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1. Introduction

Ungraded k-Schur functions from [28] form a combinatorially defined basis for a
sub-Hopf algebra Ay of symmetric functions that satisfies many beautiful positivity
properties. Geometrically, they are Schubert representatives for the homology of the
affine Grassmannian Gr = G(C((¢))/G(C[[t]]) of G = SLg4+1 [23]. Under the Peterson
isomorphism [26], they are images of the quantum Schubert polynomials constructed by
Fomin, Gelfand, and Postnikov [12]. Hence the k-Schur structure constants are Gromov-
Witten invariants for the quantum cohomology ring of the complete flag variety Fl41.

Over the last several decades, a K-theoretic counterpart to this story has been
emerging. The K-homology K, (Gr) is also Hopf isomorphic to Ay [25], and Schubert
representatives are now given by a basis of inhomogeneous symmetric functions called
K-k-Schur functions, gf\k) € A(x)- They satisfy an elegant Pieri rule and are conjecturally
surrounded with positivity properties. Foremost is the following branching property.

Conjecture 1.1 (25, Conjecture 7.20(3)], [35, Conjecture 44]). For any partition A with
>\1 S k;

gf\k) _ Za/\u ng+1) satisfies (_1)|/\\7\Ma/\u € Zs. (1.1)
N

Proofs for positivity results have not been accessible from the previous geometric and
algebraic descriptions of K-k-Schur functions. We overcome this with an explicit raising
operator formula for ggk) which enables us to settle Conjecture 1.1 and to derive new
properties of the basis.

We prove this formula by connecting it to the Pieri rule for gg\k) through careful anal-

). This powerful

ysis of intermediate raising operator objects between gg\k) and gpr gg\k
approach to Schubert calculus was initiated in [42,9,10], further leveraged in [1,4]. We
advance this program using methods of [6], which came out of the study of Euler char-
acteristics of vector bundles on the flag variety [8,38,11,36]. Therein, the k-Schur basis is
identified with a subfamily of symmetric functions called Catalan functions. These func-
tions are defined by a raising operator formula and are indexed by pairs (¥,~), where
U is one of Catalan many upper order ideals in the set of positive Ay_; roots, AZ‘, and
v € Zt.

We extend the Catalan functions to an inhomogenous family of symmetric functions
using additional information from a multiset M supported on {1, ..., ¢}. These functions,
K (¥, M,~), are called Katalan functions. Computer experimentation leads us to propose
natural conditions for Schur positive expansions, as well as positive expansions (up to
predictable sign) in the basis of dual stable Grothendieck polynomials {gy}, Hall-dual
to the basis of Fomin-Kirillov stable Grothendieck polynomials {G,,} [13,14,29].

We prove that the K-k-Schur functions are a distinguished subfamily of Katalan
functions. The simplicity of our formula reveals that the K-k-Schur basis satisfies shift
inariance:
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Gio gD =gl (1.2)

This remarkable property implies that the branching coeffients of (1.1) are none other
than a subset of dual Pieri coefficients. From this, a positivity result of Baldwin and
Kumar [5] enables us to prove several conjectures about K-k-Schur functions, including
positive branching.

Another application of the Katalan formulation for K-k-Schur functions involves the
quantum K-theory ring, QK(F1,,), a deformation of the Grothendieck ring of coherent
sheaves on Fl,, studied by Givental and Lee [18]. Lenart and Maeno [32] defined quan-
tum Grothendieck polynomials &% and conjectured they represent Schubert classes in
QK(Fl,). Finiteness results were proven [21,2,3], allowing Lenart-Naito-Sagaki [33] to
establish this Lenart-Maeno conjecture.

Using Ruijsenaars’s relativistic Toda lattice, Ikeda-Iwao-Maeno [20] produced an
explicit ring isomorphism ® between localizations of K,(Gr) and QIC(Fli+1) and con-
jectured that the images of quantum Grothendieck polynomials expand unitriangularly
into K-k-Schur functions with coefficients having predictable sign; building on this work,
Ikeda conjectured a precise description for the images.

Conjecture 1.2 (/20, Conjecture 1.8], [19]). For w € Sk41,

Gw .
(&) = . for gw:=<1—Gf>( > g,ﬂ’“))eA(k),

HdEDes(w) 9(k+1-d)< 1<k, w, <wx

(1.3)

where A = O(w)*“* is a partition with \y < k, defined in §2./, wy denotes the minimal
coset representative of Sgy1 in Sgpy1 associated to N (see §2.2), and < denotes Bruhat
order on Sk41.

To give geometric context for this conjecture, under the Hopf algebra isomorphism
Ay — Ki(Gr), the sum ngk,wugwx gfﬁ) maps to the class of the structure sheaf of
the Schubert variety X,,, C Gr, whereas gg\k) maps to the class of the ideal sheaf of the
boundary 0X,,; see [24, Theorem 1] and [25, Theorems 5.4 and 7.17(1)].

We conjecture an explicit operator formula for the g,,’s by realizing them as a subfam-
ily of Katalan functions; it requires only a slight adjustment to our Katalan description
of K-k-Schur functions.

We are also able to verify Conjecture 1.2 for Grassmannian permutations, completing
the proof strategy of [20], by establishing the following missing ingredient, which is an
immediate consequence of the Katalan formulation for K-k-Schur functions.

Conjecture 1.3 ([35]). For a partition A\ where Ay + ¢(\) — 1 < k, gf\k) =gx.
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2. Main results

We work in the ring A = Zley,ez,...] = Z[h1,ha,...] of symmetric functions in
infinitely many variables x = (z1,22,...), where eg = e4(x) = Zi1<~~-<id Xy -+ x;, and
hg = Ziléméid Zi, - xi,. Set hg =1 and hg = 0 for d < 0 by convention. For v € VAR
define h = h, - - - h,, and define Schur functions,

sy = det(hy,4j-i)1<i <t - (2.1)

Fix k € Z>o and { € Zxq throughout. Set A,y = Z[h1,...,hg] C A. Let Par} =
{(pry -y pe) €Z° | k> pg > -+ > pg > 0} denote the set of partitions contained in the
¢ x k rectangle and let Par® be the set of partitions p with u; < k. The length L(p) is
always the number of nonzero parts of p.

2.1. Katalan functions: definition and first properties

This work builds off previous studies of symmetric functions known as Catalan func-
tions, introduced in [11,36] and studied further in [6,7]. Catalan functions involve a
parameter ¢, but we will only work with their ¢ = 1 specialization as this is necessary for
applications to affine Schubert calculus. We define Catalan functions from a description
in [6, Proposition 4.7]. Consider the set of labels A} = AT := {(4,5) | 1 <i < j < ¢} for
the positive roots of Ay_1. A root ideal ¥ is an upper order ideal of the poset AT with
partial order given by (a,b) < (¢,d) when a > ¢ and b < d. The complement A* \ ¥ is
a lower order ideal of A*. A Catalan function, indexed by a pair (¥,~) consisting of a
root ideal U and a weight v € Z¢, is defined by

H;7) = [[ (1-Riyhy, (2.2)
(i) €A\

where the raising operator R;; acts on subscripts by Rjjhy = hyie, and ¢; is the unit

¢
vector with a 1 in position ¢ and 0’s elsewhere. Below we also use raising operators on
other elements indexed by weights in Z¢. Raising operators were introduced by Young
[45] and formalized rigourously by Garsia-Remmel [16,17]. In addition, raising operators

have been used widely in the study of symmetric functions. See, e.g., [41,43,44]. Their
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standard usage is somewhat informal; they will be treated formally in Section 3 (in a
different way from Garsia-Remmel).

Our work requires the following inhomogeneous version of the h,,’s. For m,r € Z,
define

ki :Z<r+?_1>hmm
i

=0

where (7) = 2=bln=ti) ang (7) =1 for n € Z,i € Zs1; thus note that kY = hy,

7

and k%) = 0 when m < 0. For v € ZF let g, = det(kfzjr?fi)lgwg. When ~ is a

partition, these are the dual stable Grothendieck polynomials, first studied implicitly
in [31] and determinantally formulated in [30]. We use an alternative characterization,

proved in Section 6.1 of the Appendix:

gv = J[ (1—Rijky, where ky:= kR - kLY. (2.3)
1<i<j<t

Definition 2.1. For a root ideal ¥ C A}, a multiset M with supp(M) C {1,...,¢}, and
v € Z*, we define the Katalan function

KW M) = [Ta-L) [T =Ry "oy, (2.4)

JjeM (1,5)ew
where the lowering operator L; acts on the subscripts of g, € A by L;jg, = g ;-

The following alternative formulation gives additional insight (see (3.1)—(3.2) for the
proof).

Proposition 2.2. For a root ideal ¥ C AZ‘, a multiset M with supp(M) C {1,...,¢}, and
v ezt

KW M;y) = [[a-L;) ] (—Ryk,.

JEM (i,5) EAT\T

Although Katalan functions are defined for arbitrary multisets, we mainly work with
those where the associated multiset comes from a root ideal £ C A? via the function

L= L {5 (2.5)
(i,5)eL
In this scenario, we use the shorthand K(¥; £;v) = K(U; L(L);7).

The family of Katalan functions contains several well-studied symmetric function
bases.



[ J. Blasiak et al. / Advances in Mathematics 404 (2022) 108421

Proposition 2.3. Let v € Z*.

(a) The Katalan functions contain the family of Catalan funcitons: K(¥;Af;vy) =
H(VU;v) for any root ideal ¥ C Aj. In particular, K(@;A;;'y) = s, and
K(ASAf37) = hy.

(b) K(2;2;7) = gy-

(c) K(AS;957) = k.

Proof. Statement (b) is immediate from Definition 2.1 and (c) is immediate from Propo-
sition 2.2. To prove (a), for m,r € Z, we note that, by Pascal’s formula,

(r) (Til):m r+1—2 r+1—2 v:m r+1i—1 _ (r)
km—1+k7n ;[( i—1 + i hm—z ; i hm—z km'

(2.6)
Therefore, []; ;yea+(1 — Lj)ky = hy and thus (a) follows from Proposition 2.2 and
(2.2). O

2.2. A raising operator formula for K-k-Schur functions

In [6], the k-Schur functions {Sl(‘k)}uepark were identified with a subfamily of Catalan

functions, namely s&k) = H(AF(u); 1) where
AF(u) = {(i,5) € AT [k —pi +i < j} (2.7)
Definition 2.4. For \ € Par?, define the k-Schur Katalan function by
0y = K(AMN): A% ().

We show that the k-Schur Katalan functions are the K-k-Schur functions. This op-
erator formula is considerably more direct and explicit than any previously known
description of the K-k-Schur functions and readily resolves several outstanding con-
jectures, including positive branching.

The K-k-Schur functions are defined using the affine symmetric group §k+1, the group
with generators {s; | i € I} for I = {0,...,k} subject to the relations s? = id, s;s;115; =
Si+18iSi41, 5:5; = 8;8; for i — j # 0,41, with all indices considered modulo k + 1.
The length {(w) of w € §k+1 is the minimum m such that w = s;,s;, ---s;, for some
i; € I; any expression for w with ¢(w) generators is said to be reduced. The set of affine
Grassmannian elements §2 41 are the minimal length coset representatives of Sii1 in
§k+1, where Spi1 = (81,...,8k) < §k+1. There is a bijection tv: Par® — §2+1, given
by A= wy for wy = (sx,—¢- - S—rt1) - (Sag—2-+-S-1)(Sx,—1 - - So) where £ = £()) (see
[27, §8.2]). For example, for k = 3, w3221 = $1 $352 S0S3 $25150-
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The 0-Hecke algebra Hy 1 is the free Z-algebra generated by {T; | i € I} with the same
relations as Sk41 except T = —T; in place of s? = id. It has a Z-basis {T}, | w € Sk41},
where T, =T;,T;, - - - T,

im

for any reduced expression w = $;,8;, - - - Si,,, -

The following descriptions of the K-k-Schur functions gg\k) are implicit in [25,35] and
are verified in Section 6.3 of the Appendix. An element w € §;€+1 is cyclically increasing
if it can be written as w = s;, 5, - - - 54, , for distinct indices ¢; such that an index ¢ never

occurs to the east of an ¢ + 1 (modulo k + 1).

Theorem 2.5. There is a Hopf algebra isomorphism ©: K,(Grsr,,,) — Ay; the K-
homology Schubert basis element 52)* has image denoted gg\k) = @(52&), for A € Par®.
The {gg\k)},\epark form a basis for Ay and satisfy the following Pieri rule for all r €

a,...k}:

k w r—L(w k
grgs = > (—1)fmtr =t g (2.8)
u6§k+1 cyclically increasing
L(u)=r

TuTw, =%Tw; wESY

Moreover, the {gg\k)}/\epark are the unique elements of Ay satisfying (2.8) for all r €

1,....k}.

We will show in Theorem 5.16 that the k-Schur Katalan functions gf\k) satisfy (2.8),
establishing
Theorem 2.6. For any X\ € Park, gg\k) = gg\k). Thus, the k-Schur Katalan functions are
representatives for the Schubert basis of the K-homology of the affine Grassmannian of
SLgy1-

2.8. Positive branching

The foremost application of the Katalan function formulation for K-k-Schur functions

is the ease with which shift invariance (1.2) follows; we model developments in [6] where it
(k+1) _

was shown that k-Schur functions satisfy a similar shift invariance property, ej- Syp1t =

s

' Let A®) denote the graded completion of A/Z{m, | A € Par\ Par*}. The space Awy
has basis {hx}ycpark; A®) has “basis” {mx}reparx meaning that A = [Lcpark Zmy.
Let (-,-): Ay xzA™ — Z be the bilinear form determined by (hy, > pcPark GuMy) = Q.
The K-k-Schur functions {gf\k)} repark © A(x) and affine stable Grothendieck polynomials
{G/(jc)}uepark C A®) satisfy (gg\k), GL’“) = J),. We take this as the definition of the affine
stable Grothendieck polynomials. For f € /A\(k), let f+ be the linear operator on A
given by (f*(g),h) = (g, fh) for all g € Ay, h € A®),
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Theorem 2.7 (Shift Invariance). For A € Par},

1L _(k+1) _ (k) _ =1+
Gregy, @ =8, where Gy = g(_l) ( 1 et

Hence by Theorem 2.0, Gfe gg\kjﬁ) = gf\k) as well.

Proof. We use that e h,, = hpet + hy,_1es | from [15, Equation 5.37] to deduce

m .
1 ,
9 = 3 (") st hnae ) = K e

N 1
=0

Using that ei-(1) = 0 for i > 0, this applies to the formulation for Katalan functions
in Proposition 2.2, giving that, for s > 0, ¥ C AT a root ideal, M a multiset with
supp(M) C {1,...,¢}, and v € Z*,

b KU Msy) = Y K(W; My —es),
scle, |S|=s
where €5 =} ;¢ €. In particular, ef K(W; M;~y+ 1Y) = K(¥; M;~). Now for \ € Par?,

noting that A™(\ + 1¢) = A™~1(\) for any m > k + 1, we obtain
er g = e KA+ 19 A2 (0 4 19 A+ 19) = K(AR(A); AMLO); ) = g

(k+1)

it = gf\k). Since eX K(¥;L;\) = 0 for s > £, we can replace e} by

Therefore, e; g
G. O

Shift invariance implies that K-k-Schur branching coefficients are a subset of the Pieri
coefficients for affine stable Grothendieck polynomials, settling Conjecture 1.1.

Theorem 2.8. For any A\ € Par®,

ggk) _ Z ax gl(jm-l) where (_1)\AI—IMG/\M € Zxo. (2.9)
pePark+1

Proof. Fix ¢ = ¢()\). For yu € Par*™' Baldwin and Kumar [5] proved that

GUTIGED =3¢, G satisfy (—1)017 e, € Zs . (2.10)
v

Since (gékﬂ), ngﬂ)) = 0o for a, € Par™™ | from (2.10) we obtain

Cop = <g§k+l),zcm ng+1)> _ <9§k+1),GY§+1)GEﬁ+1)> _ <(G§l§+1))¢g’(yk+1)7GELk+1)>.
B
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Therefore, for v = A + 1¢,

chg;(tkﬂ) _ (Gglerl))Lg’(yk-&-l) _ gg\k)7
I

where we can apply Theorem 2.7 (shift-invariance) to the second equality because
Gil,fﬂ) = G'y¢, verified in Section 6.2 of the Appendix. We thus have that ay, = cyy1¢ ,
and the result follows from (2.10). O

Other properties of K-k-Schur functions are readily apparent from the Katalan/raising
operator description. For example, the following property was conjectured in [35]; while
seemingly simple, it was not apparent from previous descriptions and is the missing
ingredient for resolving conjectures in [25,35,20].

Corollary 2.9. For u € Paré€ with pp +0—1 <k, gff) = gy

Proof. Since A¥(y) = @ = AF*Y(u) when k — py + 1 > £, the result follows from
Definition 2.4. 0O

By iterating branching to obtain an expansion for gg\k) in terms of gff) for large enough
a so that Corollary 2.9 applies to every term, we establish [35, Conjecture 46] as well.

Corollary 2.10. For A € Par®,

9 =D baugu  where (—1)MTIby, € 2.
14

2.4. Katalan functions for quantum Grothendieck polynomials

We give some background to explain Conjecture 1.2 and then give a conjectural Kata-
lan description of ®(&%).

The quantum K-theory ring OK(Flgy1) can be identified with a quotient of
Clz1y -y 2841, @1, - - -, Q] by [22,2]; see, e.g., [20, §1.1-1.2] which includes an explicit
description of the defining ideal. A k-rectangle is a partition of the form R; := (k+1—1)°
for i € [k]. Define 0; = }° x. gu for i € [k], and set 00 = k41 = gr, = gryy, = 1.
Ikeda, Iwao, and Maeno give the following description of a K-theoretic version of the
Peterson isomorphism [20, Theorem 1.5]:

O OK(Flir)[QTh ... Q'] = C @z Awlgnts - omt or - o]

9gRrR;0i—1 9R;_19R; 11
ziy T Qe L
9R; 1 0i IR,
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Lenart and Maeno defined [32, Definition 3.18] the quantum Grothendieck polynomials
{64 (21, ., Try1,q1, - - -, k) bwes,,, as the image of the ordinary Grothendieck polyno-
mials {&,}wes,,, under a quantization map. The &% ’s specialize to the &, at ¢, =
-+~ qr = 0. Following [20, §5.4], we work with {&%(21,..., 2541, Q1,. .. y Qk) fwesiy, C
OK(Fly4+1) which differs from the %’s by the change of variables z; = 1 — x; for all
i€lk+1] and Q; = ¢; for i € [k].

The images ®(6%) are described in terms of a map 6: Sy, — Par®. For w =
wy -+ Wet1 € Sk41 in one-line notation, the descent set of w is Des(w) = {i : w; > w;y1},
and its inversion sequence Inv(w) € Z% is given by Inv;(w) = 1{j > i:w; > w;}|. De-
fine an injection ¢ : Sky1 — Par® by letting column i of ¢ (w) be

(k +21 - Z) + Tnvy (wow) (2.11)

for all i € [k], where wo denotes the longest element of Syy1. An element of Par” is
irreducible if it has at most & — ¢ parts of size i, or equivalently, it contains no k-
rectangle as a subsequence. For any p € Par®, define the unique irreducible partition u 1
by deleting from pu the k-rectangles it contains as a subsequence. Set 8(w) = ((w),. By
[7, Lemma 7.3], the map 6 is the same as the map A from [26, §6], [20, §7.1].

The k-conjugate involution on Par® introduced in [27] can be described as follows: for
we Par”, its k-conjugate is s = o~ toror(u), for 7: §k+1 — §k+1 the automorphism
given by s; — spy1-—;. Note that for p contained in a k-rectangle, u“* is equal to the
(ordinary) conjugate partition p’ of pu.

Tkeda conjectured that the image ®(®%) is in fact not best described with K-k-Schur
functions, but instead proposed [19] the functions §,, = (1 — G7) ( ZMGPark,wugwA gﬁk)>
from (1.3). We conjecture the following explicit raising operator formula for Ikeda’s
functions.

Definition 2.11. For \ € Parf, the closed k-Schur Katalan function is
3y = K(AF(\); AF(A); A
gy = K(AT(A); A% A A)-
To explain the terminology “closed,” recall that gg\k) and ngk’w#@u g,(f) are the
K-homology Schubert representatives for the ideal sheaf of 0.X,,, and the structure sheaf

of X,,,, respectively. Then gg\k) can be informally associated to the Schubert cell C,,,

consistent with the idea that the representative >, W <wh g,(tk) can be assembled from

the gl(tk)’s in the same way the closed Schubert variety X,,, is assembled from its locally

closed Schubert cells.

Conjecture 2.12. Let w € Sypy1 and p € Park be arbitrary and set X = 0(w)“*. Then

~(k -
(@) § = §u,
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(b)
~(k)
g
(e —
HdEDeb(w) ng
(¢) (alternating dual Pieri rule) the coefficients in Glmgfﬁ) = >, clwg,(,k) satisfy

(—1)lHl= |"‘cW € Z>o,

(d) (k-branching) the coefficients in g,L =>, an( ) satisfy (—D)lel=IMg,, € Zs,,

(e) (K-k-Schur alternating) the coefficients in gu =>,buw gu satisfy (=1)lul=vp,,, €
Z >,

(f) (k-rectangle property) for d € [k|, gr, gff) = QSBRd, where pu U Ry is the partition
made by combining the parts of i and those of Ry and then sorting.

Remark 2.13. Conjectures (b) and (e) are just slight variants of previous conjectures
in that, assuming (a), (b) is equivalent to Conjecture 1.2 and (e) is equivalent to the
K-k-Schur alternating for g,,’s conjectured in [20]. Similarly, Takigiku [39,40] proved a
k-rectangle property for a related family which is equivalent to (f) assuming (a).

Note that (c) implies (d) by shift invariance (Proposition 2.16 (¢) below).

Remark 2.14. It is natural to try to apply the methods in this paper to also prove
Conjecture 2.12 (a). The difficulty is that the Pieri rule for §, given in [39] does not
seem to match the combinatorics of Katalan functions as naturally as does the Pieri rule
for the K-k-Schur functions g( ).

Example 2.15. Let us directly verify Conjecture 2.12 (b) for k = 2 and w = 213 (one-line
notation), using the definition of ®. The quantum Grothendieck is &% =1 — z; + 21Q;.
Thus using gr, = ha, gr, = h3 —ha +h1, 01 = ha + h1 + 1, and 09 = h3 — hg + 2hy + 1,

~(2)
O(6Q) = 1 Y IR Ihs (ha +hi+1)hs =B34+ —ha+hi I _ 9(1)

or o1 gh ha(ha + h1 +1) ~hy  gr,

This is the desired conclusion as ¢(w) = (2, 1), O(w) = (1) = §(w)*2, and Des(w) = {1}.
For k = 4 and v = 13254 € S5, we use Inv(wov) = (4,2, 2,0) to find {(v)’ = (10,5, 3,0)

and O(v) = (3,2,2,1). We have (v)“* = (3,2,1,1,1) and Des(v) = {2,4}, so Conjec-

ture 2.12 (b) states that

=(4)

9(3,2,1,1,1)

P(BY) =
( ) 9R> 9R,

as can be confirmed in Sage.

Proposition 2.16. The closed k-Schur Katalan functions {gg\k)}kepark
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(a) form a basis for Ay ;
(b) are unitriangularly related to K-k-Schur functions

=g+ > b (2.12)
v:|v|<|A|

(c) satisfy shift invariance

~(k+1 ~(k
Gfégg\_:_lz) = Q(A )§

(d) simplify as ﬁg\k) = gy for X contained in a k-rectangle, i.e., A € Paurlgc with A +0—1 < k.

Proof. Property (c) is proved just as in Theorem 2.7, and (d) just as in Corollary 2.9.
For (a)—(b), a similar result will be proved for the gf\k)’s in Proposition 5.13, which easily

adapts to this setting. O

It is worth pointing out that having the Katalan formulations for (closed) K-k-Schur
functions readily enables us to complete the proof of Conjecture 1.2 for Grassmannian
permutations outlined in [20, Theorem 1.7].

Proposition 2.17. Conjecture 1.2 holds for w € Si41 with Des(w) = {d}. In fact, in this
case, we have

N
b(6Q) = LW = Jw _ ) D) (2.13)

9Ry IRy IRy 9Ry

Proof. The first equality of (2.13) is established in Theorem 1.7 and Lemma 7.1 of [20].
The partition A = f(w)“* = §(w)’ lies in a k-rectangle by [7, Lemma 7.5]. Thus, by
Corollary 2.9 and Proposition 2.16 (d), ggw)y = gé’&), = gé’&),. It remains to prove

96(w)’ = Juw- Using again Corollary 2.9 on the definition of g, in (1.3) gives

Juw=(1- Gf)(ZwugwA gu) =(1- G%)(ZMQ\ gu) =9

where the second equality follows using [27, Proposition 40] in addition to the fact that
w is equal to the (k + 1)-core of p for u lying in a k-rectangle (cores are discussed
in §5.3), and the last equality holds by the following result of Takigiku [40]: the map
1 —Gi{: A — A is a ring automorphism with inverse F: h; > j<ihj and satisfies
F(gy)=>,c g foralv. O

Another conjecture of [20] about the image of the quantum Grothendieck polynomials
is that

k—1
Hizl 9(k—i)i

(B ) =
() IRy " YR,

(2.14)
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We prove the corresponding result for the closed k-Schur Katalan functions:

Proposition 2.18. For wy the longest permutation in Ski1 and A = 0(wg)“*, ﬁf\k) =

k—1
Hi:l 9(k—i)i-

Thus (2.14) would now follow from Conjecture 2.12(b). Proposition 2.18 is proved in
§4.3.

2.5. Positivity conjectures for Katalan functions
Given a root ideal ¥ C A/ and weight v € Z*, define

maxband(\If v) = max{y; + nr(¥); : i € [{]},
for nr( ‘{j e{i+1,...,0}:(i,5) ¢ ‘IIH (2.15)
We say « € U is a removable root of ¥ when ¥\ «v is a root ideal and a root 8 € AT\ ¥
is addable to U if ¥ U § is a root ideal. Define RC(¥) to be ¥\ {removable roots of ¥}.

For a nonnegative integer a, iteratively define RC%(¥) = RC(RC*~*()), starting from
RC°(¥) = W.

Conjecture 2.19. For a root ideal ¥ C AZF and X € Par? such that mazband(V, \) < k,

KWwN) = > ax,d? for (—1)A"ay, €75, (2.16)
/_LGPar[
il <IA
For a € Z>y,
K(U;RCY(W);N) = > baust) for by, € Zso. (2.17)
;LEP&I‘Z
ERY

Remark 2.20. The large & limit (k > |A|) of Conjecture 2.19 is already quite strong: for
k > |\l > |p], we have g( ) = g, [35] and s,(f) = s, [28], so (2.16) and (2.17) become
conjectures on g,-alternating and Schur positivity, respectively. Conjecture (2.16) can be
seen as a generahzatlon of branching Conjecture 2.12(e) as setting ¥ = AF¥~1()\) gives
K(U;U;0) = 9>\ Y. And Conjecture (2.17) can be seen as a vast generalization of the

conjectured k-Schur positivity of the gg\ )’ posed in [25, Conjecture 7.20(1)].

3. Basic properties of Katalan functions

We use the notation [a,b] for {i € Z | a < i < b} and [n] = [1,n]. A multiset M on
[€] is a multiset whose support is contained in [¢]; its multiplicity function is denoted
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mar: [{] = Z>o. For a set S C [(], denote e =3, ¢
by €4 = €; — ¢; the corresponding positive root (not to be confused with eg; j1 = €; +¢;).

€i, and for a = (i,j) € AJ, denote

Given a root ideal ¥ C Aeﬂ a multiset M on [¢], and v € Z!, we represent the Katalan
function K (¥; M;~y) by the £x £ grid of boxes (labelled by matrix-style coordinates) with
the boxes of ¥ shaded, mp(a) o’s in column a (assuming mys(a) < a), and the entries
of v written along the diagonal.

Example 3.1 Let U = {(1,3),(L,4),(1,5),(2,3),(2,4).(2,5),(3,5)} € Af, M =
{2,3,4,4,5,5}, and v = (3,4,4,2,1). The root ideal ¥, its complement AT \ ¥ =
{(1,2),(3,4),(4,5)}, and K (¥, M,~) are depicted by:
1,2 3|e
U= AF\T = 3,4 K(U; M;v) = 4
4,5 2
1

The raising and lowering operators used in Section 2 are informal and are not well-
defined operators on A despite their name. The formal interpretation of Definition 2.1

is as follows: set A = Z[Z,... == [z, ..., zfY], an arbitrary element of which has
the form Y- ;. c,27 where the support {y € Z* | ¢, # 0} is contained in Q* + F for
some finite subset F C Z* and Qt := Zso{er —€a,..., €01 — €1} C 7t For a root ideal

¥ C Af, multiset M on [¢], and v € Z¢,

KMy =g ] (1—'2—?)_11_[(1—%%7 , (3.1)

o Zj M
(1,7) €T S

where g: A — Z[h1, ha,.. ] is defined by }°_ 7. ¢y27 = 37 7 ¢y gy note that by (2.3),
gy = 0 when 7; < ¢ — ¢, and hence 27 ¢yg~ has finitely many nonzero terms and so
indeed lies in Z[hy, ha, .. ].

Further, defining x: A — Z[hy, ha,...] by Zwezf cyz) — Z%Ze ¢y k., it follows from
(2.3) that

g(f):n( I1 <1—j—]) -f) (3.2)

1<i<j<t

for all f € A. Note that Proposition 2.2 now follows from (3.1)—(3.2).

The symmetric group Sy acts on the ring A by permuting the z;. In particular,
the simple reflections si1,...,sy-1 act by 51(2;Y CWZ’V) = 27 c,z%7, where s;y =
(V1y - vy Yie1, Vi1 Vi Vit2, - - -). We also consider an action of Sy on subsets ¥ C [¢] x [{]
defined by s;¥ = {(s;(a), s;(b)) | (a,b) € ¥}, and an action on multisets M on [¢] with
s;M defined by its multiplicity function myg,p(a) = mas(si(a)) for all a € [£].



J. Blasiak et al. / Advances in Mathematics 404 (2022) 108421 15

Proposition 3.2. For any~ € Z*, g, ~Gy—eit1 = Gsiy—e; —Js;y+eir1—ei - Hence the operator

identity
1 i
gO<1 >(1+Z+1SZ>O
Zi+1 Zi

Proof. Using the definition g, = det(kgilili)1§i7j§g, we can write g, —gy—c,, = det(4),

§2)+1+j7i71 - gi)+1+jfif2)j€[€} and whose other
rows agree with the matrix defining g,; similarly, we can write gs;y4e;01—e; — Jsjv—e; =
det(A’). Simplifying the i+ 1-st rows of A and A’ using (2.6), we see that A and A’ differ

by swapping their ¢ and 7 4+ 1-st rows. The result follows. O

for A the matrix whose i 4+ 1-st row is (k

Lemma 3.3. Let ¥ C A% be any root ideal and M on [¢] be any multiset such that

(a) ;¥ =T and
(b) mar(i +1) =mp (i) + 1.

Then, for any ~ € Z°,
K(U; M;v) + K(V; M siy — €+ €i41) = 0.
Proof. The map g from (3.1) allows us to express K (U; M;~y) + K(V; M;s;7 —€; + €;41)

as
() I3 L () )

(a,b)eVw be M\{i+1}

Since ;¥ = ¥ and s;,(M \ {i + 1}) = M \ {i + 1}, the operator s; commutes with
multiplication by [, ;)eq (1 — z—:)_l [loean v (1 — %), hence so does the operator
14 s, Therefore K (W; M;vy) 4+ K(9; M; sy — €; + €;41) equals

() () TL0-2) I (-5 e

(a,b)ew be M\ {i+1}

which vanishes by Proposition 3.2. 0O

Lemma 3.4. Given a root ideal ¥ C AZFH, a multiset M on [{ + 1], and v € Z*, we have
that

~ ~

K(¥; M;(v,0)) = K(V; M; ),

where O = {(i,j) e U |1<i<j<{} and M :={j e M|1<j</}.
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Proof. Proposition 2.2 implies that

77’7.]\4([4*1
K(\I’M(%O))—H(l_LJ) H H (1= Leyr)
JEM (v:,j)eA;f\xp Jj=1

x H (1 = Rne+1) k(,0)
(hot+1)€AS\ ¥

=[[a-z;) ] -Ryk,

jEM (i,5) EAF\T
since k(()e) =1 and ky(,l;) =0form<0. O

Remark 3.5. In light of Lemma 3.4, we sometimes abuse notation by saying that, for
¢/ > ¢, root ideal ¥ C A}, multiset M on [¢], and v € Z*,

K (V3 M) = K(¥; M),

Lemma 3.6. Forr >0,s > 1, and vy € Z°,

r+s
H (1= L) kor ) = kv -
Jj=r+1
Proof. We note that
—r —r b—r+1 d i T b
J=r) — pomrtt) _p(bortl) NS () (z‘)kg)i

=0

by iterating (2.6). Then,

O (1) _ ~ i (7)) ~ i [T\ D)
ky = ko"k'(n) o k'(‘{s ) = kor (Z(l) ' (il)k%il) (Z(l) (Z’S)k%is )

11=0 1s=0
r+s
= H (1 — Lj)rk(0r7,\/) . D
j=r+1

Definition 3.7. Given root ideals ¥ C AZF and ¥’/ C AZC, we define the root ideal YW’ C
AZ—Z’ to be the result of placing ¥ and ¥’ catty-corner and including the full £ x ¢
rectangle of roots in between. Equivalently, ¥ & ¥’ is determined by

Afp \(TW) = (AF\T) U {(i+6,j+0)](i,) € Ay \ ¥}
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For example, using light red shading to emphasize the £ x ¢’ rectangle (for interpre-
tation of the colors in the diagrams, the reader is referred to the web version of this
article),

I:FH

=A- T

Lemma 3.8. Given \ € Z*, € Z*', root ideals U, £ C Af, and root ideals V', L' C A},
we have

KU LK (VL p) = K(TW W LWL (A ),
where (A, p) = (A1, ooy Aoy i1y e oy fher)-
Proof. By Proposition 2.2,

K@w¥icwlia)= [[ a-Ly 11 (1 — Rij)krp -
(i.j)€LWL! (i) EAT  \ VT’

However, since ALE, \ ¥ & ¥’ has no roots in {(r,s) |1 <r </l l+1<s<l+4+{},

K(W&J‘I”;ﬁ@ﬁ’;)\u) = H (1—L]') H (I—Rij) H (1—Ri+g,j+g)k‘>\u.
(i,5)eLwL! (i,))EAT\T (1,9)EATN\T

. v
By definition of LUL', [](; hepwe (1—Lj) =11 jyec(1=Li) 1 jyee (1= Letj) Hji[+1

(1 — L;)*. Noting kx, = kak(o¢ ,.), we thus have

K@ Luliz) =[] 0-L;) J] -Rij) ks

(i,5)€L (i,§)EAS\W
L+0

x [T a-1)" T[T (1= Leyy)
Jj=0+1 (i,5)eL’

< JI (= Rivegro)ke, -
(1,4)EATN\T

The first line is K(¥; L; u). To see the second line is K (¥'; £'; 1), expand H(i,j)e[l’(l -

LH]»)H(Z»J)GA;\\I,,(I — Rivejve)koey = Zw ket ), and note for each summand,
040/ ' .
HjieJrl(l — Lj)ek‘(oz’,y) = k,\/ by Lemma 3.6. O

Proposition 3.9. Let U C AT be a root ideal, M on [{] be a multiset, and u € Z*. Then,
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(a) for any addable root 3 of ¥,
KU Mip) = K(VU B M) — K(VU B Mipu+eg);
(b) for any removable root a of U,
K(W; M p) = K(U\ a; My ) + K(V5 M; p+ €a) 5
(c) for anyy € M,
K (W5 M ) = K(U; M\ y; p) = K(W5 M\ g 1 — €y) ;
(d) for any y € [¢],
K(U; M;p) = K(U; M Uy;p) + KU M —€y) .
Proof. The first identity follows directly from Proposition 2.2:

KW;M;p) = [T-L;) [ -Riyk

JjeM (i,5)€AT\¥
= H(l_Lj) H (1_Rij)(k#_kﬂ+€ﬁ)'
JEM (4,)€EAT\(YUB)

Part (b) is then obtained by applying (a) with ¥ = ¥ \ o and 8 = «. A similar compu-
tation gives (c):

KW;Mp) = [[a-Lj) ] Q-Ryk

JEM (i,§)EAT\T
= I a-z) J] @-=Rip)ku—kue,).
JEM\y (i,7) EAT\T

and (d) is obtained by applying (c) with M U {y} in place of M. O

These root expansions give rise to other powerful identites, derived by their successive
application.

Lemma 3.10. Let ¥ C A, M be a multiset on [¢], and p € Z° with e = 1. If t € M
and ¥ has a removable root a = (x,£) for some x, then

K(W; Mip) = K(U\ o; M\ 6 ) + K (U5 M U3 (1, 1) + €a)

where O = {(i,j) € U |j < {} and M = {j € M| j<{}.
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Proof. By Proposition 3.9, we expand first on the removable root o = (x,£) of ¥ and
then on £ € M, to obtain

K(U; M;p) = K(U\ o; M p) + K(W; M i+ eq)
=KW\ ;M\ bp) - KT\ a; M\ bp—e) + KU Mip+ea).
Lemma 3.4 allows the substitution of K (¥ \ a; M \ l;p — e;) = K(U; M;p) for fi =
on

(1, -y pe—1), as well as K(U; M;p + €4) = K(@;M;ﬂ + €;). Proposition 3.9(c
column x then gives —K (W; M; o) + K(U; M; ji+e,) = K(U; MUz i+ e,). O

Example 3.11. We apply Lemma 3.10 to the following scenario, with £ = 7 and root
a=(4,7):

1 1

4. Mirror lemmas and straightening relations

Although a Schur function can be associated to generic v € Z¢, s, always either
vanishes or straightens into a single s, up to sign, for a partition p. Lemma 3.3 shows
that Katalan functions satisfy a straightening relation as well. From this, we deduce
adaptations of the mirror lemmas of [6] to the K-theoretic setting and some useful
consequences.

4.1. Root ideal combinatorics

We begin by reviewing some notation from [6].

Let U C A/ be a root ideal and x € [€]. If there is a removable root (z,j) of ¥, then
define downy (x) = j; otherwise, downy (z) is undefined. Similarly, if there is a removable
root (i,x) of ¥, then define upy (z) = i; otherwise, upy (x) is undefined. The bounce graph
of a root ideal ¥ C A/ is the graph on the vertex set [¢] with edges (r,downy(r)) for
each r € [¢] such that downg (r) is defined. The bounce graph of ¥ is a disjoint union of
paths called bounce paths of W.

For each vertex r € [¢], distinguish topg () to be the minimum element of the bounce
path of ¥ containing r. For a,b € [¢] in the same bounce path of ¥ with a < b, we define

pathy (a,b) = {a, downg(a), down (a), ..., b},

i.e., the set of indices in this path lying between a and b. We also set uppathy () to be
pathy (topy(r),r) for any r € [£].
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Example 4.1. A path and uppath for the root ideal ¥ are given below:

path\ll(Zv 8) = {27 5a 8} uppa’th\ll(lo) = {107 Sa 57 2a 1}

Definition 4.2. For a root ideal ¥, we say there is
a wall in rows r,r+1,....,r+d if rows r,... 7+ d of ¥ have the same length,
a ceiling in columns c,c+1,...,c+d if columns c,...,c+d of ¥ have the same length,
a mirror in rows r,r + 1 if ¥ has removable roots (r,¢), (r + 1,¢ + 1) for some
c>r+ 1

Example 4.3. In Example 4.1, the root ideal ¥ has a ceiling in columns 2, 3,4, and in
columns 8,9, a wall in rows 6,7,8, and in rows 9,10, and a mirror in rows 2, 3, in rows
3,4, and in rows 4, 5.

4.2. Mirror lemmas

Lemma 4.4. Suppose a root ideal ¥ C Az', a multiset M on [0], u € Z*, and z € [{ — 1]
satisfy

(a) U has a ceiling in columns z,z + 1;
(b) ¥ has a wall in rows z,z + 1;

(¢) pz = peoy1 — 1.

If my(z +1) = ma(2) + 1, then K(U;M;u) = 0. If ma(2) = ma(z + 1), then
K(9; M;p) = K(U; M; 1 — €41).

Proof. Conditions (a) and (b) are equivalent to s,¥ = ¥ and condition (c) implies
=81t — €z + €,41. Thus, if mps(z+1) = mps(2)+1, the result follows from Lemma 3.3.
If mar(z +1) = mar(2), Lemma 3.9(d) implies that

K(U; M) = K(U; M U{z 4+ 1} ) + K(U3 M p— €241) -

By the preceding case, K (¥; M U {z + 1}; u) vanishes. O
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Example 4.5. For z = 2, Lemma 4.4 applies in the following two situations:

3

1 1 1

Lemma 4.6 (Mirror Lemma). Let V C A be a root ideal, M a multiset on [(], u € Z*,
and 1 <y < z < £ be indices in the same bounce path of ¥ satisfying

(a) ¥ has a ceiling in columns y,y + 1;

(b) U has a mirror in rows x,x + 1 for all x € pathy (y, upy(2));
(c) ¥ has a wall in rows z,z + 1;

(d) mar(z+1) =mp(x) + 1 for all € pathy (downg (y), 2);

(€) pz = pat1 for all v € pathy (y, upy(2));

(f) Mz = Hzt1 — 1.

Ifmy(y +1) = my(y) + 1, then K(U; M;u) = 0. If my(y +1) = ma(y), then
K (W5 M;p) = KU M p— €41).

Proof. We proceed by induction on z — y, with Lemma 4.4 giving the base case z = y.
Assume z > y. Condition (b) implies that upg(z + 1) = upy(2) + 1 and thus the root
B = (upy(z + 1), z) is addable to ¥. Proposition 3.9(a) thus implies that K(¥; M;pu) =
KW UB;M;u)— K(YUPpB;M;u+eg). The root ideal ¥ U § has a ceiling in columns
z,z+ 1 and so K(VUB; M; 1) =0 by Lemma 4.4. Therefore,

K(U; M;p) = =K (WU B; M;pu+ep).

Because there is a wall in rows upy (z), upg (2+1) of the root ideal ¥US, K(VUSZ; M; u+
€3) can be addressed by induction: when mas(y+1) = ma(y)+1, K(PUB; M; p+eg) =0
implies the vanishing of K(¥;M;u), and otherwise, K(¥ U 8; M;u +eg) = K(T U
By M pteg—e€upy (2)+1) = K(PUB; M p—e.) gives K (Vs M) = —K(PUB; M;p—e.).
We then use Lemma 3.3 with ¢ = 2z to find

K(U;M;p) = —K(VUB;M;p—e,)=K(VUB; M;pu—e.q1).

Now expand the right hand side on the removable root 5 € WU S with Proposition 3.9(b)
to obtain

K(U;M;p)=KWUBM;p—e.q1) = KW Mip—e 1)+ K(PUB; M pi—e.q1+€3).

Finally, K(V U 8; M; 1 — €,41 + €3) vanishes by Lemma 4.4 since ¥ U 3 has a wall in
rows 2,2 + 1 and a ceiling in columns 2,z + 1 and p — €,41 + € satisfies the necessary
conditions. O
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Lemma 4.7. Suppose a root ideal ¥ C A, multiset M on (€], v € Z*, and j € [{] satisfy

(a) ¥ has a removable root (i,j) in column j;
(b) ¥ has a ceiling in columns j,j+ 1 and a wall in rows j,j + 1;

(c) my(5+1) =ma(5) +1;
(d) Yi = Vji+1-

Then, K(¥; M;v) = K(V\ (i,5); M;7).

Proof. A root expansion on the removable root (i, ) with Proposition 3.9 gives
K(U; M;7y) = K(P\ (i,7); Ms7y) + K(U; My + € —¢5),

and the second summand vanishes by Lemma 4.4 with z = j. O

Lemma 4.8. Suppose a root ideal ¥ C AZ‘, multiset M on [f], v € Z*, and j € [{] satisfy

(a) j € M;

(b) U has a ceiling in columns j,j + 1 and a wall in rows j,j + 1;
(¢) mu(j+1) =mu(5);

(d) 75 = Vjt1-

Then, K(U; M;~v) = K(U; M \ j;v). If, in addition, U has a removable root (i,7) in
column j, then K(U; M;~) = K(P\ (¢,7); M\ j;7) .

Proof. We expand on j € M with Proposition 3.9 to obtain

K (U M;7y) = K(U; M\ jsv) — KU M\ jiy =€),
and note that K(¥; M \ j;v —¢;) = 0 by Lemma 4.4. If, in addition, (¢, ) is remov-
able from ¥, the second equality holds since K (WU; M \ j;~) satisfies the conditions of

Lemma 4.7. O

Example 4.9. By the first equality of Lemma 4.8,

|
s | |3
ool
2

By Lemma 4.7,

"
s _ | |3
Rl

2 2

Combining both these equalities is an application of the second equality of Lemma 4.8.
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Lemma 4.10 (Mirror Straightening Lemma). Let ¥ C AZF be a root ideal, M a multiset
on [€], and p € Z*. Let 1 <y < z < £ be indices in the same bounce path of ¥ satisfying

(a) mar(y) =mu(y +1);

(b) U has an addable root o« = (upg (y+1),y) and a removable root 5 = (upg(y+1),y+1);
(¢) ¥ has a mirror in rows x,x + 1 for all x € pathy (y,upy(2));

(d) U has a wall in rows z,z 4+ 1;

(e) mpar(x 4+ 1) = mp(x) + 1 for all x € pathyg (downy (y), 2);

(f) Mz = Ha+1 fO?“ all x € path\l’(yvup\lf('z))? and Mz = pzp1 — 1.

Then,
K(\I/,M“U,) = K(\PUQ;MI—I (y+1);,u'+€upq,(y+1) _6z+1) +K(\I!;M;,Uf_€z+1)'

Proof. First consider the case z = y. We have K(¥; M;pu) = K(U; M U (y+ 1); 1) +
K(¥; M; o — €,41) by Proposition 3.9(d), and must prove that

KU MU (y+1);p) = K(VUa; MU (y+1); 4+ €apy (s+1) — €x41) - (4.1)
Since a = (upg(z + 1), 2) is addable to ¥, we expand with Proposition 3.9 to obtain
KO,MU(y+1);u)=KPUo;MUy+1);p0) —KPUa; MU (@y+1);p0+eq).
Conditions (b) and (d) imply that ¥ U « has a ceiling in columns y,y + 1 and a wall in
rows y,y + 1, and (a) gives that M U (y + 1) has one more occurrence of y + 1 than y.

Therefore, since pu, = pi,+1 — 1, Lemma 3.3 with ¢ = y = 2z applies and straightens the
term

“K(VUa;MU(y+1)ip+ea) =KWUa MUY+ 1)1+ €upy (z41) — €241) -
For the same reasons, Lemma 4.4 applies to the other term, giving K(¥ U a; M U (y +
1); u) = 0. Thus (4.1) is proved.

Proceed by induction for z —y > 0. Given ¥ has a mirror in rows w = upy(z) and
w+ 1, the root v = (w+ 1, 2) is addable to ¥ and expanding on it using Proposition 3.9
yields

K(U; M;p) = K(WUy; M;p) — K(WUy; M;p+e,y).

Since ¥ U~y has a ceiling in columns z,z + 1, with conditions (d) and (e), Lemma 3.3
straightens the term

—K(V Uy Mip+ey) =KV Uy M+ €pp1 — €x41) -
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The same conditions imply that K (¥ U~y; M;p) =0 by Lemma 4.4. Therefore,
K(W; M;p) = K(V Uy M p+ €ugr — €241) -

Since YU~ has a wall in rows w and w+1, and v = p+€y,41 —€,41 satisfies vy, = v41—1,
we can apply the induction hypothesis with z = w to the right hand side and obtain

KW M; p) = K(WU{y, afs MU (y+1); p+ €upy (y+1) = €x41) + K(P U Mip—€.q1)
Lemma 4.7 enables us to remove vy from both terms, proving the claim. O

Example 4.11. The following is an example of an application of Lemma 4.10 with y =

2,2 =05.
5 6 5
4 4 4
4 _ 4 + 4

4 4 4
3 3 3
4 3 3

For 1 <z <y < z </, define the diagonal D}, = {(i,j) | j—i=y—2,y <j <
z}gAj.

Example 4.12. In the following, DSA is the light blue (removable) diagonal and DSA is
depicted in dark blue.

[ 1]

Lemma 4.13 (Diagonal Removal Lemma). Let ¥ C AZ‘ be a root ideal, M a multiset on
[0], v € Z*, and integers 1 < x <y < z < { be such that

(a) ¥ has a ceiling in columns z — 1,z and every root of D;;,l C ¥ is removable from ¥;

(b) L(Dz ') € M and mpr(z) =mpy(z—1) =mpy(z2=2)+1=--- =my(y)+2-1-y;
(¢) U has a wall in rows y,y+1,...,2;

(@) v=+"="-

Then,

K(V; M;v) = K(V'; M';7)
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where W' = W\ Dz 1 and M’ = M \ L(D;,}').

Proof. Let 8°,8',...,3*7¥~! be the roots of the diagonal DZ’1 from lowest to highest,
ie., 87 = (aj, b)) Wlth aj=z+x—y—j—land b; =z— j—l Deﬁne Wit = Wi\ {p7}
and M7t = M7\ {b;}, starting with U = ¥ and M® = M; thus ¥*~¢¥~! = ¥’ and
M?*=v=! = M'. By condition (a) for j = 0 and by construction for j > 0, 8/ is a
removable root of ¥/, and ¥/ has a ceiling in columns bj, b; + 1. Similarly, (b) implies
that b; € M7 and my (b + 1) = mypy(b;). Therefore, using also (c) and (d), we can
repeatedly apply Lemma 4.8 to obtain

K(U; M;n) = KW MY y) = KW M2 y) = = KWV H5 M0 hy) 0 O
4.3. Proof of Proposition 2.18

From Inv(wowg) = 0F we have ((wg)’ = ((g),,(;)) = 6(wp)’, and thus 0(wy) =

Uf:_f(k; i)*. The proposition states that Hl 1 Y(k—iyi = ﬁé but we will first prove

wo )<k’

H 9(k—i Qo(wo) (4.2)

Consider that, by Proposition 2.3 and Lemma 3.8,
H Jk—i)i = H K(2;;2; (k—i)") = KWl ol o Uk (k- i)Y

where @; C A} denotes the empty root ideal of length ¢ and Uk_l =W ¥

RCRoIRY Set v =U K — z) We now proceed iteratively on ¢ = 1,...,k — 1 with
U= A(k (Uisy(k—35)) W (UJ ~119;). For fixed i, let a =142+ +1i = (’ng).Note
that U* has a celhng in columns a+1,...a+7+1,awallinrowsa+1,...,a+i+1,
and Vg1 = = Yat+i+1 = k—1¢— 1. Now, we can apply Diagonal Removal Lemma 4.13
to K (W Wt ~) iteratively with z =a—d, y=a+1,and z=a+1+dfor 0 < d < i to
get, for Dy = Dng(lit‘il and W% := ¥\ (Dy U---U Dy),

K(U5 U y) = K(W; Uisy) = KU 09) = - = K(U)_ 500 59)
KU B ), (43)

where the last equality follows since W¢\ (Do U --- U D;_1) has i nonroots in rows
a—i+1,...,a and is thus equal to W1, Then, (4.2) follows by applying (4.3) iteratively
since Ul = Lﬂ?zlgj and Uk~ = A¥(y). By the combinatorial description of w* in [27,
§3 and Definition 8], it is straightforward to check (wq) = 0(wp)“*.
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Fig. 1. K(¥; £; 1) with p = 422110011, ¥ = A*(u) shown in red, and £ = A®(u) superimposed as ®’s as in
Example 3.1. The nonzero row lengths of ¥ and £ decrease by at least one from top to bottom (illustrating
(a) and (c)), and there are mirrors in rows 2,3 and in rows 4,5 corresponding to ps = pus and pug = ps
(illustrating (b)).

5. Vertical Pieri rule

We now apply the mirror lemmas to the k-Schur Katalan functions, gg\k). The root
ideal combinatorics matches naturally with previously studied (k- 1)-core combinatorics

for gg\k). We deduce a vertical Pieri rule for the gg\k), which agrees with the known rule

for the gf\k) .

5.1. Pieri straightening

Recall from (2.7) that A*(u) = {(i,j) € Af | k — p; + i < j}. This was defined for
n e Par?, but the definition can be extended to any p € Zégk such that p; > pip1 — 1

for all ¢ € [¢ — 1]. Several useful properties are satisfied by these k-Schur root ideals,
immediate from their construction, which will be used throughout this section.

Remark 5.1. Let A € Par® | & = A¥()\), and £ = A*F1(\). Let 2 be the lowest nonempty
row of W.

(a) (Wall-free) For z € [z], ¥ does not have a wall in rows x, z+1. Hence for all z € [m—1],
either ¥ has a ceiling in columns z, z+1 or has removable roots (y, ) and (y+1,z+1).
In the latter case, if y # & — 1, then ¥ has a mirror in rows y,y + 1.

(b) (Equal weight mirrors) For z € [z — 1], ¥ has a mirror in rows z,z + 1 if and only if
Pz = pat1 < k.

(c) (Wall-free lowering ideal) For x € [m — 1], upy (z) exists <= mpz)(x) = mpz) (2 +
1) — 1. Otherwise mpz)(x) = mpc)(z +1).

(d) (Adjustable end) Let S C Z >, 4o satisfying max(S)—min(S) < k—1 if it is nonempty.
Set 4 = XA+ es € Z* for £ = max(S U {m}). Then A¥(u) = AF((X,0™)) and
AR () = AFFL((X,07™)), hence (a)—(c) apply with data £, u, A*(u), AFF (1) in
place of m, \, ¥, L.

Here and throughout the remainder of the paper, for A € Parif and o € Z7 with j > ¢,
we define A + a = (A, 097) + . (See Fig. 1.)
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0 0 0 0 00
[1] [0] [1] [0]

(a) j=6,5={6} (b) j=6,5={6} c)j= =
y =topy(5) =3 >topy(6) =1. topy(6) =4>2=topy(5)+1. Eoi)i(7)77=s4 :{tf,}m(ﬁ) +1.

Fig. 2. Examples of the three cases of Proposition 5.2 for k = 3.

Proposition 5.2 (Pieri straightening). Let A € Parfn and S C Z>pmy2 nonempty with
max(S)—min(S) < k—1. Set g = A\ eg, ¥ = AF(u), M = L(A*TY (1)), and j = min(S).
There holds

K(AMw); LA () U(S\ j)iv)  y = topg(j — 1) > topy(j)

KU MUS;p) = —K(WMU(S\j);p—¢) topy (j) > topy (j — 1) +1
0 topy (j) = topy (j — 1) + 1
(5.1)

where v := (1 + €yp (y+1) — €5 in the first case. (See Fig. 2.)
Proof. First, apply Proposition 3.9(c) to j € S to obtain
KU MUS;p)=KWMUS\j)ip) - K@MUS\jip—e¢). (52)

Note that p;_1 = pj —1 = 0 since p = A+ €g, j = min(S) > m+ 2, and X € Parfn.
Also, note throughout that, since p;_1 = 0, then (j —1,7) ¢ ¥ and thus uppathy (j) N
uppathy (j — 1) = @.

If y = topy(j — 1) > topy(j), then upy (y) does not exist but upg(y + 1) does, so ¥
does not have a ceiling in columns ¥,y + 1. Thus, Remark 5.1 gives the conditions for
Mirror Straightening Lemma 4.10 applied with z = j—1 to K(V; M U(S\ j); ) in (5.2),
giving

KU MU(S\j)ip) =K Ua;MU(y+1)U(S\J)u+ upyy+1) — €)
+ KU MU(S\j)ip =€),
where o = (upgy (y + 1),y). Therefore,
KW, MUS;p)=KW@Ua; MUy +1)U(S\J); i+ eupyy+1) — €) -
Using YU a = A*(v) and M U (y + 1) = L(A**1(v)), the top case of (5.1) follows.

If topy(j) > topy (7 — 1) + 1, then Remark 5.1 gives the conditions to apply Mirror
Lemma 4.6 with z = j — 1; note that, in this case, there is no removable root in column
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topg (j) of ¥ by definition of top, but there is a removable root of ¥ in column topg (j)—1,
so U has a ceiling in these columns. In addition, mus(topg (j)) — 1 = mas(topg (5) — 1)
by Remark 5.1(c), so it is the first statement in Mirror Lemma 4.6 that applies. Hence
the term K (U; M U (S\ j); 1) in (5.2) vanishes, as desired.

If topgy (j) = topy (j — 1) + 1, then there are no removable roots in columns topg (j —
1),topy (j) of ¥ by definition of top, so there is a ceiling in columns topy, (j —1), topy (4)-
Remark 5.1 gives the conditions to apply Mirror Lemma 4.6. Since m () (topg (j —1)) =
mpz)(topy (7)) by Remark 5.1(c), we obtain K (W¥; M LI(S\j); u) = K(W; MU(S\j); p—
€j), and thus the right side of (5.2) is zero, as desired. O

5.2. Katalan multiplication via root expansions

Recall that D7 , C AT denotes the diagonal occupying columns y to z, starting in
row x. For 1 < z < y < z, a succession of diagonals, each occupying columns y to z,
forms a staircase, E;Z =D;,UD;,U---UDZ,, , . In Example 4.12, Egj is the
union of light and dark blue cells.

Lemma 5.3. For £ > 1 and r > 0, consider a root ideal ¥ C AZ_T and a multiset M on
[0+ r]. Let x,h > 0 with x +r 4+ h — 2 < £ be such that

(a) By = E. C o,

z,l+1
(b) V' =T\ Ej is a root ideal;
(¢) my(+1)>handmy(l+r)=my(l+r—1)+1=---=mpyl+1)+r—1.

Then, for v € Z* and M’ = M \ L(E}),

T

K(U; M; (,17) = > K(W'; M U S;p),
a=0 p=vy+es+egr
Sg{m+r—‘(zé.‘..,z+r+h—2}

S/:{€+1,...,Z+r7a}

where each summand is understood to be truncated in the manner of Remark 3.5. (See
Fig. 3.)

Proof. If r =0 or h = 0, E}, is the empty set and the equality holds trivially. We proceed
by induction on r + h with r,h > 0. Noting that a = (z +r + h — 2,£ + r) is the only
root in the lowest row of Fj, it is removable from ¥ by (b). Thus, Lemma 3.10 implies

K(W; M5 (7,17) =K(¥ \ a; M\ (€ +7); (7,17))
+ K(\i’, M L (IE +7r+ h — 2), (’}/, lril) 4+ €x+r+h—2) .
We shall apply Diagonal Removal Lemma 4.13 withx =z +h—1,y=¢+1,2=/4+7 to

the first term on the right hand side; indeed, ¥\ @ has a ceiling in £+7—1,¢+ 7 and (c)
implies M \ (¢ + ) has the same number of occurrences of ¢ +r — 1, ¢ + r. Furthermore,
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Yz

Ye

D —
r

Fig. 3. Schematic of the setup for Lemma 5.3 where ¥’ are the roots in light gray, Ej is the diagonally
shaded region, and ¥ = ¥’ U Ej,.

since ¥ has no roots lower than a, ¥\ « has a wall in rows z +r+h—2,..., 0+ (recall

that  +r + h — 2 < £). By definition, Dﬁiz—l,é—s-l = Ej \ Ep_1 is the lowest diagonal

O+r—1 — DE—H"

of Ej and thus every root of Dgch,hMJrl o h—1,0+

1. \ a is removable from ¥ \ a.
Therefore,
K(V; M;(v,17) =K (V' U Ep_1; M U L(Ep_1); (7,17))
F KU MU (@ +r4h—2); (1,177 + eaprina).
The inductive hypothesis applied to the first term with h = h — 1 and applied to the
second term with r =7 — 1 gives

T

K(W;M;(7,17) =) > K(V;M'UT;p)
a=0 p="y+er+eqrs
TC{z+r—a,...,x+r+h—3}
| T|=a

T'={f+1,....+r—a}

+y > KW M U(TU{z+7r+h—2});p)
a=0 p=v+egqiryn—2terters
TC{z+r—1—a,...,.x+r+h—3}
|T|=a
T/:{Z-‘rl,...,é-i—r—l—a}

Reindexing the second sum to go from 1 to r readily shows that we recover the desired

sum, with the first sum corresponding to z+r+h—2 ¢ S and the second to z+r+h—2 €
S. O

Proposition 5.4 (Unstraightened Pieri Rule). For A € Par?_k_l and 0 <r <k,

T

k
gray) =Y > K (AR (u); LAF (1)) U (S U S"); 1) -
a=0 p=X+es+egs
SC{l—k+1+r—a,....0}
|S|=a
S'={l+1,....04+r—a}
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A1 e © o o o o o o A1 e © © o o o o o
e o U M o o o U/ M e
Am) e o o o Am) e o o o
0 e o o 0 o o
0 e o o 0 ¥ .
} k+1—17r
O|le o e 0
1 z’f‘

1 1

k+1 T k+1 M

Fig. 4. The schematic on the left represents ¥ = AF(X,0°t!) w @, and M = L(Ak+1(/\70k+1) W D).
On the right, ¥/ and M’ are the solid grey region and e’s, respectively, and the crosshatched region is
Y\ =T\ (V" UE). Here, m = ¢ — k — 1.

Proof. For A\ € Parf , |, Definition 2.4 and Lemma 3.4 give
k
g = K(AR((0,041)): AFFH (A, 057)): (4,041

Since g1- = K(2,;2,;1") by Proposition 2.3(b) where &,. C Al denotes the empty root
ideal of length 7, the concatenation rule of Lemma 3.8 implies that

ngGE\k) = K(\Ilv M7 ()\7 0k+17 ]-T)) )

for U = A*(\, 0" W @, and M = L(A*1 (), 0w @,). (See Fig. 4.)
Let E = Eff;fﬁ;; and set

U = AR, 0F711")  and U =0"UE;
M" = LAFTY(X\ 051 17)  and M = M"U{l+1,...,0+r}UL(E).

Observe that W\ W' = Dyt UDg?,  U---UDHT ), and M\ M’ = LW\ ). We
remove these diagonals from W by iteratively applying Diagonal Removal Lemma 4.13
until

g o\ = K (U, M, (A, 051, 17)) = K(W'; M'; (A, 0F1,17)) .

We can then apply Lemma 5.3 withz =/ —k+1,h=k+1—7r,U =9 and M = M’
to get

s

KW' M5 (A 08 1m) = > K(U";(M'\ L(E)) U S; 1) .
a=0 p=Ates+egs
SC{f+r—k+1—a,...,0}
|S|=a
S'={l+1,....04+r—a}
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Since M'\ L(E) = M" U{£ +1,...,¢ + r}, we have for each summand K(¥"; (M’ \
L(E)US;p) = K(P"; M"U(SUS"); 1) by Remark 3.5. Further, since yu = A4egus with
max(SUS’) —min(SUS’") <k — 1, this is equal to K (AF(u); L(A* 1 (n)) U (SUS); )
by Remark 5.1(d) and Remark 3.5. O

Lemma 5.5. For £ > 1 and 0 <r < k, the map

r

rm: || || {SuSt - {RCZ/(k+1)Z : |R| =71}
a=0 SC{l—k+1+r—a,....L}
|S|=a

S'={t+1,....4r—a}

given by SUS" — {—s | s € SUS’'} is a bijection, where Z denotes the image of z in
Z/(k+1)Z.

Proof. For each 0 < a <7, SUS’ is a subset of the k consecutive entries {¢ —k + 1 +

r—a,....,£+r—a} and |[SUS’| = r. Thus rm is well-defined and one-to-one. Given
R C Z/(k+1)Z with |R| = r, to construct its preimage SUS’, consider the largest b such
that {—({+1),...,—({+b)} CRorset b=0if —((+1) ¢ R. Then SUS" = fr,(R),

for the map fop: Z/(k+ 1)Z — Z given by

—(l+i) — L+i for1<i<b
—(l+b+3) = L4+b+j—k—1 for1<j<k+1-0. O

Combining Proposition 5.4 and Lemma 5.5 yields the following result.

Corollary 5.6. For A\ € Palr’gC and 0 <r <k,

grol) = Y KA A+ ea); LAM (A + €4)) U A3 A + €4)
RCZ/(k+1)Z
|R|=r

where A =1m~(R).
5.8. Root ideal to core dictionary

The diagram of a partition A is the subset of cells {(r,¢) € Z>1 X Z>1 : ¢ < A}
in the plane, drawn in English (matrix-style) notation so that rows (resp. columns) are
increasing from north to south (resp. west to east). Each cell in a diagram has a hook
length which counts the number of cells below it in its column and weakly to its right in
its row. An n-core is a partition with no cell of hook length n. We use C*¥*! to denote
the collection of k + 1-cores. There is a bijection [27],

p: CFt = Par®
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where p(k) = A is the partition whose r-th row, A,, is the number of cells in the r-th
row of x with hook length < k. Let ¢ = p~!. The content of a cell (r,c) € Z x Zisc—r
and its k + 1-residue isc—r € Z/(k + 1)Z.

Given a k + 1-core k, define the row residue map

r:Z>1 = Z/(k+1)Z, a— Kk, —a,

so that r(a) is the k + 1-residue of the cell (a, k,) (if @ < ¢(k), this lies on the eastern
border of k but we also allow a > £(x) and understand ., = 0 in this case). We use the
following lemma, obtained by taking [6, Proposition 8.2(b)] modulo k + 1.

Lemma 5.7. Let A € Parf and U = AF(N). If upy (z) is defined, then r(upy(z)) = r(z).

Proposition 5.8. Let A € Par} and k = c(\). The root ideal A*(\) has at most k + 1
distinct bounce paths and cells (a, ko) and (b, kp) have the same k+ 1-residue if and only
if a and b are in the same bounce path.

Proof. Let ¥ = AK(),0+1). By construction, ¥ has no roots in rows [( + 1,¢ + k + 1],
implying that each of £+ 1,...,¢ 4+ k + 1 lies in a distinct bounce path, B, ..., Bgt1,
respectively. Since downg(z) exists for all © € [¢(], By,...,Bry1 are the only bounce
paths in ¥. Now, for i € [k + 1], the k + 1-residue of (¢ + i, ke14) is

r(l+i) =hopi —L—i=0—((+1).

Thus the residues r(€+1), ..., r({+k+1) are distinct and so, by Lemma 5.7, r(a) = r(i+£)
for all a € B;. Therefore, r(a) = r(b) if and only if a and b lie in the same bounce path.
Because the bounce path of x € [f] in A¥()) is a (possibly empty) truncation of its
bounce path in ¥, the claim follows. O

Given a partition , an addable i-corner is a cell (r,¢) ¢ k of k + 1-residue ¢ such that
kU{(r,c)} is a partition; a removable i-corner is a cell (r,¢) € k of k + 1-residue i such
that &\ {(r,c)} is a partition.

Proposition 5.9 (K-k-Schur root ideal to core dictionary). Let A € Par? with A\j_1 =
A\j =0. Seti=—j+ 1. Then the bounce paths of ¥ = A¥()) are related to the k+ 1-core
k = ¢(\) as follows. Also, (a)-(c) below hold more generally with root ideal AF(\ + eg)
in place of ¥, for any S C Z>;.

(a) y =topy(j — 1) > topy(j) if and only if the lowest addable i-corner of k lies in row
a=upy(y +1),

(b) topg(j) > topy(j — 1) + 1 if and only if k has a removable i-corner,

(c) topy(j) = topy (j—1)+1 if and only if k has neither a removable i-corner nor addable
i-corner.
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Proof. Let r be the row residue map of . Noting r(j) = ¢ — 1 and r(j — 1) = 4, by
Proposition 5.8, the set of row indices {z € [j] | r(2) = ¢ — 1} = uppathy(j) and
{z € [j] | r(2) = i} = uppathy(j — 1). Using this, we have

k has an addable i-corner in row z € [j] <= r(z—1)#diandr(z)=7¢—-1
<= 2z—1¢ uppathy(j — 1) and 2z € uppathy (5); (5.3)
k has a removable i-corner inrow z —1 € [j] <= r(z—1)=dandr(z) #i—1

<= 2z — 1€ uppathyg(j — 1) and z ¢ uppathy(5). (5.4)

For y = max{topy(j — 1),topy(j) — 1}, since j and j — 1 cannot be in the same
bouncepath, ¥ has a mirror in rows z, z+ 1 for € uppathy (upy (j—1)) such that > y
by Remark 5.1(a). Thus, the bounce paths uppathy(j — 1) and uppathy (7) have one of
the following forms: (a) j—1, jo—1,j5—1,...,y and j, j2, j3, ..., y+1,a,...; (b) j—1, 52—
1,...,9,b,... and j,ja,...,y+1;0r (c) j— 1,52 —1,...,y and j, ja, ...,y + 1. The result
now follows from (5.3)—(5.4). Note that the more general statement holds simply because
uppathar(xieg) (4 — 1) = uppathy (j — 1) and uppathak(yiey)(J) = uppathy(j). O

Example 5.10. For k = 5 and A\ = 532222111100000, set ¥ = A®(\) and £ = AS()).
Then,

314[5[0[112[3[4]
2[314]

NG| TN [y [
O N =

= K(¥;L; M),

AT e e

0

where we have filled the cells of k with their k& + 1-residues. Note that, for example,
4 =r(1) =1(2) =15 = r(9) = r(14) illustrating Lemma 5.7. We can also observe
examples of all three cases of Proposition 5.9. For (a), let j = 14. Then, topy(14) =
1 < 4 = topy(13) and the lowest addable corner of residue ¢ = —14+1 = 5 is in
row 2 of k. For (b), let j = 15. Then, topg(15) = 6 > 1+ 1 = topy(14) + 1 and &
has a removable corner of residue i = —15 + 1 = 4. Finally, for (c), let 7 = 13. Then,
topy(13) = 4 = topy(12) + 1 and & has neither a removable nor an addable corner of
residue —13 +1 = 0.

Lemma 5.11 (/27, Proposition 22, §8.1]). Let k be a k + 1-core and A = p(k). Then
Siwy € SQH if and only if k has an addable or removable i-corner. Moreover, k has
an addable i-corner if and only if s;wx = Wiy, € SIQH, where a is the row index of
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the lowest addable i-corner of k. The core k has a removable i-corner if and only if
S;Wx = Wx—_e, € S,gH, where a is the row index of the lowest removable i-corner of k.

5.4. Proof of the vertical Pieri rule

Proposition 5.12. For a root ideal ¥ C A;, a multiset M on [€], and v € Z* satisfying
mazxband(V,vy) <k, there holds K(V; M;v) € Aw,y. Here, mazband is as defined in
(2.15).

Proof. Consider that, by definition,

K(W; M) = Y (=) H(W57 = ea),
ACM

where the summation is over all sub-multisets A of M. Since maxband(¥,y —e4) < k,
each summand H(¥;y —ea) € Ay by [7, Proposition 1.4]. O

Proposition 5.13. The set {g&k)}Aepark forms a basis for A,). Moreover, it is unitrian-

gularly related to the k-Schur basis, i.e., gg\k) = sg\k) + ZWKP\I CLAMS;(Lk) Jorax, € L.

Proof. By Proposition 5.12, gE\k) lies in A(;y and so can be written in terms of the k-
Schur basis of A); this expansion has the stated form since the highest degree term
of K(U; M;~) is H(V;~) irrespective of M. Hence the transition matrix from {gg\k)} to

{sftk)} is unitriangular and thus the former is a basis. O

Recall from Section 2 that w) € §2 41 is the minimal coset representative correspond-
ing to A\ € Par®. For any A € Par”, set ggﬁ = gf\k), so that the basis {gg\k)}kepark can
also be written {g,(}k)}vegg . Recall that Hj1 denotes the 0-Hecke algebra of §k+1 with

+1

generators {T; | i € {0,1,...,k}}.
Proposition 5.14. The rule

ggkl), £(s;v) > L(v) and s;v € §2+1 ,

Ti-gl) = =gt U(siw) < (), (5.5)
0 siv ¢ §2+1 ,
forie{0,1,...,k} andv € §2+1, determines an action of Hyy1 on Ag,.

Note that the three cases are mutually exclusive since £(s;v) < £(v) implies s;v € S? 1

Proof. Consider e = >°, g . Tw € Hyq1 and note that for i € [k], Tie = 0 and so

T.,e = 0 for any u € §k+1 \ §2+1. Recalling that {T,} is a Z-basis of Hyq, it

w€§k+1
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follows that the left module M = Hyqe has Z-basis {T,e} . We then check that

the Z-linear map M — Ay given by T,e — gg,k) is an Hjy1-module isomorphism by

v€§2+1
computing

T, € L(s;v) > £(v) and s;v € §g+1 ,
T; - Tye=TiTye = ¢ —Tye L(s;v) < L(v),
T@ive = O E(Sﬂ)) > e(v) and SiU ¢ §2+1 : g

Lemma 5.15. For )\ € ParfﬁW 0<r<k,and S={a1 <as < - <a} CZ>pta with
ar—ay < k-1,

K (A (); LA () U S5 p) = T, - - T, 01F)

i1 8wy
where p = A+ e€g and i, := —a, + 1 for z € [r].

Proof. If |S| = 0, then the claim holds by definition of ggﬁ) Proceed by induction, with
|S| =7 >0.Set k =c()\), ¥ =AF(u), and M = L(A**1(p)). Let j = a1 = min(9), and
note i1 = —j + 1.

First suppose y = topy (j — 1) > topy (j). Then Proposition 5.2 implies

K(U; MU S;p) = K (AR (v); LA ) U (S\ )i v),
for v := pu + €4 — €, where a = upy (y + 1). Since v = (A + €4) + €3\ {5}, induction gives

. k
K(AF(w); LAM T ) U (S\ j)iv) =T, - Tr0i).. -
By Proposition 5.9(a), the lowest addable i1-corner of & lies in row a. Therefore, w4, =
si,wx by Lemma 5.11. Then, by Proposition 5.14 and the fact that £(wy) = |A|, we have
k) _ k& _p )
Ite, = Isigwn = L8 -
Next suppose topy(j) > topy (j — 1) + 1. Proposition 5.2 yields

K(U;MUS;p) =KW MU(S\{j}); X+ es\g3)-
Rewriting using Remark 5.1(d) with v = A + €g\ (53, and then applying induction yields

KU MU S\ {7} A +es\j3) = —K (A @) LA (1) U (S\ {7});v)
— T}, - T,al.
By Proposition 5.9(b), x has a removable i;-corner, so —gg\k) = Tilgg\k) by Lemma 5.11
and Proposition 5.14.
Finally, suppose topyg (j) = topg(j — 1) + 1. Proposition 5.2 yields K (¥; M U S;pu) =
0. By Proposition 5.9(c), « has neither an addable nor a removable i;-corner, so

T, - T, Tio\ = T; -~ T, (Ti,68") = 0 by Lemma 5.11 and Proposition 5.14. O

r
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We can now complete the proof of Theorem 2.6 by showing the gg\k) satisfy the Pieri

rule (2.8).

Theorem 5.16. For 0 <r <k and \ € Park,

(k) _ L(wy)+r—L(w)  (k
g7y = > (—1)fCn =t g
u€§k+1 cyclically increasing
Lu)=r
TuTw, =2Tw; weSp, 4

Proof. Corollary 5.6 gives

grol) = 3 K(AR () LAM () U As ),
RCZ/(k+1)Z
|R|=r

where 1 = A+ €4 for A =1m™1(R). The result then follows by applying Lemma 5.15 to
each summand to get

k
giraf) = Z T, - Tyl

Si,.++8iy cyclically increasing

and then using Proposition 5.14. 0O
6. Appendix
6.1. Raising operator identity for dual stable Grothendieck polynomials: proof of (2.3)

By the proof of [34, 1. (3.47)], the following identity holds in the ring A =
Z[%,... 2121, 24],

b) ZE
S (nyegrteee ~ T (1= 2o

- Zj
wESy 1<j

where p = (£ — 1,4 — 2,...,1,0). Note this is just the Weyl denominator formula.
i<j (1 — Rij)k7 on the right and

det(kf,ijrfa)ﬁpj)lgmg = det(k;x;?fi)lgi’jg = g on the left, thus establishing (2.3).

Applying the map x from (3.2) then yields []

6.2. Proof of G§’32 = Gim

By [25, §7.4], the coefficient of the monomial symmetric function m, in GE\k) for
X € Par® and p a partition of length a = ¢(u) is equal to (—1)/#/=1* times the number of
factorizations Ty,, = £T,, - -1, in the 0-Hecke algebra Hy 1, for cyclically decreasing
words uq,...,uq of lengths py,...,1e. We have wim = s_p,41---5-150 with indices
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taken modulo k + 1. Since no braid or commutations relations can be applied to this
word, the only factorizations of T,,,,, of the above form are

Ty = £T% | - T2 T

m-+1" aizla

each u; being a simple reflection. Thus the coefficient of m,, in G§’23 is 0 unless p = (1%)
for a > m. For each such a, there are exactly ( 711) possible factorizations. Therefore

a—
m

(k) _ a-mfa—1 -~ m+i—1 B
Gim = Z(_l) <m1)m1“—z(_1)< m—1 em+i = Gim

a>m

where the last equality is a well-known formula for Gim (which we used earlier in The-
orem 2.7).

6.3. Equivalence of K-k-Schur function descriptions

Remark 6.1. The affine stable Grothendieck polynomials {Gﬂc)} pepart and K-k-Schur
functions { gf\k)} separt are presented somewhat differently in [25] and [35], but are indeed
the same. For the G,(f)’s7 this is by [25, §7.4] and [35, (31)—(32) and Theorem 28].
Moreover, in both papers, the GLk) ’s and gg\k)’s determine each other by (gg\k), GLk)> = O
(see [25, §7.5] and [35, Property 40]).

Proof of Theorem 2.5. By [25, Theorems 6.8 and 7.17(1)], there are Hopf algebra isomor-
phisms K, (Grsr,,,) = Lo — A under which &, — ¢o(ky) — g% for all w € §2+1,
where the ¢g(k,,) are versions of K-k-Schur functions lying in a subalgebra L of the
0-Hecke algebra Hy41. Equation (6.1) and Corollary 7.6 of [25] determine certain struc-
ture constants of the pg(ky,); the g{uk) have the same structure constants, so translating

notation from [25] gives that for all v € §2+1 and r € [k],

k —
91 sg g = > (—1)f =l gD (6.1)
u€§k+1 cyclically decreasing
L(u)=r

TuTo=%Tw; wESY, |

By [25, Corollary 7.18], ggle...SO = h,. Thus iterating (6.1) yields an expression for
any h, (u € Par®) as a linear combination of gf\k)’s. As {h, | p € Par®, |u| < d}
forms a basis for the degree < d subspace of A, the transition matrix from this set to
{gg\k) | A € Par®, |A| < d} is invertible, so (6.1) uniquely defines the gg\k)’s.

Now by [35, §8], there is an involution Q: Ay — Ay defined by Q(h,) = g1-, and
Q(gf,k)) = 9%) for all v € §2+1, where 7: §k+1 — §k+1 is the automorphism given by
$; V> Sk4+1—4. Applying Q to (6.1) thus gives (2.8). Since 2 is an involution, it follows
that (2.8) also uniquely defines the gg\k)’s. O
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