
Zoom2Net: Constrained Network Telemetry Imputation
Fengchen Gong

Princeton University
Divya Raghunathan

Princeton University
Aarti Gupta

Princeton University
Maria Apostolaki
Princeton University

Abstract
Fine-grained monitoring is crucial for multiple data-driven tasks
such as debugging, provisioning, and securing networks. Yet, prac-
tical constraints in collecting, extracting, and storing data often
force operators to use coarse-grained sampled monitoring, degrad-
ing the performance of the various tasks. In this work, we explore
the feasibility of leveraging the correlations among coarse-grained
time series to impute their fine-grained counterparts in software.
We present Zoom2Net, a transformer-based model for network im-
putation that incorporates domain knowledge through operational
and measurement constraints, ensuring that the imputed network
telemetry time series are not only realistic but align with existing
measurements. This approach enhances the capabilities of current
monitoring infrastructures, allowing operators to gain more insights
into system behaviors without the need for hardware upgrades. We
evaluate Zoom2Net on four diverse datasets (e.g., cloud telemetry
and Internet data transfer) and use cases (e.g., bursts analysis and
traffic classification). We demonstrate that Zoom2Net consistently
achieves high imputation accuracy with a zoom-in factor of up to
100 and performs better on downstream tasks compared to baselines
by an average of 38%.

CCS Concepts
• Networks→ Network monitoring.

Keywords
Telemetry, Imputation, Formal Methods, Transformer

ACM Reference Format:
Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Apostolaki.
2024. Zoom2Net: Constrained Network Telemetry Imputation. In ACM SIG-
COMM 2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney,
NSW, Australia. , 14 pages. https://doi.org/10.1145/3651890.3672225

1 Introduction
Imagine a large datacenter operator tasked with pinpointing the root
cause of an instance of packet drops occurring on a network switch.
They speculate on several potential issues, such as buffer short-
age, bursty traffic, misconfiguration, or potential hardware problems.
To identify the actual cause, the operator examines different mon-
itored signals, including active end-to-end latency, packet counts,
and queue lengths. However, they quickly realize that the collection
interval of these measurements is not fine-grained enough to provide
the necessary insights. This is a typical problem as very fine-grained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672225

monitoring is hindered by hardware limitations or cost factors. In
theory, the operator could request the collection of more fine-grained
queue-length data from all devices and wait for the next instances of
packet drops to identify the root cause.

As collecting more fine-grained telemetry will be time-consuming
and even infeasible for some devices, the operator would, most likely,
end up looking back at the existing coarse-grained measurements,
trying to piece together likely scenarios in their mind. This involves
speculating about concrete scenarios, mentally constructing a finer-
grained version of the measured signals, and aligning these spec-
ulations with the actual measurements they have. For instance, if
there were spikes in end-to-end latency measurements of distinct
queues before the spurious drops, the operator might speculate that
multiple queues’ lengths were consistently high, which allowed the
random sampling to ‘catch’ multiple high values, then those con-
sistently high queues could have filled the switch buffer, leading
to drops. This reasoning is feasible due to the underlying correla-
tions between various network signals (e.g., end-to-end delay, queue
lengths, drops), which the operator understands and could use to
make informed inferences (guesses) about the events that occurred.

While intuitive in this example, conceptualizing various signals
and filling the gaps in monitoring generally is extremely challenging
even for seasoned operators. The challenge lies in accurately identi-
fying, utilizing, and making sense of the correlations among various
signals. Additionally, the sheer breadth of the potential search space
adds to the complexity, making both manual and automated reason-
ing methods unscalable. Still, the scenario raises a question: can
we design a system that automatically analyzes multiple correlated,
coarse-grained network signals to recover a more detailed picture of
the network? Doing so would allow operators to maximize the value
of their existing monitoring infrastructure, indirectly improving mul-
tiple management tasks with no hardware investment.

We introduce Zoom2Net, a system that imputes fine-grained net-
work monitoring data from multiple coarse-grained ones. This is
possible because the various sampled (coarse-grained) time series
not only constrain their own imputed versions (imputed signals
need to be consistent with the measurements) but also impose
constraints on the imputed versions of each other. For instance,
coarse-grained queue-length samples constrain the imputed, more
fine-grained queue lengths, and these, in turn, are also constrained
by the packet counts (as a queue requires a sufficient number of
packets to be received to form). While Zoom2Net addresses an
inherently under-constrained problem, we observe that there are
additional correlations among measured time series that further nar-
row down potential outputs, often associated with traffic patterns
or challenging-to-formulate correlations. Under these correlations,
certain scenarios are more likely to occur repeatedly, contributing
to a more predictable aspect of the problem. Zoom2Net can train
on a small set of fine-grained data generated from an expensive
on-demand monitoring tool (or packet trace) and then be used to
improve the granularity of always-on monitoring infrastructure.

https://doi.org/10.1145/3651890.3672225
https://doi.org/10.1145/3651890.3672225

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

At first glance, Zoom2Net resembles super-resolution, which
recovers high-resolution images from their low-resolution counter-
parts using deep learning: a concept extensively explored in the
literature [20, 36, 47, 48, 53, 54]. Similarly to images where there
are correlations within the RGB values and across adjacent pixels
allowing the imputation tasks, network signals are often correlated.
Some correlations can be expressed as mathematical equations or
limits, while others manifest as hidden patterns.

Despite the rich literature, off-the-shelf ML models [14] prove
inadequate for Zoom2Net. Network telemetry imputation demands
not only realism but also consistency with existing measurements
and adherence to known principles, a requirement often neglected by
general ML models. Unlike typical super-resolution tasks, which pri-
oritize visually appealing outputs, network imputation necessitates
recovered fine-grained time series to (i) closely resemble ground
truth; and (ii) produce the original coarse-grained time series if sam-
pled with the same sampling process. Integrating this kind of domain
knowledge into ML models is complex: designed to learn from data,
ML models cannot easily ingest traditional knowledge, such as rules
and relationships. As a result, there is no standard way of doing
so. Moreover, defining the success criteria for network imputation
proves challenging. Commonly used metrics like mean-square error
(MSE) can penalize outputs that are practically equivalent, such as
temporally shifted bursts. Even more complex is the scenario where
the same coarse-grained data corresponds to multiple fine-grained
possibilities in the training set (ambiguity), potentially hindering the
ML model’s effective training.

Instead of solely relying on data for training, Zoom2Net incorpo-
rates different sources of knowledge to generate not only realistic but
accurate fine-grained time series using two specific methods. First,
utilizing a transformer model [46] at its core, Zoom2Net employs a
knowledge-augmented loss function that embeds both operational
and measurement constraints, guiding the transformer to learn both
correlations and properties. Second, Zoom2Net enforces the con-
straints that the transformer failed to satisfy by using a constraint
enforcement module to correct its output post-imputation.

To manage the inherent ambiguities in data, which tend to increase
as the zoom-in factor (the ratio between coarse and fine granularity)
becomes more pronounced, we have modified our strategy. Instead
of aiming for precise, point-to-point accuracy regardless of the zoom-
in factor, we train Zoom2Net to generate outputs that are, at least,
plausible and consistent with measurements. This change not only
improves the efficiency of the training process but also leads to more
practical and useful outputs in real-world applications.

We evaluate Zoom2Net across synthetic and real-world datasets
and compare its performance to both statistics and learning-based
methods. We find Zoom2Net achieves: (i) consistently high impu-
tation accuracy with a zoom-in factor of up to 100; (ii) 38% better
performance in downstream tasks compared to baselines; and (iii)
demonstrates its ability to apply learned correlations to scenarios
unseen during training.

This work builds on our previous position paper [27] that outlined
the potential of combining formal methods with machine learning
for networking. This work does not raise any ethical issues.

2 Motivation and limitations of existing work
In this section, we discuss motivating scenarios where fine-grained
telemetry is required after the fact. Next, we explain why existing
solutions are unlikely to help.

2.1 Use cases and requirements
Post-Mortem Analysis. In the aftermath of a volumetric attack,
network operators leverage monitoring to analyze the event. This
data helps in revealing the attack’s impact across the network, pin-
pointing vulnerable zones, and assessing the defense mechanisms’
performance under real stress. Insights gained from this analysis
are crucial for strengthening the network’s resilience against future
attacks. They can guide adjustments in security policies, firewall
rules, and even the deployment of advanced intrusion detection sys-
tems that can better handle sudden surges in traffic. While vital, the
collection and storage of every potential signal at the finest level
of granularity continuously is impractical. Thus, having a way to
zoom into a particular signal that is being monitored after the fact is
extremely useful.

Intuitively, a learning approach is unlikely to generate novel data
patterns corresponding to a new attack. Yet, in the context of network
behavior, individual monitoring signals may not deviate significantly
from normal patterns. In other words, a novel or rare attack could
manifest as an escalation in the frequency of regular incidents, or it
may be the result of a specific sequence and combination of routine
occurrences that serve the attacker’s objectives rather than a set of
anomalous or unforeseen behaviors on each signal. Hence, a learning
approach can, in fact, zoom into the incident. For example, consider
a shrew attack [33] consisting of periodic bursts that disrupt TCP.
Such malicious behavior can only be revealed by fine-grained queue
lengths, which can be recovered as individual bursts are regular
incidents.
Diagnostic Troubleshooting. To identify the root cause of an alert
or client’s complaint, network operators need to check various mon-
itored signals potentially on multiple devices and try to identify
anomalies or deviations from normal operations. Note that these
anomalies could only be visible when the monitoring interval is ade-
quately small, while the exact signals of interest are not necessarily
known. For instance, dropped packets in a flow caused by bursts can
only be observed with millisecond granularity measurements on all
devices on each of the paths through which a flow could have been
forwarded. Thus, fine-grained and general monitoring is critical for
prompt and precise troubleshooting and, thus, faster resolution of
network issues. We evaluate this use case in §6.2.
Network resource planning. To plan for capacity increases, on-
device memory provisioning, topology design, peering agreements,
and many other resources, an operator needs detailed insights into
the network’s usage patterns and demands over long periods of time.
Fine-grained monitoring of various signals would help to avoid both
under-provisioning, which can lead to congestion and performance
issues, and over-provisioning, which can be costly and inefficient. On
the one hand, collecting and storing all possible monitoring data for
long periods to satisfy future operators’ demands is wasteful, given
the data volume. On the other hand, predicting signals of interest
and their required granularity is impractical given the technological
advancements and evolving application demands. For example, an

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

operator might need to decide on the buffer size to provision on
network devices, for which they would need to see historical data
on the aggregate occupancy of the buffer in quantity (percentage
of buffer occupied) and in quality (stably long queues or bursty
traffic) [6, 7]. Yet, the data might have been collected at a time
when buffer size was not a limiting resource, hence not a signal of
interest, or at a time when the latency of milliseconds was acceptable;
hence, higher granularity seemed unnecessary. In such cases, having
a way to zoom into signals would be a great software alternative. We
evaluate this use case in §6.2, and §6.3.
Dataset imputation. To protect their networks from attacks, load
balance traffic, or debug issues, operators often use machine learning.
To train their models, the operators will turn the initial packet traces
into a series of features [21]. Oftentimes, the raw traces are deleted
after the features have been calculated to reduce the risks of a data
breach or to save space. The features are stored and/or shared. While
convenient, this solution prevents the operators from going back to
the raw trace and calculating new features that they conjecture might
be useful for their operation. Of course, they might be able to collect
new traces if they own the infrastructure, but that would be time-
consuming and might hurt performance (e.g., if the previous dataset
happened to contain attacks or infrequent scenarios). In other words,
many datasets today can be seen as coarse-grained representations
of raw data, retrieving which would allow for easier experimentation.
In this case, having a way to ‘zoom into’ features to see the raw
dataset would be very useful. While this use case might deviate from
our core goals, we see encouraging results in §6.4; after all, feature
engineering on network traces is a form of sampling.

2.2 Limitations of existing works
In various use cases, a recurring theme is the need for techniques
that gather telemetry data to meet three specific requirements: (i)
generality: the technique should be applicable to many different
types of telemetry. This is critical as operators are often uncertain
about signals of interest a priori; (ii) fine granularity: telemetry
should be collected frequently enough to facilitate the detection of
short-timescale changes (e.g., bursts); and (iii) cost efficiency: the
processing, memory and storage needed for telemetry should be low
and amenable to be deployed on commodity hardware. Next, we
summarize why existing monitoring solutions failed to fulfill these
requirements.
Traffic mirroring: Mirroring traffic from routers to collectors [42,
45] using specialized hardware can satisfy granularity and gener-
ality as they may allow an operator to run custom queries at any
granularity. However, this does not meet cost efficiency as traffic
volumes increase; e.g., mirroring requires significant bandwidth and
processing, and custom hardware may become too expensive.
Sampling & Network Tomography: Packet sampling approaches
(e.g., SNMP, sFlow) can reduce costs. Unfortunately, polling coun-
ters is resource intensive and hence typically done at a coarse time-
scale, e.g., minutes. Thus, it is not fine-grained and cannot be used
to detect microbursts [44]. Network tomography can make more
out of the collected data, not by increasing the granularity but by
inferring unmeasured metrics (e.g., latencies of sub-paths). Both
traditional and more advanced network tomography [24] only work

Tr : Fine-grained
Time Series

Ts : Coarse-grained
Time Series

Periodic

Sum

Max

Monitoring

Tool

Figure 1: Fine-grained signals 𝑇𝑟 of a networked system are
sampled by monitoring tools, resulting in coarse-grained time
series 𝑇𝑠 available to operators. In practice, 𝑇𝑟 is only available
for training and is collected over a short period using specialized
hardware or traffic mirroring.

on linear relations between signals and known network topology,
lacking generalization.
Programmable switch & eBPF: Recent developments in pro-
grammable switches have enabled different methods of collecting
network telemetry. In-band network telemetry (INT) is a technique
that embeds fine-grained and accurate telemetry in each packet.
While effective, INT generates a substantial amount of data, leading
to high memory and bandwidth usage, thus, is not cost-efficient.
Lighter versions of INT [10, 34, 41] still require homogeneous
programmable hardware and generate a large amount of data. Cus-
tomized algorithms such as sketches offer a cost-efficient approach
to generating fine-grained telemetry. However, these algorithms are
typically designed for specific tasks at design time (e.g., heavy-hitter
detection [16, 38], latency monitoring [8, 11, 43]) or identifying
culprits [15, 37], lack generalization across tasks, and often generate
huge amounts of data that are hard to extract from the device and
store. Even highly optimized solutions using eBPF often fall into
scalability walls. For instance, to reduce its memory and CPU usage,
Millisampler [25] can only monitor and collect fine-grained teleme-
try for a short period (e.g., 20 seconds), potentially missing the most
critical events.

3 Overview
Traditional monitoring techniques fall short in one or more of the re-
quirements (cost-efficiency, fine granularity, and generality) in §2.2.
Our overarching goal is to develop a framework that can fulfill these
requirements in software through network telemetry imputation. We
formulate the problem and then explain the challenges and insights
that drove our design.

3.1 Network imputation
Consider a physical networked system that is described by a set
of fine-grained raw time series 𝑇𝑟 = {𝑇 1

𝑟 , 𝑇 2
𝑟 ,...𝑇𝑛𝑟 }. A monitor-

ing infrastructure senses the physical system using a known sam-
pling/coarsening function 𝑆 , and outputs 𝑇 𝑖𝑠 = 𝑆 (𝑇 𝑖𝑟). For instance, 𝑆
could sample a single value out of every 𝑁 values in 𝑇 𝑖𝑟 , or it could
output the average/max/mean for every window. In total, the output
of the sampling function is a set of coarse-grained time series 𝑇𝑠 =
{𝑇 1
𝑠 , 𝑇 2

𝑠 ,...𝑇𝑛𝑠 }. We illustrate this in Fig. 1. We aim to recover (im-
pute) an approximate 𝑇 𝑖𝑟 : 𝑇 𝑖𝑟 , which, if given as input to the various
management tasks, can improve their performance compared to if
their input was from 𝑇 𝑖𝑠 . This process is illustrated in Fig. 2. 𝑇𝑟 is

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

Ts : Coarse-grained
Time Series

Z m2Net

Tr : Imputed
Fine-grained Time Series

<

Downstream
Tasks

Downstream
Tasks

Downstream
Tasks

Figure 2: Zoom2Net takes a set of coarse-grained time series 𝑇𝑠
as input and outputs imputed fine-grained time series 𝑇𝑟 which
is fed to multiple downstream tasks.

sampled above the Nyquist frequency; thus, there is information
loss that prevents its trivial recovery. We assume there is available
a dataset of fine-grained time series from the network of interest.
This can be practically generated by running for a short period: (i)
an unscalable monitoring tool that cannot be always-on because
of CPU/storage usage, or (ii) an advanced hardware device only
temporarily plugged into the network or (iii) a simple tab/mirror of
traffic. We do not assume the 𝑇𝑠 to be perfectly aligned in time nor
monitored on the same granularity.
Non goals. Our system works offline for model inference and data
analysis. While this would prevent real-time tasks, our system could
already be used to improve debugging, provisioning, and attack
analysis (including all the use cases in §2.1).

3.2 Challenges and Insights
We describe the challenges and insights, through a running example
of a network switch.1 Monitoring queue lengths at fine granularity
could benefit network management tasks, including finding the root
cause of packet drops and network planning. For this example, we
consider fine-grained queue lengths to be of 1ms granularity and
coarse-grained 50ms.
Challenge 1: A single coarse-grained time series is often am-
biguous, making imputation impossible. The network imputation
problem is, by nature, under-constrained: multiple versions of fine-
grained time series, when sampled e.g., below the Nyquist rate, can
produce identical coarse-grained time series. As a result, it is fun-
damentally difficult (if not impossible) to reconstruct the correct
fine-grained version.

We show an example in Fig. 3a, where we plot the queue length of
two queues at fine-grained intervals (at 1ms). Queue 1 has multiple
short bursts while queue 2 has a constantly high queue length. While
the queues display distinct patterns, applying reasonable monitoring
tools such as LANZ [1], which outputs the maximum queue length at
every interval (50ms in this case), results in identical coarse-grained
time series. This is problematic for an operator observing only the
coarse-grained version, as these different queue patterns necessitate
varied approaches for resolution. For instance, a consistently high
queue, such as queue 2 (orange), may require adjustments in con-
gestion control or the adoption of an Active Queue Management
(AQM) system. Conversely, a bursty queue pattern, such as queue

1Data for this example is from an ns-3 simulation which we describe in §6.2.

(a) Two fine-grained queue length time series with distinct behav-
iors at 1ms.

Max Qlen Packet Drop Packet Sent
Queue 1 0.895 0.05 0.74
Queue 2 0.87 0.69 0.98

(b) Signals for two queues sampled at 50ms.

Figure 3: Two distinct fine-grained queue length behaviors result
in the same sampled maximum queue length. But they can be
distinguished from different sampled packet drops and sent
counts.

1 (blue), suggests the presence of a bursty application, calling for a
strategy like pacing for effective management.
Insight: Leveraging multiple time series can often resolve the am-
biguity. Relying solely on a single coarse-grained queue monitoring
time series may not suffice to impute fine-grained queue length. Still,
integrating additional time series can provide the necessary clarity.
Specifically, the two queues in Fig. 3a naturally exhibit significantly
different patterns in terms of packet counts and drop counts which
are also typically monitored e.g., by SNMP [22]. We can observe this
in the normalized Packet drop and Packet sent columns of Table 3b.
Thus, by examining SNMP-like data covering the same time interval,
we can discern distinct traffic profiles for these two queues. In other
words, because queue lengths, packet counts and drop counts time
series are correlated, we can achieve higher accuracy in imputing
fine-grained queue length if we use all three coarse-grained signals
compared to using only maximum queue length.

This situation is typical in networking, where various monitored
time series often display correlations. For example, in data centers,
traffic rates for servers within the same Top-of-Rack (ToR) are cor-
related because they share an uplink (thus, these servers cannot be
concurrently sending data at full capacity in oversubscribed net-
works). Similarly, end-host traffic volume correlates with congestion
window size and Round Trip Time (RTT), which denote current
network conditions.

Leveraging these correlations is a great opportunity for solving
the imputation problem, but they are not trivial to capture. Recent
advancements in generative models [12, 13, 31, 39, 52] offer a
promising solution. Transformers, as sequence-to-sequence models,
excel at learning correlations across lengthy sequences efficiently
via the attention mechanism [46]. Their capacity to generalize ef-
fectively and capture diverse contexts allows them to grasp shared

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(a) Two fine-grained (per 1ms) queue lengths time series with the
imputation result of a plain transformer model.

Max Qlen Packet Drop Packet Sent
Queue 3 0.80 0.06 0.60
Queue 4 0.92 0.086 0.64

(b) Coarse-grained measurements (per 50ms) related to the two queues.

Figure 4: Two distinct fine-grained queue length time series
result in almost identical coarse-grained signals. A transformer
model trained with MSE, having seen both (and more), would
generate an average (green line), obfuscating the burst.

dynamics. This flexibility and efficiency have already established
their popularity in the field of networking [18, 28, 35].
Challenge 2: Ambiguity might remain even when combining
multiple coarse-grained time series. While some scenarios can be
recovered correctly by leveraging multiple correlated coarse-grained
time series, that is not always the case. Indeed, as we decrease the
granularity of the coarse data (increase the zoom-in factor), there will
be more clusters of pairs (𝑇𝑟 ,𝑇𝑠) with identical coarse-grained series
(𝑇𝑠) but distinct fine-grained counterparts (𝑇𝑟). Fig. 4a illustrates such
a case with two queues experiencing a burst at different times, hence
having very different fine-grained queue length time series. Unlike
the previous case (Fig. 3a), though, all coarse-grained time series 𝑇𝑠 ,
namely the maximum queue length, the packet drop counts, and the
sent packet count, are almost identical, as we observe in Table 4b.
Such cases, which we call coarse-grained collisions, are detrimental
to both training and inference. First, a model trained on a dataset with
multiple coarse-grained collisions would take longer to converge and
might be unstable. At a high level, this is the same problem as having
a sample with multiple labels [50, 51]. Second, the output of an ML
model in coarse-grained collisions might be useless. To illustrate this
problem, we train a transformer with simple MSE loss and observe
its behavior in imputing queue 3. The transformer ends up producing
the average of all scenarios with the same coarse-grained input, as
we illustrate in Fig. 4a in green, which would be completely useless
(as it hides the burst itself).
Insight: A plausible (rather than perfect) imputation output
is a more attainable and still useful goal (§4.4). We observe
that oftentimes in coarse-grained collisions i.e., when all correlated
coarse-grained time series are similar, the corresponding ground-
truth fine-grained time series (albeit seemingly different) correspond
to functionally equivalent scenarios.In our example in Fig. 4a, for
instance, there is a burst of similar duration and rate that is shifted

Figure 5: Ground truth fine-grained queue length at 1ms (blue)
and imputed fine-grained queue length from a plain transformer
at 1ms (orange). A plain transformer catches trends but outputs
results inconsistent with maximum and periodic samples.

in time. In such an instance, a system generating any of these ver-
sions would generally meet the expectations of the network operator
interested in burst detection. On the contrary, an average of multiple
instances(as we illustrate in Fig. 4a) would not be acceptable. Even
if the colliding instances do not represent functionally equivalent
scenarios, outputting the correct fine-grained version of one of them
is more useful than outputting an average of all colliding instances.
Ultimately, our primary goal was to automate the thought process
of a highly skilled operator, who would typically attempt to align
the coarse-grained data with any instance they have seen before and
matches. Nonetheless, grouping colliding scenarios can be complex.
Challenge 3: ML does not provide guarantees. The most signif-
icant downside of any ML in the context of telemetry imputation
is that the output lacks correctness guarantees. For example, in
Fig. 5, we observe that the imputed time series (orange line) of a
queue’s length (blue line) generated by a transformer with MSE
loss (plain transformer) is not consistent with the measurements:
the transformer did not impute a queue length that is as high as the
(known) max queue length (red dashed line) of the interval, and the
output at 10ms is not consistent with the corresponding periodic sam-
ple, although they are part of the transformer’s input. It may seem
surprising that the plain model does not "realize" the connection be-
tween the provided max/periodic queue lengths and the ground-truth
(fine-grained) queue lengths. However, this issue arises due to the
inherent challenge of predicting large values when the input data
is predominately skewed towards smaller values. To make matters
worse, the output of the plain model also violates switch-specific
constraints. For example, the total number of packets that would
need to have been dequeued for the imputed queue to be formed
exceeded the SNMP count.
Insight: Incorporate knowledge and enforce consistency with
measurements (§4.2, §4.3). Instead of solely relying on data to train
our model, we leverage knowledge. Concretely, we observe that
there are often correlations across monitored time series that can be
formalized. For instance, given a queue length time series, we can
calculate the number of packets dequeued, which should not exceed
the number of packets sent out. Further, we know that the system’s
output should be consistent i.e., produce the coarse-grained time

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

Refined
Training Dataset

Knowledge
Augmented
Loss

Transformer

Constraints
Enforcement
Module

Ts : Coarse-grained
Time Series

Training

Inference

Tr : Imputed
Fine-grained Time Series

<

<

Tr
m

Figure 6: During training, a transformer model takes refined
training dataset and trains with Knowledge Augmented Loss
function. During inference, the model takes in coarse-grained
time series 𝑇𝑠 and outputs ˆ𝑇𝑚𝑟 which is then corrected by Con-
straints Enforcement Module. The result 𝑇𝑟 is used for down-
stream tasks.

series if sampled with the corresponding operator. We can leverage
these connections to guide the output towards more accurate results.
Inspired by Physics and the extensive work in Physics-Informed-
Neural-Networks [19, 32] and the imaging literature [9], we incorpo-
rate this knowledge during training on the loss function and during
inference through a consistency enforcement module. By embedding
domain knowledge, we increase not only the model’s accuracy, but
also its reliability i.e., the operator can have more confidence that
the result produced is plausible.

4 Zoom2Net Design
Driven by these insights, we design Zoom2Net, which we illustrate
in Fig 6. We start with discussing the formulation of knowledge
(§4.1), which we incorporate into the loss function, forming the
Knowledge Augmented Loss (KAL) function (§4.2), and into a
post-imputation Constraints Enforcement Module (CEM) for output
correction (§4.3). Finally, we discuss ways of refining our training
dataset to reduce the effect of coarse-grained collisions (§4.4).

4.1 Knowledge formulation
In the context of Zoom2Net, we categorize knowledge into two
types: measurement knowledge and operational knowledge.

Measurement knowledge demands that applying monitoring tools
(e.g., max queue length, packet counts) on the imputed fine-grained
time series output should result in coarse-grained measurements. In-
spired by formal methods, we articulate such knowledge as equality
constraints Φ(𝑇𝑟 ,𝑇𝑠).

Φ(𝑇𝑟 ,𝑇𝑠) = 0 (𝐶𝑒𝑞𝑢𝑎𝑙)

𝑤ℎ𝑒𝑟𝑒 Φ(𝑇𝑟 ,𝑇𝑠) = 𝑇𝑠 − 𝑆 (𝑇𝑟)

Here, 𝑆 represents the sampling/coarsening function. Importantly,
such constraints are extremely easy to identify because they are the
result of monitoring.

The operational knowledge captures the correlations between dif-
ferent signals. For instance, the count of enqueued packets should not
exceed the count of sent packets. These relationships are expressed
as inequality constraints Ψ(𝑇𝑟 ,𝑇𝑠).

Ψ(𝑇𝑟 ,𝑇𝑠) ≤ 0 (𝐶𝑖𝑛𝑒𝑞𝑢𝑎𝑙)

There are cases where correlations include comparison and logical
operators (e.g., ≤, ∨). To integrate such constraints into our system,
we transform the operators into expressions that output 𝑇𝑟𝑢𝑒 or
𝐹𝑎𝑙𝑠𝑒. For example, to test if the constraint 𝑎 < 𝑏 is satisfied, we
formulate it as 𝑠𝑡𝑒𝑝 (𝑎 − 𝑏) with a step function.

Identifying and formulating measurement constraints is straight-
forward, as operators are typically familiar with their monitoring
functions/tools. Formulating operational constraints might require
more domain knowledge, but identifying them can be automated by
running pure correlation tests e.g., Pearson’s Correlation Coefficient
among the available signals.

Zoom2Net does not necessitate time series to be perfectly aligned.
Indeed, as the transformer learns directly from data it can catch
correlations from time series that are not perfectly synchronized (e.g.,
due to unsynchronized clocks or because of different granularity
intervals). If there is an unknown time shift, it is (in theory) possible
that the operational constraints are violated in the ground truth (thus,
it is better not to be used). Yet, in practice, we don’t see this because
operational constraints are typically loose. Measurement constraints
are not affected.

4.2 Knowledge Augmented Loss (KAL)
We designed our loss function to enable the model to learn data
correlations and distributions, while also guiding it to satisfy the
constraints derived from our knowledge.

4.2.1 Loss metrics. Loss functions that minimize point-wise dis-
tance, such as MSE, are designed to make the output closely resem-
ble the ground truth, allowing the model to learn data correlations
and patterns. However, we noted that MSE encourages the model to
find averages among plausible solutions. This becomes particularly
problematic when the data is predominately skewed towards smaller
values, resulting in overly smooth outputs that struggle to capture
bursts [36]. To address the challenge of preserving correlations while
overcoming the tendency towards averaged behaviors, we introduce
Earth Mover’s Distance (EMD) as another term in the loss function.
EMD measures the minimum cost required to transport the mass
of one distribution to match another. By incorporating EMD, we
aim to encourage the model output not only to closely match target
values but also to mirror the structure and uncertainty inherent in
the target distribution. By minimizing both MSE and EMD, our loss
function guides the model to adapt to the data’s characteristics. This
combined loss function is expressed as:

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 = 𝑀𝑆𝐸 (𝑇𝑚𝑟 ,𝑇𝑟) + 𝜆 𝐸𝑀𝐷 (𝑇𝑚𝑟 ,𝑇𝑟)

where𝑇𝑚𝑟 is model output and𝑇𝑟 is target value, 𝜆 is a hyperparame-
ter to balance the two loss terms.

4.2.2 Knowledge constraints satisfaction. Given the equality
and inequality constraints defined in §4.1, the challenge is how to
inform the transformer of the knowledge we have. To address this
limitation, our goal is to solve for a set of transformer parameters

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

minimizing the loss 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 over the training dataset while also
satisfying all the knowledge-based constraints. That is, we aim to
solve the optimization problem:

min 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 s.t. Φ𝑘 (ˆ𝑇𝑚𝑟 ,𝑇𝑠) = 0, 𝑘 ∈ {1, ..., 𝐾} (1)

Ψℎ (ˆ𝑇𝑚𝑟 ,𝑇𝑠) ≤ 0, ℎ ∈ {1, ..., 𝐻 }

where 𝐾 and 𝐻 are the number of equality and inequality constraints,
respectively. To enable the model to learn and adhere to the specified
constraints, we adopt the augmented Lagrangian method, inspired
by [19]. This method involves introducing penalty terms into the
objective function to account for constraint violations. To do so,
we further convert the constraints to differentiable terms. For in-
stance, we leverage hyperbolic functions to represent a smoothed
step function.

For each constraint in (1), we define a separate Lagrange variable.
We define a variable 𝜆𝑒𝑞

𝑘,𝑖
for each equality constraint Φ𝑘 evaluated

at each training data (ˆ𝑇𝑟𝑖 ,𝑇𝑟𝑖), and similarly 𝜆
𝑖𝑛𝑒𝑞

ℎ,𝑖
at each point

(ˆ𝑇𝑟𝑖 ,𝑇𝑟𝑖) for all the inequality constraints Ψℎ . The augmented La-
grangian loss function is then given by:

𝐿𝑎𝑢𝑔 = 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (ˆ𝑇𝑚𝑟 ,𝑇𝑟) +
∑︁
𝑖∈𝑁
𝑘∈𝐾

𝜇Φ𝑘 (ˆ𝑇𝑚𝑟𝑖 ,𝑇𝑠𝑖)
2

+
∑︁
𝑖∈𝑁
𝑘∈𝐾

𝜆
𝑒𝑞

𝑘,𝑖
Φ𝑘 (ˆ𝑇𝑚𝑟𝑖 ,𝑇𝑠𝑖) +

∑︁
𝑖∈𝑁
ℎ∈𝐻

𝜆
𝑖𝑛𝑒𝑞

ℎ,𝑖
Ψℎ (ˆ𝑇𝑚𝑟𝑖 ,𝑇𝑠𝑖 ,)

+
∑︁
𝑖∈𝑁
ℎ∈𝐻

𝜇 [𝜆𝑖𝑛𝑒𝑞
ℎ,𝑖

> 0 ∨ Ψℎ > 0]Ψℎ (ˆ𝑇𝑚𝑟𝑖 ,𝑇𝑠𝑖)
2

where 𝑁 is the training dataset size and 𝜇 is penalty coefficient. We
initialize 𝜇 to be 1e−3 and 𝜆 to be 0. During each iteration of training,
we minimize 𝐿𝑎𝑢𝑔 via gradient descent while keeping the values of
𝜇 and 𝜆 fixed. After the transformer model has converged, we update
𝜇 and 𝜆 according to the update rules:

𝜇 ← 𝜇 ∗ 𝜇𝑚𝑢𝑙𝑡
𝜆
𝑒𝑞

𝑘,𝑖
← 𝜆

𝑒𝑞

𝑘,𝑖
+ 2 ∗ 𝜇 ∗ Φ𝑘 (ˆ𝑇𝑟𝑖 ,𝑇𝑠𝑖)

𝜆
𝑖𝑛𝑒𝑞

ℎ,𝑖
← (𝜆𝑖𝑛𝑒𝑞

ℎ,𝑖
+ 2 ∗ 𝜇 ∗ Ψℎ (ˆ𝑇𝑟𝑖 ,𝑇𝑠𝑖))+

𝑤ℎ𝑒𝑟𝑒 𝑥+ =𝑚𝑎𝑥{0, 𝑥}

where 𝜇𝑚𝑢𝑙𝑡 is a hyperparameter of value 1.5. Then, we start an-
other round of training on the transformer model with the updated
Lagrange variables. This process is repeated until the constraint vio-
lations reach a saturation point and stop decreasing. In each iteration,
the Lagrange multipliers 𝜆 are updated by incrementing them based
on the violations of the corresponding output data multiplied by
𝜇. The importance of a violation in the loss function increases as
the violation magnitude becomes higher, requiring more effective
minimization. Training with these penalty terms enables the model
to learn the consistency between the input and output, enforced by
the constraints.

Training
Dataset

Collision Test
&

Refine module

Refined
Training Dataset

Untouched
data

Refined
data

Figure 7: Training dataset goes through a collision test where
a small portion of data with close coarse-grained input but dis-
tinct fine-grained output is consolidated into one class while the
majority remains untouched, forming a refined training dataset.

4.3 Constraint Enforcement Module (CEM)
While the incorporation of constraints in the loss function improves
the imputation accuracy, it still provides no guarantee that the con-
straints will be satisfied. Thus, we introduce the Constraint En-
forcement Module (CEM) which aims at correcting the output of
the transformer (i.e., forces it to satisfy the specified constraints)
while changing it as little as possible. CEM uses the Integer Lin-
ear Programming (ILP) solver Gurobi [2] to correct the output of
the ML model according to the constraints (𝐶𝑒𝑞𝑢𝑎𝑙 , 𝐶𝑖𝑛𝑒𝑞𝑢𝑎𝑙). We
use variables 𝑇𝑟 [𝑡] to denote the corrected output at each time step.
To ensure that the corrected time series remains close to the ML
model’s output, we use the following objective that minimizes the
total difference between the corrected and original values, ignoring
the time steps in which the data is sampled.

min
𝑇−1∑︁

𝑡=0, 𝑡∉𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑠

|𝑇𝑟 [𝑡] −𝑇𝑚𝑟 [𝑡] |

4.4 Target refinement
As we discussed in §3.2, certain scenarios involve the same coarse-
grained input 𝑇𝑠 occurring multiple times in the training dataset,
each time associated with a distinct fine-grained target. This one-
to-multiple mapping poses challenges for the training convergence
of the transformer and risks the usefulness of the result. To address
this challenge, we designed a target refinement module shown in
Fig 7. The module acts solely on training data and is composed of a
collision test and a refinement mechanism. We first discuss how to
refine the distinct targets for the same coarse-grained input, and then
delve into how to identify the training data that needs to be refined
automatically.

First, we observe that although the distinct target values asso-
ciated with the same input exhibit variations in values, they share
the same trends and patterns. If presented with only a single target,
the transformer model should learn these shared patterns effectively.
Therefore, we aim to provide the model with the same set of plau-
sible targets for the same input in the training set. We use a set of
targets instead of one because all target values are valid and equally
plausible. To achieve this, we consolidate the different targets asso-
ciated with the same input 𝑇𝑠 into a class 𝑇𝑐𝑙𝑎𝑠𝑠𝑟 . We define the loss
𝐿𝑐𝑙𝑎𝑠𝑠 to be the minimum difference between the transformer output
ˆ𝑇𝑚𝑟 and each target in the class.

𝐿𝑐𝑙𝑎𝑠𝑠 = min
∀𝑇𝑟 ∈𝑇 𝑐𝑙𝑎𝑠𝑠

𝑟

𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (ˆ𝑇𝑚𝑟 ,𝑇𝑟)

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

This encourages the transformer to match its output to the closest
target and backpropagate the difference. Even when the same input
occurs multiple times, the transformer matches the same target and
effectively learns the patterns.

A significant challenge within this approach is defining what con-
stitutes a class that encapsulates data with same inputs but different
outputs. Inputs are rarely numerically identical, and determining
the proximity of inputs that should result in the same output is
challenging due to the complexity of transformer models with thou-
sands of parameters. To address this challenge, we train a basic
transformer using the raw training dataset and 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 as the loss
function. After training the basic transformer, instances with close
imputed outputs indicate that the transformer cannot distinguish the
difference in their inputs, implying that the inputs are close enough.
Consequently, we identify inputs in the training dataset as part of
the same class if: (i) their basic transformer outputs are close; and
(ii) their fine-grained targets are far apart.

5 Implementation
We implement Zoom2Net using Python 3.8 and Pytorch 2.0. We
train the transformer model on an Nvidia Tesla T4-16GB GPU.
The model architecture includes a one-layer transformer encoder
followed by a linear layer. We choose not to include a decoder in the
architecture because the output is conditioned on the rest of the data
in the time series, eliminating the need for a masking mechanism.
In contrast, GPT (Generative Pre-trained Transformer) models, for
example, require a decoder because each token is conditioned on the
previous tokens. We utilize 4 parallel heads to attend to time series
from different representation subspaces simultaneously. The loss
function is optimized using the Adam optimizer. The learning rate
starts from 1 × 10−4 and decays by a factor of 0.1 after the model
stops improving for 10 epochs. In our testbed, training each use
case averages 20 minutes facilitated by the transformer’s parallel
processing capabilities.

For each dataset used for training and testing, we use the origi-
nal data as fine-grained ground truth and downsample it to coarse-
grained input. The downsampling methods and zoom-in factors
depend on the specific real-world use case. The features include
correlated telemetry collected together. When the downsampling
frequency is periodic, we exclude timestamps from features. In cases
where measurements are not periodic, we replace real timestamps
with relative timestamps to help transformers capture temporal cor-
relations. We define the length of fine-grained output as window
size, and the length of coarse-grained input as 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑧𝑜𝑜𝑚−𝑖𝑛 𝑓 𝑎𝑐𝑡𝑜𝑟 . The
window size varies across different use cases based on temporal
correlations. We normalize the dataset using the min-max method,
training our model on 80% of the samples and evaluating it on the
remaining 20%.

When running the ILP solver Gurobi, we parallelize coarse-
grained intervals across different processes on multiple cores to
accelerate the solving process. For example, solving a 1000ms time
window with a zoom-in factor of 50 initiates 20 processes. This
parallelization is possible because the constraints are defined inde-
pendently for each interval.

6 Evaluation
We evaluate Zoom2Net across different case studies, using synthetic
and real-world data, and we compare it with state-of-the-art ap-
proaches. Our evaluation aims to answer the following key questions
on both imputation accuracy and downstream task accuracy:
(Q1) How does Zoom2Net perform compared to directly using
coarse-grained data?
(Q2) How does Zoom2Net perform against statistical baselines and
state-of-the-art time-series imputation models?
(Q3) How does the performance of Zoom2Net change when we
increase the zoom-in factor?

We find that Zoom2Net performs up to 5 times better in down-
stream tasks compared to using coarse-grained data directly. Zoom2Net
outperforms baselines in imputation accuracy by 33-53%, with a
similar MSE achieved. It improves downstream tasks by an average
of 38% compared to baselines. Zoom2Net’s performance in imputa-
tion accuracy and downstream tasks degrades by an average of 0.4%
and 7% with increasing the zoom-in factor by 50.

6.1 Methodology
We compare Zoom2Net against statistical and ML methods.
Pure coarse-grained data: To evaluate the scenario in which the
coarse-grained data is used directly, we still need to convert the time
series to the appropriate size first. Hence, we use a statistical method,
namely IterativeImputer [40], that retains the periodic samples and
models missing values as linear functions of other features iteratively.
To incorporate measurements such as the maximum value, we place
them at the midpoint of each interval.
K-nearest neighbors (KNN): KNN is a straightforward yet effective
technique that has been used for image super-resolution tasks. For a
given coarse-grained data, KNN identifies the nearest K training data
inputs and calculates the average of the K labels as the output. The
choice of K is determined through experimentation to yield optimal
performance.
Plain transformer: This is a transformer model trained using MSE
(without our improvements e.g., the knowledge incorporation, or the
refinement step).
Brits [14]: Brits employs bidirectional recurrent neural networks for
imputing missing values in time series data. To adapt Brits to our
settings, we incorporate sampled values such as sum and max by
placing them at the end of the time interval and use Brits to impute
values between periodic samples.
Metrics. We evaluate Zoom2Net and our baselines by their im-
putation accuracy and their performance in downstream tasks. To
quantify imputation accuracy, we calculate autocorrelation, distance,
and distribution differences between imputed time series and the
ground truth. Next, we evaluate the quality of imputation by compar-
ing the performance of downstream tasks using the imputed results
as input against using the ground truth. For each of the metrics, we
report average 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 =

|𝑡−𝑡𝑟𝑒𝑎𝑙 |
𝑡𝑟𝑒𝑎𝑙

over the testing dataset,
where 𝑡𝑟𝑒𝑎𝑙 is the ground truth of a metric and 𝑡 is the measured
value. Because the errors have very different scales over different

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

methods, we normalize the relative errors of each metric to [0.1, 0.9]
for better visualization.
Case studies and goals. We consider three case studies to show
Zoom2Net capabilities. For each of these, we first explain an exam-
ple scenario in which operators have certain downstream tasks in
mind. Next, we explain how we use an existing or synthetic dataset
to evaluate Zoom2Net in this scenario. While the dataset we use
contains fine-grained time series, we treat this as ground truth; thus,
we assume it is not available to the operator to use directly. This is
realistic as it is effectively equivalent to collecting very fine-grained
data for a very short period of time to train on. The downstream
tests run on input that is calculated by Zoom2Net (or by other base-
lines). The input of Zoom2Net (and of the other baselines) is the
coarse-grained version of each time series in the dataset.

6.2 Case study 1: ToR burstiness in a Cloud
Consider an operator of a large data center who has to run a set of
downstream tasks, e.g., deciding how much on-chip buffer to provi-
sion to network switches, or detecting adversarial traffic patterns. To
inform these tasks, the operator needs to learn about burst properties
in queue lengths, specifically burst position, height, frequency, inter-
arrival distance, duration, and volume. Accurate analysis requires
fine-grained switch queue length measurements at the millisecond
level. Alternatively, they can use link utilization measurements as
a proxy for queue length collected at data center RTT granularity,
i.e., 1ms, as demonstrated by researchers at Meta [25]. We test both
cases using a synthetic dataset and a dataset released by Meta.
Synthetic Dataset. We generate a dataset using ns-3 simulator [4],
simulating a leaf-spine topology as described in [3, 6]. The switches
in the simulation adhere to the features of Broadcom TridentII [5]
and are configured with Dynamic Thresholds [17] as buffer man-
agement scheme. The generated traffic follows web search and in-
cast traffic patterns, incorporating various settings for traffic load,
burst size, burst frequency, and congestion control algorithms (e.g.,
DCTCP and Cubic). During simulation, we collect fine-grained time
series (ground truth), including queue lengths, per-port packet, and
drop counts every 1 ms. We generate coarse-grained time series by
sampling the fine-grained ones at 50ms granularity, mimicking the
following monitoring tools: i.e., (i) LANZ [1], which provides the
per-queue maximum length within each interval, (ii) SNMP [22],
which provides per-port counts of packets sent and dropped every
interval; and (iii) periodic sampling. Our training dataset contains
8,000 data points. Imputation goal: Zoom2Net takes maximum,
periodic sampled queue length, packets dropped, and packets sent
count at 50ms granularity and produces 1ms fine-grained queue
lengths. We then identify bursts using a specific method in [49] and
calculate the relative errors of burst timestamps, height, frequency,
interarrival time, duration and volume between the ground truth and
Zoom2Net output.
Meta Dataset. We use a public dataset from Meta [25] which con-
tains link utilization, retransmission traffic, in-congestion traffic, and
connection counts at a fine-grained resolution of 1ms. We aggregate
them at intervals of 50ms to create coarse-grained data. In total, we
use a training set of 20,000 data points. Imputation goal: Zoom2Net
takes the aggregated measurements at 50ms granularity and produces

1ms fine-grained link utilization. We identify bursts and their charac-
teristics using the method described in the data source [25].
Synthetic data constraints. We use three constraints on imputed
queue lengths 𝑇𝑟 for every coarse time interval 𝑇 (50ms).

Measurement constraints are simple inversions of the known
functions used for coarsening (i.e., the monitoring tools). Concretely,
we require that the maximum value of the imputed queue length time
series at every interval equals the value that LANZ reported𝑚_𝑚𝑎𝑥 ,
and the instantaneous queue length𝑚_𝑙𝑒𝑛𝑡 equals the value of the
periodic sampling at 𝑡𝑡ℎms.

max
0≤𝑡<𝑇

𝑇𝑟 [𝑡] =𝑚_𝑚𝑎𝑥 (𝐶1)

∀𝑡 ∈ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . 𝑇𝑟 [𝑡] =𝑚_𝑙𝑒𝑛𝑡 (𝐶2)

Operational constraints express the connection between switch
operation and the counts of packets sent from SNMP measurements.
If a queue is nonempty for 𝑁𝐸 ms, then at least 𝑁𝐸 packets have
been dequeued, as schedulers are work-conserving. An empty queue
can send a packet if one arrives; hence 𝑁𝐸 is a lower bound on
packets sent count (𝑚_𝑜𝑢𝑡).

𝑁𝐸 ≤ 𝑚_𝑜𝑢𝑡 (C3)

𝑤ℎ𝑒𝑟𝑒 𝑁𝐸 =

𝑇−1∑︁
𝑡=0

𝑖𝑡𝑒 (𝑇𝑟 [𝑡] > 0, 1, 0)

Meta data constraints. We formulate four constraints for imputed
link utilization 𝑇𝑟 for every coarse time interval 𝑇 (i.e., 50ms). Mea-
surement constraints come from the measurement of aggregated
traffic rates𝑚_𝑠𝑢𝑚.

𝑇−1∑︁
𝑡=0

𝑇𝑟 [𝑡] =𝑚_𝑠𝑢𝑚 (𝐶4)

Operational constraints for imputed link utilization data articulate
its relationships with congestion and retransmission. The imputed
link utilization should be at least the number of bytes in both con-
gestion (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑠𝑢𝑚) and retransmitted (𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡_𝑠𝑢𝑚) sce-
narios. In the presence of congestion during a 50ms interval, there
should be at least one burst observed in the imputed link utilization.

𝑇−1∑︁
𝑡=0

𝑇𝑟 [𝑡] ≥ 𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡_𝑠𝑢𝑚 (𝐶5)

𝑇−1∑︁
𝑡=0

𝑇𝑟 [𝑡] ≥ 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑠𝑢𝑚 (𝐶6)

𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛_𝑠𝑢𝑚 > 0→ max
0≤𝑡<𝑇

𝑇𝑟 [𝑡] ≥
1
2
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (C7)

Zoom2Net captures the structural pattern of the fine-grained
time series better than baselines, although it results in higher
MSE (Q2). Fig. 8a and Fig. 8b summarize the metrics for Zoom2Net
accuracy on both datasets. Zoom2Net outperforms baselines in EMD,
autocorrelation, and the 99th percentile by 33–53% in the synthetic
dataset. Unsurprisingly, the plain transformer, which is trained with
MSE, has the lowest error in MSE, as it generates overly smooth
and, hence, low values for queue lengths. On the contrary, the in-
corporation of EMD in the loss function prompts Zoom2Net to
de-emphasize minor shifts in burst positions, which hurts MSE but

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

(a) Case-1 Synthetic (b) Case-1 Meta (c) Case-2 MLab (d) Case-3 VPN

Figure 8: Zoom2Net outperforms baselines in EMD, Autocorrelation, and 99p accuracy, leading to superior performance in downstream
tasks. The plain transformer achieves the lowest MSE by generating overly smooth results.

(a) Burst analysis for Case-1 synthetic (b) Burst analysis for Case-1 Meta (c) Page loading time for Case-2 MLab

Figure 9: Normalized error for downstream task performance. (a) and (b) show that Zoom2Net effectively captures burst behaviors in
both synthetic and real-world datasets. (c) demonstrates that Zoom2Net precisely estimates webpage loading time for various websites
by imputing accurate sending rates. Overall, Zoom2Net surpasses baselines by 38%.

encourages more accurate imputation of the burst shape. For Meta
data, the three metric accuracies (EMD, autocorrelation, and the
99th percentile) of Zoom2Net imputed link utilization is better than
baselines by a margin of 33%.
Zoom2Net effectively recovers bursts, outperforming other base-
lines in all downstream tasks (Q2). As shown in Fig. 9a, Zoom2Net
achieves a significant improvement in burst properties ranging from
10% to 88% over all baselines in all tasks for synthetic data. Notably,
Zoom2Net attains an average error of only 4% for burst position,
even though Zoom2Net loss (including EMD) treats slightly shifted
bursts as equivalent, demonstrating its effectiveness in capturing
network dynamism. Across burst analysis for the real-world data in
Fig. 9b, Zoom2Net exhibits an average performance superiority of
30%. There are cases where certain baselines perform comparably
with Zoom2Net, such as plain transformer and Brits. This can be
attributed to the characteristics of the dataset. The data is skewed to-
wards smaller values with the infrequent occurrence of bursts lasting
1-2ms, leading to low errors in the 99th percentile, autocorrelation,
burst height and frequency.
Zoom2Net enhances performance compared to directly using
coarse-grained data (Q1). Zoom2Net achieves up to 5 times better
performance in downstream tasks compared to using coarse-grained
data directly. This highlights the critical role of Zoom2Net in learn-
ing from data to improve downstream tasks.
Zoom2Net leverages correlations learned in different settings.
The synthetic testing dataset includes combinations of traffic patterns
and congestion control algorithm settings that were not present
in the training set. Remarkably, Zoom2Net performs even better
on these unseen settings by an average of 30% compared to the
scenarios in the training set. This underscores Zoom2Net’s capacity
to apply learned correlations effectively to diverse, previously unseen
scenarios.

6.3 Case study 2: CDN PoP selection
Consider a Content Delivery Network (CDN) operator managing
multiple Point-of-Presence (PoP) and serving different webpages
to users. When determining the optimal PoP for serving diverse
webpages to diverse users, the operator needs to estimate the time it
takes for different amounts of data (corresponding to each webpage)
to reach users from each PoP. Observe that because of congestion
control and the heterogeneity of networks, predicting time to transfer
is not trivial, i.e., it is not a linear connection. The operator can
calculate the time required to send varying amounts of webpage
data from each PoP to each user around the globe by observing the
sending rate of the user-PoP pair over time. In practice, the operator
cannot send varying amounts of data to users and record the time of
reach. Instead, they have access to user-initiated network speed tests
using Network Diagnostic Tools (NDT) at a coarser granularity.
MLab Datasets. For this demonstration, we leverage data from the
M-Lab project’s NDT measurements [26]. The NDT measurements
capture TCPInfo and BBRInfo statistics from each snapshot of a
data transfer that spans 250ms on average. These statistics include
achieved throughput, minimum RTT, bytes sent, retransmitted, and
more. M-Lab also provides packet traces recorded during NDT
measurements. These traces provide transmission rates, forming
the fine-grained time series at 10ms granularity. Our training set
contains 5000 data points. Imputation goal: Zoom2Net leverages
coarse-grained NDT measurements recorded at 250ms intervals to
impute fine-grained sending rates at a 10ms granularity. We profile
the number of bytes loaded by 10 Top Alexa websites, excluding
failed ones. We calculate the cumulative distribution of sending rates
to estimate the time required to load the websites.
Constraints. We formulate two measurement constraints related to
the maximum sending rate and aggregated sending traffic volume,
expressed similarly as (𝐶1) and (𝐶4).

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 10: Zoom2Net improves accuracy and stability of VPN
traffic classification by recovering features from imputed traces.

For operational constraints, the first one ensures that traffic vol-
ume is at least the number of bytes retransmitted, similar to (𝐶5).
Furthermore, when the NDT measurement period (𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒) is
shorter than the RTT, the sending traffic should not exceed the prod-
uct of the Maximum Segment Size (𝑀𝑆𝑆) and congestion window
size (𝑆𝑛𝑑𝐶𝑤𝑛𝑑). If the measurement period is shorter than the time
spent waiting for the receiver window (𝑅𝑤𝑛𝑑𝐿𝑖𝑚𝑖𝑡𝑒𝑑), indicating
the sender waiting and pauses sending, the traffic rate should remain
at 0.

𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒 ≤ 𝑅𝑇𝑇 →
𝑇−1∑︁
𝑡=0

𝑇𝑟 [𝑡] ≤ 𝑀𝑆𝑆 × 𝑆𝑛𝑑𝐶𝑤𝑛𝑑 (𝐶8)

𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒 ≤ 𝑅𝑤𝑛𝑑𝐿𝑖𝑚𝑖𝑡𝑒𝑑 →
𝑇−1∑︁
𝑡=0

𝑇𝑟 [𝑡] = 0 (𝐶9)

Zoom2Net’s fine-grained output provides an accurate estimate
of page loading time to users around the globe (Q1, Q2). Fig. 9c
illustrates the average error in page loading time estimation for 10
top Alexa websites, sorted by the number of bytes they load. The
amount of data transmitted by these websites ranges from 300KB
to 10MB. Zoom2Net shows an average improvement of 43% in
accuracy in loading time estimation compared to other baselines.
We observe that Zoom2Net’s accuracy improves with an increasing
number of bytes loaded. This is due to the normalization of smaller
values to even smaller scales, where Zoom2Net is less effective
at capturing minor variations. In Fig. 8c, Zoom2Net shows better
performance by 44% on average across statistics metrics.

6.4 Case study 3: Encrypted traffic
classification

Consider a network practitioner tasked with detecting encrypted
VPN traffic based on flow-based time-related features, such as flow
duration, maximum, minimum forward/backward inter-arrival time,
and packet size [21]. The practitioner had access to a packet trace,
which they used to extract these features and train their model. Then
they discarded the trace due to its impractically large size for storage
and privacy concerns. Some months later, the practitioner discovers
new features useful for classification, but they cannot retrain because
the original traces are no longer available for additional feature
extraction. Zoom2Net offers a solution in this scenario. When the
practitioner initially extracts features from the trace, they can use
these features as coarse-grained input for Zoom2Net to impute the
packet trace, aiming to recover details such as the arrival time and
length of each packet. The practitioner can then keep the Zoom2Net
model and discard the trace. Later, they can extract new features

(a) Normalized relative error of im-
putation accuracy

(b) Normalized relative error of
downstream task accuracy

Figure 11: Zoom2Net does not exhibit substantial performance
degradation under different zoom-in factors.

from the imputed trace and add to classification tasks. This provides
the flexibility to extract new features without the overhead of storing
large packet traces, enabling a more adaptive approach to feature
engineering and classification.
VPN Datasets. In this case study, we begin with a real-world packet
trace dataset [21]. From this data, we extract features such as maxi-
mum and minimum forward/backward inter-arrival time, and max-
imum packet length which serve as the coarse-grained input. We
formulate the fine-grained data, specifically packet arrival time and
packet length by parsing the trace. We use a training set of 3,300
data points. Imputation goal: Zoom2Net uses a single set of coarse-
grained features extracted from packet traces to generate fine-grained
packet trace information of averaged 20 packets. From the imputed
packet trace information, we extract additional features flow duration
and flow rates, and add them to the initial features for classification.
Constraints. We utilize measurement constraints specific to the
minimum and maximum of forward/backward inter-arrival time, and
maximum of packet length. They are formulated similar to (𝐶1).
Zoom2Net can recover features by imputing packet traces, im-
proving traffic classification accuracy (Q1, Q2). In Fig. 10, we
report the classification accuracy of a multi-layer perceptron model
that uses the union of ground-truth features calculated on the initial
trace with additional features calculated on the imputed trace. The
different bars illustrate the source of the additional features: ground-
truth traces, KNN-imputed traces, plain transformer-imputed traces,
and the case where no additional feature is added. Each scenario runs
for 10 times. We observe that the classification accuracy using fea-
tures extracted from Zoom2Net-imputed traces is comparable to that
extracted from the ground truth and higher than scenarios without
additional features, demonstrating the effectiveness of Zoom2Net
in capturing the correlations and characteristics of traces. Notably,
the classifier trained with Zoom2Net-imputed features is more sta-
ble. The minimum and the first quartile of Zoom2Net’s accuracy
are the highest among baselines. For statistical metrics in Fig. 8d,
Zoom2Net demonstrates a notable average performance improve-
ment of 53% over other methods. The given dataset lacks periodic
samples, restricting the applicability of pure coarse-grained data and
Brits so we did not compare with them.

6.5 Zoom-in factor analysis
In this section, we evaluate the performance of Zoom2Net under
different zoom-in factors, defined as the ratio of coarse granularity

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

Window Size Zoom-in
Transformer

Transformer
(second) Factor +CEM

0.25 50 0.00054 0.145
0.5 50 0.00056 0.215
1 50 0.00094 0.394
1 25 0.00070 0.532
1 100 0.00052 0.285

Table 1: Zoom2Net running time in seconds in case study §6.2

and fine granularity. Using the Meta dataset from §6.2, we evaluate
three zoom-in factors: 25, 50, and 100. We calculate their relative
error compared to the ground truth and normalize the error using
the same normalization factor as in §6.2 to facilitate comparisons
with other baseline methods. When we increase the zoom-in factor
from 50 to 100, Fig. 11 shows that imputation accuracy increases by
0.4% and downstream tasks accuracy increases by 7%. Remarkably,
the imputation accuracy with a factor of 100 outperforms baselines
with a factor of 50 by an average of 32%. The overall performance
remains superior to baselines by 23% on average. These results
underscore Zoom2Net’s capability to effectively impute super coarse-
grained data to fine-grained measurements.

7 Discussion
In this section, we discuss practical considerations regarding Zoom2Net.
First, we report the running time of Zoom2Net, which is critical to
determine its suitability for real-time applications, even though real-
time operation is not within the scope of the paper. We have found
that the CEM (Consistency Enforcement Module) dominates the
running time. Next, we present a technique to quantify and reveal the
model’s confidence, a feature that can be very useful for operators.
Timing analysis The running time of Zoom2Net is dominated by
the CEM. Indeed, running the transformer inference alone takes less
than 1ms, while the entire system takes less than 0.55s in all use
cases we evaluate. CEM’s running time varies significantly across
different use cases as it depends on the corresponding constraints.
For example, case-1 synthetic (§6.4) takes 0.15s less compared to
case-1 Meta (§6.2) with the same zoom-in factor and window size.

Time-window size and zoom-in factor also affect the running time,
although not as much as CEM. We observe that the overall system
running time increases with larger window sizes and smaller zoom-
in factors, due to a higher number of intervals that need correction.
We run the case study in §6.2 with Meta’s data using different
combinations of. Table 1 summarizes the running time of Zoom2Net
in seconds with and without CEM and with different combinations
of window sizes and smaller zoom-in factors.
Model Confidence In deploying Zoom2Net, it is crucial for opera-
tors to gauge the model’s confidence in its predictions to determine
its reliability. A lower confidence level might suggest the need for
human analysis rather than solely relying on the automated output.
To facilitate this, we incorporate Monte Carlo dropout as a method
for estimating uncertainty, as described in [23]. Originally used
during training to prevent overfitting, dropout also serves as an ap-
proximation to a probabilistic deep Gaussian process when applied
during inference. By enabling dropout during inference and execut-
ing multiple stochastic forward passes through the model, we can
assess variability in the predictions. A high variance among these

Figure 12: Training dataset refinement helps reduce model un-
certainty.

passes indicates a higher uncertainty. For each input, we conduct 100
forward passes and use the standard deviation of these outputs as the
uncertainty score. One typical source of uncertainty is the inherent
noise in the training data [30]. In our case, coarse-grained time series
collisions (§3.2) can lead to model uncertainty. In Fig 12, we show
the effect of using the refined training dataset on the uncertainty of
the model described in case study §6.2. The refinement module in
§4.4 allows the model to learn essential correlations and improve
the certainty of its output.
Generalization Beyond the three use cases discussed in Section 6,
we anticipate that our approach can be applied to a wide variety of
real-world scenarios. Specifically, Zoom2Net is likely to be effective
across any set of correlated network time series, provided there
is access to a small, fine-grained dataset for these series and the
specific functions of the coarsening operators (i.e., the monitoring
tools) are known. The performance of Zoom2Net can be significantly
enhanced by mathematically articulating some of the correlations
among the time series. Training Zoom2Net periodically would be
beneficial to mitigate the effects of distribution shifts [29].

8 Conclusion
This paper presents a new paradigm for network telemetry. Instead of
improving hardware or collection algorithms, we advocate for post-
collection software telemetry imputation. We present Zoom2Net, an
ML-based system that analyzes multiple correlated coarse-grained
time series to impute their fine-grained counterparts. What sets
Zoom2Net apart is its incorporation of domain knowledge through
operational and measurement constraints. We explored several use
cases for Zoom2Net using synthetic and public datasets and demon-
strated Zoom2Net’s capability to accurately impute diverse types of
telemetry data. The results highlight the effectiveness of Zoom2Net
in facilitating reliable downstream tasks.

Acknowledgements
We thank our shepherd Prof. Athina Markopoulou and the anony-
mous SIGCOMM reviewers for their constructive feedback and
suggestions. This work was supported by the National Science Foun-
dation (NSF) through Grants CNS-2319442 and CNS-2312539, a
Google Research Scholar Award, and a Princeton Innovation Fund
Award.

Zoom2Net: Constrained Network Telemetry Imputation ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] 2016. Arista LANZ Overview. https://www.arista.com/assets/data/pdf/

Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf. (2016).
[2] 2024. Gurobi solver. (2024). https://www.gurobi.com/.
[3] 2024. ns3-datacenter. https://github.com/inet-tub/ns3-datacenter. (2024).
[4] 2024. NS3 Network Simulator. https://www.nsnam.org/. (2024).
[5] 2024. Trident2 / BCM56850 Series, High-Capacity StrataXGS® Trident II Eth-

ernet Switch Series. https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56850-series. (2024).

[6] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid, and Laurent
Vanbever. 2022. ABM: Active buffer management in datacenters. In Proceedings
of the ACM SIGCOMM 2022 Conference. 36–52.

[7] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria Apostolaki. 2024. Reverie:
Low Pass Filter-Based Switch Buffer Sharing for Datacenters with RDMA and
TCP Traffic. In 21th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), Santa Clara, CA.

[8] Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021. Performance-Driven
Internet Path Selection. In Proceedings of the ACM SIGCOMM Symposium on
SDN Research (SOSR). 41–53.

[9] Yuval Bahat and Tomer Michaeli. 2020. Explorable Super Resolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[10] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-band Net-
work Telemetry (SIGCOMM ’20). Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3387514.3405894

[11] Henry Birge-Lee, Sophia Yoo, Benjamin Herber, Jennifer Rexford, and Maria
Apostolaki. 2024. TANGO: Secure Collaborative Route Control across the Public
Internet.. In NSDI.

[12] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learn-
ers. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-
sociates, Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[13] Hans Buehler, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood.
2020. A data-driven market simulator for small data environments. arXiv preprint
arXiv:2006.14498 (2020).

[14] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. 2018. BRITS:
Bidirectional Recurrent Imputation for Time Series. In Advances in Neu-
ral Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/file/
734e6bfcd358e25ac1db0a4241b95651-Paper.pdf

[15] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rotten-
streich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-grained queue mea-
surement in the data plane. In Proceedings of the 15th International Confer-
ence on Emerging Networking Experiments And Technologies (CoNEXT ’19).
Association for Computing Machinery, New York, NY, USA, 15–29. https:
//doi.org/10.1145/3359989.3365408

[16] Zhuo Cheng, Maria Apostolaki, Zaoxing Liu, and Vyas Sekar. 2024. TRUSTS-
KETCH: Trustworthy Sketch-based Telemetry on Cloud Hosts. In The Network
and Distributed System Security Symposium (NDSS).

[17] Abhijit K Choudhury and Ellen L Hahne. 1998. Dynamic queue length thresholds
for shared-memory packet switches. IEEE/ACM Transactions On Networking 6, 2
(1998), 130–140.

[18] Alexander Dietmüller, Siddhant Ray, Romain Jacob, and Laurent Vanbever. 2022.
A New Hope for Network Model Generalization. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks. 152–159.

[19] Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu.
2022. Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling. In Proceedings of The 4th Annual Learning for
Dynamics and Control Conference (Proceedings of Machine Learning Research),
Vol. 168. PMLR, 263–277. https://proceedings.mlr.press/v168/djeumou22a.html

[20] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015. Image
super-resolution using deep convolutional networks. IEEE transactions on pattern
analysis and machine intelligence 38, 2 (2015), 295–307.

[21] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2016. Characterization of encrypted and vpn traffic using
time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). 407–414.

[22] Mark Fedor, Martin Lee Schoffstall, James R. Davin, and Dr. Jeff D. Case. 1990.
Simple Network Management Protocol (SNMP). RFC 1157. (May 1990). https:
//doi.org/10.17487/RFC1157

[23] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of The 33rd
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Vol. 48. PMLR, New York, New York, USA, 1050–1059. https:
//proceedings.mlr.press/v48/gal16.html

[24] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for
Sensing, Inference and Measurement in Data Center Networks. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19). 549–
564.

[25] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring, Srikanth Sun-
daresan, and Sanjay Rao. 2022. A microscopic view of bursts, buffer contention,
and loss in data centers. In Proceedings of the 22nd ACM Internet Measurement
Conference (IMC ’22). Association for Computing Machinery, New York, NY,
USA, 567–580. https://doi.org/10.1145/3517745.3561430

[26] Phillipa Gill, Christophe Diot, Lai Yi Ohlsen, Matt Mathis, and Stephen Soltesz.
2022. M-Lab: User initiated Internet data for the research community. ACM
SIGCOMM Computer Communication Review 52, 1, 34–37.

[27] Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Apostolaki. 2023.
Towards Integrating Formal Methods into ML-Based Systems for Networking. In
Proceedings of the 22nd ACM Workshop on Hot Topics in Networks. 48–55.

[28] Zied Ben Houidi, Raphael Azorin, Massimo Gallo, Alessandro Finamore, and
Dario Rossi. 2022. Towards a Systematic Multi-Modal Representation Learning
for Network Data. In Proceedings of the 21st ACM Workshop on Hot Topics in
Networks. 181–187.

[29] Kevin Hsieh, Mike Wong*, Santiago Segarra, Sathiya Kumaran Mani, Trevor
Eberl, Anatoliy Panasyuk, Ravi Netravali, Ranveer Chandra, and Srikanth Kan-
dula. 2024. NetVigil: Robust and Low-Cost Anomaly Detection for East-West
Data Center Security. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[30] Willem Hüllermeier, Eyke andWaegeman. 2021. Aleatoric and epistemic un-
certainty in machine learning: an introduction to concepts and methods. Ma-
chine Learning 110 (March 2021), 457–506. https://doi.org/10.1007/s10994-021-
05946-3

[31] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul Schmitt, Francesco Bronzino,
and Nick Feamster. 2023. Generative, High-Fidelity Network Traces. In Pro-
ceedings of the 22nd ACM Workshop on Hot Topics in Networks (HotNets

’23). Association for Computing Machinery, New York, NY, USA, 131–138.
https://doi.org/10.1145/3626111.3628196

[32] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan
Wang, and Liu Yang. 2021. Physics-informed machine learning. Nature Reviews
Physics 3, 6 (2021), 422–440.

[33] Aleksandar Kuzmanovic and Edward W Knightly. 2003. Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and elephants. In Proceedings of
the ACM SIGCOMM 2003 conference. 75–86.

[34] Jonatan Langlet, Ran Ben Basat, Gabriele Oliaro, Michael Mitzenmacher, Minlan
Yu, and Gianni Antichi. 2023. Direct Telemetry Access. In Proceedings of the ACM
SIGCOMM 2023 Conference (ACM SIGCOMM ’23). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3603269.3604827

[35] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. 2022. Rethinking
Data-Driven Networking with Foundation Models: Challenges and Opportunities.
In Proceedings of the 21st ACM Workshop on Hot Topics in Networks. 188–197.

[36] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, and Wenzhe Shi. 2017. Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[37] Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. 2022. PrintQueue:
performance diagnosis via queue measurement in the data plane. In Proceed-
ings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association for
Computing Machinery, New York, NY, USA, 516–529. https://doi.org/10.1145/
3544216.3544257

[38] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. {FlowRadar}: A
Better {NetFlow} for Data Centers. In 13th USENIX symposium on networked
systems design and implementation (NSDI 16). 311–324.

[39] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using
gans for sharing networked time series data: Challenges, initial promise, and
open questions. In Proceedings of the ACM Internet Measurement Conference.
464–483.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, B. Michel, V.and Thirion, O. Grisel,
M. Blondel, R. Prettenhofer, P.and Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

https://www.arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf
https://www.gurobi.com/
https://github.com/inet-tub/ns3-datacenter
https://www.nsnam.org/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56850-series
https://doi.org/10.1145/3387514.3405894
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
https://proceedings.mlr.press/v168/djeumou22a.html
https://doi.org/10.17487/RFC1157
https://doi.org/10.17487/RFC1157
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1145/3517745.3561430
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1145/3626111.3628196
https://doi.org/10.1145/3603269.3604827
https://doi.org/10.1145/3544216.3544257
https://doi.org/10.1145/3544216.3544257

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

[41] Mimi Qian, Lin Cui, Fung Po Tso, Yuhui Deng, and Weijia Jia. 2023. OffsetINT:
Achieving High Accuracy and Low Bandwidth for In-Band Network Telemetry.
IEEE Transactions on Services Computing (2023), 1–12. https://doi.org/10.1109/
TSC.2023.3323697

[42] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-scale monitoring
and control for commodity networks. ACM SIGCOMM Computer Communication
Review 44, 4 (2014), 407–418.

[43] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous In-
Network Round-Trip Time Monitoring. In Proceedings of the ACM SIGCOMM
2022 Conference. New York, NY, USA, 473–485. https://doi.org/10.1145/3544216.
3544222

[44] Renata Teixeira, Aman Shaikh, Timothy G Griffin, and Jennifer Rexford. 2008.
Impact of hot-potato routing changes in IP networks. IEEE/ACM Transactions On
Networking 16, 6 (2008), 1295–1307.

[45] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. 2018. Stroboscope: Declarative network monitoring on a budget. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
18). 467–482.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[47] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021. Real-esrgan:
Training real-world blind super-resolution with pure synthetic data. In Proceedings

of the IEEE/CVF International Conference on Computer Vision. 1905–1914.
[48] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,

and Chen Change Loy. 2018. Esrgan: Enhanced super-resolution generative
adversarial networks. In Proceedings of the European conference on computer
vision (ECCV) workshops. 0–0.

[49] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. 2020. Measuring
Burstiness in Data Center Applications. In Proceedings of the 2019 Workshop on
Buffer Sizing. 6.

[50] Ming Wu, Qianmu Li, Fei Yang, Jing Zhang, Victor S Sheng, and Jun Hou. 2023.
Learning from biased crowdsourced labeling with deep clustering. Expert Systems
with Applications 211 (2023), 118608.

[51] Ming Wu, Qianmu Li, Jing Zhang, and Jun Hou. 2022. Label Aggregation with
Clustering for Biased Crowdsourced Labeling. In Proceedings of the 2022 14th
International Conference on Machine Learning and Computing (ICMLC ’22).
Association for Computing Machinery, New York, NY, USA, 165–169. https:
//doi.org/10.1145/3529836.3529861

[52] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022. Practical
GAN-based synthetic IP header trace generation using NetShare. In Proceedings of
the ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association for Comput-
ing Machinery, New York, NY, USA. https://doi.org/10.1145/3544216.3544251

[53] Kai Zhang, Luc Van Gool, and Radu Timofte. 2020. Deep unfolding network for
image super-resolution. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 3217–3226.

[54] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual
dense network for image super-resolution. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2472–2481.

https://doi.org/10.1109/TSC.2023.3323697
https://doi.org/10.1109/TSC.2023.3323697
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3529836.3529861
https://doi.org/10.1145/3529836.3529861
https://doi.org/10.1145/3544216.3544251

	Abstract
	1 Introduction
	2 Motivation and limitations of existing work
	2.1 Use cases and requirements
	2.2 Limitations of existing works

	3 Overview
	3.1 Network imputation
	3.2 Challenges and Insights

	4 Zoom2Net Design
	4.1 Knowledge formulation
	4.2 Knowledge Augmented Loss (KAL)
	4.3 Constraint Enforcement Module (CEM)
	4.4 Target refinement

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Case study 1: ToR burstiness in a Cloud
	6.3 Case study 2: CDN PoP selection
	6.4 Case study 3: Encrypted traffic classification
	6.5 Zoom-in factor analysis

	7 Discussion
	8 Conclusion
	References

