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Holocene glacial activity in Barilari Bay, west Antarctic
Peninsula, tracked by magnetic mineral assemblages: Linking
ice, ocean, and atmosphere

Brendan T. Reilly'-2, Carl J. Natter Jr."-3, and Stefanie A. Brachfeld!

'Department of Earth and Environmental Studies, Montclair State University, Upper Montclair, New Jersey, USA, 2College
of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, 3Kleinfelder Inc.,, Hamilton,
New Jersey, USA

Abstract we investigate the origin and fate of lithogenic sediments using magnetic mineral assemb-
lages in Barilari Bay, west Antarctic Peninsula (AP) from sediment cores recovered during the Larsen Ice
Shelf System, Antarctica (LARISSA) NBP10-01 cruise. To quantify and reconstruct Holocene changes in
covarying magnetic mineral assemblages, we adopt an unsupervised mathematical unmixing strategy and
apply it to measurements of magnetic susceptibility as a function of increasing temperature. Comparisons
of the unmixed end-members with magnetic observations of northwestern AP bedrock and the spatial dis-
tribution of magnetic mineral assemblages within the fjord, allow us to identify source regions, including
signatures for “inner bay,” “outer bay,” and “northwestern AP” sources. We find strong evidence that sup-
ports the establishment of a late Holocene ice shelf in the fjord coeval with the Little Ice Age. Additionally,
we present new evidence for late Holocene sensitivity to conditions akin to positive mean Southern Annual
Mode states for western AP glaciers at their advanced Neoglacial positions.

1. Introduction

Abrupt climate change on the Antarctic Peninsula (AP) in the past several decades, manifested through
increasing atmospheric temperature and catastrophic ice shelf disintegration, has validated the importance
of studying mechanisms and impacts of AP environmental change [Smith et al., 1999; Domack et al., 2001;
Scambos et al., 2003; Vaughan, 2006; Hulbe et al., 2008; Bentley et al., 2009]. To investigate these recent
changes and their paleoenvironmental context, the interdisciplinary LARsen Ice Shelf System Antarctica
(LARISSA) 2010 field season visited the western AP [see N. B. Palmer 2010-01 Cruise Report, 4 January-2
March, Domack and the LARISSA Science Party, 2010], a region which on Holocene timescales is especially
sensitive to variations in the position and intensity of zonal westerly winds and coastal upwelling intensity
of warm upper circumpolar deep water (UCDW) [Bentley et al., 2009, and references therein]. A suite of sedi-
ment cores recovered from Barilari Bay record a detailed late Holocene paleoenvironmental history, includ-
ing the expression and timing of a late Holocene glacial advance roughly coeval with the Little Ice Age (LIA)
as expressed in the Northern Hemisphere [Christ et al., 2014].

In this study, we investigate the terrigenous component of the fjord sediments using their magnetic proper-
ties and compare these to observations of northwestern AP bedrock samples. Sediment bulk magnetic
properties, a function of magnetic mineralogy, magnetic grain-size, and the concentration of magnetic min-
erals, reflect a combination of depositional processes, sediment provenance, and diagenesis [Verosub and
Roberts, 1995; Liu et al., 2012]. Magnetic minerals, as tracers of terrigenous sediments, have been demon-
strated to be particularly useful in the study of past glacial activity [Stoner et al., 1995, 1996; Sagnotti et al.,
1998; Brachfeld and Banerjee, 2000; Brachfeld et al., 2002, 2013; Jovane and Verosub, 2011; Venuti et al.,, 2011;
Roberts et al., 2013], as fingerprints of terrestrial source material [Brachfeld et al.,, 2002, 2004, 2013; Cowan
et al., 2006; Hatfield et al., 2013], and for understanding of the Holocene paleoenvironmental history of the
AP [Leventer et al., 1996; Brachfeld et al., 2002].

To separate bulk magnetic properties of sediment samples and better understand what drives environmen-
tal magnetic signals, researchers have employed strategies that include mathematical end-member model-
ing of a variety of magnetic measurements [Heslop and Dillon, 2007; Heslop and Roberts, 2012; Heslop, 2015;
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Lascu et al., 2015] and particle size specific magnetic measurements [Hatfield et al., 2013; Hatfield, 2014;
Razik et al., 2014]. Here we adopt an unsupervised unmixing minimum volume simplex analysis to decom-
pose covarying magnetic mineral assemblages, as tracked by the temperature dependence of magnetic
susceptibility, and determine each end-member’s contribution to magnetic susceptibility. This decomposed
signal is then interpreted through comparison to local bedrock samples and the spatial distribution of mag-
netic mineral assemblages in the fjord.

2, Study Area

Barilari Bay, a western AP fjord visited during the LARISSA NBP10-01 cruise, is located upwind of and at the
same latitude as the former Larsen B ice shelf, allowing for east-west comparison of Holocene glacial
response to oceanic and atmospheric forcing (Figure 1). Historical and geologic studies both indicate that
while eastern AP changes are driven by atmospheric forcing, as demonstrated by the Holocene history and
unprecedented breakup of the Larsen B ice shelf [Scambos et al., 2003; Domack et al., 2005; Rebesco et al.,
2014], the western AP is particularly sensitive to oceanographic forcing [Cook et al., 2016], with high resolu-
tion records suggesting variable and episodic incursion of UCDW in the late Holocene [Ishman and Sperling,
2002; Shevenell and Kennett, 2002; Bentley et al., 2009; Peck et al., 2015].

The bathymetry of the fjord, charted by multibeam survey during NBP10-01, identifies a series of glacially
carved basins and historic grounding lines (Figure 2) [Christ et al., 2014]. The NBP10-01 sediment core suite
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Figure 1. Map of the Barilari Bay region, western Antarctic Peninsula, including the locations of cores recovered during NBP10-01 (blue circles) and new Polar Rock Repository samples

analyzed for this study (brown circles). Conto

ur lines indicate 500 m elevation. The blue area surrounding Barilari Bay indicates the drainage areas for glaciers terminating in the bay,

with the five major glaciers—Otlet, Birely, Lawrie, Weir, and Bilgeri—indicated in lighter blue. Elevation contours and glacial drainage delineations were determined from an Antarctic

Peninsula digital elevation model [Cook et al.,

Domain [Ferraccioli et al., 2006].

2012]. The gray dashed line indicates the approximate terrane boundary between the Central Domain Western Zone and the Eastern
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Figure 2. Bathymetry of Barilari Bay with NBP10-01 core locations [after Christ et al., 2014].

sampled three unique sedimentary basins, including the inner-most (KC-42, JPC-125, JKC-52), middle (JPC-
126), and outer-most basins (JKC-55, JPC-127) (Table 1) [Christ et al., 2014]. Additionally, KC-54, the most ice-
proximal core, was recovered from the historic grounding-line wedge [Christ et al, 2014]. Five named

REILLY ET AL.

HOLOCENE GLACIAL ACTIVITY,

BARILARI BAY

4555



@AG U Geochemistry, Geophysics, Geosystems 10.1002/2016GC006627

glaciers terminate in the bay—Otlet, Bir-

Table 1. NBP10-01 Marine Sediment Cores . . . . .
ley, Lawrie, Weir, and Bilgeri glaciers—

Length Water .

Core (cm) Latitude Longitude Depth (m) along with a number of smaller,
KC-42 130 65°56.44'S 64°38.26'W 610 unnamed glaciers (Figure 1). Historically,
KC-54 133 65°59.05'S 64°37.90'W 341 Barilari Bay was the southernmost drain-
JKC-52 599 65°36.05'S 64°40.60'W 595 age for the Hugo Island Trough [Lavoie
JKC-55 426 65°45.38'S 64°45.64'W 652 I 2015]. shari d bath .
JPC-125 2125 65755.99'S 64°38.40'W 610 etal, ], sharing a deep bathymetric
JPC-126 2146 65°53.41'S 64°41.79'W 642 conduit across the shelf for UCDW with
JPC-127 868 65°45.36'S 64°45.64'W 653

the Palmer Deep (Ocean Drilling Pro-
gram Site 1098) [Domack et al., 2001].

Chronologies for cores KC-54, JPC-126, and JKC-55 are given in Christ et al. [2014] and are based on a combi-
nation of '*’Cs, 2'°Pb, and '*C dating. A magnetic susceptibility low near the base of JKC-55 is dated at
3863 cal. yr BP (250-252 c¢m) and is consistent in timing with the Middle Holocene Hypsithermal as
observed elsewhere on the AP [Domack et al., 2001; Bentley et al., 2009]. Neoglacial cooling follows around
2815 cal. yr BP and primary productivity declines while sea ice coverage increases. Low %TOC and finer par-
ticle sizes beginning around 626 cal. yr BP (80-84 cm) and ending around 82 cal. yr BP (19-24 cm) are inter-
preted as reflecting the establishment of an LIA ice shelf in Barilari Bay coincident in timing with
anomalously cold Holocene atmospheric temperatures at the WAIS divide ice core site [Orsi et al, 2012;
WAIS Divide Project Members, 2013; Christ et al., 2014]. This is supported by middle and inner bay lithologic
changes consistent with facies models for ice shelf and glaciomarine sedimentation, including a change
from seasonally open marine to high accumulation, grounding-line proximal sediments, indicating glacial
advance about 730 cal. yr BP in JPC-126 and a transition from a diamict to subice shelf facies indicating a
grounding-line “back-off” event occurring before 252 cal. yr BP in KC-54 [Domack and Ishman, 1993; Domack
and Harris, 1998; Christ et al., 2014].

The bedrock geology in and around Barilari Bay has not been extensively studied, with only limited field
study of the offshore Biscoe Islands [Smellie et al., 1985; Moyes, 1986]. Described outcrops of igneous rocks
can broadly be interpreted as associated with the Cretaceous-Tertiary Andean Intrusive Suite or Jurassic Vol-
canic Rocks (supporting information Figure S1a). The general subice geology can be inferred from the
regional tectonic history [Elliot, 1975; Burton-Johnson and Riley, 2015] and implications for detrital magnetic
mineralogy can be inferred from comparison of bedrock magnetic susceptibilities with aeromagnetic geo-
physical surveys [Wendt et al., 2013]. Magnetic anomalies from geophysical surveys indicate Barilari Bay sits
on the boundary of two geologic terranes: the Mesozoic magmatic arc dominated Central Domain to the
west and the Trinity Peninsula Group dominated Eastern Domain, composed of the mostly sedimentary and
metasedimentary rocks of the deformed Gondwana continental margin, to the east [Ferraccioli et al., 2006;
Golynsky et al., 2013].

Bedrock samples from the Eastern Domain have the lowest mean magnetic susceptibility of any rock group
on the AP, and arc-related igneous rocks contain low concentrations of magnetite, likely due to magmatic
redox conditions [Wendt et al., 2013]. Bedrock samples from the Central Domain include arc-related intru-
sive rocks from the Cretaceous-Tertiary Andean intrusive suite that have the highest mean magnetic sus-
ceptibility values for measured rock samples on the AP [Wendt et al., 2013]. These sources are likely the
most important source for detrital magnetic mineral assemblages in Barilari Bay and the northwestern AP,
despite common sedimentary and metasedimentary lithic fragments and drop stones found in Western AP
shelf sediments [Brachfeld et al., 2004; Reilly, 2013; Wendt et al., 2013].

3. Materials and Methods

3.1. U.S. Polar Rock Repository Samples

Bedrock samples from the Biscoe Islands were loaned from the U.S. Polar Rock Repository (PRR) at the Byrd
Polar Research Center, Ohio State University. Samples were chosen based on proximity of available samples
to Barilari Bay (none were available within the bay itself), and an attempt to represent regional lithologies
including gabbros, tonalities, volcaniclastics, and chert (Figure 1; supporting information Table S1). Rock
chips from the PRR samples were mounted in epoxy and polished and observed using a Hitachi S-3400N
scanning electron microscope (SEM) and Bruker X-flash energy dispersive spectrometer (EDS).
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3.2. Marine Sediment Cores

Discrete subsamples (with sampling horizon 1 cm thick) from kasten cores were collected onboard ship at
1, 2, or 5 cm intervals. Discrete samples were collected at 5 cm intervals from jumbo piston cores, which
were opened at the Antarctic Marine Geology Research Facility at Florida State University. The disturbed
upper 178 cm in JPC-126 was only sampled every 20 cm. Samples were freeze-dried and packed into gelatin
capsules for magnetic analyses. A composite depth scale for the outer Barilari Bay cores, JKC-55 and JPC-
127, was determined by correlating their magnetic susceptibility profiles. JKC-55 recovered the sediment
water interface and was used as the reference core. A constant 5 cm offset was used for JTC-127 relative to
JKC-55. The Analyseries 2.0.4 software [Paillard et al., 1996] was used to adjust the depth scale of JPC-127
relative to JKC-55 (composite depth scale in supporting information Tables S12 and S13).

At select intervals where sufficient coarse material was available (i.e., bases of turbidites, diamict, inner-bay
seasonally open marine facies), clasts >0.5 mm were prepared as thin sections by Mineral Optics Laboratory
for optical microscopy and lithology identification via point counting on a Zeiss Aksioskop.

3.3. Magnetic Analyses

Mass normalized low-field magnetic susceptibility (y;) and thermomagnetic curves (y(T)) were measured on
an AGICO KLY-4 Kappabridge. Thermomagnetic curves were measured between room temperature and
700°C in a flowing argon atmosphere during heating and cooling. Hysteresis parameters were measured on
a Princeton Measurements Corporation MicroMag 3900 Vibrating Sample Magnetometer (VSM) ina 1 T
peak field (H). Rock chips (~50-150 mg) were immobilized with quartz Fiberfrax® inside gelatin capsules.
Hysteresis loops were mass normalized and the high-field slope of the M-H curve (y,f) was calculated using
the induced magnetization values between 0.7 and 1 T. ¢ was then used to remove the diamagnetic and
paramagnetic contributions to the induced magnetization. Saturation magnetization (M), saturation rema-
nence (M,), and bulk coercivity (H.) were determined from the diamagnetic/paramagnetic corrected hyster-
esis loops. The coercivity of remanence (H,,) was determined from the DC demagnetization of an initial 1 T
IRM. The S-ratio was determined by applying an initial field of 1 T, followed by a back-field of —300 mT
(IRM_3007) @and normalizing the IRM_3qomt by the 1 T IRM [Stober and Thompson, 1979].

3.4. End-Member Modeling of Temperature-Dependent Susceptibility
End-member modeling of y(T) takes the form:

X=AS+E, subject to A > 0 and Al,=1,

where X is a matrix of y values containing n rows (1 per sample) and | columns (1 per temperature step), A
is a matrix of the fractional abundance of the end-members of n rows and p columns (1 per end-member),
S is a matrix the end-member composition in p rows and | column, E is an error matrix to be minimized,
and 1, is a column vector of ones of length p [Heslop, 2015]. The nonnegativity and sum-to-one constraints
on A ensure the modeled end-member abundances are physically meaningful. The temperature derivative
of 82 x(T) curves (dy/dT) from KC-54 (n = 4), JPC-125 (n = 2), JPC-126 (n = 20), TC-126 (n = 10), and JPC127
(n = 44) were placed in matrix X after resampling x(T) at 3°C steps between 50 and 698°C. We use the tem-
perature derivative, as the magnetic minerals are most effectively identified by temperatures of the greatest
change in y. Although x(T) was measured in an argon atmosphere, irreversibility upon cooling suggests
some alteration occurred above the Curie point of magnetite (~580°C), perhaps due to variable organic car-
bon concentration or alteration of clay minerals. Accordingly, this analysis was only performed on the heat-
ing curves, which we interpret as representative of the detrital assemblage. Heating curves were
normalized by y at 50°C to account for changes in magnetic mineral concentration so that our end-member
model tracks changes in relative contribution.

This end-member modeling approach assumes linear additivity of y at each temperature step (i.e., for any
given T, yem1 + zem2 T Xem3 = xsu)- This is likely a valid assumption as magnetic interactions are expected
to be negligible on yr and ys has been demonstrated as reliably linearly additive in laboratory tests [Lees,
1997]. It is important to note, end-member modeling will not necessarily isolate pure magnetic mineral
phases (e.g., magnetite, hematite); rather, this end-member modeling will isolate covarying magnetic miner-
al assemblages that can be interpreted within the context of geologically meaningful end-members.
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Figure 3. End-member model selection for 100 iterations of two and three end-member scenarios, including (a and b) error and (c and d) shape constraint for a range of regularization
parameters (t; see text for discussion). The selected model reported here is indicated by the vertical red line. (€) The model uses the temperature derivative of 82 y(T) curves from four

sediment cores and defines three covarying magnetic mineral assemblages, which can be interpreted through comparison with measured y(T) curves. (f-h) Representative y(T) curves
that are dominated by each end-member, representing maghemite dominated assemblages (EM1) and magnetite dominated assemblages with variable cation substitution (EM2 and

EM3). End-member curves are available in supporting information Table S2.

To define the end-members that compose matrix S so that we can solve for A by minimizing the sum of
squares in E, we employ an unsupervised unmixing minimum volume simplex analysis using the Simplex
Identification via Split Augmented Lagrangian (SISAL) routine [Bioucas-Dias, 2009] and adopting the method
by Heslop and Roberts [2012] to y(T). The SISAL routine is robust to outliers by using a soft constraint on neg-
ativity in matrix A, controlled by the regularization parameter, 7. The resulting end-members represent the
vertices of the p — 1 dimensional simplex that bounds the data, where p is equal to the number of end-
members. Progressively smaller values of 7 result in a smaller bounding simplex, by allowing progressively
more data to lie outside the simplex (see Figure 18 in Heslop [2015] for conceptual illustration).

To determine the appropriate value of 7 (i.e., the size of the bounding simplex) and define matrix S, we run
100 iterations of 70 randomly selected dy/dT curves at 20 log distributed 7 values (1072—10") and 2 and 3
end-member scenarios. To monitor for realistic (T) curve shapes, we calculate the percentage of negative y
values in the integrated dy/dT end-member curves ((50°C) = 1). Error is calculated as the square root of
the sum of squares in error matrix E. The final end-members are defined as the mean of the 100 iterations
(Figures 3a-3d).

4, Results

4.1. Magnetic Mineral Assemblages

We identify three major covarying magnetic mineral end-member assemblages (EM1-3) present in Barilari
Bay (Figure 3e; supporting information Tables S2 and S3). We choose a three end-member model with the
smallest simplex that preserves realistic x(T) and with an acceptable error-level (r =0.26), because it
explains significant additional variance when compared to the two end-member scenario and all three end-
members can be explained in a geologically meaningful way when compared to bedrock geology and fjord
sediment distribution (see sections 4.2 and 4.3). Additional end-members scenarios only provide minor
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reductions in the model error. Magnetic mineralogy is determined by the identification of Curie tempera-
tures, which represent the order-disorder (ferromagnetic-paramagnetic) transition, and characteristic alter-
ation with temperature.

EM1 is a mixture of maghemite and magnetite. Maghemite is identified by its inversion to hematite at
high temperatures, manifested by cooling curves that are weaker than heating curves in all samples that
contain EM1 in significant proportions [Ozdemir and Banerjee, 1984; Gehring et al., 2009]. EM2 and EM3
are similar and reflect magnetite as the dominant magnetic mineral; however, they are differentiated by
differences in Curie temperature, with EM2 Curie temperature at about 584°C and EM3 Curie tempera-
ture around 572°C. This difference in Curie temperature can be attributed to cation replacement or oxi-
dation [Lattard et al, 2006]. This difference in Curie temperatures, although subtle, is justified by
bedrock Curie temperature observations (see section 4.2). Cooling curves in samples dominated by EM2
and EM3 are greater than their heating curve, indicating some alteration of another mineral at high tem-
peratures (Figures 3g and 3h). Hematite, identified by a continued drop in y above the Curie point for
magnetite, is present in EM1 and EM2. However, it is possible that its presence in EM1 is a product of
maghemite inversion.

4.2. Bedrock Geology

Lithic grain counts made on fjord sediments, where sufficient coarse fraction (>0.5 mm) was available,
show sedimentary and metasedimentary grains, likely of the Trinity Peninsula Suite, comprise at least
2/3 of the lithic assemblage and indicate that, while the plutonic rocks are likely the most important
contributors to the detrital magnetic mineral assemblages [e.g., Brachfeld et al., 2004; Wendt et al.,
2013] they are volumetrically less significant for the total lithogenic assemblage (supporting informa-
tion Figure S1b).
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Figure 4. Summary of bedrock magnetic observations from this study and Brachfeld et al. [2004], with the size of the point proportional
to the bedrock yr and color-coded to their simplified lithology. End-member Curie temperatures from Barilari Bay sediments are also
indicated. Detailed magnetic data are available in supporting information Table S1.
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Figure 5. Summary of magnetic mineral assemblages for (a) outer bay cores, (b) middle bay cores, and (c) inner bay cores, including y, a proxy for magnetic mineral concentration,
M,/M;, a proxy for magnetic mineral grain-size, and relative end-member abundance of EM1 (red), EM2 (green), and EM3 (blue) magnetic mineral assemblages. Lithologic logs are
generalized from Christ et al. [2014]. Detailed magnetic data are available in supporting information Tables S3-S13.

Magnetic analysis of PRR samples from the Biscoe Islands are consistent with previous results reported from
the Northwestern AP [Brachfeld et al., 2004]. Rocks with high magnetic susceptibility, and thus important for
detrital magnetic mineral assemblages, found on the AP can be grouped into two categories, finer (but still
coarse multidomain) magnetite with high Curie temperatures (580-590°C) and coarser magnetite with low-
er Curie temperatures (565-575°C) (Figure 4). These Curie temperature ranges agree well with those deter-
mined for EM2 and EM3. We also note that even though these bedrock observations are limited, it appears
that the higher Curie temperature group is much more common for bedrock in the northwestern AP. SEM
observation of PRR samples are consistent with magnetic observations, with pluton rocks of the
Cretaceous-Andean Intrusive Suite containing common and large Fe-Ti oxides (supporting information Fig-
ures S1c-S1q).

4.3. Marine Sediment Cores

Bulk magnetic properties and y(T) unmixing results for inner, middle, and outer Barilari Bay cores are provid-
ed in supporting information Tables S3-513 and summarized in Figure 5. These results are discussed here
with respect to three glaciomarine facies found in the bay: grounding line, sea ice/seasonally open marine,
and edge-proximal ice shelf. An additional diamict facies is found at the base of KC-54, which contains
almost exclusively an EM3 assemblage of magnetic minerals. A detailed discussion of the sedimentology of
these facies for cores KC-54, JPC-126, and JKC-55 can be found in Christ et al. [2014].

4.3.1. Grounding-Line Facies

Grounding-line facies in Barilari Bay consist of organic poor, well graded silts/sands and/or rhythmically lam-
inated sections from grounding-line plume, undermelt, and turbidite deposits. These deposits are found in
JKC-52, JKC-42, JPC-125, and JPC-126 from the inner and middle sedimentary basins.

Magnetic mineral concentration (tracked by y) and magnetic mineral grain-size (tracked by concentration
independent parameters M,/M; and H./H,) are highly variable, with high concentrations of coarse magnetic
minerals at the coarse silt/sand at the base of turbidites and lower concentrations of finer magnetic
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minerals in the homogenous silty muds at the top of turbidites, indicating hydrodynamic sorting of magnet-
ic minerals by density and grain-size.

Magnetic mineralogy varies between EM2 and EM3; however, their occurrence in the same turbidites sug-
gest their distribution is also driven by sediment transport and sorting and not solely provenance. High pro-
portions of EM3 are found at the sandy bases of turbidites, consistent with the coarser magnetic minerals
found at similar Curie points in Northwestern AP bedrock samples. A high-coercivity mineral, tracked by the
S-ratio, is also concentrated at the base of these turbidites and also likely influences the yy¢, calculated
between 0.7 and 1 T, for if a mineral like hematite was present in significant quantity it would not saturate
in the 1 T field [Brachfeld, 2006].

4.3.2, Sea Ice/Seasonally Open Marine Facies

Seasonally open marine facies in Barilari Bay are identified as diatomaceous glaciomarine sediment with
higher organic carbon content, and variable ice rafted debris (IRD) concentrations, with more IRD found in
the inner fjord than the outer fjord [Christ et al., 2014], consistent with deposition models elsewhere on the
western AP where icebergs are concentrated in the inner bay by prevailing winds [Domack and Ishman,
1993]. These deposits are found in thin layers near the tops of KC-54, KC-42, and JKC-52, in disturbed sedi-
ment at the top of JPC-126, at the base of JPC-126, and in the outer fjord cores (with the exception of the
ice shelf facies described below).

Concentrations of magnetic minerals in the inner fjord seasonally open marine facies are lower and less var-
iable than the grounding-line facies, despite having significantly higher concentrations of IRD, due to dilu-
tion from biogenic sedimentation. However, magnetic mineralogy is much more variable than the
grounding-line facies, including horizons with significant EM1 contribution, which is not found in significant
proportions in grounding-line or diamict facies.

Concentrations of magnetic minerals in the outer bay seasonally open marine facies tracks variable dilution
by biogenic sedimentation with possible postdepositional alteration due to diagenesis. Variability in mag-
netic grain-size shows a down-core coarsening trend beginning around 100 cm composite depth (cmcd).
However, as magnetic concentration does not change significantly until below 250 cmcd, changes in mag-
netic grain-size are likely a convolved signal of provenance changes, sediment transport changes, and dia-
genetic alteration. This is consistent with a coincident change in magnetic mineral assemblage, as tracked
through our end-member model.

4.3.3. Edge-Proximal Ice Shelf Facies

The outer bay ice shelf facies, identified by Christ et al. [2014] as a change in particle size and drop in total
organic carbon, are present near the top of JKC-55 and JTC-127. The signature of the edge-proximal ice
shelf facies observed in the outer bay is distinct and is composed of homogenous PSD grains with signifi-
cant contributions from EM1 and EM3, consistent with sorted fines representative of deposits from an ice
shelf edge [Domack and Harris, 1998].

5. Discussion

5.1. End-Members as Provenance Tracers

For our discussion, we interpret the end-member magnetic assemblages as tracers of changes in source
contributions to the fjord. This demonstrates the usefulness and sensitivity of magnetic minerals to charac-
terize lithogenic sediments, as y(T) can be measured rapidly across all facies in the fjord and can quantify
subtle differences in mineral assemblage. We found that other methods of characterizing lithogenic sedi-
ments (e.g., lithic sand grain assemblages, iron-oxide morphology, and iron oxide Fe/Ti ratios, determined
through energy dispersive spectrometry) were useful to determine the major sediment contributions to the
fjord; however, in this location, these analyses only revealed slight differences between cores and were lim-
ited to lithologies with abundant coarse particles [Reilly, 2013].

The Curie temperature for EM3 is observed less often than EM2 from our limited observation of Northwest-
ern AP bedrock samples (Figure 4). However, it is the dominant contributor to the magnetic minerals in dia-
mict from KC-54 (Figure 5c). We therefore consider relative proportions of EM3 as a tracer for material
sourced to the inner bay, particularly Lawrie glacier, and perhaps Weir and Bilgeri glaciers. We will refer to
this as the “inner-bay” signature.
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EM2 has a Curie temperature that is much more abundant in bedrock samples from the Northwestern AP. It is
present in grounding-line facies in the inner and middle bay. We consider this assemblage to be sourced to the
inner bay, but not diagnostic of an inner bay source, and thus will refer to it as a “Northwestern AP” signature.

EM1 is primarily found in the outer bay cores and in a few horizons of the seasonally open facies in JPC-
126. Based on these spatial observations, we consider this the “outer bay” signature. We suspect the dom-
inant source is the more coastal and outer basin proximal Otlet glacier; however, without any observa-
tions of this signature in bedrock samples, we cannot rule out an externally derived source from
elsewhere on the AP.

5.2. A Mid Holocene to Late Holocene Record of Glacial History

The outer bay cores, JKC-55, JTC-127, and JPC-127, contain a continuous time series extending to at least the
middle Holocene. Sediments from the AP are difficult to date due to large reservoir ages and limited datable
material [see Christ et al,, 2014 for discussion]. However, the reservoir age used in this suite of cores (1390 = 40
years) is determined from the "C age of surface foraminifera in the inner bay, which is well supported by excel-
lent agreement with 2'°Pb-based and '*’Cs-based chronology and coincident timing of the Barilari Bay LIA
expression with anomalously cold Holocene temperatures in the WAIS Divide Ice Core [Orsi et al., 2012; WAIS
Divide Project Members, 2013; Christ et al., 2014]. The age model used here is limited by availability of sufficient
foraminifera to '“C date, but has good age control from the present to about 4000 cal. yr BP. Below 4,000 cal. yr
BP, the age model is based solely on extrapolation of sedimentation rates (Figure 6j) [Christ et al.,, 2014].
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Figure 6. Mid Holocene to late Holocene climate proxies, including (a) surface air temperature of East Antarctica, reconstructed from the EPICA Dome C ice core and smoothed with a 50
year full width half max (FWHM) Gaussian filter [Jouzel et al., 2007], (b) relative position of the westerly winds, inferred from iron content measured in counts per second (cps) on a sedi-
ment core from the southern Chilean margin smoothed with a 20 year FWHM Gaussian filter [Lamy et al., 2001], (c) regional climate signal for the Northwestern AP presented as the mag-
netic susceptibility record from Palmer Deep [Domack et al., 2001; Brachfeld et al., 2002], (d) incursions of UCDW in Palmer Deep during the Neoglacial, tracked by the relative abundance
of B. aculeata in Palmer Deep smoothed with a 100 year FWMH Gaussian filter [lshman and Sperling, 2002], (e) 7 for JKC-55 (green), JTC-127 (blue), and JPC-127 (red) and locations of '*C
dates (orange dots), (f) relative proportion of EM1, the “outer bay” signature, (g) relative proportion of EM2, the “Northwestern AP” signature, (h) relative proportion of EM3, the “inner
bay” signature. (i) Timing of the LIA inner bay glacial advance (horizontal blue line), establishment of an ice shelf (blue shading), and back-off from the grounding-line zone wedge (GZW;
horizontal red line) in Barilari Bay [Christ et al., 2014]. (j) Age model for the outer bay cores on their composite depth scale [Christ et al., 2014]. Pink shading highlights the coldest mean
intervals recognized in the EPICA Dome C ice core during the Northwestern AP Neoglacial.
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The two most striking features of this provenance record in the outer bay cores are spikes in contribution from the
“outer bay” source at roughly 750, 1000, 2200, and 3300 cal. yr BP and dominance of the “inner bay” source follow-
ing the inner bay glacial advance documented in JPC-126 at about 730 cal. yr BP (Figures 6f-6h). We find the latter
of these observations lends a great deal of support for an LIA ice shelf in Barilari Bay, as asserted by Christ et al.
[2014] and interpret the fine magnetic grain-size, tracked by M,/M; (Figure 5a), and “inner bay” sourced sediment
to be the sorted fines found at ice shelf edges in glaciomarine depositional models [Domack and Harris, 1998].

Signals of UCDW have been reported as consistently present on the western AP shelf during the early to
mid-Holocene [Shevenell and Kennett, 2002; Peck et al., 2015], coincident with a more southerly position of
the westerly winds reconstructed from the southern Chilean margin [Lamy et al.,, 2001] suggesting upwell-
ing favorable conditions (Figure 6b). The mid-Holocene shift to a more northerly position in the westerly
winds documented on the southern Chilean margin is roughly coincident with the large increase in mag-
netic susceptibility at Palmer Deep [Domack et al., 2001] and an increase in magnetic susceptibility at Barilari
Bay (Figures 6¢ and 6e). Detailed rock magnetic work from Palmer Deep suggests this change in magnetic
susceptibility is not primarily driven by diagenesis, as the change in susceptibility occurs roughly 10 m
above the start of sulfate reduction [Brachfeld and Banerjee, 2000; Brachfeld et al., 2002]. Rather this change
reflects changes in sediment provenance, glacial dynamics, and variable productivity cycles, coinciding with
variability of UCDW incursion during the late Holocene, and is often interpreted as the transition from mid-
Holocene warmth to Neoglacial conditions [Brachfeld and Banerjee, 2000; Brachfeld et al., 2002; Shevenell
and Kennett, 2002].

Barilari Bay offers a glacial proximal fjord perspective on this transition from mid-Holocene warmth to
Neoglacial conditions. The transition to Neoglacial conditions, as defined through magnetic susceptibility,
is roughly coeval in Barilari Bay and reflects glacial advance of local glaciers and decreased primary pro-
ductivity, as tracked by diatom abundance [Christ et al., 2014]. The spikes in “outer bay” sourced sediment
between the onset of Neoglacial conditions and the start of LIA conditions occur coeval with high mean
abundances of Bulimina aculeata dominated bethic foraminifera assemblages during the Neoglacial at
ODP Site 1098 [Ishman and Sperling, 2002], suggesting frequent UCDW incursions to the Palmer Deep
Basin and Barilari Bay through their shared pathway, the Hugo Island Trough [Lavoie et al., 2015]. We note
that the Palmer Deep TEXgg sea surface reconstruction does not show warming during these events [She-
venell et al., 2011], consistent with the observed sensitivity of West Antarctic marine terminating glaciers
to subsurface warming from UCDW upwelling, rather than surface warming [Pritchard et al., 2012; Cook
etal., 2016].

Interestingly, the timing of these Neoglaical UCDW incursions and the increased “outer bay” sediments
coincide with the coldest periods of late Holocene temperatures reconstructed in Eastern Antarctica in the
EPICA Dome C ice core [Jouzel et al, 2007]. Based on data from instrumental records and high resolution
reconstructions that are available for the last millennium, the SAM is characterized by a strong negative cor-
relation in surface air temperatures between East Antarctica (especially at EPICA Dome C) and the Antarctic
Peninsula [Kwok and Comiso, 2002; Abram et al., 2014]. We therefore argue the spikes in “outer bay” derived
sediments are a response of smaller outer bay glaciers, especially Otlet glacier, in their advanced Neoglacial
positions to periods of positive mean SAM-like states superimposed on the longer term Holocene trend of
Westerly Wind position, which would impose upwelling favorable conditions and reduce sea ice, as
observed through oceanographic measurements during the modern shift to a more positive SAM state
[Martinson et al., 2008].

6. Conclusions

Magnetic mineralogy offers a powerful tracer for lithogenic sediments in Barilari Bay, reflecting the
interplay of sediment province, transport processes, and primary productivity, and offering new insights
to late Holocene atmosphere-ocean-glacial dynamics on the western AP. The magnetic mineral assemb-
lages defined from fjord sediments can be interpreted within the context of limited bedrock observa-
tions and fjord sediment spatial distribution. Continued work around the AP and other regions to
expand our knowledge of source region signatures will greatly improve our understanding of the origin
and fate of terrigenous material on glaciated margins. We demonstrate strong evidence through mag-
netic tracers to support sedimentological identification of an LIA ice shelf in the fjord and provide new
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