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ABSTRACT

We develop a technique for record linkage on high dimensional data, where the two

datasets may not have any common variable, and there may be no training set avail-

able. Our methodology is based on sparse, high dimensional principal components.

Since large and high dimensional datasets are often prone to outliers and aberrant

observations, we propose a technique for estimating robust, high dimensional princi-

pal components. We present theoretical results validating the robust, high dimensional

principal component estimation steps, and justifying their use for record linkage. Some

numeric results and remarks are also presented.
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1. Introduction

In recent times, owing to rapid advancement of a variety of technological resources and

services, and increasingly digitally connected environment, numerous kinds of datasets

are available. For example, for a given community of individual’s, there may be very high

dimensional data available on each individual’s (i) online shopping patterns, as well as on

their (ii) social media presence and usage. It may of interest to businesses to understand

their customers better based on their social and cultural backgrounds, consequently it

is of interest to link an online shopper’s profile with their social media data. Owing

to privacy rights of individuals and confidentiality concerns, identifying information may

not be available to the statistician linking the records.

This paper is primarily on a methodology for linking high dimensional datasets of

above type. Many existing approaches for entity resolution and record linkage are appli-

cable only on low dimensional datasets, and where the datasets have shared features or

variables. We do not require the two datasets to have a common set of features and in

fact, present our discussion for the case where the datasets have no common variable.

In this context, we also develop a mathematical framework for the topic of record

linkage, for better understanding and tractability of the theoretical properties of such

linking algorithms. Parts of the existing literature on record linkage and entity resolution

are based on ad hoc principles, and we hope to address some foundational challenges in

this topic.
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Additionally, it is routinely observed that high dimensional datasets can contain out-

liers or aberrant observations. Consequently a major aspect of our proposed methodology

is to develop robust techniques for data linkage. Our proposal borrows recent studies on

high-dimensional principal components and extends them to the case of robust principal

components.

Another aspect of this paper is that we propose a computationally much simpler and

easily implementable method for linking records than the available Bayesian approaches

such as the ones given in LISEO and TANCREDI (2013). Other machine learning ap-

proaches involving graphs and networks that are sometimes adopted for entity resolution,

also require heavy machinery computing. It is not clear if such extremely computation

intensive methodology is either necessary, or whether there is a principled statistical

foundation to such methodology. Apropos of this, the computational burden from our

proposal is significantly lower.

This paper advocates a principled approach. Our approach is broadly as follows: we

implement a robust, sparse, high-dimensional principal component analysis (PCA often

hereafter) on both datasets, and consolidate the information about each observation

(that is, each row of both matrices) into a low-dimensional vector (p0 in the notations

of this paper). Then, we compute correlations between these p0 dimensional vectors

from the two matrices, with the understanding that an existing linkage will show up

as a highly correlated entry. The threshold for the correlation is based on the training

set in the current paper, but our principle is workable even when there is no training

set available. Owing to the facts that (a) our proposal requires no common features or

variables common to both datasets, and (b) we do not require a training dataset, we

call our proposal unsupervised record linkage.

In order to ensure clarity of our presentation and to keep the technicalities at a reason-

able level, in this paper we only present results on unsupervised record linkage where all

the variables are continuous in nature. In particular, commonly used variables for record

linkage, like name, date of birth, address, do not satisfy our technical assumptions. In

practice, we may use a traditional method using the nominal and ordinal variables to

do a preliminary subsetting of potential linkages, after which the unsupervised record

linkage method may be used on the continuous variables. Also, it is possible in some

cases to use continuous variables as underlying latent variables governing the behavior

of a categorical random variable. These directions of research will be part of our future

work.

The rest of this paper is organized as follows: In Section 2 we present a brief and

necessarily incomplete state of the literature on record linkage, in order to clarify how

our contribution differs from the advancements on this topic thus far. Then, in Section 3

we discuss notations, the conceptual framework of the datasets that we propose to link,

and the linking model. Following that, in Section 4 we present our statistical model and

technical arguments. In particular, Section 4.1 contains the record linking algorithm,

and Section 4.2 contains the theoretical framework and justifications for our statistical

model and algorithmic steps. Then, in Section 5 we present some numeric results based

on simulation studies, along with additional comments on practical implementation of

our proposed methodology. A final Section 6 collects our concluding remarks.
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2. A Broad Overview of Record Linkage

Record linkage, also often referred to entity resolution, de-duplication or co-reference is a

widely used technique for identifying records referring to the same entity across different

databases. Although this is a trivial task when unique error-free identifiers of the entities

are recorded in the data files, in general it need to be solved in the absence of unique

identifiers using other information that the sources have in common on the entities.

The seminal article by FELLEGI and SUNTER (1969) presented the first mathemat-

ical model for this topic, based on earlier work by NEWCOMBE and KENNEDY (1962)

for one-to-one entity resolution across two databases in terms of Neyman-Pearson hy-

pothesis testing.

In this brief review, we focus primarily on bipartite record linkage, where the key

assumption is that each entity is recorded at-most once in each files. Most of the

literature (including our set-up) on record linkage falls in this scenario. This assumption

implies a maximum one-to-one restriction in the linkage, that is, a record from one file

can be linked with maximum one record from the other file.

The main principle of bipartite record linkage may be described as follows: Consider

two data files Y� ∈R
n�×p� that record information from two overlapping sets of individuals

or entities. These data files contain n� records respectively (without loss of generality

we assume n1 ≤ n2) for � = 1,2 with n0 being the number of entities simultaneously

recorded in both files, hence 0 ≤ n0 ≤ n1.

In the bipartite record linkage context, we can think of the records from files Y1 and

Y2 as two disjoint sets of nodes, where an edge between two records represents them

referring to the same entity, which we also call being co-referent or being a match.

Formally, this match can be encoded into a matrix �n1×n2
as follows:

�i j =

{

1 if records i ∈ Y1 and j ∈ Y2 represent the same entity

0 otherwise

The characteristics of a bipartite matching imply that at-most one entry in each column

and each row of � can be equal to 1. The goal of bipartite record linkage is to estimate

� using the information contained in Y1 and Y2.

The set of ordered record pairs Y1 ×Y2 can be thought as the union of the set of

matches M = {(i, j) : i ∈ Y1, j ∈ Y2, �i j = 1} and the set of non-matches U = {(i, j) :

i ∈Y1, j ∈Y2, �i j = 0}. Thus, the problem of estimating � from Y1 and Y2 can be seen

as identifying the sets M and U . When record pairs are estimated to be matches they

are called links and when estimated to be non-matches they are called non-links.

2.1. The Fellegi–Sunter Approach of Record Linkage

The key idea of the Fellegi-Sunter approach is as follows: Comparison vectors γ i j are

obtained for each record pair (i, j) in Y1×Y2 with the goal of finding evidence of whether

they represent matches or not. These vectors can be written as γ i j = (γ1
i j, . . . ,γ

f
i j, . . . ,γ

F
i j ),

where F denotes the number of criteria used to compare the records. Traditionally, these
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F criteria correspond to one comparison for each variable that the data files have in

common.

Let S f (i, j) denote a similarity measure computed from field f of records i and j.

The range of S f can be divided into L f + 1 intervals I f 0, I f 1, . . . , I f L f
, which represent

different disagreement levels. In this construction, the interval I f 0 represents the highest

level of agreement, which includes total agreement, and the last interval I f L f
represents

the highest level of disagreement.

In their paper, FELLEGI and SUNTER (1969), the authors propose to the log-

likelihood ratios

wi j = log
P[γ i j|�i j = 1]

P[γ i j|�i j = 0]

as weights to estimate which record pairs are matches. The expression for wi j assumes

that γ i j is a realization of a random vector, say, Gi j whose distribution depends on

the matching status �i j of the record pair. Similar to the Neyman-Pearson hypothesis

testing, if this ratio is large we favor the hypothesis of the pair being a match.

When P[γ i j|�i j = 1] and P[γ i j|�i j = 0] are known, the procedure orders the pos-

sible values of γ i j by their weights wi j in non-increasing order, indexing by the sub-

script h, and determines two values, h
′

and h
′′
, such that ∑h≤h

′−1
P[γ i j|�i j = 0] <

µ ≤ ∑h≤h
′ P[γ i j|�i j = 0] and ∑h≥h

′′ P[γ i j|�i j = 1] ≥ λ > ∑h≥h
′′
+1

P[γ i j|�i j = 1], where

µ = P[assign (i, j) as link|�i j = 0] and λ = P[assign (i, j) as non-link|�i j = 1) are two

admissible “type 1” and “type 2” error levels.

Finally, the record pairs are classified into 3 groups:

1. Those with h ≤ h
′ −1 are declared links

2. Those with h ≥ h
′′
+1 are non-links and

3. Those with configurations between h
′

and h
′′

require clerical review.

Fellegi and Sunter showed that this decision rule is optimal in the sense that for fixed

values of µ and λ it minimizes the probability of sending a pair to clerical review.

However, in practice, P[γ i j|�i j = 1] and P[γ i j|�i j = 0] are not known, and have to

be estimated from Y1 and Y2. So, JARO (1989); LARSEN and RUBIN (2001) proposed

to model the comparison data using mixture models of the type

Gi j|�i j = 1
iid∼ M(m)

Gi j|�i j = 0
iid∼ U(u),

�i j
iid∼ Bernoulli(θ)

for comparison variables Gi j, some distributions M(m) and U(u), and θ ∈ (0,1). Esti-

mation of M and U is usually done by EM-type algorithms.
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2.2. Machine Learning/Classification Approach

In-general, record linkage task becomes quickly infeasible with size (n�) as well as the

dimension (p�) of data files. A common solution to this problem is to partition the data

files into blocks (e.g. geography, or gender and year of birth) of records determined

by information that is thought to be accurately recorded in both data files, and then

solve the task only within blocks. See CHRISTEN (2011); STEORTS et al. (2014) for

extensive surveys. Earlier development into blocking is presented in HERZOG et al.

(2007), who also discuss the use of blocking to identify duplicate list entires and for

matching records between two sample surveys.

Recently a common approach of tackling the record linkage problems has been to

treat it as a traditional supervised or semi-supervised classification problem: we need to

classify record pairs into matches and non-matches. If we have a sample of record pairs

for which the true matching statuses are known, we can train a classifier on this sample

using comparisons between the pairs of records as our predictors, and then predict the

matching statuses of the remaining record pairs. See MARTINS (2011); TORVIK and

SMALHEISER (2009); TREERATPITUK and GILES (2009); VENTURA et al. (2015)

for some examples.

2.3. Bayesian Methods

Bayesian methods have a long history of use in record linkage models. A major advan-

tage of Bayesian methods is their natural handling of uncertainty quantification for the

resulting estimates. For a review of recent development in Bayesian methods, see LISEO

and TANCREDI (2013). While some of the Bayesian work incorporates the record data

only through pairwise similarity scores (SADINLE, 2017; SADINLE and FIENBERG,

2013), other works (STEORTS et al., 2016) directly model the actual record data which

usually requires crafting specific models for each type of field, and therefore mostly deal

with categorical information. However, recently STEORTS et al. (2015) has generalized

Bayesian methods to incorporate string variables such as addresses, phone numbers, or

dates.

In addition, SADINLE and FIENBERG (2013) has extended the Fellegi-Sunter ap-

proach to linking records across more than two databases. Also, SINGLA and DOMIN-

GOS (2006); ENAMORADO et al. (2018) generalized the underlying mixture models

(specially the i.i.d. assumptions) in the Fellegi-Sunter approach.

3. Notations, the data and linking model

The main focus of this paper is to link observations from two datasets. Both datasets

are matrices, with iid rows. However, the same observational units may have been used

for both datasets. For example, the 17-th row of the first dataset and 47-th row of the

second dataset may belong to the same individual. For a number of cases (n in the

notation used below) we know the linkage, and thus can match and pair the information

from both datasets. However, such linkage is not known for many other rows of both

datasets. The main goal of a record linkage exercise is to establish such linkages.
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It is also commonly understood that most observations from both datasets are linked,

and only a handful of observations from either dataset do not have an entry on the other.

For this paper, we assume that the datasets do not have any common variables. We

also assume that both datasets considered here are high-dimensional.

3.1. Notations

Since the data, various parameters and latent variables will have multiple indices, we

establish some notations first. The notation a denotes a vector, of dimension that will

be determined by the context. All vectors are column vectors, and the notation aT or

aT denotes the transpose, and |a| denotes its Euclidean norm. The n×m matrix A has

column vectors denoted by A ,1, . . . ,A ,m ∈R
n, and row vectors denoted by A1, , . . . ,An, ∈

R
m, thus

A = (A ,1 : A ,2 : . . . : A ,m)n×m
=

»

¼

¼

¼

¼

¼

¼

¼

½

A1,

A2,

·
·
·
An,

¾

¿

¿

¿

¿

¿

¿

¿

À

n×m

.

We index the datasets used in this paper by �= 1,2, and the notation Y� stands for the

�-th dataset with dimensions n�× p�, consisting of n� independent observations of the

p� features that are stacked as row vectors of the Y� matrix. The k-dimensional multi-

variate Normal distribution with mean µ ∈ R
p and variance Σ ∈ R

p×p will be denoted

by Np(µ,Σ). The notation Xi
i.i.d.
= F denotes that the Xi’s are independent, identically

distributed according to F.

3.2. The data and the linking framework

We consider two datasets for linkage, Y� ∈R
n�×p� for �= 1,2. Without loss of generality,

n1 ≤ n2. In both datasets, each row represents an observation, and each column a

feature. We assume, for mathematical simplicity, that there is no duplication of features

in the two datasets. Within each matrix, the rows are independent. However, a pair of

rows, one from each matrix, may have dependency.

For any positive integer k, let Nk = {1,2, . . . ,k}, the set of positive integers or natural

numbers up to and including k. For any finite set S (for example, Nk), let σ(S ) be

any permutation of the elements of S .

Suppose that n0 ≤ n1(≤ n2) is the unknown number of linked observations between

the datasets. Define ñ� = n� − n0 for � = 1,2, denoting the number of unmatched

observations from either dataset. Define N = n0 + ñ1 + ñ2, this is the total number

of observational units we consider, and we label the observational units with the index

set NN . The i-th observation of the first dataset, Y1,i, ∈ R
p1 , corresponds to the unit

whose index matches with the i-th element of σ
(

{1, . . . ,n0+ ñ1}
)

, a random permutation

of the index subset S1 = {1, . . . ,n0 + ñ1}. The index subset of the second data is S2 =
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{1, . . . ,n0,n0 + ñ1 + 1, . . . ,N}. The i-th observation of the second dataset, Y2,i, ∈ R
p2 ,

corresponds to the unit whose index matches with the i-th element of σ
(

S2}
)

, a random

permutation of the index subset S2. Note that S1 and S2 have exactly n0 elements in

common, reflecting the n0 matched observational units for the two datasets.

In a few cases, the linkage between some observations units is known, and forms the

training set. A training set is not needed for the present paper, but if indeed we have

known and established linkages between, say n ≤ n0, observational units, without loss of

generality we stack these known linkage cases as the first n rows of Y�, �= 1,2.

We assume that the observations satisfy

Y�,i,
i.i.d.
= Np�

(

0,Σ�

)

, i = 1, . . . ,n�, Σ� unknown, �= 1,2.

We use the spectral representation

Σ� = Γ�Λ�Γ
T
� , where

Λ� = diag
(

λ�,1, . . . ,λ�,p�

)

, with

λ�,1 ≥ λ�,2 ≥ . . .≥ λ�,p0
� λ�,p0+1 ≥ . . .λ�,p� ,

Γ� =
[

γ�, ,1 : . . . : γ�, ,p�

]

∈ R
p�×p� .

Thus, Λ� is the diagonal matrix of the eigenvalues of Σ�, and the columns of Γ� contain

the corresponding eigenvectors. It is assumed that the first p0 eigenvalues are consider-

ably higher than the rest, and contain information relevant for linking records. Also for

mathematical simplicity, we assume henceforth that λ1, j = λ2, j for j = 1, . . . , p0. That

is, the top p0 eigenvalues are the same. This is not a necessary assumption, but makes

the presentation and technicalities of the developments presented below considerably

simpler. We assume that the top p0 eigenvectors of both Σ�, �= 1,2 are sparse, in that

all but κ� of the entries in these eigenvectors are zero. This is a necessary assumption to

obtain statistically consistent and computationally obtainable estimators of the principal

components that we use in this paper, see WANG et al. (2016) for further details.

There are multiple record linkage contexts in which the above framework may be

useful. First, traditional linkage techniques that rely on nominal and ordinal variables

like names, addresses and so on often result in plausible subsets of observations from

one dataset linked to each unit of the other dataset. At that stage, a further analy-

sis based on the continuous variables as described here may be useful. Second, due

to confidentiality and privacy considerations, datasets are often anonymized. In such

cases, the model presented above may be extremely useful, either directly for modeling

the reported continuous variables, or in conjunction with other continuous but latent

variables. Third, our framework allows the scope of record linkage to extend beyond

the traditional applications of linking sample surveys involving individuals or households,

into linking data from multitude of sources, like social media, online shopping platforms,

and electronic records of various kinds (LI et al., 2020; FATEMI et al., 2018). In many

such contexts, the observed and often suitably anonymized data may be modeled us-
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ing high-dimensional continuous (observed or latent) variables. With such an extended

scope, record linkage may provide an increase in precision and accuracy of recommender

systems (DRACHSLER et al., 2010; SHABTAI et al., 2013; SLOKOM, 2018), for pro-

viding online security and privacy (ZHU et al., 2016; SALAS, 2019), for transfer learning

(RONG et al., 2012) and for distributed computing and related technical developments.

4. The statistical model

Without loss of generality and to considerably simplify the presentation below, we assume

that the first n0 rows of Y�, � = 1,2 are linked. To relate the two datasets Y� ∈ R
n�×p� ,

�= 1,2, we define the following quantities:

(

Z1,i, j

Z2,i, j

)

i.i.d.
= N2

((

0

0

)

,

(

1 ρ

ρ 1

))

, when i = 1, . . . ,n0 and j = 1, . . . , p0,

Z�,i, j
i.i.d.
= N(0,1), for �= 1,2, when i > n0 or j > p0.

Thus, Z�,i, j are all standard normal random variables, and for the case i = 1, . . . ,n0 and

j = 1, . . . , p0, the two random variables Z1,i, j and Z2,i, j share a correlation ρ between

them. We arrange the Z�,i, j into two matrices of dimensions identical to those of our

datasets Y�. Thus, Z�,i, j is the (i, j)-th element of the matrix Z� ∈ R
n�×p� , � = 1,2. It

can be seen that each matrix Z� has iid N(0,1) entries, but the top left corners of Z1

and Z2 are related.

We model the data as

Y�,i, = Γ�Λ
1/2

� Z�,i, , where

Z�,i,
i.i.d.
= Np�

(

0,Ip�

)

, i = 1, . . . ,n�

described above. In matrix terms, this then translates to

Y� = Z�Λ
1/2

� ΓT
� , where

Z�,i, j
i.i.d.
= N(0,1).

Note, however, that we do not imply with the above that the matrices Z� ∈ R
n�×p� are

independent of each other, and indeed they are not.

4.1. The record linking algorithm

Our proposed algorithm is as follows:

We now discuss in details the steps outlined above. First, the scaling X�,i, =

Y�,i, /|Y�,i, | ensures that each X�,i, has unit norm, thus ensuring that outliers do not

affect the PCA and subsequent computations. It is well known that PCA is very sen-

sitive to outliers. The second step of the above algorithm is about computation of

the high dimensional principal components using an established procedure. The third
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Algorithm 1 Record Linking Algorithm

1. Scale each row of the two datasets by their respective norms, to get X�,i, =
Y�,i, /|Y�,i, |, for �= 1,2 and i = 1, . . . ,nl . Collect these in the matrices X� ∈R

n�×p� ,
�= 1,2.

2. Run the high dimensional sparse PCA algorithm due to WANG et al. (2016) on
X�, �= 1,2. This obtains the leading eigenvalue and eigenvector for these matrices.
Project the data on the orthogonal space to this estimated eigenvector, and repeat
the process to obtain the leading p0 eigenvectors.

3. Obtain the coefficients W�,i, ∈ R
p0 (given in (4.1) below) for each i = 1, . . . ,n�,

�= 1,2 from the projections of the observations on the top p0 eigenvectors.

4. Obtain the correlations C(i, ĩ) of W1,i, and W2,ĩ, .

5. Arrange the correlations in descending order. Based on the values corresponding
to the training set and a pre-set value for the maximum proportion of false positive
matches, select a correlation threshold. If there are multiple matches above this
threshold for any i ∈ {1, . . . ,n1} or ĩ ∈ {1, . . . ,n2}, the match with the higher
correlation value is chosen. The proportion of false negatives is estimated from
the number of training sample matches below the threshold.

through last steps of the algorithm are about using the principal component scores to

obtain the record linkage. There can be considerable variation in the details in these

steps depending on the context, we have presented one simple procedure.

The above algorithm used the training data only for the last step of setting a threshold

for the correlations. We can easily formulate a variation, where a training set is not

needed. Since we compute n1n2 correlations of which only min(n1,n2) can possibly

correspond to linked data, a threshold can be determined based a change-point in the

correlation values, or on multiple matches. We illustrate this aspect in simulations

reported later in this paper.

4.2. Theoretical properties

The justification for using the above algorithm rests on the fact that there is a clear

separation of the correlation values between the linked data-pairs, as opposed to the

correlation between the not-linked cases. We establish this fact in the following result:

Theorem 4.1. Under the conditions of the model, the population correlation value for

each linked pair of observations is ρ, and is zero for two observations that are not linked.

Thus, there is a clear separation of the correlation values from the linked data-pairs

from the rest. There would be sample variations, and the value of ρ is not known.

Consequently, either a training set-based threshold or a change detection technique can

be used to sort the true linkages from the rest.
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Proof of Theorem 4.1: Let

Γ̃� =
[

γ�, ,1 : . . . : γ�, ,p0

]

∈ R
p�×p0 ,

the first p0 columns of Γ�, for which the eigenvalues are considerably higher than the

rest. We project the datapoints Y�,i, on the column space of Γ̃�, for i = 1, . . . ,n�. Note

that all columns of Γ̃� are orthonormal (by construction, since these are estimators of

successive eigenvectors, so they are orthogonal to each other and have unit norm). Given

this, it is easy to see that the projection of Y�,i, is

Ỹ�,i, =
p0

∑
j=1

〈

Y�,i, ,γ�, , j
〉

γ�, , j

= Γ̃�Γ̃
T
� Y�,i,

= Γ̃�W�,i, .

The relevant information about the projections is carried in the low-dimensional weights

W�,i, ∈ R
p0 , consequently we develop our analysis based on these below. Putting these

weights as rows in a matrix, we have

W� = Y�Γ̃� (4.1)

= Z�Λ
1/2

� ΓT
� Γ̃� ∈ R

n�×p0

This last expression can be simplified further, since

ΓT
� Γ̃� =

»

¼

¼

¼

¼

¼

¼

¼

½

γT
�, ,1

γT
�, ,2

·
·
·
γT
�, ,p�

¾

¿

¿

¿

¿

¿

¿

¿

À

[

γ�, ,1 : . . . : γ�, ,p0

]

=

»

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

½

1 0 0 0

0 1 0 0

·
0 0 0 1

0 0 0 0

·
·
0 0 0 0

¾

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

À

=

(

Ip0

0(p�−p0)×p0

)

.



STATISTICS IN TRANSITION new series, Special Issue, August 2020 133

Thus we have

Λ
1/2

� ΓT
� Γ̃�

=

»

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

½

λ
1/2

�,1 0 0 0

0 λ
1/2

�,2 0 0

·
0 0 0 λ

1/2

�,p0

0 0 0 0

·
·
0 0 0 0

¾

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

À

=

(

Λ̃
1/2

�

0(p�−p0)×p0

)

∈ R
p�×p0 .

Define

Z̃� =
[

Z�, ,1 : Z�, ,2 : . . . : Z�, ,p0

]

∈ R
n�×p0 .

Consequently, we have

W� = Y�Γ̃�

= Z�Λ
1/2

� ΓT
� Γ̃�

=
[

λ
1/2

�,1 Z�, ,1 : λ
1/2

�,2 Z�, ,2 : . . . : λ
1/2

�,p0
Z�, ,p0

]

= Z̃�Λ̃
1/2

� ∈ R
n�×p0 .

We thus have, for any i ∈ {1, . . . ,n0}

EW�,i, = 0,

VW�,i, = Λ̃�,

EW1,i, W T
2,i, = Λ̃1EZ̃1,i, Z̃T

2,i, Λ̃2,

EW T
1,i, W2,i, = EZ̃T

1,i, Λ̃1Λ̃2Z̃T
2,i, =

p0

∑
j=1

λ
1/2

1, j λ
1/2

1, j EZ̃1,i, jZ̃2,i, j.

Then it follows that

Cor
(

W1,i, ,W2,i,

)

= ρ.

The algebra for the observations that are not linked is similar and omitted here.

One important consideration for our framework is to ensure that the robustness

procedure we implemented in the first step does not alter the eigenvector structure of

the original data. That is, we need to ensure that the eigenvectors of Σ� match those of
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the variance of X�, �= 1,2. This is ensured in the following result:

Theorem 4.2. Suppose X ∈R
p is a random vector with variance ΣX , and let the variance

of U = X/|X | be denoted by ΣU .

(i) When X has an elliptically symmetric distribution and zero mean, the eigenvectors

of ΣX and ΣU are identical.

(ii) If EU = 0 ∈R
p, EU |X |= 0 ∈R

p and E|X |2UUT =E|X |2EUUT ∈R
p×p, then again

the eigenvectors of ΣX and ΣU are identical. Moreover, if the eigenvalues of ΣX

are λ1 ≥ λ2 ≥ . . .≥ λp > 0, then the eigenvectors of ΣU are λ1

∑
p
i=1 λi

≥ . . .
λp

∑
p
i=1 λi

> 0.

Note that a p-dimensional random vector X is said to elliptically distributed if there

exist a vector µ ∈ R
p, a positive semi-definite matrix Σ ∈ R

p×p and a function φ :

(0,∞) → R such that the characteristic function of X is exp{itT µ}φ(tT Σt) for t ∈ R
p.

See FANG et al. (1990) for several alternative and equivalent definitions of the elliptically

contoured family, as well as for additional details. An example of elliptically contoured

distribution is the multivariate Gaussian distribution, thus the framework adopted in this

paper satisfies the first condition of Theorem 4.2. The second part of Theorem 4.2 is

for general interest, in case an elliptic distributional assumption is not satisfied.

Proof of Theorem 4.2: First, consider the case where X has an elliptically symmetric

distribution with mean zero. In such cases, we may write X = RΓΛ1/2E, where Γ is a

rotation matrix, Λ is a diagonal matrix with positive elements, E is uniformly distributed

on the unit sphere and R is a positive random variable that is independent of E. Then,

we have |X |2 = R2ET ΛE. Let Ẽ = Λ1/2E

|Λ1/2E| . Consequently, U = X/|X |= ΓẼ is a function

of E alone. Note that in the circularly symmetric case where Λ = λ I, we now have |X |
independent of U , and the above conditions are trivially satisfied. For general Λ, note

that

EUUT = ΓEẼẼT ΓT ,

and it can be easily shown that EẼẼT is a diagonal matrix. Thus, ΣX = ΓΛΓT and ΣU

have the same eigenvectors in this case. This proof is reminiscent of the arguments used

in TASKINEN et al. (2012).

Under the assumptions of the second part, that is, EU = 0∈R
p, EU |X |= 0∈R

p and

E|X |2UUT =E|X |2EUUT ∈R
p×p, U and |X | are uncorrelated, as is |X |2 and UUT . This

immediately implies that EX = EU |X | = 0, thus we have ΣX = EXXT and ΣU = UUT .

We also easily have

ΣX = EXXT

= E|X |2UUT

= E|X |2EUUT .

Thus, the eigenvectors of ΣX and ΣU are identical, since E|X |2 is a scalar.
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Now, note that

ΣU =
ΣX

E|X |2 =
ΣX

E[Trace XXT ]
=

ΣX

Trace ΣX

=
ΣX

∑
p
i=1 λi

.

The rest of this section is on the estimation of the high dimensional principal compo-

nents. We present the results only for the first principal component. Our development

here closely follows that of WANG et al. (2016), and we essentially make use of their

theoretical machinery and algorithm for the rest of this paper. The results below are

primarily designed to show that the technical conditions of WANG et al. (2016) hold for

our case, and the eigenvector estimation algorithm they established also works for us.

We omit many algebraic details, since they are similar to those of WANG et al. (2016).

Our first result is to show that U has a sub-Gaussian distribution. This is immediate,

since U is bounded. We have multiple proofs of this result with sharp bounds on the

constant σ2, but present the simplest one here for clarity. Ensuring that U has a sub-

Gaussian distribution facilitates the use of various known concentration inequality and

other probabilistic results.

Lemma 4.1. U ∈ Sub-Gaussian(2).

Proof of Lemma 4.1: We recall the definition of Sub-Gaussian distributions

X ∈ Sub-Gaussian(σ2) if ∀u ∈ R
p, E[euT X ]≤ e

σ2 |u|2
2

Since |U |= 1, we have for |u| ≥ 1

uTU ≤ |u|2(C-S inequality) for any u on R
p

⇒ euT U ≤ e|u|
2

for any u on R
p

⇒U ∈ Sub-Gaussian(2).

The case for |u|< 1 is more delicate, but can be handled with some routine algebra.

We omit the details here.

We now recall some definitions from WANG et al. (2016) for developing our next

set of results. Since our framework is high dimensional, we need structural assumptions

on the nature of the eigenvectors of ΣU (or ΣX ), and the most common and convenient

assumption here is one of sparsity. We define the sparse unit ball in p-dimensions having

at most k non-zero entries as follows:

B0(k) =
{

x ∈ R
p : |x|= 1,

p

∑
j=1

I{xi �=0}≤k

}

.

Based on this and sample size n, for any j ∈ {1, . . . , p} and C > 0, a probability measure

P is said the satisfy the Restricted Covariance Condition (RCC) with parameters p,n, j
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and C, and written as P ∈ RCCp(n, j,C) if

P{ sup
u∈B0(l)

|V̂ (u)−V (u)| ≥C max(

√

j log(p/δ )

n
,

j log(p/δ )

n
)} ≤ δ

for all δ > 0, where V (u)=EuT Σu, V̂ (u)=EuT Σ̂u and Σ̂= 1
n ∑

n
i=1 UiU

T
i for U1,U2, . . . ,Un

iid∼
P. We also define

RCCp(C) =
p
⋂

l=1

∞
⋂

n=1

RCCp(n, l,C).

Suppose, associated with a generic distribution P on R
p, is the variance matrix Σ with the

j-th eigenvalue and eigenvector respectively being λ j and γ , j, j = 1, . . . , p. The results

for the rest of this section are valid for the following class of probability measures. For

θ > 0, define

Pp(n,k,θ) =
{

P ∈ RCCp(n,2,1)∩RCCp(n,2k,1) : γ ,1 ∈ B0(k),λ1 −λ2 ≥ θ
}

.

Our next result states that U , after suitable scaling, has a distribution that satisfies

the restricted covariance condition with appropriate selection of constants.

Lemma 4.2. For the random variable U ∈R
p with p ≥ 2, assume that γ ,1 ∈ B0(k) and

θ =
(

λ1(ΣX )−λ2(ΣX )
)

> 0. Then Z = U
22

∈ Pp(n,k,
θ

22Trace(ΣX )
).

Proof of Lemma 4.2: Recall from Proposition 1 of WANG et al. (2016) that for every

σ > 0,

Sub-Gaussian(σ2)⊆ RCCp

(

16σ2(1+
9

log(p)
)
)

.

Therefore using Lemma 4.1, we have that

U =
X

|X | ∈ RCCp

(

32(1+
9

log(p)
)
)

,

⇒ U
√

32(1+ 9
log(p) )

∈ RCCp(1),

⇒U

22
∈ RCCp(1),

⇒U

22
∈ Pp(n,k,

θ

22Trace(ΣX )
).

For a symmetric matrix A ∈ R
p×p, let us define

γ̂k
,max(A) = sargmaxu∈B0(k)

uT Au

to be the k-sparse maximum eigenvector of A, where sargmax denotes the smallest

element of the argmax in the lexicographic ordering. We use A as an argument of
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γ̂k
,max(·) here to distinguish between the estimated eigenvectors from various matrices.

Also, between 2 unit vectors u and v , we define the loss function

L(u,v) =
(

1− (uT v)2
)1/2

.

Note that γ̂k
,max(A) are all identical for A = Σ̂U , Σ̂X , Σ̂Z . Our next result is the main

consistency and probabilistic guarantee result on the sample version of the k-sparse max-

imum eigen-vector. This result ensures in particular that under suitable conditions with

log(p) = o(n), the sample k-sparse maximum eigenvector is consistent for the population

maximum eigenvector.

Theorem 4.3. For 2k log(p)≤ n, the k-sparse empirical maximum eigen-vector, γ̂k
,max(Σ̂U )

satisfies

EL
(

γ̂k
,max(Σ̂U ),γ ,1(ΣU )

)

≤ 44
√

2(1+
1

log(p)
)

√

k log(p)

nθ 2
Trace(ΣX ).

Proof of Theorem 4.3: We apply Theorem 2 of WANG et al. (2016) on Z and note

that for 2k log(p)≤ n, the k-sparse empirical maximum eigen-vector, γ̂k
,max(Σ̂Z) satisfies

EL
(

γ̂k
,max(Σ̂Z),γ ,1(ΣZ)

)

≤ 2
√

44(1+
1

log(p)
)

√

k log(p)

nθ 2
Trace(ΣX ).

Proof follows by noting that

EL
(

γ̂k
,max(Σ̂Z),γ ,1(ΣZ)

)

= EL
(

γ̂k
,max(Σ̂U ),γ ,1(ΣU )

)

.

Let Ui =
Xi

|Xi| for i = 1,2, . . . ,n where Xi
iid∼ P, and we denote γ̂SDP

,1 (U) for the output of

the SDP algorithm of WANG et al. (2016). with input U = (U1, . . . ,Un)
T , λ = 4

√

log(p)
n

and ε = log(p)
4n

.

While Theorem 4.3 provided a general probabilistic guarantee on the error of the

sample k-sparse maximum eigenvector, we need a similar result for the sparse maximum

eigenvector that is obtained using the SDP algorithm. Note that the SDP algorithm

allows for computation of a sparse maximum eigenvector in real time, and is thus both

practical and is of theoretical relevance. The following result establishes a probabilistic

guarantee and consistency for this version of the sparse empirical maximum eigenvector.

Theorem 4.4. If 4 log(p)≤ n ≤ k2 p2θ−2 log(p), then

EL
(

γ̂SDP
,1 (U),γ ,1(ΣU )

)

≤ (352
√

2+44)TraceΣX

√

k2 log(p)

nθ 2
.

Proof of Theorem 4.4: We apply Theorem 5 of WANG et al. (2016) on Z and note
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that

EL
(

γ̂SDP
,1 (Z),γ ,1(ΣZ)

)

≤ 22(16
√

2+2)

√

k2 log(p)

nθ 2
Trace(ΣX ).

for Z = (Z1, . . . ,Zn)
T where Zi =

Ui
22

. The result is immediate.

In general, γ̂SDP
,1 (U) is not a sparse estimator. However, it turns out that a k-sparse

version of γ̂SDP
,1 (U), that is, some γ̂SDP,k

,1 (U) ∈ B0(k), may be obtained by setting all but

the top k coordinates of γ̂SDP
,1 (U) in absolute value to zero and renormalizing the vector.

In particular, v̂SDP
0 is computable in polynomial time and under the same condition as in

Theorem 4.4.

5. Some Simulation Results

In this section, we present a simulation exercise to illustrate the performance of the pro-

posed record linkage methodology, and also to illustrate some practical implementation

steps.

To generate data, we followed the framework laid out at the start of Section 4. That

is, we generated a set of independent bivariate Gaussian random variables with common

correlation ρ, and several independent univariate standard Normal random variables, and

used these to populate the two data matrices. We tested various choices of sample sizes,

dimensions, correlation ρ. For brevity, we report the case where the two matrix datasets

that we use are of dimensions n1 = 60, p1 = 100, and n2 = 70, p2 = 120 of independent

rows each, and ρ = 0.8. The first n0 = 50 entries of these two matrices are linked to

each other. The rest (10 for the first matrix, 20 for the second matrix) are not linked.

We use the first n = 20 observations for training in the version of the algorithm where

a training set is used, thus leaving the last 30 linked data points for testing. We also

demonstrate the performance of our method when no training dataset is available. We

fix p0 = 10 for this exercise, and repeated the entire simulation 100 times.

As practical steps, we found that using a sparse version of the estimated eigenvalues,

as proposed in Theorem 4.4, considerably improves performance, owing to reduction of

the effect of noise terms in the eventual linkage. Also, the estimated principal compo-

nents for the two datasets may not have the same orientation and may not appear in

the same order. Hence, when needed, a principled permutation and sign reversal of the

estimated eigenvectors of the second dataset is done to improve linkage accuracy. While

in theory the estimators of the eigenvalues are not required for the linkage steps, using

those as weights improves linkage.

Over 100 replications of the simulation experiment, the correct linkage established

on the test set by our proposed method was about 43.5% times, with a standard error of

about 5.37%. When no training sample is used and instead a threshold for the correlation

estimated from the data, the correct linkage percentage increases to about 56%, however,

the standard error also increases to about 14.8%. The estimated threshold for correlation

was at a lower value than the case with training data: a pattern that we noticed in
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multiple simulations, which we will study further later. The linkage accuracy may seem

low, however, we need to remember that this is a unsupervised framework, involving

high dimensional datasets with no common variables, and minimal or no training data.

6. Conclusions and Future Work

Record linkage is in-general a difficult exercise. Bayesian models are often too complex for

practical purposes and some Bayesian formulations fail to accommodate non-categorical

variables. Supervised classification methods assume the existence of large, accurate sets

of training data, which are often difficult and/or expensive to obtain. Also, in those

methodologies, it is difficult to guarantee maximum one-to-one assignment constrain

of bipartite record linkage. While some theoretical modifications have been developed

to ensure an one-to-one assignment(SADINLE, 2017), typically some subsequent post-

processing step is required to solve these inconsistencies.

In view of these difficulties, in this paper we propose a completely new approach

towards record linkage. We do not require a common set of variables between the two

datasets, we do not require a training set, and the dimensionality and sample sizes can

both be large. Naturally, our methodology extends to cases where a common set of

variables exist, we will elaborate on this in a future work. If a training set exists, we can

make use of it, as illustrated in this paper. We have presented the case for the bipartite

record linkage, but our model conceptually extends to other cases as well.

Some of the technical assumptions of this paper, like the two covariances matrices

having the same set of leading eigenvalues, or the number leading eigenvalues p0 be-

ing known, or the latent random variables that link the two datasets having the same

correlation ρ, can be addressed with some additional work and methodological develop-

ments. The assumption of multivariate normality of the data is not critical: our proposal

only depends on robust, high dimensional principal components, and these are available

for data from many distributions with both discrete and continuous components. The

assumption of sparsity in the leading eigenvectors is owing to the fact that for high

dimensional modeling, some structural assumptions are needed since the sample size

is not adequate to estimate all relevant unknown parameters. In any case, there are

considerable challenges to estimating high dimensional principal components, see PAUL

(2007).

The robust, high dimensional principal component we use is built on the work by

WANG et al. (2016). The credit for both the theoretical framework and the algorithm

goes to that work primarily. Our setup differs from WANG et al. (2016) in the detail

that for robustness purposes we transform each observation to be on the unit sphere.

One future work for us is to establish the theoretical results under weaker assumptions

than WANG et al. (2016), or to show better theoretical properties.

We have used a simple method for linking observations in this paper, using corre-

lations. A correlation-based linkage is not critical to our primary methodological steps.

More complex and realistic measures of linkage will be studied in the future. The case

where no training data is present needs further investigation, which will also be part of

our future work. In absolute terms, our simulation results are not excellent; however,
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we do not have a baseline for comparison since most other papers on record linkage do

not use as general a framework as ours with (i) high dimensional data, (ii) no common

set of features, and (iii) possibly no training set. Our framework may be termed un-

supervised learning of record linkage, and in the unsupervised learning framework, our

numeric results are perhaps acceptable. However, considerable fine tuning and experi-

mentation with the algorithm for record linkage is needed. We have ensured that our

high-dimensional, robust and potentially sparse principal component estimator is highly

accurate, and some of our studies (not reported here) suggest that using a small number

of common features dramatically increases linkage accuracy. A part of our future work is

on including nominal and categorical variables for linkages in our framework, which will

make our proposed approach more aligned with traditional record linkage techniques. In

this context, we will also investigate how much additional gain results from using PCA in

addition to available matching fields, compared to the traditional Felligi-Sunter method.

An important topic to consider in future from this paper is on statistical inference

based on linked datasets. This is a non-trivial task, since the datasets are used multiple

times in the process of linking, estimation of various quantities of interest, and then

inference. The article HAN and LAHIRI (2019) provides review of the current state of the

art in this direction of work. Some alternatives to fully Bayesian methods, for example

regression analysis using linked data LAHIRI and LARSEN (2005); SCHEUREN and

WINKLER (1997, 1993), have both computational efficiency and analytical tractability,

which may make them attractive practical choices for applications. Comparisons with

such alternatives is an additional future work.

An additional future work for us is to extend the methodology proposal here to

multiple datasets. We will also work on real data examples, which has not been possible

for this paper owing to data access limitations. It will be of interest to compare our

unsupervised record linkage approach with more traditional record linking algorithms.
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