CP Cingulo-Parietal

RST Retrosplenial Temporal

feature space. Note that the mean structure for task k in the original feature space of dimen-
sion p can be represented as

xXp® =xmMm' p® = 76",

where M is the orthogonal matrix of eigenvectors for X’X, Z is the matrix of principal
component scores, and %) = M’B® e R”. To recover B*), a potential plug-in estimator is

A

k
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where ég;) € R% is the MLE for task k obtained from Algorithm 2. Although this estimator

is only consistent for &) when 8; = p, we will use it to approximate %, as is typically
done in ordinary principal components regression (Jolliffe (2003)).

Figure 6 shows the results from applying MTL(0.7) + SI jointly to all four tasks when
projected back into the original feature space. There is notable similarity of connectivity
patterns across all of the four tasks, providing some support for the general factor model.
Key connectivity motifs include stronger positive and negative connections within the de-
fault mode network (DMN) and the visual network as well as increased positive connectivity
within the cerebellum. We also observe complex patterns of connectivity changes between re-
gions/networks, especially between the frontoparietal network (FPN) and DMN, the auditory
network and the somatomotor network, the cingulo-parietal network (CP) and the retrosple-
nial network (RSP), and RSP and DMN.

Our results show some agreement with a recent study that identified FPN, DMN, the dor-
sal attention network, and the visual network as influential in predicting general intelligence
(Tong et al. (2022)). FPN is involved in flexible adaptive control (Cole et al. (2013)), and a
number of previous studies implicate it in executive functions and cognitive control (Cole and
Schneider (2007), Niendam et al. (2012)), constructs closely related to the general factor of
intelligence (Chen et al. (2019)). DMN is involved in spontaneous thought (Andrews-Hanna,
Smallwood and Spreng (2014)) and semantic/conceptual representation (Binder and Desai
(2011), Binder et al. (2009), Wirth et al. (2011)), capacities that likely facilitate abstrac-
tion and problem-solving. Cerebellum has been traditionally associated with coordination of
movement (Bastian (2006), Spencer, Ivry and Zelaznik (2005)), but there is growing recogni-
tion that it coordinates both external motor operations as well as internal mental operations,
and thus it plays a critical role in supporting complex cognition (Andreasen et al. (1999),
Schmahmann (1996), Schmahmann (2019)). CP and RSP are small networks that were iden-
tified relatively recently (Gordon et al. (2017)), and their significance for higher cognitive
functions requires further elucidation.
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FI1G. 6. Cartographic visualization showing standardized estimates of the original coefficients, grouped by re-
gion/network, that were obtained after applying MTL(0.7) + SI jointly to all four tasks. A threshold of 1.5 is used
to improve readability, with smaller-magnitude coefficients set to zero.

Overall, we find compelling evidence for shared connectivity patterns between the two
fluid intelligence tasks and the two crystallized intelligence tasks. A joint approach to model
selection recovers more shared structure across all four tasks than performing model selection
separately, and selective inference provides additional statistical reassurance that the shared
structure we identified through MTL reflects real patterns in the data. Our approach con-
tributes a new perspective to the literature on theories of intelligence, using neurological data
to discern the relationships between tasks rather than inferring them from behavioral data.

5. Discussion. In this paper we address two key limitations of previous research on the
role of the functional connectome in human cognition. Most previous studies have investi-
gated the connectivity patterns associated with general cognitive ability, inferred from behav-
ioral data, or the connectivity patterns associated with specific cognitive abilities like working
memory. By contrast, we leverage a MTL approach to discover the relationship between cog-
nitive domains entirely from shared patterns in the brain-behavior data, avoiding the need to
make any inferences about general ability from behavioral data alone. Most prior studies on
the role of the functional connectome in human cognition have also focused on predictive
power, neglecting statistical inference. We address this shortcoming by developing selective
inference procedures to measure the strength and certainty of each brain-behavior relation-
ship discovered from the data, offering improved interpretability.

By applying our selective inference procedures for MTL to two tasks from the ABCD
study that implicate fluid intelligence and two tasks from the ABCD study that implicate
crystalized intelligence, we uncover additional shared structure that cannot be detected by
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modeling the fluid and crystalized tasks separately. This shared structure provides initial sup-
port for a general factor model of cognitive abilities. After applying MTL+ SI to the data,
we use cartographic mapping to visualize the brain regions involved in each of the four tasks.
Our results reveal that connections involving DMN, FPN, and visual network generally have
the most predictive power across tasks, showing some agreement with previous studies.
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