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Abstract

The cell cycle consists of a series of orchestrated events controlled by molecular sensing

and feedback networks that ultimately drive the duplication of total DNA and the subsequent

division of a single parent cell into two daughter cells. The ability to block the cell cycle and

synchronize cells within the same phase has helped understand factors that control cell

cycle progression and the properties of each individual phase. Intriguingly, when cells are

released from a synchronized state, they do not maintain synchronized cell division and rap-

idly become asynchronous. The rate and factors that control cellular desynchronization

remain largely unknown. In this study, using a combination of experiments and simulations,

we investigate the desynchronization properties in cervical cancer cells (HeLa) starting from

the G1/S boundary following double-thymidine block. Propidium iodide (PI) DNA staining

was used to perform flow cytometry cell cycle analysis at regular 8 hour intervals, and a cus-

tom auto-similarity function to assess the desynchronization and quantify the convergence

to an asynchronous state. In parallel, we developed a single-cell phenomenological model

the returns the DNA amount across the cell cycle stages and fitted the parameters using

experimental data. Simulations of population of cells reveal that the cell cycle desynchroni-

zation rate is primarily sensitive to the variability of cell cycle duration within a population. To

validate the model prediction, we introduced lipopolysaccharide (LPS) to increase cell cycle

noise. Indeed, we observed an increase in cell cycle variability under LPS stimulation in

HeLa cells, accompanied with an enhanced rate of cell cycle desynchronization. Our results

show that the desynchronization rate of artificially synchronized in-phase cell populations

can be used a proxy of the degree of variance in cell cycle periodicity, an underexplored axis

in cell cycle research.

Author summary

The cell cycle is the series of events that a cell undergoes to replicate its DNA and divide

into two identical daughter cells. Blocking and synchronizing cells in the same phase is an

invaluable tool for studying the properties and associated biology of the cell cycle.
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Intriguingly, when synchronized cells are released, they rapidly become asynchronous,

but the factors that control this process remain largely unknown. In this study, we investi-

gated how cells become desynchronized after being synchronized using a common labora-

tory technique used to halt cell cycle progression. We developed a single-cell

mathematical model that returns the DNA amount across the cell cycle stages and fitted

parameters using experimental data. Simulations of cell populations revealed that the rate

of cell cycle desynchronization is primarily determined by the variability in the length of

the cell cycle within a population, which result was subsequently validated experimentally.

Our study demonstrates that the rate of desynchronization can be used as a proxy for the

degree of variance in cell cycle periodicity, which is an underexplored axis in cell cycle

research.

Introduction

Cell division is traditionally described as a general process divided into two phases, the

interphase and mitosis (cell division). Interphase is further divided into three subphases;

Gap 1 phase (G1) in which the cell has a DNA content of 2n, synthesis phase (S) in which

the cell’s DNA content is greater than 2n but less than 4n, and Gap 2 phase (G2) in which

the cell’s DNA content is 4n upon completion of synthesis. Early observations into cell cycle

progression showed that the timing of G1 phase is highly variable not just between cell types

but also between cells within a monoclonal population, and that this variable length directly

impacts the heterogeneity observed in clonal populations for cell cycle periodicity [1,2].

Additionally, a critical point in the cell cycle was discovered [3], in which cells were found

to be committed to DNA synthesis independent of environmental factors. Moreover, it was

later demonstrated that under various suboptimal nutritional conditions, cell cycle progres-

sion could be arrested at the G1/S boundary, and escapement into S-phase could only occur

once suitable nutritional needs were restored [4]. The boundary was termed the restriction

point (R-point), whereby cells could enter a lower metabolic rate (a quiescent state) to

remain viable until adequate nutrition is restored allowing the necessary constituents to be

present in suitable amount to enable DNA synthesis [4]. Ultimately, it was shown that the

high variability of G1 phase duration can be attributed to a cell’s ability to overcome the

restriction point [5].

Investigations into cell cycle progression and regulation often start with the need to

synchronize cells within a population to the same cell cycle phase [6,7]. One common

approach to cell cycle synchronization is the double-thymidine block that interferes with

nucleotide metabolism resulting in an inability of the cells to synthesize DNA causing a

cell cycle arrest at the G1/S boundary [8,9]. Interestingly, when synchronized cell popula-

tions are released from cell cycle arrest, they quickly desynchronize, and reach a state of

“asynchronicity,” whereby the individual cell cycle phases stabilize into fixed percentages

within the overall population. Indeed, simply sampling cells from an asynchronously

growing in vitro cell culture will reveal (Fig 1a) the fixed percentages for the three phases

of interphase (G1, S, and G2). Additionally, cells can be pulse-labeled with bromodeoxyur-

idine (BrdU) to create a semi-synchronous cell population in which only cells in actively

progressing through S-phase incorporate the thymidine analog BrdU into their genome,

and thus the original pulse-labeled population can be tracked overtime by using a fluores-

cently conjugated BrdU antibody [10]. These observations again showed that the initially

pulse-labeled cells progressed synchronously through the cell cycle for some time before
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quickly desynchronizing and resorting back to an asynchronous DNA distribution

profile.

The inherent variability of cell cycle duration between identical cells may be accounted for

by considering sources of cellular noise. In other words, the variability between cellular con-

stituents such as signaling and transcriptional factors, along with the biochemical stochasticity

of molecular interactions do likely propagate to the phenotypic level and may be responsible

for varying timing events that dictate cell cycle progression. For example, signalling factors in

a tumor microenvironment that confer a higher degree of intercell variability contribute to

tumor cell heterogeneity and pathology [11,12]. Therefore, it is important to examine the

implications of cellular noise to cell cycle periodicity.

Fig 1. Cell desynchronization via double thymidine block and release. a) Cell cycle phases as indicated by cell DNA content and approximate phase distribution in

an asynchronous population. b) Fluorescent profile of propidium iodide (PI) stained cells during asynchronous growth from t = 0 to t = 88. c) Fluorescent profile of

PI-stained cells following G1/S synchronization by double thymidine block from t = 0 to t = 88. d) Percentages of cells in a given cell cycle phase at a given time point;

asynchronous cell growth in green and desynchronous cell growth in red. The cell cycle phase percentages for each time point were determined via the Dean-Jett-Fox

model.

https://doi.org/10.1371/journal.pcbi.1011080.g001
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In this report, we investigated the rate of cell cycle desynchronization by measuring the

change in the DNA distribution of a population of cells over time. To this end, we measured

the single-cell DNA amount of a population of cells as they transition from an initial state of

cell cycle synchrony, where cells are experimentally locked into the G1/S boundary, to a state

of asynchrony. We used statistical tools to quantify the dynamic change in the DNA probabil-

ity density function over time from an initial synchronized cell population. Subsequently, we

developed a mathematical model to simulate at single-cell level the DNA amount as the cell

transitions through cell cycle states, and finally, experimentally validated our model prediction.

More specifically, our model revealed that cell cycle desynchronization rates were particularly

sensitive to the variability of cell cycle duration within a population. With this insight, to vali-

date the results we introduced external noise in synchronized cells using lipopolysaccharide

and, indeed, confirmed an increase in cell cycle desynchronization. Considering the ubiqui-

tous role of the cell cycle properties to cell health, the implications of our work extend to

numerous fronts further elaborated in the discussion.

Results

Thymidine-based arrest and desynchronization

The exogenous introduction of excessive thymidine into cells interrupts DNA synthesis,

arresting the population of cells in the G1/S-phase transition. Upon release, the population of

cells are permitted to reenter their respective cell cycles. Ultimately, the population of cells will

become asynchronous with respect to their cell cycles, yielding a PI fluorescent profile. The PI

distributions dynamically change as the population desynchronizes.

After cells were synchronized via double-thymidine block, timepoints were collected every

8 hours for a total of 88 hours. Both asynchronous (untreated) cells (Fig 1b) and synchronized

(Fig 1c) were subjected propidium iodide staining and flow cytometry analysis. Notably, we

observed near full synchronization of cells as judged by the first few timepoints (Fig 1c) in the

synchronous population. While inhibition of DNA synthesis can cause replicative errors due

to stalled replication forks, resulting in quiescence or cell death, we did not observe either an

increase in cell death nor any quiescent populations, which would manifest as a sub-G1/G1

population at timepoint 8. Each PI histogram was subjected to cell cycle phase classifier [13–

15] with the cell cycle phase distribution displayed as percentages of the total population. As

we observe in Fig 1d, the synchronized population eventually reaches an asynchronous distri-

bution. The residual plots of the DNA distribution of the synchronous population against the

asynchronous population ultimately converges to within 8.4%, 1.5%, and 6.1% of G1, S, and

G2, respectively (S1 Fig).

Quantifying cell synchronicity

The DNA dynamics during interphase of a population of cells are defined by the population’s

collective distribution of its DNA at a given time. If all the cells within a population are under-

going interphase synchronously, time separated measurements of the population’s DNA distri-

bution will accordingly change in time. This would mean that the DNA distribution of a

population of cells will be different for each time measurement. Conversely, if the population’s

cells are independently progressing through interphase, temporal differences between the pop-

ulation’s DNA distribution become indistinguishable, rendering its DNA distribution into a

seemingly unchanging profile (Fig 1a).

With this in mind, we can create a set of assumptions: Let {Xt} denote sets of observations

generated from an evolving probability distribution at any point in time t. We define the auto-
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similarity function (ASF) between times t1 and t2 as

ΣXX t1; t2ð Þ ¼
max

�1 < x < 1
FXt1

xð Þ � FXt2
xð Þ

� �
þ

max

�1 < x < 1
FXt2

xð Þ � FXt1
xð Þ

� �
ð1Þ

where FXt
denotes the cumulative distribution function of a given set of observations Xt.

Essentially, the auto-similarity function is the Kuiper two-sample test statistic, which mea-

sures the similarity between two sets of data, performed on a single, time evolving variable Xt

rather than two distinct variables (Fig 2a). The Kuiper test statistic is rotation-invariant, mak-

ing its application insensitive to the “starting points” of the data to be compared. As the DNA

content measured in our cell populations cycle between 2n to 4n, the data collected from our

cell cycle experiments are inherently cyclical, making the use of a rotation-invariance test sta-

tistic ideal (Fig 2b). If the evolving distribution eventually converges to a steady-state, we

expect SXX(ti, ti+1) ! 0 for some successive time measurements ti and ti+1 as t ! 1, where a

value of 0 indicates full asynchrony. Conversely, we interpret non-zero, positive evaluations of

the ASF to indicate dissimilarity, where, in the case of a cyclically evolving sets of data,

Fig 2. Rate of desynchronization using Kuiper test statistic. a) Pairwise comparison of PI CDFs for each time point (data shown is from

synchronized cells). b) Visual representation of Kuiper Test Statistic determination between time points. c) Rate of desynchronization between

asynchronous (green) and synchronized (red) Hela cells. Over time (~60 hours) synchronized cells being to reach an asynchronous state.

https://doi.org/10.1371/journal.pcbi.1011080.g002
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evidence that the underlying probability distribution is in a transient state, where a maximum

value of 1 indicates full synchrony (Fig 2c).

In our experiments, {Xt} is variable DNA fluorescently measured by flow cytometry in PI-

stained populations of cells, where ti = {0,8,16,. . .,88} indicates the hour corresponding to the

ith measurement of data collected with respect to their release from cycle arrest via double thy-

midine block at t0 = 0. We expect that the ASF evaluation of times t0 and t1 to be the greatest as

the population of cells synchronously progress through the cell cycle, resulting in markedly

dissimilar distributions of DNA in observation sets Xt0
and Xt1

.

As the individual cells within a population variably progress through the cell cycle, we

expect population DNA distributions to diverge, eventually settling to the classic asynchronous

distribution profile (Fig 1), where successive measurements of a no-longer-evolving variable

are expected to be near-zero. We calculated the ASF between each temporally successive pair

of data for both the synchronized cell population and the asynchronous control population

and found that the ASF converges to a minimum of 0.127 from an initial value of 0.869, follow-

ing a logistics curve. We observed an expected linear ASF from the asynchronous population

with slight oscillations, most likely emerging from unintended loss of mitotic cells during har-

vesting (mitotic shake off) positive slope (Fig 2c).

A single cell interphase model

Cell cycle progression is intimately linked to a cell’s dynamically changing DNA content. Tem-

poral transitions from a cell’s state of 2n to 4n define cell cycle phases, where G1, S, and G2,

correspond to genetic quantities of 2n, 2n+, and 4n, respectively, where the event of mitosis

restarts the cell cycle for two progeny cells. Deterministically, we model a single cell’s dynamic

DNA content as

dna tð Þ ¼ dna0 þ
dnamax � dna0

1 þ e�b t�sð Þ
t0 � t � t ð2Þ

where dna0 is the initial genetic content in phase G1, dnamax is the maximum genetic content

after synthesis, β parameterizes the synthesis rate, s is the time in which the cell is halfway

through synthesis and determines the periods of G1, S, and G2, and t is time. Thus, the β and s
variables account for the S phase of the cell cycle. We assume that synthesis faithfully dupli-

cates the genetic content, where dnamax = 2 dna0, thus reducing Eq 2:

dna tð Þ ¼ dna0 1 þ
1

1 þ e�b t�sð Þ

� �

t0 � t � t ð3Þ

We can further reduce Eq 3 by representing β and s as functions of the cycle period τ as:

dna tð Þ ¼ dna0 1 þ
1

1 þ e�24 t�2t
3ð Þ

 !

t0 � t � t ð4Þ

where we initially assumed a period of 24 hours and the duration of S phase to be approxi-

mately 1/3 of the period, which is 8 hours, agreeing with previous reported values [16].

Accordingly, this single cell model captures DNA amount during interphase using two param-

eters, the initial DNA amount and the cell cycle period (Fig 3a).
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To study the impact of the cell cycle period to the rate of asynchrony we use an Error-in-

Variables (EIV) modeling approach [17,18] to add noise to the cycle periodicity:

dna tð Þ ¼ dna0 þ εdna0

� �
1 þ

1

1 þ e�24 t�2tþεt
3ð Þ

 !

t0 � t � t ð5Þ

where εteN 0; s2
t

� �
is a normally distributed error term with variance s2

t
and

εdna0eN 0; s2
dna0

� �
is additionally added to capture fluorescent variability seen as broadened

peaks around G1 and G2. Thus, the variance is being applied to the initial DNA content, and

the entire period (i.e., not applied to any given cell cycle stage). We simulate a population of

1,000 cells, each starting synchronously at G1 with extrinsically varying initial DNA content

and cell cycle periodicity, as they repetitively progress through interphase (Fig 3b). We then

take temporal slices of the DNA content of the population of cells and plot the populations dis-

tribution of DNA content intermittently (Fig 3c). We finally apply ASF to the slices in a pair-

wise manner as performed with the experimental data (Fig 3d). We also explored the ASF

Fig 3. Single cell model of desynchronization. a) DNA synthesis is captured by the Gaussian error function where the relative durations of cycle phase

are tunable. b) Simulated data of PI staining of multiple lineages with normally distributed initial gene content. c) Cell cycle pace inheritance following

a Gaussian distribution. d) Desynchronization rate of simulated cell population.

https://doi.org/10.1371/journal.pcbi.1011080.g003
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output of our model by comparing the EIV modeling approach with increasing periodicity

noise between Poisson and normal distribution of both the DNA content and periodicity (S2

Fig). We observed that the Poisson distributed error term for DNA content and/or period, as

opposed to a normal distribution, failed to reproduce ASF trends from synchronized cells. We

also compared the effects of differing means on desynchronization rates, and our model

revealed that there was no significant impact on desynchronization rates between 22-, 24-, and

26-hour periods each with a variance of 3 hours (S3 Fig). Importantly, we found that only by

including a variance term to cell cycle periodicity were we able to capture population dynamics

that recapitulate the experimental results. Moreover, our model revealed that increasing the

magnitude of variance resulted in increasing rates of desynchronization (S4 Fig). Next, in

order to further evaluate our model’s prediction, we sought to assess cell cycle desynchroniza-

tion by introducing an exogenous means to perturb the cell cycle dynamics.

Impact of LPS on cell cycle duration variability

Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bac-

teria that can bind to TLR4 receptors initiating a signaling cascade that ultimately results in

NFkappaB translocation from the cytoplasm to the nucleus, where as a transcription factor, it

initiates the upregulation of inflammation regulatory genes [19–21]. Additionally, NFkappaB

activation can be induced by cytokines such as TNFalpha [22], which has been reported with

contrasting roles, whereby NFkappaB induction is associated with both the activation of pro-

survival genes as well pro-apoptotic genes [23]. In addition to regulating inflammation signal-

ing pathways, NFkappaB regulates major cell cycle regulatory factors [24–27]. Interestingly,

components of NFkappaB, such as RelA, have been shown to interact with key cell cycle regu-

lators, such as E2F transcription factors that are crucial in controlling progression through the

G1/S boundary [25].

We therefore hypothesized that the contrasting nature of LPS stimulation in HeLa cells

would result in a greater variance in overall cell cycle duration. Accordingly, if LPS is a viable

approach for introducing cellular noise we would expect the desynchronization rate to increase

compared to untreated synchronized cells (S5 Fig). Thus, in order to determine if LPS simula-

tion had any effect on cell cycle duration, we conducted a time-lapse experiment to track indi-

vidual cells cell cycle duration (Fig 4a). In order to have a better indication of relative position

of each cell in relation to the cell cycle, we integrated a fluorescence tracker using lentiviral

transduction that express the histone protein H2B fused to a fluorescent protein (H2B-FT)

[28]. Upon expression, the H2B protein is incorporated into nucleosomes, which binds DNA,

and therefore could more easily distinguish cells undergoing mitosis. Doubling time, cell

growth and viability was assessed via Trypan Blue staining to assess any possible adverse effects

on cell proliferation from lentiviral integration, of which none were observed (S6 Fig). Next, we

treated asynchronously-growing HeLa cells with 1.0 μg/mL of LPS derived from E. coli. O111:

B4, and monitored the duration of the cell cycle for individual cells with timelapse microscopy

for 72 hours every 20 minutes (S7 Fig and S1–S4 Videos and S1 Data). We found that the over-

all variance was higher in treated cells versus untreated cells with an accompanying increase in

the mean duration 23.7±4.73 and 21.7±3.42 hours, respectively (Fig 4b).

We next sought to test if the predictability of our simulation model with the values obtained

from the time-lapse microscopy would result in an increased desynchronization rate under

LPS stimulation. In order to compare multiple synchronous cell samples, we normalized each

sample to its initial ASF value (Xt0
� Xt8

, S8 Fig). Upon inputting our new values obtained

from the time-lapse microscopy, our model indeed predicted an increase in desynchronization

when treated with LPS compared to the untreated sample (Fig 4c).
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Fig 4. Noise variation of cell periodicity. a) Representative images of time lapse experiments. 100 cells were tracked for

each condition and the population mean and standard deviation of cell cycle duration was determined. Once the septum

(white arrow) is visible following cytokinesis, the cell cycle duration recording begins for both daughter cells (yellow and

blue arrow). Both cells being cell cycle at Frame 2, and both daughter cells can be seen progressing through interphase in

Frames 26–28. By the end of Frame 57, the first daughter cell completes the cell cycle and recording ends. The second
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Given that we were able to increase the variance of cell cycle duration with LPS, and that

our simulation model predicted an increase in desynchronization due to increased cell cycle

duration variance, we next tested if we could experimentally obtain higher rates of desynchro-

nization using the previous approach of PI-staining time-separated synchronized cells. There-

fore, we again synchronized HeLa cells via the double-thymidine block method, and

immediately following release of the arrested cells, we treated with LPS 1.0 μg/mL and col-

lected timepoints every 8 hours for 88 hours. We then analyzed the PI-stained cell populations

via FlowJo cell cycle classifier that uses the Dean-Jett-Fox algorithm to observe the expected

cell cycle state dampening oscillations towards asyncronicity (Fig 4d). Interestingly, our ASF

analysis methodology was able to reveal the impact on cell cycle desynchronization with an

enhanced rate of desynchronization from LPS treated cells (Fig 4e and S9 Fig).

Discussion

There is a multitude of approaches to mathematical modeling of cell cycle dynamics and cell

behavior. A differential equations approach will typically model the change in concentrations

of the various molecules in cell cycle function over time [29,30]. There are also Boolean net-

work models that represent the cell cycle as nodes and connected edges that are on/off switches

and can be changed by specific molecular interactions [31,32]. Additionally, there are agent-

based models that simulate individual cells to reveal information about populational cell

behavior [33]. Stochastic models that capture the random fluctuations in the cell cycle that can

be attributed to molecular noise, have been used to reveal how variability in individual cells

impacts the dynamics of a population of cells [32,34]. Herein, we developed a single-cell

phenomenological model the returns the DNA amount across the cell cycle stages and fitted

the parameters using experimental data.

The cell cycle and subsequent daughter cell division is a central facet of cell biology from

development and cellular differentiation to disease initiation and progression. Cell synchronic-

ity is an essential aspect of mammalian biological homeostasis. The circadian rhythm is a

molecular orchestrated process present in various tissues that synchronizes biological outputs

to the 24-hour day-night cycle [35]. It is composed of multiple master transcription factor reg-

ulators that are involved in robust feedback networks [36].

While the cell cycle is tightly regulated and robust in a single cell, across a population we

observe significant variability in period. Each cell within a given population contains measur-

able variations in their cellular content and housekeeping genes (e.g., differences in their RNA

polymerases, ribosomes). These variations impact the expression of genes in what is known as

extrinsic noise [17,37–42]. Furthermore, the cellular machinery responsible for progressing a

cell through its cycle is intrinsically stochastic. Cellular noise occurs in genetically identical

cells that exhibit variations in biochemical activity, and this inherent heterogeneity can mani-

fest into observable phenotypes within a population of cells [43]. Indeed, intra and inter-cellu-

lar differences cause an initially synchronously in-phase population of cells to diverge as each

progresses independently through their life cycle at varying rates [44].

daughter cell (yellow arrow) had a substantially longer cell cycle duration, which concluded at the end of Frame 84, thus

demonstrating the inherent variability of cell cycle duration between identical cells within the population. b)

Asynchronous cells were wither treated with 1 μg/mL of LPS or left untreated and cell cycle duration was recorded

(n = 100). c) Values obtained from time lapse microscopy for cell cycle mean and standard deviation were used in our

model to predict the impact on cell cycle desynchronization. The model revealed the LPS administration should result in

an increased rate of cell cycle desynchronization d) Cell cycle phase distribution of LPS treated cells following cell cycle

synchronization for 88 hours post release (n = 3). e) Normalized ASF scores for LPS-treated desynchronizing cells. The

asynchronous population was not normalized in order to capture the overall linear trend (n = 3).

https://doi.org/10.1371/journal.pcbi.1011080.g004
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Our approach offers a novel method that could potentially be utilized for ascertaining the

overall noise of an engineered cell line compared to the parent cell line. Moreover, it is crucial

to not only develop novel methods for measuring noise, but to discover new small molecules

that can impact noise to lead to more desired outcomes. For example, Dar et al. performed a

screen for bioactive molecules that enhanced the gene expression noise of latent HIV, which

reactivated the HIV and in-turn makes the virus more susceptible to antiviral drugs [45].

Indeed, our own results stress the importance of using small molecules to understand and per-

turb cellular noise.

Here, using a combination of simulations and experiments we show that the variability in

cell cycle period directly impacts the rate of desynchronization in a population of cells. The

next line of investigation will include studying the factors that contribute to this variability at a

single cell level, and the distribution between intrinsic and extrinsic sources of noise. It is well

known that tightly regulated processes can rely on stochastic variations [46–48] but it is also

pertinent to study how disease states depend on noise and if noise itself can drive disease pro-

gression. For example, an intriguing hypothesis is that cancer cells [49] obtain benefit by hav-

ing higher noise in cell cycle periodicity, which yields ultra-slow and fast diving cells. This

could then lead to cell populations that are able to escape the effects drugs that target rapidly

dividing cells or lead to highly proliferative cells that result in aggressive tumor formation,

which can be more difficult to treat. Moreover, daughter cells that rapidly lose synchrony may

experience external cell-stage-specific stressors at different points in their respective cell cycles

shifting the population to a subset of cells that may support survival, such as insensitivity to

DNA damaging agents due to shortened S phase duration. Interestingly, Gram negative bacte-

ria that produce LPS have been shown to exacerbate inflammation in cervical cancer cells, as

well as promote proliferation and invasion [50–53]. We believe that the implications of cellular

noise in cell synchrony and cell periodicity opens an exciting path towards exploiting the vari-

ability in cell cycle period for therapeutic purposes.

Methods and procedures

Cell culturing and synchronization

HeLa cells were grown in Gibco DMEM supplemented with 10%FBS, 1X PenStrep, 2mM

glutamine, and 1X Gibco NEAA and grown at 37˚C with 5% CO2. 50,000 cells were seeded

per well in 6 well plates. 24 hours post-seeding cells were treated with 2mM of thymidine

for 19 hours after which the cells were washed with 1X PBS and given fresh complete media

to release from the first thymidine block. The cells then incubated for 9 hours before receiv-

ing a second dose of 2mM of thymidine for 15 hours. Cells were washed with 1X PBS to

remove thymidine before given fresh media to continue to grow unimpeded. Cells harvested

at t = 0 were collected immediately following the second PBS wash. Additional wells were

harvested every 8 hours for 88 hours. Asynchronous cells were harvested at same time as

synchronized cells for each time point. Cells were harvested by washing with PBS, detached

from the well with trypsin-EDTA (0.25%) for 3 min at 37˚C then quenched with fresh com-

plete media. Harvested cells were pelleted at 1000RPM for 5 min at room temperature. The

supernatant was removed and the cell pellet was resuspended in 1X PBS, then pelleted again

at 1000RPM for 5 min at room temperature. The supernatant was removed and the cell pel-

let was resuspended in 1 mL of 70% ethanol and stored at 4˚C for a minimum of 24 hours to

fix the cells.

LPS derived from E. coli 0E111 was reconstituted in PBS without Mg or Ca at a concentra-

tion of 1mg/mL. LPS solution was added directly to the cell culture media after replacing with

fresh media initiating the release from the double thymidine arrested state.
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Propidium iodide staining

After fixation, cells were pelleted by centrifuged at 1000 RPM for 5 minutes at room tempera-

ture. The fixing solution was aspirated off the cell pellet, and resuspended in 1X PBS. Cells

were counted for each sample, and then normalized to the lowest cell count for uniform propi-

dium iodide (PI) staining across samples. The PI staining procedure was done according to

manufacturer’s directions (Propidium Iodide Flow Cytometry Kit, cat# ab139418).

Cell cycle phase analysis

Stained cells were subjected flow cytometry using a BD LSRFortessa™ flow cytometer. PI fluo-

rescence was excited with a 561nm laser and emission was detected using a 610/20 nm band-

pass filter. Assignment of cell cycle phases were performed using the univariate modeling via

the Dean-Jett-Fox algorithm with FlowJo 10.7.1.

Lentiviral HeLa transduction for H2B-FT expression

The fluorescent tracker sequence was obtained from addgene (#157671) and cloned using

primers P1: gaagagttcttgcagctcggtgac and P2: cagtagggtaccccggaattagatcgatctctcgacatcc. The

amplicon was digested with restriction enzymes BsiWI and KpnI and inserted into the Lenti-

CRISPRv2 (addgene #52961) backbone. The resulting plasmid was transfected into HEK293T

cells along with pMD-VSVG and psPAX2 plasmids to generate viral particles that are released

into the media. The media was aspirated two days post-transfection, and replenished with 5

mL of fresh media every day for three days. The 15 mL of harvested viral-containing media

was passed through a 0.45 μm filter and dispensed into 1 mL aliquots. 250 μl was used to trans-

duce HeLa cells, and 0.5μg/mL of Puromycin was used to select for integrated clones for 7

days.

Trypan blue staining

25,000 cells were seeded in a 12-well plate and grown in Gibco DMEM supplemented with

10%FBS, 1X PenStrep, 2mM glutamine, and 1X Gibco NEAA and grown at 37˚C with 5%

CO2. Cells were harvested at 24 hour timepoints for 72 hours. Cells were harvested by washing

with 1X PBS, detached from the well with trypsin-EDTA (0.25%) for 3 min at 37˚C then

quenched with fresh complete media. Harvested cells were pelleted at 1000RPM for 5 min at

room temperature. The supernatant was removed and the cell pellet was resuspended in 1X

PBS, then pelleted again at 1000RPM for 5 min at room temperature. The supernatant was

removed and the cell pellet was resuspended in 1 mL of PBS. 50μL of the 1X PBS cell suspen-

sion was mixed with 50μL of filter-sterilized Gibco 0.4% Trypan Blue Solution before counting

on hemocytometer.

Time-lapse microscopy

Images were collected every 20 min for 72 hours using Hamamatsu camera attached to the

Olympus IX81 microscope at 10x magnification. Cells were maintained at 37˚C and 5% CO2.

The exposure time was 250 ms for Brightfield and 100ms for TexasRed using Chroma filter

ET560/40x (excitation) and ET630/75m (emission).

Supporting information

S1 Fig. Residual plot comparison of synchronous cells to asynchronous cells.

(TIF)
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S2 Fig. Poisson and normal distribution EIV modeling comparison.

(TIF)

S3 Fig. Effect of population mean periodicity on cell cycle duration.

(TIF)

S4 Fig. Effect of population variance of cell cycle duration.

(TIF)

S5 Fig. Graphical hypothesis of LPS exposure to synchronous cell populations.

(TIF)

S6 Fig. Doubling time, cell density and viability assessment.

(TIF)

S7 Fig. Overall scheme of single-cell tracking of cell cycle duration.

(TIF)

S8 Fig. Normalized and curve fitted desynchronization rates from simulated model using

experimental values.

(TIF)

S9 Fig. Normalized and curved fitted desynchronization rates for synchronized cells.

(TIF)

S1 Video. Fluorescent Microscopy of H2B-FT HeLa cells for LPS 0 μg/mL.

(AVI)

S2 Video. Fluorescent Microscopy of H2B-FT HeLa cells for LPS 0 μg/mL.

(AVI)

S3 Video. Fluorescent Microscopy of H2B-FT HeLa cells for LPS 1 μg/mL.

(AVI)

S4 Video. Fluorescent Microscopy of H2B-FT HeLa cells for LPS 1 μg/mL.

(AVI)

S1 Data. Coordinates for tracked cells in S1–S4 Videos.

(XLSX)
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