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1. Introduction

Ungraded k-Schur functions from [28] form a combinatorially defined basis for a 

sub-Hopf algebra Λ(k) of symmetric functions that satisfies many beautiful positivity 

properties. Geometrically, they are Schubert representatives for the homology of the 

affine Grassmannian Gr = G(C((t))/G(C[[t]]) of G = SLk+1 [23]. Under the Peterson 

isomorphism [26], they are images of the quantum Schubert polynomials constructed by 

Fomin, Gelfand, and Postnikov [12]. Hence the k-Schur structure constants are Gromov-

Witten invariants for the quantum cohomology ring of the complete flag variety Flk+1.

Over the last several decades, a K-theoretic counterpart to this story has been 

emerging. The K-homology K∗(Gr) is also Hopf isomorphic to Λ(k) [25], and Schubert 

representatives are now given by a basis of inhomogeneous symmetric functions called 

K-k-Schur functions, g
(k)
λ ∈ Λ(k). They satisfy an elegant Pieri rule and are conjecturally 

surrounded with positivity properties. Foremost is the following branching property.

Conjecture 1.1 ([25, Conjecture 7.20(3)], [35, Conjecture 44]). For any partition λ with 

λ1 ≤ k,

g
(k)
λ =

∑

μ

aλμ g(k+1)
μ satisfies (−1)|λ|−|μ|aλμ ∈ Z≥0. (1.1)

Proofs for positivity results have not been accessible from the previous geometric and 

algebraic descriptions of K-k-Schur functions. We overcome this with an explicit raising 

operator formula for g
(k)
λ which enables us to settle Conjecture 1.1 and to derive new 

properties of the basis.

We prove this formula by connecting it to the Pieri rule for g
(k)
λ through careful anal-

ysis of intermediate raising operator objects between g
(k)
λ and g1r g

(k)
λ . This powerful 

approach to Schubert calculus was initiated in [42,9,10], further leveraged in [1,4]. We 

advance this program using methods of [6], which came out of the study of Euler char-

acteristics of vector bundles on the flag variety [8,38,11,36]. Therein, the k-Schur basis is 

identified with a subfamily of symmetric functions called Catalan functions. These func-

tions are defined by a raising operator formula and are indexed by pairs (Ψ, γ), where 

Ψ is one of Catalan many upper order ideals in the set of positive A�−1 roots, ∆+
� , and 

γ ∈ Z
�.

We extend the Catalan functions to an inhomogenous family of symmetric functions 

using additional information from a multiset M supported on {1, . . . , �}. These functions, 

K(Ψ, M, γ), are called Katalan functions. Computer experimentation leads us to propose 

natural conditions for Schur positive expansions, as well as positive expansions (up to 

predictable sign) in the basis of dual stable Grothendieck polynomials {gλ}, Hall-dual 

to the basis of Fomin-Kirillov stable Grothendieck polynomials {Gμ} [13,14,29].

We prove that the K-k-Schur functions are a distinguished subfamily of Katalan 

functions. The simplicity of our formula reveals that the K-k-Schur basis satisfies shift 

invariance:
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G⊥
1� g

(k+1)

λ+1� = g
(k)
λ . (1.2)

This remarkable property implies that the branching coeffients of (1.1) are none other 

than a subset of dual Pieri coefficients. From this, a positivity result of Baldwin and 

Kumar [5] enables us to prove several conjectures about K-k-Schur functions, including 

positive branching.

Another application of the Katalan formulation for K-k-Schur functions involves the 

quantum K-theory ring, QK(Fln), a deformation of the Grothendieck ring of coherent 

sheaves on Fln studied by Givental and Lee [18]. Lenart and Maeno [32] defined quan-

tum Grothendieck polynomials GQ
w and conjectured they represent Schubert classes in 

QK(Fln). Finiteness results were proven [21,2,3], allowing Lenart-Naito-Sagaki [33] to 

establish this Lenart-Maeno conjecture.

Using Ruijsenaars’s relativistic Toda lattice, Ikeda-Iwao-Maeno [20] produced an 

explicit ring isomorphism Φ between localizations of K∗(Gr) and QK(Flk+1) and con-

jectured that the images of quantum Grothendieck polynomials expand unitriangularly 

into K-k-Schur functions with coefficients having predictable sign; building on this work, 

Ikeda conjectured a precise description for the images.

Conjecture 1.2 ([20, Conjecture 1.8], [19]). For w ∈ Sk+1,

Φ(GQ
w) =

g̃w∏
d∈Des(w) g(k+1−d)d

, for g̃w := (1 − G⊥
1 )

( ∑

μ1≤k, wμ≤wλ

g(k)
μ

)
∈ Λ(k) ,

(1.3)

where λ = θ(w)ωk is a partition with λ1 ≤ k, defined in §2.4, wλ denotes the minimal 

coset representative of Sk+1 in Ŝk+1 associated to λ (see §2.2), and ≤ denotes Bruhat 

order on Ŝk+1.

To give geometric context for this conjecture, under the Hopf algebra isomorphism 

Λ(k) → K∗(Gr), the sum 
∑

μ1≤k, wμ≤wλ
g

(k)
μ maps to the class of the structure sheaf of 

the Schubert variety Xwλ
⊆ Gr, whereas g

(k)
λ maps to the class of the ideal sheaf of the 

boundary ∂Xwλ
; see [24, Theorem 1] and [25, Theorems 5.4 and 7.17(1)].

We conjecture an explicit operator formula for the g̃w’s by realizing them as a subfam-

ily of Katalan functions; it requires only a slight adjustment to our Katalan description 

of K-k-Schur functions.

We are also able to verify Conjecture 1.2 for Grassmannian permutations, completing 

the proof strategy of [20], by establishing the following missing ingredient, which is an 

immediate consequence of the Katalan formulation for K-k-Schur functions.

Conjecture 1.3 ([35]). For a partition λ where λ1 + �(λ) − 1 ≤ k, g
(k)
λ = gλ .



4 J. Blasiak et al. / Advances in Mathematics 404 (2022) 108421

Acknowledgments

We thank Takeshi Ikeda for generously sharing his ideas building on the work of Ikeda-

Iwao-Maeno. This inspired and enabled us to check Conjecture 2.12. We also thank 

Mark Shimozono for pointing out the work of Baldwin and Kumar [5] as well as the 

reference [24]. This research was supported by computer exploration, using the open 

source mathematical system SageMath [37].

2. Main results

We work in the ring Λ = Z[e1, e2, . . .] = Z[h1, h2, . . . ] of symmetric functions in 

infinitely many variables x = (x1, x2, . . . ), where ed = ed(x) =
∑

i1<···<id
xi1

· · · xid
and 

hd =
∑

i1≤···≤id
xi1

· · · xid
. Set h0 = 1 and hd = 0 for d < 0 by convention. For γ ∈ Z

�, 

define hγ = hγ1
· · · hγ�

and define Schur functions,

sγ = det(hγi+j−i)1≤i,j≤� . (2.1)

Fix k ∈ Z>0 and � ∈ Z≥0 throughout. Set Λ(k) = Z[h1, . . . , hk] ⊆ Λ. Let Park
� =

{(μ1, . . . , μ�) ∈ Z
� | k ≥ μ1 ≥ · · · ≥ μ� ≥ 0} denote the set of partitions contained in the 

� × k rectangle and let Park be the set of partitions μ with μ1 ≤ k. The length �(μ) is 

always the number of nonzero parts of μ.

2.1. Katalan functions: definition and first properties

This work builds off previous studies of symmetric functions known as Catalan func-

tions, introduced in [11,36] and studied further in [6,7]. Catalan functions involve a 

parameter t, but we will only work with their t = 1 specialization as this is necessary for 

applications to affine Schubert calculus. We define Catalan functions from a description 

in [6, Proposition 4.7]. Consider the set of labels ∆+
� = ∆+ :=

{
(i, j) | 1 ≤ i < j ≤ �

}
for 

the positive roots of A�−1. A root ideal Ψ is an upper order ideal of the poset ∆+ with 

partial order given by (a, b) ≤ (c, d) when a ≥ c and b ≤ d. The complement ∆+ \ Ψ is 

a lower order ideal of ∆+. A Catalan function, indexed by a pair (Ψ, γ) consisting of a 

root ideal Ψ and a weight γ ∈ Z
�, is defined by

H(Ψ; γ) =
∏

(i,j)∈∆+\Ψ

(1 − Rij)hγ , (2.2)

where the raising operator Rij acts on subscripts by Rijhγ = hγ+εi−εj
and εi is the unit 

vector with a 1 in position i and 0’s elsewhere. Below we also use raising operators on 

other elements indexed by weights in Z�. Raising operators were introduced by Young 

[45] and formalized rigourously by Garsia-Remmel [16,17]. In addition, raising operators 

have been used widely in the study of symmetric functions. See, e.g., [41,43,44]. Their 
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standard usage is somewhat informal; they will be treated formally in Section 3 (in a 

different way from Garsia-Remmel).

Our work requires the following inhomogeneous version of the hm’s. For m, r ∈ Z, 

define

k(r)
m =

m∑

i=0

(
r + i − 1

i

)
hm−i ,

where 
(

n
i

)
= n(n−1)···(n−i+1)

i! and 
(

n
0

)
= 1 for n ∈ Z, i ∈ Z≥1; thus note that k

(0)
m = hm

and k
(r)
m = 0 when m < 0. For γ ∈ Z

�, let gγ = det(k
(i−1)
γi+j−i)1≤i,j≤�. When γ is a 

partition, these are the dual stable Grothendieck polynomials, first studied implicitly 

in [31] and determinantally formulated in [30]. We use an alternative characterization, 

proved in Section 6.1 of the Appendix:

gγ =
∏

1≤i<j≤�

(1 − Rij)kγ , where kγ := k(0)
γ1

k(1)
γ2

· · · k(�−1)
γ�

. (2.3)

Definition 2.1. For a root ideal Ψ ⊆ ∆+
� , a multiset M with supp(M) ⊆ {1, . . . , �}, and 

γ ∈ Z
�, we define the Katalan function

K(Ψ; M ; γ) :=
∏

j∈M

(1 − Lj)
∏

(i,j)∈Ψ

(1 − Rij)−1gγ , (2.4)

where the lowering operator Lj acts on the subscripts of gγ ∈ Λ by Ljgγ = gγ−εj
.

The following alternative formulation gives additional insight (see (3.1)–(3.2) for the 

proof).

Proposition 2.2. For a root ideal Ψ ⊆ ∆+
� , a multiset M with supp(M) ⊆ {1, . . . , �}, and 

γ ∈ Z
�,

K(Ψ; M ; γ) =
∏

j∈M

(1 − Lj)
∏

(i,j)∈∆+\Ψ

(1 − Rij) kγ .

Although Katalan functions are defined for arbitrary multisets, we mainly work with 

those where the associated multiset comes from a root ideal L ⊆ ∆+
� via the function

L(L) = �
(i,j)∈L

{j} . (2.5)

In this scenario, we use the shorthand K(Ψ; L; γ) = K(Ψ; L(L); γ).

The family of Katalan functions contains several well-studied symmetric function 

bases.
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Proposition 2.3. Let γ ∈ Z
�.

(a) The Katalan functions contain the family of Catalan funcitons: K(Ψ; ∆+
� ; γ) =

H(Ψ; γ) for any root ideal Ψ ⊆ ∆+
� . In particular, K(∅; ∆+

� ; γ) = sγ and 

K(∆+
� ; ∆+

� ; γ) = hγ .

(b) K(∅; ∅; γ) = gγ.

(c) K(∆+
� ; ∅; γ) = kγ .

Proof. Statement (b) is immediate from Definition 2.1 and (c) is immediate from Propo-

sition 2.2. To prove (a), for m, r ∈ Z, we note that, by Pascal’s formula,

k
(r)
m−1 + k(r−1)

m =
m∑

i=0

[(
r + i − 2

i − 1

)
+

(
r + i − 2

i

)]
hm−i =

m∑

i=0

(
r + i − 1

i

)
hm−i = k(r)

m .

(2.6)

Therefore, 
∏

(i,j)∈∆+(1 − Lj)kγ = hγ and thus (a) follows from Proposition 2.2 and 

(2.2). �

2.2. A raising operator formula for K-k-Schur functions

In [6], the k-Schur functions {s
(k)
μ }μ∈Park were identified with a subfamily of Catalan 

functions, namely s
(k)
μ = H(∆k(μ); μ) where

∆k(μ) = {(i, j) ∈ ∆+
� | k − μi + i < j} . (2.7)

Definition 2.4. For λ ∈ Park
� , define the k-Schur Katalan function by

g
(k)
λ = K(∆k(λ); ∆k+1(λ); λ) .

We show that the k-Schur Katalan functions are the K-k-Schur functions. This op-

erator formula is considerably more direct and explicit than any previously known 

description of the K-k-Schur functions and readily resolves several outstanding con-

jectures, including positive branching.

The K-k-Schur functions are defined using the affine symmetric group Ŝk+1, the group 

with generators {si | i ∈ I} for I = {0, . . . , k} subject to the relations s2
i = id, sisi+1si =

si+1sisi+1, sisj = sjsi for i − j �≡ 0, ±1, with all indices considered modulo k + 1. 

The length �(w) of w ∈ Ŝk+1 is the minimum m such that w = si1
si2

· · · sim
for some 

ij ∈ I; any expression for w with �(w) generators is said to be reduced. The set of affine 

Grassmannian elements Ŝ0
k+1 are the minimal length coset representatives of Sk+1 in 

Ŝk+1, where Sk+1 = 〈s1, . . . , sk〉 ≤ Ŝk+1. There is a bijection w : Park → Ŝ0
k+1, given 

by λ �→ wλ for wλ = (sλ�−� · · · s−�+1) · · · (sλ2−2 · · · s−1)(sλ1−1 · · · s0) where � = �(λ) (see 

[27, §8.2]). For example, for k = 3, w3221 = s1 s3s2 s0s3 s2s1s0.
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The 0-Hecke algebra Hk+1 is the free Z-algebra generated by {Ti | i ∈ I} with the same 

relations as Ŝk+1 except T 2
i = −Ti in place of s2

i = id. It has a Z-basis {Tw | w ∈ Ŝk+1}, 

where Tw = Ti1
Ti2

· · · Tim
for any reduced expression w = si1

si2
· · · sim

.

The following descriptions of the K-k-Schur functions g
(k)
λ are implicit in [25,35] and 

are verified in Section 6.3 of the Appendix. An element w ∈ Ŝk+1 is cyclically increasing

if it can be written as w = si1
si2

· · · sim
, for distinct indices ij such that an index i never 

occurs to the east of an i + 1 (modulo k + 1).

Theorem 2.5. There is a Hopf algebra isomorphism Θ: K∗(GrSLk+1
) → Λ(k); the K-

homology Schubert basis element ξ0
wλ

has image denoted g
(k)
λ = Θ(ξ0

wλ
), for λ ∈ Park. 

The {g
(k)
λ }λ∈Park form a basis for Λ(k) and satisfy the following Pieri rule for all r ∈

{1, . . . , k}:

g1r g
(k)
λ =

∑

u∈Ŝk+1 cyclically increasing
�(u)=r

TuTwλ
=±Tw; w∈Ŝ0

k+1

(−1)�(wλ)+r−�(w)g
(k)
w

−1(w) . (2.8)

Moreover, the {g
(k)
λ }λ∈Park are the unique elements of Λ(k) satisfying (2.8) for all r ∈

{1, . . . , k}.

We will show in Theorem 5.16 that the k-Schur Katalan functions g
(k)
λ satisfy (2.8), 

establishing

Theorem 2.6. For any λ ∈ Park, g
(k)
λ = g

(k)
λ . Thus, the k-Schur Katalan functions are 

representatives for the Schubert basis of the K-homology of the affine Grassmannian of 

SLk+1.

2.3. Positive branching

The foremost application of the Katalan function formulation for K-k-Schur functions 

is the ease with which shift invariance (1.2) follows; we model developments in [6] where it 

was shown that k-Schur functions satisfy a similar shift invariance property, e⊥
� s

(k+1)

λ+1� =

s
(k)
λ .

Let Λ̂(k) denote the graded completion of Λ/Z{mλ | λ ∈ Par \ Park}. The space Λ(k)

has basis {hλ}λ∈Park ; Λ̂(k) has “basis” {mλ}λ∈Park meaning that Λ̂(k) =
∏

λ∈Park Zmλ. 

Let 〈·, ·〉 : Λ(k)×ZΛ̂(k) → Z be the bilinear form determined by 〈hλ, 
∑

μ∈Park aμmμ〉 = aλ. 

The K-k-Schur functions {g
(k)
λ }λ∈Park ⊆ Λ(k) and affine stable Grothendieck polynomials 

{G
(k)
μ }μ∈Park ⊆ Λ̂(k) satisfy 〈g

(k)
λ , G

(k)
μ 〉 = δλμ. We take this as the definition of the affine 

stable Grothendieck polynomials. For f ∈ Λ̂(k), let f⊥ be the linear operator on Λ(k)

given by 〈f⊥(g), h〉 = 〈g, fh〉 for all g ∈ Λ(k), h ∈ Λ̂(k).
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Theorem 2.7 (Shift Invariance). For λ ∈ Park
� ,

G⊥
1� g

(k+1)

λ+1� = g
(k)
λ where G1� =

∑

i≥0

(−1)i

(
� − 1 + i

� − 1

)
e�+i .

Hence by Theorem 2.6, G⊥
1� g

(k+1)

λ+1� = g
(k)
λ as well.

Proof. We use that e⊥
s hm = hme⊥

s + hm−1e⊥
s−1 from [15, Equation 5.37] to deduce

e⊥
s k(r)

m =
m∑

i=0

(
r + i − 1

i

)
(hm−ie

⊥
s + hm−i−1e⊥

s−1) = k(r)
m e⊥

s + k
(r)
m−1e⊥

s−1 .

Using that e⊥
i (1) = 0 for i > 0, this applies to the formulation for Katalan functions 

in Proposition 2.2, giving that, for s ≥ 0, Ψ ⊆ ∆+ a root ideal, M a multiset with 

supp(M) ⊆ {1, . . . , �}, and γ ∈ Z
�,

e⊥
s K(Ψ; M ; γ) =

∑

S⊆[�], |S|=s

K(Ψ; M ; γ − εS) ,

where εS =
∑

i∈S εi. In particular, e⊥
� K(Ψ; M ; γ + 1�) = K(Ψ; M ; γ). Now for λ ∈ Park

� , 

noting that ∆m(λ + 1�) = ∆m−1(λ) for any m ≥ k + 1, we obtain

e⊥
� g

(k+1)

λ+1� = e⊥
� K(∆k+1(λ + 1�); ∆k+2(λ + 1�); λ + 1�) = K(∆k(λ); ∆k+1(λ); λ) = g

(k)
λ .

Therefore, e⊥
� g

(k+1)

λ+1� = g
(k)
λ . Since e⊥

s K(Ψ; L; λ) = 0 for s > �, we can replace e⊥
� by 

G⊥
1� . �

Shift invariance implies that K-k-Schur branching coefficients are a subset of the Pieri 

coefficients for affine stable Grothendieck polynomials, settling Conjecture 1.1.

Theorem 2.8. For any λ ∈ Park,

g
(k)
λ =

∑

μ∈Park+1

aλμ g(k+1)
μ where (−1)|λ|−|μ|aλμ ∈ Z≥0. (2.9)

Proof. Fix � = �(λ). For μ ∈ Park+1, Baldwin and Kumar [5] proved that

G
(k+1)

1� G(k+1)
μ =

∑

γ

cγμ G(k+1)
γ satisfy (−1)|γ|−�−|μ|cγμ ∈ Z≥0 . (2.10)

Since 〈g
(k+1)
³ , G

(k+1)
´ 〉 = δ³´ for ³, ́ ∈ Park+1, from (2.10) we obtain

cγμ =
〈
g(k+1)

γ ,
∑

´

c´μ G
(k+1)
´

〉
=

〈
g(k+1)

γ , G
(k+1)

1� G(k+1)
μ

〉
=

〈
(G

(k+1)

1� )⊥g(k+1)
γ , G(k+1)

μ

〉
.



J. Blasiak et al. / Advances in Mathematics 404 (2022) 108421 9

Therefore, for γ = λ + 1�,

∑

μ

cγμg(k+1)
μ = (G

(k+1)

1� )⊥g(k+1)
γ = g

(k)
λ ,

where we can apply Theorem 2.7 (shift-invariance) to the second equality because 

G
(k+1)

1� = G1� , verified in Section 6.2 of the Appendix. We thus have that aλμ = cλ+1�,μ, 

and the result follows from (2.10). �

Other properties of K-k-Schur functions are readily apparent from the Katalan/raising 

operator description. For example, the following property was conjectured in [35]; while 

seemingly simple, it was not apparent from previous descriptions and is the missing 

ingredient for resolving conjectures in [25,35,20].

Corollary 2.9. For μ ∈ Park
� with μ1 + � − 1 ≤ k, g

(k)
μ = gμ.

Proof. Since ∆k(μ) = ∅ = ∆k+1(μ) when k − μ1 + 1 ≥ �, the result follows from 

Definition 2.4. �

By iterating branching to obtain an expansion for g
(k)
λ in terms of g

(a)
μ for large enough 

a so that Corollary 2.9 applies to every term, we establish [35, Conjecture 46] as well.

Corollary 2.10. For λ ∈ Park,

g
(k)
λ =

∑

μ

bλμ gμ where (−1)|λ|−|μ|bλμ ∈ Z≥0.

2.4. Katalan functions for quantum Grothendieck polynomials

We give some background to explain Conjecture 1.2 and then give a conjectural Kata-

lan description of Φ(GQ
w).

The quantum K-theory ring QK(Flk+1) can be identified with a quotient of 

C[z1, . . . , zk+1, Q1, . . . , Qk] by [22,2]; see, e.g., [20, §1.1–1.2] which includes an explicit 

description of the defining ideal. A k-rectangle is a partition of the form Ri := (k+1 − i)i

for i ∈ [k]. Define σi =
∑

μ⊆Ri
gμ for i ∈ [k], and set σ0 = σk+1 = gR0

= gRk+1
= 1. 

Ikeda, Iwao, and Maeno give the following description of a K-theoretic version of the 

Peterson isomorphism [20, Theorem 1.5]:

Φ: QK(Flk+1)[Q−1
1 , . . . , Q−1

k ]
∼=
−→ C ⊗Z Λ(k)[g

−1
R1

, . . . , g−1
Rk

, σ−1
1 , . . . , σ−1

k ]

zi �→
gRi

σi−1

gRi−1
σi

, Qi �→
gRi−1

gRi+1

g2
Ri

.
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Lenart and Maeno defined [32, Definition 3.18] the quantum Grothendieck polynomials

{Gq
w(x1, . . . , xk+1, q1, . . . , qk)}w∈Sk+1

as the image of the ordinary Grothendieck polyno-

mials {Gw}w∈Sk+1
under a quantization map. The Gq

w’s specialize to the Gw at q1 =

· · · qk = 0. Following [20, §5.4], we work with {GQ
w(z1, . . . , zk+1, Q1, . . . , Qk)}w∈Sk+1

⊆

QK(Flk+1) which differs from the Gq
w’s by the change of variables zi = 1 − xi for all 

i ∈ [k + 1] and Qi = qi for i ∈ [k].

The images Φ(GQ
w) are described in terms of a map θ : Sk+1 → Park. For w =

w1 · · · wk+1 ∈ Sk+1 in one-line notation, the descent set of w is Des(w) = {i : wi > wi+1}, 

and its inversion sequence Inv(w) ∈ Z
k
≥0 is given by Invi(w) =

∣∣{j > i : wi > wj}
∣∣. De-

fine an injection ζ : Sk+1 → Park by letting column i of ζ(w) be

(
k + 1 − i

2

)
+ Invi(w0w) , (2.11)

for all i ∈ [k], where w0 denotes the longest element of Sk+1. An element of Park is 

irreducible if it has at most k − i parts of size i, or equivalently, it contains no k-

rectangle as a subsequence. For any μ ∈ Park, define the unique irreducible partition μ↓

by deleting from μ the k-rectangles it contains as a subsequence. Set θ(w) = ζ(w)↓. By 

[7, Lemma 7.3], the map θ is the same as the map λ from [26, §6], [20, §7.1].

The k-conjugate involution on Park introduced in [27] can be described as follows: for 

μ ∈ Park, its k-conjugate is μωk = w−1 ◦τ ◦w(μ), for τ : Ŝk+1 → Ŝk+1 the automorphism 

given by si �→ sk+1−i. Note that for μ contained in a k-rectangle, μωk is equal to the 

(ordinary) conjugate partition μ′ of μ.

Ikeda conjectured that the image Φ(GQ
w) is in fact not best described with K-k-Schur 

functions, but instead proposed [19] the functions g̃w = (1 − G⊥
1 )

( ∑
μ∈Park, wμ≤wλ

g
(k)
μ

)

from (1.3). We conjecture the following explicit raising operator formula for Ikeda’s 

functions.

Definition 2.11. For λ ∈ Park
� , the closed k-Schur Katalan function is

g̃
(k)
λ = K(∆k(λ); ∆k(λ); λ) .

To explain the terminology “closed,” recall that g
(k)
λ and 

∑
μ1≤k,wμ≤wλ

g
(k)
μ are the 

K-homology Schubert representatives for the ideal sheaf of ∂Xwλ
and the structure sheaf 

of Xwλ
, respectively. Then g

(k)
λ can be informally associated to the Schubert cell Cwλ

, 

consistent with the idea that the representative 
∑

μ1≤k,wμ≤wλ
g

(k)
μ can be assembled from 

the g
(k)
μ ’s in the same way the closed Schubert variety Xwλ

is assembled from its locally 

closed Schubert cells.

Conjecture 2.12. Let w ∈ Sk+1 and μ ∈ Park
� be arbitrary and set λ = θ(w)ωk . Then

(a) g̃
(k)
λ = g̃w,
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(b)

Φ(GQ
w) =

g̃
(k)
λ∏

d∈Des(w) gRd

,

(c) (alternating dual Pieri rule) the coefficients in G⊥
1m g̃

(k)
μ =

∑
ν cμν g̃

(k)
ν satisfy 

(−1)|μ|−|ν|cμν ∈ Z≥0,

(d) (k-branching) the coefficients in g̃
(k)
μ =

∑
ν aμν g̃

(k+1)
ν satisfy (−1)|μ|−|ν|aμν ∈ Z≥0,

(e) (K-k-Schur alternating) the coefficients in g̃
(k)
μ =

∑
ν bμν g

(k)
ν satisfy (−1)|μ|−|ν|bμν ∈

Z≥0,

(f) (k-rectangle property) for d ∈ [k], gRd
g̃

(k)
μ = g̃

(k)
μ∪Rd

, where μ ∪ Rd is the partition 

made by combining the parts of μ and those of Rd and then sorting.

Remark 2.13. Conjectures (b) and (e) are just slight variants of previous conjectures 

in that, assuming (a), (b) is equivalent to Conjecture 1.2 and (e) is equivalent to the 

K-k-Schur alternating for g̃w’s conjectured in [20]. Similarly, Takigiku [39,40] proved a 

k-rectangle property for a related family which is equivalent to (f) assuming (a).

Note that (c) implies (d) by shift invariance (Proposition 2.16 (c) below).

Remark 2.14. It is natural to try to apply the methods in this paper to also prove 

Conjecture 2.12 (a). The difficulty is that the Pieri rule for g̃w given in [39] does not 

seem to match the combinatorics of Katalan functions as naturally as does the Pieri rule 

for the K-k-Schur functions g
(k)
λ .

Example 2.15. Let us directly verify Conjecture 2.12 (b) for k = 2 and w = 213 (one-line 

notation), using the definition of Φ. The quantum Grothendieck is GQ
w = 1 − z1 + z1Q1. 

Thus using gR1
= h2, gR2

= h2
1 − h2 + h1, σ1 = h2 + h1 + 1, and σ2 = h2

1 − h2 + 2h1 + 1,

Φ(GQ
w) = 1 −

gR1

σ1
+

gR1

σ1

gR2

g2
R1

=
(h2 + h1 + 1)h2 − h2

2 + h2
1 − h2 + h1

h2(h2 + h1 + 1)
=

h1

h2
=

g̃
(2)
(1)

gR1

.

This is the desired conclusion as ζ(w)′ = (2, 1), θ(w) = (1) = θ(w)ω2 , and Des(w) = {1}.

For k = 4 and v = 13254 ∈ S5, we use Inv(w0v) = (4, 2, 2, 0) to find ζ(v)′ = (10, 5, 3, 0)

and θ(v) = (3, 2, 2, 1). We have θ(v)ω4 = (3, 2, 1, 1, 1) and Des(v) = {2, 4}, so Conjec-

ture 2.12 (b) states that

Φ(GQ
v ) =

g̃
(4)
(3,2,1,1,1)

gR2
gR4

,

as can be confirmed in Sage.

Proposition 2.16. The closed k-Schur Katalan functions {g̃
(k)
λ }λ∈Park
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(a) form a basis for Λ(k);

(b) are unitriangularly related to K-k-Schur functions

g̃
(k)
λ = g

(k)
λ +

∑

ν:|ν|<|λ|

bλν g(k)
ν ; (2.12)

(c) satisfy shift invariance

G⊥
1� g̃

(k+1)

λ+1� = g̃
(k)
λ ;

(d) simplify as g̃
(k)
λ = gλ for λ contained in a k-rectangle, i.e., λ ∈ Park

� with λ1+� −1 ≤ k.

Proof. Property (c) is proved just as in Theorem 2.7, and (d) just as in Corollary 2.9. 

For (a)–(b), a similar result will be proved for the g
(k)
λ ’s in Proposition 5.13, which easily 

adapts to this setting. �

It is worth pointing out that having the Katalan formulations for (closed) K-k-Schur 

functions readily enables us to complete the proof of Conjecture 1.2 for Grassmannian 

permutations outlined in [20, Theorem 1.7].

Proposition 2.17. Conjecture 1.2 holds for w ∈ Sk+1 with Des(w) = {d}. In fact, in this 

case, we have

Φ(GQ
w) =

gθ(w)′

gRd

=
g̃w

gRd

=
g̃

(k)
θ(w)′

gRd

=
g

(k)
θ(w)′

gRd

. (2.13)

Proof. The first equality of (2.13) is established in Theorem 1.7 and Lemma 7.1 of [20]. 

The partition λ = θ(w)ωk = θ(w)′ lies in a k-rectangle by [7, Lemma 7.5]. Thus, by 

Corollary 2.9 and Proposition 2.16 (d), gθ(w)′ = g
(k)
θ(w)′

= g̃
(k)
θ(w)′

. It remains to prove 

gθ(w)′ = g̃w. Using again Corollary 2.9 on the definition of g̃w in (1.3) gives

g̃w = (1 − G⊥
1 )

( ∑
wμ≤wλ

gμ

)
= (1 − G⊥

1 )
( ∑

μ⊆λ gμ

)
= gλ,

where the second equality follows using [27, Proposition 40] in addition to the fact that 

μ is equal to the (k + 1)-core of μ for μ lying in a k-rectangle (cores are discussed 

in §5.3), and the last equality holds by the following result of Takigiku [40]: the map 

1 − G⊥
1 : Λ → Λ is a ring automorphism with inverse F : hi �→

∑
j≤i hj and satisfies 

F (gν) =
∑

μ⊆ν gν for all ν. �

Another conjecture of [20] about the image of the quantum Grothendieck polynomials 

is that

Φ(GQ
w0

) =

∏k−1
i=1 g(k−i)i

gR1
· · · gRk

. (2.14)
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We prove the corresponding result for the closed k-Schur Katalan functions:

Proposition 2.18. For w0 the longest permutation in Sk+1 and λ = θ(w0)ωk , g̃
(k)
λ =∏k−1

i=1 g(k−i)i .

Thus (2.14) would now follow from Conjecture 2.12(b). Proposition 2.18 is proved in 

§4.3.

2.5. Positivity conjectures for Katalan functions

Given a root ideal Ψ ⊆ ∆+
� and weight γ ∈ Z

�, define

maxband(Ψ, γ) = max{γi + nr(Ψ)i : i ∈ [�]},

for nr(Ψ)i :=
∣∣{j ∈ {i + 1, . . . , �} : (i, j) /∈ Ψ

}∣∣. (2.15)

We say ³ ∈ Ψ is a removable root of Ψ when Ψ \ ³ is a root ideal and a root ´ ∈ ∆+ \ Ψ

is addable to Ψ if Ψ ∪ ´ is a root ideal. Define RC(Ψ) to be Ψ \ {removable roots of Ψ}. 

For a nonnegative integer a, iteratively define RCa(Ψ) = RC(RCa−1(Ψ)), starting from 

RC0(Ψ) = Ψ.

Conjecture 2.19. For a root ideal Ψ ⊆ ∆+
� and λ ∈ Park

� such that maxband(Ψ, λ) ≤ k,

K(Ψ; Ψ; λ) =
∑

μ∈Park
�

|μ|≤|λ|

aλμ g̃(k)
μ for (−1)|λ|−|μ|aλμ ∈ Z≥0 . (2.16)

For a ∈ Z≥0,

K(Ψ; RCa(Ψ); λ) =
∑

μ∈Park
�

|μ|≤|λ|

bλμ s(k)
μ for bλμ ∈ Z≥0 . (2.17)

Remark 2.20. The large k limit (k ≥ |λ|) of Conjecture 2.19 is already quite strong: for 

k ≥ |λ| ≥ |μ|, we have g
(k)
μ = gμ [35] and s

(k)
μ = sμ [28], so (2.16) and (2.17) become 

conjectures on gμ-alternating and Schur positivity, respectively. Conjecture (2.16) can be 

seen as a generalization of branching Conjecture 2.12(e) as setting Ψ = ∆k−1(λ) gives 

K(Ψ; Ψ; λ) = g̃
(k−1)
λ . And Conjecture (2.17) can be seen as a vast generalization of the 

conjectured k-Schur positivity of the g
(k)
λ ’s posed in [25, Conjecture 7.20(1)].

3. Basic properties of Katalan functions

We use the notation [a, b] for {i ∈ Z | a ≤ i ≤ b} and [n] = [1, n]. A multiset M on 

[�] is a multiset whose support is contained in [�]; its multiplicity function is denoted 
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mM : [�] → Z≥0. For a set S ⊆ [�], denote εS =
∑

i∈S εi, and for ³ = (i, j) ∈ ∆+
� , denote 

by ε³ = εi − εj the corresponding positive root (not to be confused with ε{i,j} = εi + εj).

Given a root ideal Ψ ⊆ ∆+
� , a multiset M on [�], and γ ∈ Z

�, we represent the Katalan 

function K(Ψ; M ; γ) by the � ×� grid of boxes (labelled by matrix-style coordinates) with 

the boxes of Ψ shaded, mM (a) •’s in column a (assuming mM (a) < a), and the entries 

of γ written along the diagonal.

Example 3.1. Let Ψ = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 5)} ⊆ ∆+
5 , M =

{2, 3, 4, 4, 5, 5}, and γ = (3, 4, 4, 2, 1). The root ideal Ψ, its complement ∆+ \ Ψ =

{(1, 2), (3, 4), (4, 5)}, and K(Ψ, M, γ) are depicted by:

Ψ =

1,3 1,4 1,5

2,3 2,4 2,5

3,5 ∆+
5 \ Ψ =

1,2

3,4

4,5

K(Ψ; M ; γ) =

3 • • • •

4 • •

4

2

1

.

The raising and lowering operators used in Section 2 are informal and are not well-

defined operators on Λ despite their name. The formal interpretation of Definition 2.1

is as follows: set A = Z� z1

z2
, . . . , z�−1

z�
�[z±1

1 , . . . , z±1
� ], an arbitrary element of which has 

the form 
∑

γ∈Z� cγz
γ where the support {γ ∈ Z

� | cγ �= 0} is contained in Q+ + F for 

some finite subset F ⊆ Z
� and Q+ := Z≥0{ε1 − ε2, . . . , ε�−1 − ε�} ⊆ Z

�. For a root ideal 

Ψ ⊆ ∆+
� , multiset M on [�], and γ ∈ Z

�,

K(Ψ; M ; γ) = g

⎛
¿ ∏

(i,j)∈Ψ

(
1 −

zi

zj

)−1 ∏

j∈M

(
1 −

1

zj

)
z

γ

À
⎠ , (3.1)

where g : A → Z[h1, h2, . . .] is defined by 
∑

γ∈Z� cγz
γ �→

∑
γ∈Z� cγgγ ; note that by (2.3), 

gγ = 0 when γi < i − �, and hence 
∑

γ cγgγ has finitely many nonzero terms and so 

indeed lies in Z[h1, h2, . . .].

Further, defining κ : A → Z[h1, h2, . . .] by 
∑

γ∈Z� cγz
γ �→

∑
γ∈Z� cγkγ , it follows from 

(2.3) that

g(f) = κ

( ∏

1≤i<j≤�

(
1 −

zi

zj

)
· f

)
(3.2)

for all f ∈ A. Note that Proposition 2.2 now follows from (3.1)–(3.2).

The symmetric group S� acts on the ring A by permuting the zi. In particular, 

the simple reflections s1, . . . , s�−1 act by si

( ∑
γ cγz

γ
)

=
∑

γ cγz
siγ , where siγ =

(γ1, . . . , γi−1, γi+1, γi, γi+2, . . .). We also consider an action of S� on subsets Ψ ⊆ [�] × [�]

defined by siΨ = {(si(a), si(b)) | (a, b) ∈ Ψ}, and an action on multisets M on [�] with 

siM defined by its multiplicity function msiM (a) = mM (si(a)) for all a ∈ [�].
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Proposition 3.2. For any γ ∈ Z
�, gγ −gγ−εi+1

= gsiγ−εi
−gsiγ+εi+1−εi

. Hence the operator 

identity

g ◦

(
1 −

1

zi+1

)(
1 +

zi+1

zi
si

)
= 0.

Proof. Using the definition gγ = det(k
(i−1)
γi+j−i)1≤i,j≤�, we can write gγ −gγ−εi+1

= det(A), 

for A the matrix whose i + 1-st row is (k
(i)
γi+1+j−i−1 − k

(i)
γi+1+j−i−2)j∈[�] and whose other 

rows agree with the matrix defining gγ; similarly, we can write gsiγ+εi+1−εi
− gsiγ−εi

=

det(A′). Simplifying the i +1-st rows of A and A′ using (2.6), we see that A and A′ differ 

by swapping their i and i + 1-st rows. The result follows. �

Lemma 3.3. Let Ψ ⊆ ∆+ be any root ideal and M on [�] be any multiset such that

(a) siΨ = Ψ and

(b) mM (i + 1) = mM (i) + 1.

Then, for any γ ∈ Z
�,

K(Ψ; M ; γ) + K(Ψ; M ; siγ − εi + εi+1) = 0 .

Proof. The map g from (3.1) allows us to express K(Ψ; M ; γ) + K(Ψ; M ; siγ − εi + εi+1)

as

g ◦

(
1 −

1

zi+1

) ∏

(a,b)∈Ψ

(
1 −

za

zb

)−1 ∏

b∈M\{i+1}

(
1 −

1

zb

) (
1 +

zi+1

zi
si

)
(zγ) .

Since siΨ = Ψ and si(M \ {i + 1}) = M \ {i + 1}, the operator si commutes with 

multiplication by 
∏

(a,b)∈Ψ(1 − za

zb
)−1

∏
b∈M\{i+1}(1 − 1

zb
), hence so does the operator 

1 + zi+1

zi
si. Therefore K(Ψ; M ; γ) + K(Ψ; M ; siγ − εi + εi+1) equals

g ◦

(
1 −

1

zi+1

) (
1 +

zi+1

zi
si

) ∏

(a,b)∈Ψ

(
1 −

za

zb

)−1 ∏

b∈M\{i+1}

(
1 −

1

zb

)
(zγ) , (3.3)

which vanishes by Proposition 3.2. �

Lemma 3.4. Given a root ideal Ψ ⊆ ∆+
�+1, a multiset M on [� + 1], and γ ∈ Z

�, we have 

that

K(Ψ; M ; (γ, 0)) = K(Ψ̂; M̂ ; γ) ,

where Ψ̂ := {(i, j) ∈ Ψ | 1 ≤ i < j ≤ �} and M̂ := {j ∈ M | 1 ≤ j ≤ �}.
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Proof. Proposition 2.2 implies that

K(Ψ; M ; (γ, 0)) =
∏

j∈M̂

(1 − Lj)
∏

(i,j)∈∆+

� \Ψ̂

(1 − Rij)

mM (�+1)∏

j=1

(1 − L�+1)

×
∏

(h,�+1)∈∆+

�+1
\Ψ

(1 − Rh,�+1) k(γ,0)

=
∏

j∈M̂

(1 − Lj)
∏

(i,j)∈∆+

� \Ψ̂

(1 − Rij) kγ ,

since k
(�)
0 = 1 and k

(�)
m = 0 for m < 0. �

Remark 3.5. In light of Lemma 3.4, we sometimes abuse notation by saying that, for 

�′ ≥ �, root ideal Ψ ⊆ ∆+
�′ , multiset M on [�′], and γ ∈ Z

�,

K(Ψ; M ; γ) := K(Ψ̂; M̂ ; γ) .

Lemma 3.6. For r ≥ 0, s ≥ 1, and γ ∈ Z
s,

r+s∏

j=r+1

(1 − Lj)rk(0r,γ) = kγ .

Proof. We note that

k(b−r)
a = k(b−r+1)

a − k
(b−r+1)
a−1 = · · · =

r∑

i=0

(−1)i

(
r

i

)
k

(b)
a−i

by iterating (2.6). Then,

kγ = k0r k(0)
γ1

· · · k(s−1)
γs

= k0r

(
r∑

i1=0

(−1)i1

(
r

i1

)
k

(r)
γ1−i1

)
· · ·

(
r∑

is=0

(−1)is

(
r

is

)
k

(r+s−1)
γs−is

)

=

r+s∏

j=r+1

(1 − Lj)rk(0r,γ) . �

Definition 3.7. Given root ideals Ψ ⊆ ∆+
� and Ψ′ ⊆ ∆+

�′ , we define the root ideal Ψ �Ψ′ ⊆

∆+
�+�′ to be the result of placing Ψ and Ψ′ catty-corner and including the full � × �′

rectangle of roots in between. Equivalently, Ψ � Ψ′ is determined by

∆+
�+�′ \ (Ψ � Ψ′) = (∆+

� \ Ψ) � {(i + �, j + �) | (i, j) ∈ ∆+
�′ \ Ψ} .
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For example, using light red shading to emphasize the � × �′ rectangle (for interpre-

tation of the colors in the diagrams, the reader is referred to the web version of this 

article),

� =

Lemma 3.8. Given λ ∈ Z
�, μ ∈ Z

�′

, root ideals Ψ, L ⊆ ∆+
� , and root ideals Ψ′, L′ ⊆ ∆+

�′ , 

we have

K(Ψ; L; λ)K(Ψ′; L′; μ) = K(Ψ � Ψ′; L � L′; (λ, μ)) ,

where (λ, μ) = (λ1, . . . , λ�, μ1, . . . , μ�′).

Proof. By Proposition 2.2,

K(Ψ � Ψ′; L � L′; λμ) =
∏

(i,j)∈L�L′

(1 − Lj)
∏

(i,j)∈∆+

�+�′
\Ψ�Ψ′

(1 − Rij)kλμ .

However, since ∆+
�+�′ \ Ψ � Ψ′ has no roots in {(r, s) | 1 ≤ r ≤ �, � + 1 ≤ s ≤ � + �′},

K(Ψ�Ψ′; L�L′; λμ) =
∏

(i,j)∈L�L′

(1−Lj)
∏

(i,j)∈∆+

� \Ψ

(1−Rij)
∏

(i,j)∈∆+

�′
\Ψ′

(1−Ri+�,j+�)kλμ .

By definition of L �L′, 
∏

(i,j)∈L�L′(1 −Lj) =
∏

(i,j)∈L(1 −Lj) 
∏

(i,j)∈L′(1 −L�+j) 
∏�+�′

j=�+1

(1 − Lj)�. Noting kλμ = kλk(0�,μ), we thus have

K(Ψ � Ψ′; L � L′; λμ) =
∏

(i,j)∈L

(1 − Lj)
∏

(i,j)∈∆+

� \Ψ

(1 − Rij) kλ

×

�+�′∏

j=�+1

(1 − Lj)�
∏

(i,j)∈L′

(1 − L�+j)

×
∏

(i,j)∈∆+

�′
\Ψ′

(1 − Ri+�,j+�)k(0�,μ) .

The first line is K(Ψ; L; μ). To see the second line is K(Ψ′; L′; μ), expand 
∏

(i,j)∈L′(1 −

L�+j) 
∏

(i,j)∈∆+

�′
\Ψ′(1 − Ri+�,j+�)k(0�,μ) =

∑
γ k(0�,γ), and note for each summand, 

∏�+�′

j=�+1(1 − Lj)�k(0�,γ) = kγ by Lemma 3.6. �

Proposition 3.9. Let Ψ ⊆ ∆+ be a root ideal, M on [�] be a multiset, and μ ∈ Z
�. Then,
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(a) for any addable root ´ of Ψ,

K(Ψ; M ; μ) = K(Ψ ∪ ´; M ; μ) − K(Ψ ∪ ´; M ; μ + ε´) ;

(b) for any removable root ³ of Ψ,

K(Ψ; M ; μ) = K(Ψ \ ³; M ; μ) + K(Ψ; M ; μ + ε³) ;

(c) for any y ∈ M ,

K(Ψ; M ; μ) = K(Ψ; M \ y; μ) − K(Ψ; M \ y; μ − εy) ;

(d) for any y ∈ [�],

K(Ψ; M ; μ) = K(Ψ; M � y; μ) + K(Ψ; M ; μ − εy) .

Proof. The first identity follows directly from Proposition 2.2:

K(Ψ; M ; μ) =
∏

j∈M

(1 − Lj)
∏

(i,j)∈∆+\Ψ

(1 − Rij)kμ

=
∏

j∈M

(1 − Lj)
∏

(i,j)∈∆+\(Ψ∪´)

(1 − Rij)(kμ − kμ+εβ
) .

Part (b) is then obtained by applying (a) with Ψ = Ψ \ ³ and ´ = ³. A similar compu-

tation gives (c):

K(Ψ; M ; μ) =
∏

j∈M

(1 − Lj)
∏

(i,j)∈∆+\Ψ

(1 − Rij)kμ

=
∏

j∈M\y

(1 − Lj)
∏

(i,j)∈∆+\Ψ

(1 − Rij)(kμ − kμ−εy
) ,

and (d) is obtained by applying (c) with M � {y} in place of M . �

These root expansions give rise to other powerful identites, derived by their successive 

application.

Lemma 3.10. Let Ψ ⊆ ∆+
� , M be a multiset on [�], and μ ∈ Z

� with μ� = 1. If � ∈ M

and Ψ has a removable root ³ = (x, �) for some x, then

K(Ψ; M ; μ) = K(Ψ \ ³; M \ �; μ) + K(Ψ̂; M̂ � x; (μ1, . . . , μ�−1) + εx) ,

where Ψ̂ = {(i, j) ∈ Ψ | j < �} and M̂ = {j ∈ M | j < �}.
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Proof. By Proposition 3.9, we expand first on the removable root ³ = (x, �) of Ψ and 

then on � ∈ M , to obtain

K(Ψ; M ; μ) = K(Ψ \ ³; M ; μ) + K(Ψ; M ; μ + ε³)

= K(Ψ \ ³; M \ �; μ) − K(Ψ \ ³; M \ �; μ − ε�) + K(Ψ; M ; μ + ε³) .

Lemma 3.4 allows the substitution of K(Ψ \ ³; M \ �; μ − ε�) = K(Ψ̂; M̂ ; μ̂) for μ̂ =

(μ1, . . . , μ�−1), as well as K(Ψ; M ; μ + ε³) = K(Ψ̂; M̂ ; μ̂ + εx). Proposition 3.9(c) on 

column x then gives −K(Ψ̂; M̂ ; μ̂) + K(Ψ̂; M̂ ; μ̂ + εx) = K(Ψ̂; M̂ � x; μ̂ + εx). �

Example 3.11. We apply Lemma 3.10 to the following scenario, with � = 7 and root 

³ = (4, 7):

4 • • • • •
3 • • •

1 • •
1 •

1
1

1

=

4 • • • • •
3 • • •

1 • •
1

1
1

1

+

4 • • • •
3 • • •

1 •
2

1
1

4. Mirror lemmas and straightening relations

Although a Schur function can be associated to generic γ ∈ Z
�, sγ always either 

vanishes or straightens into a single sμ, up to sign, for a partition μ. Lemma 3.3 shows 

that Katalan functions satisfy a straightening relation as well. From this, we deduce 

adaptations of the mirror lemmas of [6] to the K-theoretic setting and some useful 

consequences.

4.1. Root ideal combinatorics

We begin by reviewing some notation from [6].

Let Ψ ⊆ ∆+
� be a root ideal and x ∈ [�]. If there is a removable root (x, j) of Ψ, then 

define downΨ(x) = j; otherwise, downΨ(x) is undefined. Similarly, if there is a removable 

root (i, x) of Ψ, then define upΨ(x) = i; otherwise, upΨ(x) is undefined. The bounce graph

of a root ideal Ψ ⊆ ∆+
� is the graph on the vertex set [�] with edges (r, downΨ(r)) for 

each r ∈ [�] such that downΨ(r) is defined. The bounce graph of Ψ is a disjoint union of 

paths called bounce paths of Ψ.

For each vertex r ∈ [�], distinguish topΨ(r) to be the minimum element of the bounce 

path of Ψ containing r. For a, b ∈ [�] in the same bounce path of Ψ with a ≤ b, we define

pathΨ(a, b) = {a, downΨ(a), down2
Ψ(a), . . . , b},

i.e., the set of indices in this path lying between a and b. We also set uppathΨ(r) to be 

pathΨ(topΨ(r), r) for any r ∈ [�].
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Example 4.1. A path and uppath for the root ideal Ψ are given below:

pathΨ(2, 8) = {2, 5, 8} uppathΨ(10) = {10, 8, 5, 2, 1}

Definition 4.2. For a root ideal Ψ, we say there is

a wall in rows r, r + 1, . . . , r + d if rows r, . . . , r + d of Ψ have the same length,

a ceiling in columns c, c +1, . . . , c +d if columns c, . . . , c +d of Ψ have the same length,

a mirror in rows r, r + 1 if Ψ has removable roots (r, c), (r + 1, c + 1) for some 

c > r + 1.

Example 4.3. In Example 4.1, the root ideal Ψ has a ceiling in columns 2, 3, 4, and in 

columns 8, 9, a wall in rows 6, 7, 8, and in rows 9, 10, and a mirror in rows 2, 3, in rows 

3, 4, and in rows 4, 5.

4.2. Mirror lemmas

Lemma 4.4. Suppose a root ideal Ψ ⊆ ∆+
� , a multiset M on [�], μ ∈ Z

�, and z ∈ [� − 1]

satisfy

(a) Ψ has a ceiling in columns z, z + 1;

(b) Ψ has a wall in rows z, z + 1;

(c) μz = μz+1 − 1.

If mM (z + 1) = mM (z) + 1, then K(Ψ; M ; μ) = 0. If mM (z) = mM (z + 1), then 

K(Ψ; M ; μ) = K(Ψ; M ; μ − εz+1).

Proof. Conditions (a) and (b) are equivalent to szΨ = Ψ and condition (c) implies 

μ = szμ − εz + εz+1. Thus, if mM (z+1) = mM (z) +1, the result follows from Lemma 3.3. 

If mM (z + 1) = mM (z), Lemma 3.9(d) implies that

K(Ψ; M ; μ) = K(Ψ; M � {z + 1}; μ) + K(Ψ; M ; μ − εz+1) .

By the preceding case, K(Ψ; M � {z + 1}; μ) vanishes. �
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Example 4.5. For z = 2, Lemma 4.4 applies in the following two situations:

3 • • • •
2 • •

3 •
2 •

1
1

= 0

3 • • • • •
2 • •

3 •
2 •

1
1

=

3 • • • • •
2 • •

2 •
2 •

1
1

Lemma 4.6 (Mirror Lemma). Let Ψ ⊆ ∆+
� be a root ideal, M a multiset on [�], μ ∈ Z

�, 

and 1 ≤ y ≤ z < � be indices in the same bounce path of Ψ satisfying

(a) Ψ has a ceiling in columns y, y + 1;

(b) Ψ has a mirror in rows x, x + 1 for all x ∈ pathΨ(y, upΨ(z));

(c) Ψ has a wall in rows z, z + 1;

(d) mM (x + 1) = mM (x) + 1 for all x ∈ pathΨ(downΨ(y), z);

(e) μx = μx+1 for all x ∈ pathΨ(y, upΨ(z));

(f) μz = μz+1 − 1.

If mM (y + 1) = mM (y) + 1, then K(Ψ; M ; μ) = 0. If mM (y + 1) = mM (y), then 

K(Ψ; M ; μ) = K(Ψ; M ; μ − εz+1).

Proof. We proceed by induction on z − y, with Lemma 4.4 giving the base case z = y. 

Assume z > y. Condition (b) implies that upΨ(z + 1) = upΨ(z) + 1 and thus the root 

´ = (upΨ(z + 1), z) is addable to Ψ. Proposition 3.9(a) thus implies that K(Ψ; M ; μ) =

K(Ψ ∪ ´; M ; μ) − K(Ψ ∪ ´; M ; μ + ε´). The root ideal Ψ ∪ ´ has a ceiling in columns 

z, z + 1 and so K(Ψ ∪ ´; M ; μ) = 0 by Lemma 4.4. Therefore,

K(Ψ; M ; μ) = −K(Ψ ∪ ´; M ; μ + ε´) .

Because there is a wall in rows upΨ(z), upΨ(z+1) of the root ideal Ψ ∪´, K(Ψ ∪´; M ; μ +

ε´) can be addressed by induction: when mM(y+1) = mM (y) +1, K(Ψ ∪´; M ; μ +ε´) = 0

implies the vanishing of K(Ψ; M ; μ), and otherwise, K(Ψ ∪ ´; M ; μ + ε´) = K(Ψ ∪

´; M ; μ +ε´ −εupΨ(z)+1) = K(Ψ ∪´; M ; μ −εz) gives K(Ψ; M ; μ) = −K(Ψ ∪´; M ; μ −εz) . 

We then use Lemma 3.3 with i = z to find

K(Ψ; M ; μ) = −K(Ψ ∪ ´; M ; μ − εz) = K(Ψ ∪ ´; M ; μ − εz+1) .

Now expand the right hand side on the removable root ´ ∈ Ψ ∪´ with Proposition 3.9(b) 

to obtain

K(Ψ; M ; μ) = K(Ψ∪´; M ; μ− εz+1) = K(Ψ; M ; μ− εz+1)+K(Ψ∪´; M ; μ− εz+1 +ε´) .

Finally, K(Ψ ∪ ´; M ; μ − εz+1 + ε´) vanishes by Lemma 4.4 since Ψ ∪ ´ has a wall in 

rows z, z + 1 and a ceiling in columns z, z + 1 and μ − εz+1 + ε´ satisfies the necessary 

conditions. �
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Lemma 4.7. Suppose a root ideal Ψ ⊆ ∆+
� , multiset M on [�], γ ∈ Z

�, and j ∈ [�] satisfy

(a) Ψ has a removable root (i, j) in column j;

(b) Ψ has a ceiling in columns j, j + 1 and a wall in rows j, j + 1;

(c) mM (j + 1) = mM (j) + 1;

(d) γj = γj+1.

Then, K(Ψ; M ; γ) = K(Ψ \ (i, j); M ; γ).

Proof. A root expansion on the removable root (i, j) with Proposition 3.9 gives

K(Ψ; M ; γ) = K(Ψ \ (i, j); M ; γ) + K(Ψ; M ; γ + εi − εj) ,

and the second summand vanishes by Lemma 4.4 with z = j. �

Lemma 4.8. Suppose a root ideal Ψ ⊆ ∆+
� , multiset M on [�], γ ∈ Z

�, and j ∈ [�] satisfy

(a) j ∈ M ;

(b) Ψ has a ceiling in columns j, j + 1 and a wall in rows j, j + 1;

(c) mM (j + 1) = mM (j);

(d) γj = γj+1.

Then, K(Ψ; M ; γ) = K(Ψ; M \ j; γ) . If, in addition, Ψ has a removable root (i, j) in 

column j, then K(Ψ; M ; γ) = K(Ψ \ (i, j); M \ j; γ) .

Proof. We expand on j ∈ M with Proposition 3.9 to obtain

K(Ψ; M ; γ) = K(Ψ; M \ j; γ) − K(Ψ; M \ j; γ − εj) ,

and note that K(Ψ; M \ j; γ − εj) = 0 by Lemma 4.4. If, in addition, (i, j) is remov-

able from Ψ, the second equality holds since K(Ψ; M \ j; γ) satisfies the conditions of 

Lemma 4.7. �

Example 4.9. By the first equality of Lemma 4.8,

4 • •
3 • •

2
2

=

4 • •
3 •

2
2

By Lemma 4.7,

4 • •
3 •

2
2

=

4 • •
3 •

2
2

Combining both these equalities is an application of the second equality of Lemma 4.8.
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Lemma 4.10 (Mirror Straightening Lemma). Let Ψ ⊆ ∆+
� be a root ideal, M a multiset 

on [�], and μ ∈ Z
�. Let 1 ≤ y ≤ z < � be indices in the same bounce path of Ψ satisfying

(a) mM (y) = mM (y + 1);

(b) Ψ has an addable root ³ = (upΨ(y+1), y) and a removable root ´ = (upΨ(y+1), y+1);

(c) Ψ has a mirror in rows x, x + 1 for all x ∈ pathΨ(y, upΨ(z));

(d) Ψ has a wall in rows z, z + 1;

(e) mM (x + 1) = mM (x) + 1 for all x ∈ pathΨ(downΨ(y), z);

(f) μx = μx+1 for all x ∈ pathΨ(y, upΨ(z)), and μz = μz+1 − 1.

Then,

K(Ψ; M ; μ) = K(Ψ ∪ ³; M � (y + 1); μ + εupΨ(y+1) − εz+1) + K(Ψ; M ; μ − εz+1) .

Proof. First consider the case z = y. We have K(Ψ; M ; μ) = K(Ψ; M � (y + 1); μ) +

K(Ψ; M ; μ − εz+1) by Proposition 3.9(d), and must prove that

K(Ψ; M � (y + 1); μ) = K(Ψ ∪ ³; M � (y + 1); μ + εupΨ(z+1) − εz+1) . (4.1)

Since ³ = (upΨ(z + 1), z) is addable to Ψ, we expand with Proposition 3.9 to obtain

K(Ψ; M � (y + 1); μ) = K(Ψ ∪ ³; M � (y + 1); μ) − K(Ψ ∪ ³; M � (y + 1); μ + ε³) .

Conditions (b) and (d) imply that Ψ ∪ ³ has a ceiling in columns y, y + 1 and a wall in 

rows y, y + 1, and (a) gives that M � (y + 1) has one more occurrence of y + 1 than y. 

Therefore, since μz = μz+1 − 1, Lemma 3.3 with i = y = z applies and straightens the 

term

−K(Ψ ∪ ³; M � (y + 1); μ + ε³) = K(Ψ ∪ ³; M � (y + 1); μ + εupΨ(z+1) − εz+1) .

For the same reasons, Lemma 4.4 applies to the other term, giving K(Ψ ∪ ³; M � (y +

1); μ) = 0. Thus (4.1) is proved.

Proceed by induction for z − y > 0. Given Ψ has a mirror in rows w = upΨ(z) and 

w + 1, the root γ = (w + 1, z) is addable to Ψ and expanding on it using Proposition 3.9

yields

K(Ψ; M ; μ) = K(Ψ ∪ γ; M ; μ) − K(Ψ ∪ γ; M ; μ + εγ) .

Since Ψ ∪ γ has a ceiling in columns z, z + 1, with conditions (d) and (e), Lemma 3.3

straightens the term

−K(Ψ ∪ γ; M ; μ + εγ) = K(Ψ ∪ γ; M ; μ + εw+1 − εz+1) .
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The same conditions imply that K(Ψ ∪ γ; M ; μ) = 0 by Lemma 4.4. Therefore,

K(Ψ; M ; μ) = K(Ψ ∪ γ; M ; μ + εw+1 − εz+1) .

Since Ψ ∪γ has a wall in rows w and w+1, and ν = μ +εw+1−εz+1 satisfies νw = νw+1−1, 

we can apply the induction hypothesis with z = w to the right hand side and obtain

K(Ψ; M ; μ) = K(Ψ ∪ {γ, ³}; M � (y + 1); μ + εupΨ(y+1) − εz+1) + K(Ψ ∪ γ; M ; μ − εz+1) .

Lemma 4.7 enables us to remove γ from both terms, proving the claim. �

Example 4.11. The following is an example of an application of Lemma 4.10 with y =

2, z = 5.

5 • • •
4 •

4
4

3
4

=

6 • • • •
4 •

4
4

3
3

+

5 • • •
4 •

4
4

3
3

For 1 ≤ x < y ≤ z ≤ �, define the diagonal Dz
x,y = {(i, j) | j − i = y − x , y ≤ j ≤

z} ⊆ ∆+
� .

Example 4.12. In the following, D6
3,4 is the light blue (removable) diagonal and D6

2,4 is 

depicted in dark blue.

Lemma 4.13 (Diagonal Removal Lemma). Let Ψ ⊆ ∆+
� be a root ideal, M a multiset on 

[�], γ ∈ Z
�, and integers 1 ≤ x < y ≤ z ≤ � be such that

(a) Ψ has a ceiling in columns z − 1, z and every root of Dz−1
x,y ⊆ Ψ is removable from Ψ;

(b) L(Dz−1
x,y ) ⊆ M and mM (z) = mM (z − 1) = mM (z − 2) + 1 = · · · = mM (y) + z − 1 − y;

(c) Ψ has a wall in rows y, y + 1, . . . , z;

(d) γy = · · · = γz.

Then,

K(Ψ; M ; γ) = K(Ψ′; M ′; γ)
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where Ψ′ = Ψ \ Dz−1
x,y and M ′ = M \ L(Dz−1

x,y ).

Proof. Let ´0, ́ 1, . . . , ́ z−y−1 be the roots of the diagonal Dz−1
x,y from lowest to highest, 

i.e., ´j = (aj , bj) with aj = z + x − y − j − 1 and bj = z − j − 1. Define Ψj+1 = Ψj \ {´j}

and M j+1 = M j \ {bj}, starting with Ψ0 = Ψ and M0 = M ; thus Ψz−y−1 = Ψ′ and 

Mz−y−1 = M ′. By condition (a) for j = 0 and by construction for j > 0, ´j is a 

removable root of Ψj , and Ψj has a ceiling in columns bj , bj + 1. Similarly, (b) implies 

that bj ∈ M j and mMj (bj + 1) = mMj (bj). Therefore, using also (c) and (d), we can 

repeatedly apply Lemma 4.8 to obtain

K(Ψ; M ; γ) = K(Ψ1; M1; γ) = K(Ψ2; M2; γ) = · · · = K(Ψz−y−1; Mz−y−1; γ) . �

4.3. Proof of Proposition 2.18

From Inv(w0w0) = 0k we have ζ(w0)′ =
((

k
2

)
, . . . , 

(
1
2

))
= θ(w0)′, and thus θ(w0) =

∪k−1
i=1 (k − i)i. The proposition states that 

∏k−1
i=1 g(k−i)i = g̃

(k)
θ(w0)ωk

, but we will first prove

k−1∏

i=1

g(k−i)i = g̃
(k)
θ(w0) . (4.2)

Consider that, by Proposition 2.3 and Lemma 3.8,

k−1∏

i=1

g(k−i)i =

k−1∏

i=i

K(∅i;∅i; (k − i)i) = K(�k−1
i=1 ∅i; �k−1

i=1 ∅i; ∪k−1
i=1 (k − i)i)

where ∅i ⊆ ∆+
i denotes the empty root ideal of length i and �k−1

i=1 ∅i = ∅1 � ∅2 �

· · · � ∅k−1. Set γ = ∪k−1
i=1 (k − i)i. We now proceed iteratively on i = 1, . . . , k − 1 with 

Ψi := ∆(k)(∪i
j=1(k − j)j) � (�k−1

j=i+1∅j). For fixed i, let a = 1 + 2 + · · · + i =
(

i+1
2

)
. Note 

that Ψi has a ceiling in columns a + 1, . . . a + i + 1, a wall in rows a + 1, . . . , a + i + 1, 

and γa+1 = · · · = γa+i+1 = k − i − 1. Now, we can apply Diagonal Removal Lemma 4.13

to K(Ψi; Ψi; γ) iteratively with x = a − d, y = a + 1, and z = a + 1 + d for 0 ≤ d < i to 

get, for Dd = Da+1+d
a−d,a+1 and Ψi

d := Ψi \ (D0 ∪ · · · ∪ Dd),

K(Ψi; Ψi; γ) = K(Ψi
0; Ψi

0; γ) = K(Ψi
1; Ψi

1; γ) = · · · = K(Ψi
i−1; Ψi

i−1; γ)

= K(Ψi+1; Ψi+1; γ) , (4.3)

where the last equality follows since Ψi \ (D0 ∪ · · · ∪ Di−1) has i nonroots in rows 

a − i +1, . . . , a and is thus equal to Ψi+1. Then, (4.2) follows by applying (4.3) iteratively 

since Ψ1 = �k
j=1∅j and Ψk−1 = ∆k(γ). By the combinatorial description of ωk in [27, 

§3 and Definition 8], it is straightforward to check θ(w0) = θ(w0)ωk .
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4 • • • • • • •
2 • • • •

2 • • •
1 •

1
0

0
1

1

Fig. 1. K(Ψ; L; μ) with μ = 422110011, Ψ = ∆4(μ) shown in red, and L = ∆5(μ) superimposed as •’s as in 
Example 3.1. The nonzero row lengths of Ψ and L decrease by at least one from top to bottom (illustrating 
(a) and (c)), and there are mirrors in rows 2, 3 and in rows 4, 5 corresponding to μ2 = μ3 and μ4 = μ5

(illustrating (b)).

5. Vertical Pieri rule

We now apply the mirror lemmas to the k-Schur Katalan functions, g
(k)
λ . The root 

ideal combinatorics matches naturally with previously studied (k+1)-core combinatorics 

for g
(k)
λ . We deduce a vertical Pieri rule for the g

(k)
λ , which agrees with the known rule 

for the g
(k)
λ .

5.1. Pieri straightening

Recall from (2.7) that ∆k(μ) = {(i, j) ∈ ∆+
� | k − μi + i < j}. This was defined for 

μ ∈ Park
� , but the definition can be extended to any μ ∈ Z

�
≤k such that μi ≥ μi+1 − 1

for all i ∈ [� − 1]. Several useful properties are satisfied by these k-Schur root ideals, 

immediate from their construction, which will be used throughout this section.

Remark 5.1. Let λ ∈ Park
m, Ψ = ∆k(λ), and L = ∆k+1(λ). Let z be the lowest nonempty 

row of Ψ.

(a) (Wall-free) For x ∈ [z], Ψ does not have a wall in rows x, x +1. Hence for all x ∈ [m −1], 

either Ψ has a ceiling in columns x, x +1 or has removable roots (y, x) and (y+1, x +1). 

In the latter case, if y �= x − 1, then Ψ has a mirror in rows y, y + 1.

(b) (Equal weight mirrors) For x ∈ [z − 1], Ψ has a mirror in rows x, x + 1 if and only if 

μx = μx+1 < k.

(c) (Wall-free lowering ideal) For x ∈ [m − 1], upΨ(x) exists ⇐⇒ mL(L)(x) = mL(L)(x +

1) − 1. Otherwise mL(L)(x) = mL(L)(x + 1).

(d) (Adjustable end) Let S ⊆ Z≥m+2 satisfying max(S) −min(S) ≤ k−1 if it is nonempty. 

Set μ = λ + εS ∈ Z
� for � = max(S ∪ {m}). Then ∆k(μ) = ∆k((λ, 0�−m)) and 

∆k+1(μ) = ∆k+1((λ, 0�−m)), hence (a)–(c) apply with data �, μ, ∆k(μ), ∆k+1(μ) in 

place of m, λ, Ψ, L.

Here and throughout the remainder of the paper, for λ ∈ Park
� and ³ ∈ Z

j with j ≥ �, 

we define λ + ³ = (λ, 0j−�) + ³. (See Fig. 1.)
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3 • • • •
2 • •

2 •
2 •

0
1

=

3 • • • •
3 • • •

2 •
2

0
0

(a) j = 6, S = {6}
y = top

Ψ
(5) = 3 > top

Ψ
(6) = 1.

3 • • • •
3 • • •

2 •
2 •

0
1

= −

3 • • • •
3 • • •

2 •
2

0
0

(b) j = 6, S = {6}
top

Ψ
(6) = 4 > 2 = top

Ψ
(5) + 1.

3 • • • • •
1 • •

1 •
1 •

0
0

1

= 0

(c) j = 7, S = {7}
top

Ψ
(7) = 4 = top

Ψ
(6) + 1.

Fig. 2. Examples of the three cases of Proposition 5.2 for k = 3.

Proposition 5.2 (Pieri straightening). Let λ ∈ Park
m and S ⊆ Z≥m+2 nonempty with 

max(S) −min(S) ≤ k−1. Set μ = λ +εS, Ψ = ∆k(μ), M = L(∆k+1(μ)), and j = min(S). 

There holds

K(Ψ; M � S; μ) =

⎧
⎪⎪«
⎪⎪¬

K(∆k(ν); L(∆k+1(ν)) � (S \ j); ν) y = topΨ(j − 1) > topΨ(j)

−K(Ψ; M � (S \ j); μ − εj) topΨ(j) > topΨ(j − 1) + 1

0 topΨ(j) = topΨ(j − 1) + 1

(5.1)

where ν := μ + εupΨ(y+1) − εj in the first case. (See Fig. 2.)

Proof. First, apply Proposition 3.9(c) to j ∈ S to obtain

K(Ψ; M � S; μ) = K(Ψ; M � (S \ j); μ) − K(Ψ; M � (S \ j); μ − εj) . (5.2)

Note that μj−1 = μj − 1 = 0 since μ = λ + εS , j = min(S) ≥ m + 2, and λ ∈ Park
m. 

Also, note throughout that, since μj−1 = 0, then (j − 1, j) /∈ Ψ and thus uppathΨ(j) ∩

uppathΨ(j − 1) = ∅.

If y = topΨ(j − 1) > topΨ(j), then upΨ(y) does not exist but upΨ(y + 1) does, so Ψ

does not have a ceiling in columns y, y + 1. Thus, Remark 5.1 gives the conditions for 

Mirror Straightening Lemma 4.10 applied with z = j −1 to K(Ψ; M � (S \ j); μ) in (5.2), 

giving

K(Ψ; M � (S \ j); μ) =K(Ψ ∪ ³; M � (y + 1) � (S \ j); μ + εupΨ(y+1) − εj)

+ K(Ψ; M � (S \ j); μ − εj) ,

where ³ = (upΨ(y + 1), y). Therefore,

K(Ψ; M � S; μ) = K(Ψ ∪ ³; M � (y + 1) � (S \ j); μ + εupΨ(y+1) − εj) .

Using Ψ ∪ ³ = ∆k(ν) and M � (y + 1) = L(∆k+1(ν)), the top case of (5.1) follows.

If topΨ(j) > topΨ(j − 1) + 1, then Remark 5.1 gives the conditions to apply Mirror 

Lemma 4.6 with z = j − 1; note that, in this case, there is no removable root in column 
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topΨ(j) of Ψ by definition of top, but there is a removable root of Ψ in column topΨ(j) −1, 

so Ψ has a ceiling in these columns. In addition, mM(topΨ(j)) − 1 = mM (topΨ(j) − 1)

by Remark 5.1(c), so it is the first statement in Mirror Lemma 4.6 that applies. Hence 

the term K(Ψ; M � (S \ j); μ) in (5.2) vanishes, as desired.

If topΨ(j) = topΨ(j − 1) + 1, then there are no removable roots in columns topΨ(j −

1), topΨ(j) of Ψ by definition of top, so there is a ceiling in columns topΨ(j −1), topΨ(j). 

Remark 5.1 gives the conditions to apply Mirror Lemma 4.6. Since mL(L)(topΨ(j −1)) =

mL(L)(topΨ(j)) by Remark 5.1(c), we obtain K(Ψ; M �(S\j); μ) = K(Ψ; M �(S\j); μ −

εj), and thus the right side of (5.2) is zero, as desired. �

5.2. Katalan multiplication via root expansions

Recall that Dz
x,y ⊆ ∆+ denotes the diagonal occupying columns y to z, starting in 

row x. For 1 ≤ x < y ≤ z, a succession of diagonals, each occupying columns y to z, 

forms a staircase, Ez,h
x,y = Dz

x,y ∪ Dz
x+1,y ∪ · · · ∪ Dz

x+h−1,y. In Example 4.12, E6,2
2,4 is the 

union of light and dark blue cells.

Lemma 5.3. For � ≥ 1 and r ≥ 0, consider a root ideal Ψ ⊆ ∆+
�+r and a multiset M on 

[� + r]. Let x, h ≥ 0 with x + r + h − 2 ≤ � be such that

(a) Eh := E�+r,h
x,�+1 ⊆ Ψ;

(b) Ψ′ = Ψ \ Eh is a root ideal;

(c) mM (� + 1) ≥ h and mM (� + r) = mM (� + r − 1) + 1 = · · · = mM (� + 1) + r − 1.

Then, for γ ∈ Z
� and M ′ = M \ L(Eh),

K(Ψ; M ; (γ, 1r)) =
r∑

a=0

∑

μ=γ+εS+εS′

S⊆{x+r−a,...,x+r+h−2}
|S|=a

S′={�+1,...,�+r−a}

K(Ψ′; M ′ � S; μ) ,

where each summand is understood to be truncated in the manner of Remark 3.5. (See 
Fig. 3.)

Proof. If r = 0 or h = 0, Eh is the empty set and the equality holds trivially. We proceed 

by induction on r + h with r, h > 0. Noting that ³ = (x + r + h − 2, � + r) is the only 

root in the lowest row of Eh, it is removable from Ψ by (b). Thus, Lemma 3.10 implies

K(Ψ; M ; (γ, 1r)) =K(Ψ \ ³; M \ (� + r); (γ, 1r))

+ K(Ψ̂; M̂ � (x + r + h − 2); (γ, 1r−1) + εx+r+h−2) .

We shall apply Diagonal Removal Lemma 4.13 with x = x + h − 1, y = � + 1, z = � + r to 

the first term on the right hand side; indeed, Ψ \ ³ has a ceiling in � + r − 1, � + r and (c) 

implies M \ (� + r) has the same number of occurrences of � + r − 1, � + r. Furthermore, 
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γ1

γx

γ�

1

1

³
h

r

Fig. 3. Schematic of the setup for Lemma 5.3 where Ψ′ are the roots in light gray, Eh is the diagonally 
shaded region, and Ψ = Ψ′ ∪ Eh.

since Ψ has no roots lower than ³, Ψ \ ³ has a wall in rows x + r + h − 2, . . . , � + r (recall 

that x + r + h − 2 ≤ �). By definition, D�+r
x+h−1,�+1 = Eh \ Eh−1 is the lowest diagonal 

of Eh and thus every root of D�+r−1
x+h−1,�+1 = D�+r

x+h−1,�+1 \ ³ is removable from Ψ \ ³. 

Therefore,

K(Ψ; M ; (γ, 1r)) =K(Ψ′ ∪ Eh−1; M ′ � L(Eh−1); (γ, 1r))

+ K(Ψ̂; M̂ � (x + r + h − 2); (γ, 1r−1) + εx+r+h−2) .

The inductive hypothesis applied to the first term with h = h − 1 and applied to the 

second term with r = r − 1 gives

K(Ψ; M ; (γ, 1r)) =

r∑

a=0

∑

μ=γ+εT +εT ′

T ⊆{x+r−a,...,x+r+h−3}
|T |=a

T ′={�+1,...,�+r−a}

K(Ψ′; M ′ � T ; μ)

+

r−1∑

a=0

∑

μ=γ+εx+r+h−2+εT +εT ′

T ⊆{x+r−1−a,...,x+r+h−3}
|T |=a

T ′={�+1,...,�+r−1−a}

K(Ψ′; M ′ � (T ∪ {x + r + h − 2}); μ)

Reindexing the second sum to go from 1 to r readily shows that we recover the desired 

sum, with the first sum corresponding to x +r+h −2 /∈ S and the second to x +r+h −2 ∈

S. �

Proposition 5.4 (Unstraightened Pieri Rule). For λ ∈ Park
�−k−1 and 0 ≤ r ≤ k,

g1rg
(k)
λ =

r∑

a=0

∑

μ=λ+εS+εS′

S⊆{�−k+1+r−a,...,�}
|S|=a

S′={�+1,...,�+r−a}

K(∆k(μ); L(∆k+1(μ)) � (S ∪ S′); μ) .
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•
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•

•

•

.

.

.

Ψ, M

∅r

rk + 1

λ1

λm

0

0

0

1

1

Ψ′′, M ′′

• • • • • • • •
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•

.
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.

∅r

E

rk + 1

k + 1 − r

Fig. 4. The schematic on the left represents Ψ = ∆k(λ, 0k+1) � ∅r and M = L(∆k+1(λ, 0k+1) � ∅r). 
On the right, Ψ′′ and M ′′ are the solid grey region and •’s, respectively, and the crosshatched region is 
Ψ\Ψ′ = Ψ \ (Ψ′′ ∪ E). Here, m = � − k − 1.

Proof. For λ ∈ Park
�−k−1, Definition 2.4 and Lemma 3.4 give

g
(k)
λ = K(∆k((λ, 0k+1)); ∆k+1((λ, 0k+1)); (λ, 0k+1)) .

Since g1r = K(∅r; ∅r; 1r) by Proposition 2.3(b) where ∅r ⊆ ∆+
r denotes the empty root 

ideal of length r, the concatenation rule of Lemma 3.8 implies that

g1rg
(k)
λ = K(Ψ, M, (λ, 0k+1, 1r)) ,

for Ψ = ∆k(λ, 0k+1) � ∅r and M = L(∆k+1(λ, 0k+1) � ∅r). (See Fig. 4.)

Let E = E�+r,k+1−r
�−k+1,�+1 and set

Ψ′′ = ∆k(λ, 0k+1, 1r) and Ψ′ = Ψ′′ ∪ E ;

M ′′ = L(∆k+1(λ, 0k+1, 1r)) and M ′ = M ′′ � {� + 1, . . . , � + r} � L(E).

Observe that Ψ \ Ψ′ = D�+1
�,�+1 ∪ D�+2

�−1,�+1 ∪ · · · ∪ D�+r−1
�−r+2,�+1 and M \ M ′ = L(Ψ \ Ψ′). We 

remove these diagonals from Ψ by iteratively applying Diagonal Removal Lemma 4.13

until

g1r g
(k)
λ = K(Ψ, M, (λ, 0k+1, 1r)) = K(Ψ′; M ′; (λ, 0k+1, 1r)) .

We can then apply Lemma 5.3 with x = � − k + 1, h = k + 1 − r, Ψ = Ψ′ and M = M ′

to get

K(Ψ′; M ′; (λ, 0k+1, 1r)) =

r∑

a=0

∑

μ=λ+εS+εS′

S⊆{�+r−k+1−a,...,�}
|S|=a

S′={�+1,...,�+r−a}

K(Ψ′′; (M ′ \ L(E)) � S; μ) .
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Since M ′ \ L(E) = M ′′ � {� + 1, . . . , � + r}, we have for each summand K(Ψ′′; (M ′ \

L(E)) �S; μ) = K(Ψ′′; M ′′ �(S∪S′); μ) by Remark 3.5. Further, since μ = λ +εS∪S′ with 

max(S ∪ S′) − min(S ∪ S′) ≤ k − 1, this is equal to K(∆k(μ); L(∆k+1(μ)) � (S ∪ S′); μ)

by Remark 5.1(d) and Remark 3.5. �

Lemma 5.5. For � ≥ 1 and 0 ≤ r ≤ k, the map

rm:
r

�
a=0

�
S⊆{�−k+1+r−a,...,�}

|S|=a
S′={�+1,...,�+r−a}

{S ∪ S′} →
{

R ⊆ Z/(k + 1)Z : |R| = r
}

given by S ∪ S′ �→ { −s | s ∈ S ∪ S′} is a bijection, where z denotes the image of z in 

Z/(k + 1)Z.

Proof. For each 0 ≤ a ≤ r, S ∪ S′ is a subset of the k consecutive entries {� − k + 1 +

r − a, . . . , � + r − a} and |S ∪ S′| = r. Thus rm is well-defined and one-to-one. Given 

R ⊆ Z/(k+1)Z with |R| = r, to construct its preimage S ∪S′, consider the largest b such 

that {−(� + 1), . . . , −(� + b)} ⊆ R or set b = 0 if −(� + 1) /∈ R. Then S ∪ S′ = f�,b(R), 

for the map f�,b : Z/(k + 1)Z → Z given by

−(� + i) �→ � + i for 1 ≤ i ≤ b

−(� + b + j) �→ � + b + j − k − 1 for 1 ≤ j ≤ k + 1 − b. �

Combining Proposition 5.4 and Lemma 5.5 yields the following result.

Corollary 5.6. For λ ∈ Park
� and 0 ≤ r ≤ k,

g1rg
(k)
λ =

∑

R⊆Z/(k+1)Z

|R|=r

K(∆k(λ + εA); L(∆k+1(λ + εA)) � A; λ + εA)

where A = rm−1(R).

5.3. Root ideal to core dictionary

The diagram of a partition λ is the subset of cells {(r, c) ∈ Z≥1 × Z≥1 : c ≤ λr}

in the plane, drawn in English (matrix-style) notation so that rows (resp. columns) are 

increasing from north to south (resp. west to east). Each cell in a diagram has a hook 

length which counts the number of cells below it in its column and weakly to its right in 

its row. An n-core is a partition with no cell of hook length n. We use Ck+1 to denote 

the collection of k + 1-cores. There is a bijection [27],

p : Ck+1 → Park ,
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where p(κ) = λ is the partition whose r-th row, λr, is the number of cells in the r-th 

row of κ with hook length ≤ k. Let c = p−1. The content of a cell (r, c) ∈ Z × Z is c − r

and its k + 1-residue is c − r ∈ Z/(k + 1)Z.

Given a k + 1-core κ, define the row residue map

r: Z≥1 → Z/(k + 1)Z, a �→ κa − a ,

so that r(a) is the k + 1-residue of the cell (a, κa) (if a ≤ �(κ), this lies on the eastern 

border of κ but we also allow a > �(κ) and understand κa = 0 in this case). We use the 

following lemma, obtained by taking [6, Proposition 8.2(b)] modulo k + 1.

Lemma 5.7. Let λ ∈ Park
� and Ψ = ∆k(λ). If upΨ(x) is defined, then r(upΨ(x)) = r(x).

Proposition 5.8. Let λ ∈ Park
� and κ = c(λ). The root ideal ∆k(λ) has at most k + 1

distinct bounce paths and cells (a, κa) and (b, κb) have the same k +1-residue if and only 

if a and b are in the same bounce path.

Proof. Let Ψ = ∆k(λ, 0k+1). By construction, Ψ has no roots in rows [� + 1, � + k + 1], 

implying that each of � + 1, . . . , � + k + 1 lies in a distinct bounce path, B1, . . . , Bk+1, 

respectively. Since downΨ(x) exists for all x ∈ [�], B1, . . . , Bk+1 are the only bounce 

paths in Ψ. Now, for i ∈ [k + 1], the k + 1-residue of (� + i, κ�+i) is

r(� + i) = κ�+i − � − i = 0 − (� + i) .

Thus the residues r(� +1), . . . , r(� +k+1) are distinct and so, by Lemma 5.7, r(a) = r(i +�)

for all a ∈ Bi. Therefore, r(a) = r(b) if and only if a and b lie in the same bounce path. 

Because the bounce path of x ∈ [�] in ∆k(λ) is a (possibly empty) truncation of its 

bounce path in Ψ, the claim follows. �

Given a partition κ, an addable i-corner is a cell (r, c) /∈ κ of k + 1-residue i such that 

κ ∪ {(r, c)} is a partition; a removable i-corner is a cell (r, c) ∈ κ of k + 1-residue i such 

that κ \ {(r, c)} is a partition.

Proposition 5.9 (K-k-Schur root ideal to core dictionary). Let λ ∈ Park
j with λj−1 =

λj = 0. Set i = −j + 1. Then the bounce paths of Ψ = ∆k(λ) are related to the k +1-core 

κ = c(λ) as follows. Also, (a)–(c) below hold more generally with root ideal ∆k(λ + εS)

in place of Ψ, for any S ⊆ Z≥j.

(a) y = topΨ(j − 1) > topΨ(j) if and only if the lowest addable i-corner of κ lies in row 

a = upΨ(y + 1),

(b) topΨ(j) > topΨ(j − 1) + 1 if and only if κ has a removable i-corner,

(c) topΨ(j) = topΨ(j−1) +1 if and only if κ has neither a removable i-corner nor addable 

i-corner.
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Proof. Let r be the row residue map of κ. Noting r(j) = i − 1 and r(j − 1) = i, by 

Proposition 5.8, the set of row indices {z ∈ [j] | r(z) = i − 1} = uppathΨ(j) and 

{z ∈ [j] | r(z) = i} = uppathΨ(j − 1). Using this, we have

κ has an addable i-corner in row z ∈ [j] ⇐⇒ r(z − 1) �= i and r(z) = i − 1

⇐⇒ z − 1 /∈ uppathΨ(j − 1) and z ∈ uppathΨ(j) ; (5.3)

κ has a removable i-corner in row z − 1 ∈ [j] ⇐⇒ r(z − 1) = i and r(z) �= i − 1

⇐⇒ z − 1 ∈ uppathΨ(j − 1) and z /∈ uppathΨ(j). (5.4)

For y = max{topΨ(j − 1), topΨ(j) − 1}, since j and j − 1 cannot be in the same 

bouncepath, Ψ has a mirror in rows x, x +1 for x ∈ uppathΨ(upΨ(j −1)) such that x ≥ y

by Remark 5.1(a). Thus, the bounce paths uppathΨ(j − 1) and uppathΨ(j) have one of 

the following forms: (a) j−1, j2−1, j3−1, . . . , y and j, j2, j3, . . . , y+1, a, . . . ; (b) j−1, j2−

1, . . . , y, b, . . . and j, j2, . . . , y +1; or (c) j −1, j2 −1, . . . , y and j, j2, . . . , y +1. The result 

now follows from (5.3)–(5.4). Note that the more general statement holds simply because 

uppath∆k(λ+εS)(j − 1) = uppathΨ(j − 1) and uppath∆k(λ+εS)(j) = uppathΨ(j). �

Example 5.10. For k = 5 and λ = 532222111100000, set Ψ = ∆5(λ) and L = ∆6(λ). 

Then,

κ = c(λ) =

0 1 2 3 4 5 0 1 2 3 4
5 0 1 2 3 4
4 5 0
3 4 5
2 3 4
1 2 3
0
5
4
3

5 • • • • • • • • • • • • •
3 • • • • • • • • • •

2 • • • • • • • •
2 • • • • • • •

2 • • • • • •
2 • • • • •

1 • • •
1 • •

1 •
1

0
0

0
0

0

= K(Ψ; L; λ) ,

where we have filled the cells of κ with their k + 1-residues. Note that, for example, 

4 = r(1) = r(2) = r(5) = r(9) = r(14) illustrating Lemma 5.7. We can also observe 

examples of all three cases of Proposition 5.9. For (a), let j = 14. Then, topΨ(14) =

1 < 4 = topΨ(13) and the lowest addable corner of residue i = −14 + 1 = 5 is in 

row 2 of κ. For (b), let j = 15. Then, topΨ(15) = 6 > 1 + 1 = topΨ(14) + 1 and κ

has a removable corner of residue i = −15 + 1 = 4. Finally, for (c), let j = 13. Then, 

topΨ(13) = 4 = topΨ(12) + 1 and κ has neither a removable nor an addable corner of 

residue −13 + 1 = 0.

Lemma 5.11 ([27, Proposition 22, §8.1]). Let κ be a k + 1-core and λ = p(κ). Then 

siwλ ∈ Ŝ0
k+1 if and only if κ has an addable or removable i-corner. Moreover, κ has 

an addable i-corner if and only if siwλ = wλ+εa
∈ Ŝ0

k+1, where a is the row index of 
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the lowest addable i-corner of κ. The core κ has a removable i-corner if and only if 

siwλ = wλ−εa
∈ Ŝ0

k+1, where a is the row index of the lowest removable i-corner of κ.

5.4. Proof of the vertical Pieri rule

Proposition 5.12. For a root ideal Ψ ⊆ ∆+
� , a multiset M on [�], and γ ∈ Z

� satisfying 

maxband(Ψ, γ) ≤ k, there holds K(Ψ; M ; γ) ∈ Λ(k). Here, maxband is as defined in 

(2.15).

Proof. Consider that, by definition,

K(Ψ; M ; γ) =
∑

A⊆M

(−1)|A|H(Ψ; γ − εA) ,

where the summation is over all sub-multisets A of M . Since maxband(Ψ, γ − εA) ≤ k, 

each summand H(Ψ; γ − εA) ∈ Λ(k) by [7, Proposition 1.4]. �

Proposition 5.13. The set {g
(k)
λ }λ∈Park forms a basis for Λ(k). Moreover, it is unitrian-

gularly related to the k-Schur basis, i.e., g
(k)
λ = s

(k)
λ +

∑
|μ|<|λ| aλμs

(k)
μ for aλμ ∈ Z.

Proof. By Proposition 5.12, g
(k)
λ lies in Λ(k) and so can be written in terms of the k-

Schur basis of Λ(k); this expansion has the stated form since the highest degree term 

of K(Ψ; M ; γ) is H(Ψ; γ) irrespective of M . Hence the transition matrix from {g
(k)
λ } to 

{s
(k)
μ } is unitriangular and thus the former is a basis. �

Recall from Section 2 that wλ ∈ Ŝ0
k+1 is the minimal coset representative correspond-

ing to λ ∈ Park. For any λ ∈ Park, set g
(k)
wλ = g

(k)
λ , so that the basis {g

(k)
λ }λ∈Park can 

also be written {g
(k)
v }v∈Ŝ0

k+1

. Recall that Hk+1 denotes the 0-Hecke algebra of Ŝk+1 with 

generators {Ti | i ∈ {0, 1, . . . , k}}.

Proposition 5.14. The rule

Ti · g(k)
v =

⎧
⎪⎪«
⎪⎪¬

g
(k)
siv �(siv) > �(v) and siv ∈ Ŝ0

k+1 ,

−g
(k)
v �(siv) < �(v) ,

0 siv /∈ Ŝ0
k+1 ,

(5.5)

for i ∈ {0, 1, . . . , k} and v ∈ Ŝ0
k+1, determines an action of Hk+1 on Λ(k).

Note that the three cases are mutually exclusive since �(siv) < �(v) implies siv ∈ Ŝ0
k+1.

Proof. Consider e =
∑

w∈Sk+1
Tw ∈ Hk+1 and note that for i ∈ [k], Tie = 0 and so 

Tue = 0 for any u ∈ Ŝk+1 \ Ŝ0
k+1. Recalling that {Tw}w∈Ŝk+1

is a Z-basis of Hk+1, it 
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follows that the left module M = Hk+1e has Z-basis {Tve}v∈Ŝ0
k+1

. We then check that 

the Z-linear map M → Λ(k) given by Tve �→ g
(k)
v is an Hk+1-module isomorphism by 

computing

Ti · Tve = TiTve =

⎧
⎪⎪«
⎪⎪¬

Tsive �(siv) > �(v) and siv ∈ Ŝ0
k+1 ,

−Tve �(siv) < �(v) ,

Tsive = 0 �(siv) > �(v) and siv /∈ Ŝ0
k+1 . �

Lemma 5.15. For λ ∈ Park
m, 0 ≤ r ≤ k, and S = {a1 < a2 < · · · < ar} ⊆ Z≥m+2 with 

ar − a1 ≤ k − 1,

K(∆k(μ); L(∆k+1(μ)) � S; μ) = Tir
· · · Ti1

g(k)
wλ

,

where μ = λ + εS and iz := −az + 1 for z ∈ [r].

Proof. If |S| = 0, then the claim holds by definition of g
(k)
wλ . Proceed by induction, with 

|S| = r > 0. Set κ = c(λ), Ψ = ∆k(μ), and M = L(∆k+1(μ)). Let j = a1 = min(S), and 

note i1 = −j + 1.

First suppose y = topΨ(j − 1) > topΨ(j). Then Proposition 5.2 implies

K(Ψ; M � S; μ) = K(∆k(ν); L(∆k+1(ν)) � (S \ j); ν) ,

for ν := μ + εa − εj , where a = upΨ(y + 1). Since ν = (λ + εa) + εS\{j}, induction gives

K(∆k(ν); L(∆k+1(ν)) � (S \ j); ν) = Tir
· · · Ti2

g
(k)
λ+εa

.

By Proposition 5.9(a), the lowest addable i1-corner of κ lies in row a. Therefore, wλ+εa
=

si1
wλ by Lemma 5.11. Then, by Proposition 5.14 and the fact that �(wλ) = |λ|, we have 

g
(k)
λ+εa

= g
(k)
si1

wλ = Ti1
g

(k)
λ .

Next suppose topΨ(j) > topΨ(j − 1) + 1. Proposition 5.2 yields

K(Ψ; M � S; μ) = −K(Ψ; M � (S \ {j}); λ + εS\{j}).

Rewriting using Remark 5.1(d) with ν = λ + εS\{j}, and then applying induction yields

−K(Ψ; M � (S \ {j}); λ + εS\{j}) = −K(∆k(ν); L(∆k+1(ν)) � (S \ {j}); ν)

= −Tir
· · · Ti2

g
(k)
λ .

By Proposition 5.9(b), κ has a removable i1-corner, so −g
(k)
λ = Ti1

g
(k)
λ by Lemma 5.11

and Proposition 5.14.

Finally, suppose topΨ(j) = topΨ(j − 1) + 1. Proposition 5.2 yields K(Ψ; M � S; μ) =

0. By Proposition 5.9(c), κ has neither an addable nor a removable i1-corner, so 

Tir
· · · Ti2

Ti1
g

(k)
λ = Tir

· · · Ti2

(
Ti1

g
(k)
λ

)
= 0 by Lemma 5.11 and Proposition 5.14. �
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We can now complete the proof of Theorem 2.6 by showing the g
(k)
λ satisfy the Pieri 

rule (2.8).

Theorem 5.16. For 0 ≤ r ≤ k and λ ∈ Park,

g1rg
(k)
λ =

∑

u∈Ŝk+1 cyclically increasing
�(u)=r

TuTwλ
=±Tw; w∈S̃0

k+1

(−1)�(wλ)+r−�(w)g(k)
w .

Proof. Corollary 5.6 gives

g1rg
(k)
λ =

∑

R⊆Z/(k+1)Z

|R|=r

K(∆k(μ); L(∆k+1(μ)) � A; μ) ,

where μ = λ + εA for A = rm−1(R). The result then follows by applying Lemma 5.15 to 

each summand to get

g1rg
(k)
λ =

∑

sir ···si1
cyclically increasing

Tir
· · · Ti1

g(k)
wλ

and then using Proposition 5.14. �

6. Appendix

6.1. Raising operator identity for dual stable Grothendieck polynomials: proof of (2.3)

By the proof of [34, I. (3.4”)], the following identity holds in the ring A =

Z� z1

z2
, . . . , z�−1

z�
�[z1, . . . , z�],

∑

w∈S�

(−1)�(w)
z

γ+ρ−wρ =
∏

i<j

(
1 −

zi

zj

)
z

γ

where ρ = (� − 1, � − 2, . . . , 1, 0). Note this is just the Weyl denominator formula. 

Applying the map κ from (3.2) then yields 
∏

i<j

(
1 − Rij

)
kγ on the right and 

det(k
(i−1)
γi+ρi−ρj

)1≤i,j≤� = det(k
(i−1)
γi+j−i)1≤i,j≤� = gγ on the left, thus establishing (2.3).

6.2. Proof of G
(k)
1m = G1m

By [25, §7.4], the coefficient of the monomial symmetric function mμ in G
(k)
λ for 

λ ∈ Park and μ a partition of length a = �(μ) is equal to (−1)|μ|−|λ| times the number of 

factorizations Twλ
= ±Tu1

· · · Tua
in the 0-Hecke algebra Hk+1, for cyclically decreasing 

words u1, . . . , ua of lengths μ1, . . . , μa. We have w1m = s−m+1 · · · s−1s0 with indices 
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taken modulo k + 1. Since no braid or commutations relations can be applied to this 

word, the only factorizations of Tw1m of the above form are

Tw1m = ±T am

−m+1 · · · T a2

−1T a1

0 , ai ≥ 1 ,

each ui being a simple reflection. Thus the coefficient of mμ in G
(k)
1m is 0 unless μ = (1a)

for a ≥ m. For each such a, there are exactly 
(

a−1
m−1

)
possible factorizations. Therefore

G
(k)
1m =

∑

a≥m

(−1)a−m

(
a − 1

m − 1

)
m1a =

∑

i≥0

(−1)i

(
m + i − 1

m − 1

)
em+i = G1m ,

where the last equality is a well-known formula for G1m (which we used earlier in The-

orem 2.7).

6.3. Equivalence of K-k-Schur function descriptions

Remark 6.1. The affine stable Grothendieck polynomials {G
(k)
μ }μ∈Park and K-k-Schur 

functions {g
(k)
λ }λ∈Park are presented somewhat differently in [25] and [35], but are indeed 

the same. For the G
(k)
μ ’s, this is by [25, §7.4] and [35, (31)–(32) and Theorem 28]. 

Moreover, in both papers, the G
(k)
μ ’s and g

(k)
λ ’s determine each other by 〈g

(k)
λ , G

(k)
μ 〉 = δλμ

(see [25, §7.5] and [35, Property 40]).

Proof of Theorem 2.5. By [25, Theorems 6.8 and 7.17(1)], there are Hopf algebra isomor-

phisms K∗(GrSLk+1
) → L0 → Λ(k) under which ξ0

w �→ ϕ0(kw) �→ g
(k)
w for all w ∈ Ŝ0

k+1, 

where the ϕ0(kw) are versions of K-k-Schur functions lying in a subalgebra L0 of the 

0-Hecke algebra Hk+1. Equation (6.1) and Corollary 7.6 of [25] determine certain struc-

ture constants of the ϕ0(kw); the g
(k)
w have the same structure constants, so translating 

notation from [25] gives that for all v ∈ Ŝ0
k+1 and r ∈ [k],

g
(k)
sr−1···s0

g(k)
v =

∑

u∈Ŝk+1 cyclically decreasing
�(u)=r

TuTv=±Tw; w∈Ŝ0
k+1

(−1)�(v)+r−�(w)g(k)
w . (6.1)

By [25, Corollary 7.18], g
(k)
sr−1···s0

= hr. Thus iterating (6.1) yields an expression for 

any hμ (μ ∈ Park) as a linear combination of g
(k)
λ ’s. As {hμ | μ ∈ Park, |μ| ≤ d}

forms a basis for the degree ≤ d subspace of Λ(k), the transition matrix from this set to 

{g
(k)
λ | λ ∈ Park, |λ| ≤ d} is invertible, so (6.1) uniquely defines the g

(k)
λ ’s.

Now by [35, §8], there is an involution Ω: Λ(k) → Λ(k) defined by Ω(hr) = g1r , and 

Ω(g
(k)
v ) = g

(k)
τ(v) for all v ∈ Ŝ0

k+1, where τ : Ŝk+1 → Ŝk+1 is the automorphism given by 

si �→ sk+1−i. Applying Ω to (6.1) thus gives (2.8). Since Ω is an involution, it follows 

that (2.8) also uniquely defines the g
(k)
λ ’s. �
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