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We find all solutions to the constant Yang-Baxter
equation RipR13R23 = Rp3R13R17 in three dimensions,
subject to an additive charge-conservation (ACC)
ansatz. This ansatz is a generalization of (strict)
charge-conservation, for which a complete classifi
cation in all dimensions was recently obtained. ACC
introduces additional sector-coupling parameters—in
three dimensions, there are four such parameters. In
the generic dimension 3 case, in which all of the four
parameters are non-zero, we find there is a single three
parameter family of solutions. We give a complete
analysis of this solution, giving the structure of the
centralizer (symmetry) algebra in all orders. We also
solve the remaining cases with three, two or one
non-zero sector-coupling parameter(s).

1. Introduction

The Yang-Baxter equation (YBE) reads (in shorthand
form)
Ri2R13R23 = Rp3Ra3R12. (1.1)

It is a fundamental equation for many applications—see
for example [1-8] and references therein.

To make (1.1) explicit, one first fixes a dimension N
for a vector space V=CN. We can also pick bases for
V and V ® V. Then, we have an underlying matrix R
acting on V ® V. Each matrix R,-]- acts on VVRV,
acting on the ith and jth factors as R, and on the other
factor as the identity. Thus in explicit form, the YBE reads
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where the indices range over 0,1,...,N — 1 and Ré}fﬁz is the appropriate matrix entry of R. (See
also §2a.)
With various applications in mind, we impose

det(R) 0. (1.3)

For some applications, the R matrices depend on spectral parameters that can be different for
each Rjj [3,7], but in this paper, we will consider the constant YBE. By construction, any R gives a
representation of the braid group B, for each n.

Observe that R will have N? x N2 entries and there will be, in principle, N> x N® equations. It
is clear that such an overdetermined set of nonlinear equations is difficult to solve, even in this
constant form. Indeed, while many individual solutions are known, a complete solution is known
only for dimension two [9] and for higher dimensions knowledge is far from complete. The three-
dimensional upper triangular case was solved in [10], but for further progress, it is important to
make a meaningful ansatz.

Recently, Martin & Rowell proposed [11] charge-conservation of the form

RZI =0, if{i,j}#1{k I} asaset, (1.4)

as an effective constraint and with it they were able to find all solutions for all dimensions. The
above constraint may be called ‘strict charge conservation” (SCC). In this paper, we will explore
the results obtained by relaxing the SCC rule to ‘additive charge conservation’ (ACC) defined by

Rﬁfjl:o, ifi+jtk+1L (1.5)

Observe that ACC differs from SCC first in dimension 3. In practice, this change increases
the complexity of the underlying computational problem by introducing four further ‘mixing’
parameters (SCC itself having 15 parameters in dimension 3).

The paper is organized as follows. In §2, we discuss notational matters and symmetries of the
problem. In §3, we present the solutions. The set of solutions is organized according to the non-
vanishing conditions on the four mixing parameters (together with their symmetries). Thus, the
first family of solutions is the generic case, with all parameters non-zero—it is solved in detail in
§3b. The various possibilities are then addressed in turn, the last case being the set of solutions
where all but one mixing parameter vanishes—8§3f.

It turns out that several solutions have the “Hecke’ property (i.e. having precisely two distinct
eigenvalues). In §4a, we use this to analyse the representations, giving a complete analysis for the
generic case.

One natural realization of the constant Yang—Baxter problem is as a problem in categorical
representation theory, and this is the perspective largely taken in [11] (see also [12], for example).
However, here we will keep to a simple analytical setting. Direct transliteration of results between
the settings is a routine exercise.

2. The set-up

For the braid group point of view, we first define
R=PR, where 73” = ala]k, ie. 7“@” Rfj, (2.1)
and furthermore
(PR)12 = Rl =R ®1 and (PR)y3= Rz =1® R,

actingon V® V ® V. Then, the YBE in (1.1) becomes

RiRoRy = RyRy Ry, (2.2)
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i.e. the braid group version of the YBE.

(a) Presenting matrices

Set V = C? with basis labelled by {0,1,2}. We will order this basis as the symbols suggest. Using
the standard ket notation, i.e. i ® j=: |ij), we may order the basis of V ® V, for example, using
lexicographical order

100),101), [02), [10), [11),12), |20}, [21), |22),

or reverse lexicographical order (rlex)
[00), 110}, 120), 101), [11), |21), 102), [12), 122).

Still another possibility is to use a ‘graded’ reverse lexicographical ordering (grlex)
[00), 110), 101), 120), |11}, 02), 121), [12),122).

The name is borrowed from monomial orderings, in which setting the symbols are numbers,
rather than being arbitrarily associated with numbers as in our case.
The matrix entries are defined as
Rﬁ.‘j’ := (ij|R|KI).

In the present case with ACC (1.5) and the rlex ordering, we get the matrix

Roo
Ry - Ry - Ry
Roi - Rop
Riex=1| . Ry . Ry . RYT | (2.3)
. . R Ry}
Ry mE . mE
R72 Ri3

2.2
Ry,

Indeed, the ‘shape’—the non-vanishing pattern—is the same for R, Ryjex and R. The grlex matrix
is obtained from this with

Rgrlex =PGRuexPc,
where Pg implements the transpositions |01) <> [20) and |21) <> |02). Then, an ACC matrix takes
the block form exemplified by

0,0
RO,O
1,0 0,1
Rio Rip
1,0 01
Ro1 Roq

Ry Rap R
Rgrlex = . . . R%:? Rij R(l)f . . R (2.4)
SRR

R Rad
Riy Riz

’

22
Ry
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In order to save space, we will in the following just give the blocks as

2,0 1,1 02
1,0 0,1 Ry Rap Rap 2,1 1,2
Ry Ry;7 Ry
0,0 1,0 1,0 2,0 1,1 02 21 21 22
Ryriex = [RO/O] Ry Ry Ri [Rz'z] : (2.5)
01 pro o pot , , , R21 Rl2 ,
0,1 0,1 12 12

2,0 1,1 02
Ry Rozr Roa
Recall that R is obtained from R by exchanging lower indices, which corresponds to up-down
reflection within the block. In order to match with [11] (using shifted basis labels {0, 1,2} ~»

{1,2,3}), highlight the new parameters, and to save from writing many double indices we
introduce shorthand notation for R:

ai
a2 - b2
a3z - x - b
) - - dp - ) ) L
R = PR = . . X2 . an . X3 . . . (26)
. - as - b
13 - x4 - di3
c3 - dx
a3
Then, the block form is
a3 x1 bz
b b
[111] 2 d12 X2 a X3 23 d23 [a::,]. (2.7)
cz dinf| o g |l 9B

(b) Symmetries

Naturally, it is useful to consider ACC solutions to (2.2) up to transformations that preserve (2.2)
and the ACC condition.

(i) Scaling symmetry: equation (2.2) and the ACC condition is invariant under rescaling R
by a non-zero complex number.

(i) Transpose symmetry: the ACC is preserved under transpose: R RT; and of course (2.2)
is satisfied by RT if it is satlsﬁed by R quite generally. Indeed, note that from the form of

(1.2), it is easy to see that if R % ! solves the equation, then so does Rk ;- The effect on the
variable choices in (2.6) are b;; <> cjj and x1 <> xz and x3 < x4.
(iii) Left-right (LR) symmetry: changing the ordering of the basis from lex to rlex the resulting

matrix will also be a solution. This can be seen in matrix entries because if Rf]l solves

equation (2.2), then so does ﬁlf This corresponds to reflecting each of the blocks in (2.7)
across both the diagonal and the skew-diagonal, i.e. a;; < djj, bjj <> ¢jj as well as x1 <> x4
and xp < x3.

(iv) 02- or |0) <> |2) symmetry: while (2.2) is clearly invariant under local basis changes, the
ACC condition is not. However, the local basis change (permutation) |j) <> |2 —j) with
indices {0, 1,2} taken modulo 3 does preserve the form of an ACC matrix: the span of the
|lij) with i 4 j =2 is preserved, while the |ij) with i + j=1 and i 4+ j = 3 are interchanged as
are the vectors |00) and |22). The effect on the block form (2.7) is to interchange the pairs
of 1 x 1 and 2 x 2 blocks followed by a reflection across both the diagonal and skew-
diagonal of each block.

Of course, these symmetries can be composed with one another and, discounting the rescaling,
one finds that the group of such symmetries is the dihedral group of order 8. This can be seen by

tracking the orbit of the 2 x 2 matrix [“12 siz} since there are no symmetries that fix it. Indeed,
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we see that there are four forms it can take, generated by the reflections across the diagonal and,
independently across the skew-diagonal, and two positions in (2.7), it can occupy.

3. The solutions

For constant Yang-Baxter solutions, a necessary and sufficient set of constraint equations on the
indeterminate matrix entries arises as follows. First compute, say,

AR = R1R2R1 - R2R1R2, (3.1)

which we call the braid anomaly so that the constraints are obtained from Ag =0.

The SCC case in which all x; vanish was solved in [11]. Note that in ACC, some x; can be
non-zero and there will be mixing between more states |ij), but always with i 4 j constant, so
this is a computationally relatively modest generalization. However, the full symmetry of indices
that exists for SCC is now broken. This ansatz-relaxing obviously increases the complexity of the
system of cubic equations, but they can still be solved, as given below.

We organize the solutions according to which x;s are vanishing. In principle, there are 2* — 1 =
15 cases (excluding the SCC case), but we can use the above symmetries in order to omit some x
configurations. This leads to the following classification into six cases:

(i) All x; are non-zero. See §3a,b.
(ii) Precisely one x vanishes, by symmetry it can be assumed to be x4. See §3c.
(iii) x3x4 # 0 and x1 = xp =0, related by the LR symmetry to x1x, # 0 and x3 = x4 = 0. See §3d.
(iv) x1x3 # 0 and xp = x4 = 0, related to xox4 # 0 and x1 = x3 = 0 by transposition. See §3c.
(V) x1x4 #0, xo =x3 =0, related to x2x3 # 0 and x1 = x4 = 0 by transposition, §3e.
(vi) Only one x is non-zero, by symmetry it can be assumed to be x4, §3f.

As noted, the solution of constant Yang—Baxter is equivalent to solving Ag =0. We write out
AR explicitly in appendix Aa. We solve for the various cases as above in the following §3a—f. In
the first of these, we treat case 1 relatively gently. After that, we will proceed more rapidly though
all cases.

(@) Thexixox3x4 = 0 solutions

Recall the ACC ansatz for R, which is as in (2.6). Consider now the refinement of this ansatz
indicated by the block structure

a X1 b
1 ]| x@=1) x1x3+b 1 .
[ |: 1 b b 1 1 (1],
x12x32 x1(ab + x1x3) x1X3

b3 ab? ab

018062008k ¥ 205 % 2014 edsi/feuinofBioBuiysiignd/aposiefor
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that is

1 - ]
1 .
a . X1 b
1
x3(a—1) x1x3+b
. — — X3
= b b (3.2)
1
2,2
X3°X1 - x@btxx3) 0 x3n

b3 ab? ab

L 1

Here, the parameters a;3, b3, X1, x3 are indeterminate (we write 2 = a13, b = b13) but the remaining
parameters are replaced with functions of these four as shown.

Proposition 3.1. (I) Consider the ansatz for R in (2.6). If we leave parameters a3, b1z, x1, X3
indeterminate (here we write a = a3, b = by3) but replace the remaining parameters with functions of these
four as shown in (3.2) then the braid anomaly Ag has an overall factor

x%x%a + a2V + x1bxza — ab® — x1bxz = bza(a — 1)+ bxgxq(a—1) + ax%x%.

That is, we have a family of solutions obeying RiRyRy = RyRq Ry with free non-zero parameters (say)
a,x1,x3, and parameter b determined by

b —(/a)£/(1/a%)—@/@a—-1)  xix3  —(a—1)£/(a—1)2—4a2(a—1)
x3 2 T 2a

(83

and the remaining entries determined as in (3.2) above.
(1) If x1xpx3%4 # O then the above (with a # 1) gives the complete set of solutions up to overall rescaling.

Proof. (I) is simply a brutal but straightforward calculation, plugging in to Ag as given for
example in appendix Aa. For (II), we proceed as follows. The matrix Ag is rather large to write
out (again see appendix Aa), but a subset of its entries is

SR = {—a12biac12 — ara12(a12 — a1),  —bazcasdos — azdas(daz — as), (3.4)
— bysx1x3, —biox1x3, (012 — d12)x1%3, (—d12 + a1)biz — biy)xa, (3.5)

a13(b12c12 — bazcoz) + arpans(ain — azxs), (di2 —das)x1x,  (doz — a23)x1x3,

—appx1x3 — ai3biadis,  —a2xoXg —ai3c13d13,  a1acipdia,  A23€23d23, (3.6)

— a13b13xg + (a1812 — a1pap — a1413)x1, (3.7)
(a1dh3 + apd1n — aydin)xs + bisdizxa,  (a13d13 + apans — a13023)x3 + (a3b13 — b33)x2, (3.8)
a13013%3 + (01303 — 12303 + A2023)X2,  A12C13%3 + (—A2das + a13das — boscrn + a3)x2, (39)
(@113 — 2)x3 + (a13d13 — diodiz + azd12)xa, (3.10)
— apx1 X + a13d3, — a23d12 — axbizcis + axsbiocin, (3.11)
a1x3x4 + d13x1X%p — azd%z — bypcipdin + a%du, (3.12)
A13%3X4 + a3%1X2 — A23bo3cos — apads +adans, - - ). (3.13)

Imposing Ag =0 and x1x3 # 0, we thus get b1p =by3 =0 and a1 =dqp from (3.5). Note that Ris
invertible, so a1,a3 # 0 and

a1pd1y — bipc1a #0  and  anzdaz — boseas # 0. (3.14)

018062008k ¥ 205 % 2014 edsi/feuinofBioBuiysiignd/aposiefor
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Thus, a1p,d12,a23,dy3 # 0. Thus, dip = a3 =a1p =a1 =dyz =a3 and c¢1p =cp3 =0 from (3.6). Note
that if R is a solution then so is any non-zero scalar multiple, so we first scale R by an overall
factor, so that a; = 1. This confirms the form for R above outside the 3x3 block.

Observe now from (3.6) that aj3b13diz = —x1x3 #0, and that we may either replace a13 =
—(x1x3/b13d13), or d13 = —(x1x3/a13b13). The latter gives the form of d13 in the Proposition.

Before proceeding, we will need to show that d = 1 cannot occur here. (Recall 2 = a13, and write
also d = dy3.) Comparing (3.12) and (3.13), we find

(@ — Dxzxg = (d — 1)xqxp.

Soa=1ifand only if d=1. So if 2 =1 then b13 = —x1x3 and ¢13 = —x2x4 (consider (3.6i/ii)).
Evaluating (3.9ii)—(3.10) here, we find

@ —ay+a—ay+d—ad=(a 1% —(@-1)d-1)=0.

So if a =1 then ap = 1. Further, if 2 =1 then (3.11) becomes —x1xp — b13¢13 = —x1X2 — X1X2x3x4 =0
so x3x4 = —1. Butif 2 =1 then (18) gives x4 = (—x1)/(—x1x3) = 1/x3 — a contradiction. We conclude
here that (2 — 1) #0; and hence (d — 1) #0.

From (3.8), we have two formulae for bi3x2. Equating we have

(a1d13 + apd1p — a1dy2)
di3

= (a13d13 + aza23 — a13423),

that is
w = (a13d13 + a2 —a13), thus ((ZZ_BI(& =—a13(1 — d13).
13 13
Since di13 —1#0 we have 4y — 1= —ay3d13 = x1x3/b13 giving ap as in the Proposition. Plugging
back in we find (d13 + a2 — 1)x3 = —b13d13x2, ((a13 — 1)x3/b13) = x2 as in the Proposition.
From (3.7), we have

o 1—ay—m3 _ 3G e a13b13
- - 4
a13b13 a13b%,

as in the Proposition. Finally, from (3.9), we now have

S (@3 +a—1xp _ (a13biz + x1x3)(a13 — 1)
113X3 11303,
and

(x1x3 4+ b) x1x3, (113 — 1)x3

= -1 -
c13x3 = —(a13 +a2(a2 — 1))xa =—(a + b 2 ) 5
_ —x3((ab? + x1x3(x123 + b13))(a13 — 1))
= = .
13
Equating the two formulae for c13, and noting that a3 — 1#0, we have
a13(x1x3)* + (a13 — 1b13x1x3 + (a13 — 1)arzbiy = 0.

Plugging back in to (3.9), we obtain c13 as in the Proposition, so we are done. |

(b) Case: x1xpx3x4 # O revisited

In this section, we solve the case in which x1x2x3x4 # 0 again, but leaning directly on the appendix
(as we shall below for the remaining cases). Since all x; are non-zero, we conclude from equations
(A 5)-(A8) that bip =c12 =byz =cp3 =0, and from (A 11)—(A 13) a1p = dq2 = ap3 = dp3. Then since
a12 # 0 from (A 29), we get a1 =1 and since a3 # 0 from (A 30) a3 =1.

Now from (A 18), we find a13b13d13 # 0 and we can solve d13 = —(x1x3/a13b13), and from (A 23)
c13 = b13xpx4/x1x3. Then from (A 70), we find x4 = x1(1 — ap — a13)/a13b13. Now it turns out that
some equations factorize, for example (A 94) can be written as x1(a13 — 1)[(a2 — 1)b13 — x1x3] =0.
If we were to choose a13 = 1, we reach a contradiction: from (A 58), we get 2, =1 and then (A 50)
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and (A 66) are contradictory since x; # 0. Thus, we can solve ay = (b3 + x1x3)/b13, and then from
(A50) x2 = x3(a13 — 1)/b13.
After this, all remaining non-zero equations simplify to

b25a13(a13 — 1) + bizx1xs(ars — 1) + 133325 =0.

This biquadratic equation can be resolved using Weierstrass elliptic function g:

a=-pt 157 = (1;824)p—+5)7(IL2;92$/7) and  (p)" =4p’ - %@ * %
where a13 =a and b13 = x1x38. The solution in block form now reads
a x1 Bx1x3
TR N et p+1 x 1.
(1] { 1} Bx1 B 3 { 1} 1], (3.15a)
1 ~@+1) -1
B3x1x3 apxs ap
with constraint
B2a@ — 1)+ pa—1)+a=0. (3.15b)

(c) Cases2and4:xx;3 # 0and xgx, =0

From (A7), (A8), we get b1p = b3 =0 and then since the matrix is non-singular, we must have
a12d12u23d23 75 0. Then, from (A 1), (A 2), we get C1p =Cp3 = 0, from (A 29), (A 31) ajp = d12 =1
(recall that we have scaled a1 =1) and from (A 84), (A 85) ax3 =dp3 =1. Next from (A 30) a3 =1.
Since x1x3 # 0, we have from (A 18) that a13b13d13 # 0 and then from (A 24), we find ¢13 =0.

To continue, we consider first the case x, =0, x4 free. Then, from (A 52), we get aj3 =1 and
from (A 76) di3 =1 — a5. Then since dq3 # 0 we cannot have a, = 1 but (A 106) is x3(a2 — 1)2 =0, a
contradiction.

Next assume x3 #0, x4 =0. Then, from (A 66), we get di3 =1 and from (A70) a;3 =1 — ap but
(A 98) yields a =1, which is in contradiction with a3 # 0.

Thus, there are no solutions in this case.

(d) Case3:xy=x=0xx1+£0

From (A 16), we get a3 =12 and from (A 94) and (A 104) b3 = b%z and c13 = C%z. On the basis of
(A 42) and (A 46), we can divide the problem into two branches: Case 3.1: 412 =0, b1ac12 #0, and
Case 3.2: a12d12 ;ﬁ 0, b12 =C12 = 0.

(i) (ase 3.t ap = 0, b]z(]z 75 0

From (A 46), we get 113 = 0 and then from (A 41) d1p =1 — bypc12 and from (A 76) di3 = (1 —a2)(1 —
b1zc12). Then, from (A 100) and (A 101), bys = u%/clz, C3 = a%/blz and from (A 95) a3 = a%/(blzclz)z.
Since a3 # 0, we have a; # 0 and can solve dp3 from (A 43): do3 = (a% — (b12C12)3)/(b12c12)2.

Now (A 82) factorizes as (a% - blzclz)(ag + apbyacin + (biaci2)?) = 0.

Case 3.1.1: If we choose the first factor and set b1 =a3/c1 the remaining equations simplify to
x3 = (a3 — 1)% /x4, yielding the first solution (a2 — a, c12 — c);

i
a2 2 a2
nl- ¢ . a(@® — 1)2 oL (3.16)
c 1—a2 ’ X4 c 1-a2
2 x4 (a+1(a—1)>?

The eigenvalues of this solution are 1, —a? and a® with multiplicities 5,3 and 1, respectively.
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Case 3.1.2: For the second solution, we solve (A 82) by b1, =aw/c12, where w is a cubic root of
unity o # 1. Then, the remaining equation is solved by x3 =a(a2 — 1)(1 — waz)/x4 and we have

w?a®
wa ' 2 a2
[1] [ c } . (@ —a)a—1a : r [wa?]. (3.17)
c 1—wa X4 w?ac  wa(@ —1)
2 xg (1—wa)(l—a)

The eigenvalues are {1, —wa, wa®} each with multiplicity 3.
For both solutions a # 0, 1 and for the first a # —1. Note that for the second case if a = —1, there
are only two eigenvalues: 1 and w.

(ii) (ase3.2: a1zd12 75 0, b12 =M= 0

From equations (A 9), (A 29) we getajp =dip =1 and from (A 44), (A 47) byz = cp3 = 0. Due to non-
singularity, we may now assume a3d3 # 0 and then from (A 10), (A 16), we get a3 =dxz =1.
Since a3 # 0 (A 30) yields a3 = 1. Now from (A 69) and (A 100), we get a, =1,d13 =0, after which
we get a contradiction in (A 50).

(e) Case5:x3=£0,x1=x3=0

This case contains many solutions and therefore it is necessary to do some basic classification first.
We do this on the basis of the 2 x 2 blocks.

For the first 2 x 2 block (the ‘12" block), consider equations (A1), (A 2), (A9), (A29) and (A 31).
The solutions to these equations can be divided into the following:

: 61126112 # 0. Then, one finds b12 =C12 = 0and app = d12 =dai.
ca1p #0,d1p =0and bipcip #0, then a;p =ay — bipcrn/a1.

1 d1p #0,a1p =0and bipcip #0, then dyp =ay — bipcip/ag.
Ldapp = dlz =0.

& =X ™ R

The results for the other 2 x 2 block (the ‘23" block) are obtained by index changes, including
a1 — a3, we denote them as o/, etc.

In principle, there would be 4 x 4=16 cases, but we can omit several using the known
symmetries. First of all for the ‘12" block, we can omit y because it is related to g by LR symmetry.
The list of cases is as follows:

() (e, ): 1] [“1 a}[3x3][ a;} [a3].

} 3 x 3][ — bascas/az bz:«;} (23],

€23

[ }[3x3l[ bﬂ las].
(iv) (B, B'): u1]|: b12c12/a1 b12:| 3 x 3] [as—b23623/ﬂ3 b%3:| (23]

(ii) (@ 8): [a1]|”

(iii) (a,8): [a1]

€23

a3 — byzcoz /a3

() (6, lan) | P20/ b“} 8 3] [C' - }ml.
. 23

(v 8,8 fag]| " 7 1202/ blz} 8 x 3][' b”’} fasl
€23 .
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(vii) (8,8'): [a1] [ ! blz} 3 x 3] [ ' bﬂ [a3].
c12 €23
Here, we have omitted (o, y’), (B,¢'), (8,&), (8, ') and (8, ), because they are related to entries
in the above list of seven by some symmetry. Specifically, note that the vanishing of x; and x4 and
the non-vanishing of x,x3 is preserved under LR-symmetry and the |0) <> |2) symmetry, but not
the transpose symmetry. Moreover, the composition of the LR and 02-symmetries has the effect
of simply interchanging the pairs of 2 x 2 and 1 x 1 blocks.

(i) Case5.1(x, o)

We scale to a; =1 and from (A 30) get a3 = 1. According to (A 86) a% — ap =0 and then from (A 106)
and (A 108), we get d13 = —b13x2/x3 and c¢13 = —c13x2/x3 but then the 3 x 3 block matrix becomes
singular. Therefore, no solutions for this subcase.

(ii) Case’5.2(cx, B')

From (A 39) and (A 43), we get c13 = c§3 /as and by3 = by3asz/cp3. Next from (A 58) di3 =0 and from

(A76) ap =1 and from (A 54) a3 = a13. After setting a3 = —xgc§3 /x from (A 104), the GCD of the

remaining equations is (x3c23 — x2b23)(x2 + x3¢23)% and we get two solutions: ( ¢c3 — ¢, bpz — b)
5.2.1: xp = —x303,

C
[1] [1 J ed 1w [1_656 b} [1] (3.18)

2

The eigenvalues are —bc with multiplicity 2 and 1 with multiplicity 7.
5.2.2: X2 = x3c23/b23

1—be . =b?
[1] [l 1} % 1 x3 [1_Cbc b} [—bc]. (3.19)
. v :
b

The eigenvalues are —bc with multiplicity 3 and 1 with multiplicity 6.

(iii) Case 5.3 (e, )

From (A 54) and (A 62), we get a13 =d13 =0 and from (A 72) ap = 1. Next, (A 40) and (A 43) yield
13 = b1z = a3 and (A 102) x3 = —xpa3. The remaining equations are satisfied with a3 = €1 and cx3 =
€, where ejz =1. The result is

1 . ) ) ‘1 . €
(1] R 1 —xe o . [e1]
e . .

The eigenvalues are 1 and —1 with multiplicity 7 and 2 if €; =1 and 6 and 3 otherwise. However,
when €1 = —1, this is a special case of (3.19) by setting b=c= —1. For e; =1, we may takeb=c=1
in (3.18). Thus, this case may be discarded a posteriori as a subcase.

(iv) Case5.4(B, B')

From (A 37) and (A 39), we get c13 = c%2 and a3 = c%3/c%2. Next, since a1 =1 — b1ac12 #0, we get
dy3 =0 from (A 61). From (A 41) b13 = b1 /c12 and from (A 78) a;3 =1 — biocyo. For non-singularity,
we must have 2 # 0 and then from (A 82), we get byz = b1 and from (A 43) c3 = c12. Now from
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(A 74), we find ap = —x3c%2 /x2 and after that the remaining equations factorize and we have two
solutions:
54.ax = —c%2x3

1—-bc . %
[1][1_Cbc b} w1 ox [l_cbc ﬂ[l]. (3.20)

2

Eigenvalues are 1 with multiplicity 6 and —bc with multiplicity 3.
54.b X2 = C12X3/Z712

1—bc . g
1—bc b 1—bc b
[1][ c j| % —be x3 |: . :|[1]. (3.21)
2

Eigenvalues are 1 with multiplicity 5 and —bc with multiplicity 4.

(v) Case5.5(8,y)

Since the matrix is non-singular, we must have a # 0. From (A 38) and (A 41), we get c13 = C%z and
b1z = b1p/c12, and from (A 39) and (A 43) b1y = b%aclz/ag,, Cp3 = b23c%2/a3. Then, we get from several
equations the condition a13d13 = 0. If both 413 = d13 =0, we would get from (A 78) a1, =0, which
would lead to case §'. Therefore, we have two branches:

5.5.1 Assume a13 =0, di3 #0. From (A76), we get x3= —xzbgs/ag, and then since ajp #0
equation (A 102) yields a, = 1. From (A 66), we getdiz =1 — b%c%z /as. If we use (A 81) to eliminate
second and higher powers of a3 of equation (A 82), it factorizes as (a3 — 1)(1 + bazci2) =0, and we
get two branches:

5.5.1.1 If we choose a3 =1 all other equations are satisfied with by3 = w?/c12, where w® =1 but
we must have w # 1 to stay in the (B, y’) case.

®
.. 5
l-w d ¢ gi
[1] Ay 1 22¢ ’ c | (3.22)
c . c? cw? 1-w
2 1—w

The eigenvalues are 1 with multiplicity 6 and » with multiplicity 3.

5.5.1.2 Now, we choose by3 = —1/c12 and then the remaining equations are satisfied with a3 =
¢ =i
ey
_ o 2 1
< + 1 i xc . -
1] ‘w1 ¢ sl (3.23)
c . ¢ cc ¢c+1
2 . oc+1

The eigenvalues are 1 with multiplicity 5 and ¢ with multiplicity 4.

5.5.2 The case d13 =0, a13 # 0 is obtained by 02-symmetry from 5.5.1. Indeed, we see that the
form (B, y’) is invariant under the |0) <> |2) symmetry, with the 3 x 3 block having the following
pairs interchanged (a13,d13), (D13, c13), (X2, x3) and (x1, x4) = (0,0). Thus, any solution obtained for
d13 =0 and a13 # 0 may be transformed into a solution with d13 # 0 and a3 =0.
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(vi) Case5.6(8,8')

Since in this case a12 # 0, we have from (A 54) and (A 63) that 213 =d13 = 0 but then (A 78) implies
a1» =0, a contradiction.

(vii) Case5.7(8,8)

From det # 0, we get ap # 0 and then (A 81) and (A 82) imply c23 =c12 and b3 = b1o. Next from
(A38) and (A42), we get c13= C%z and b3 = b%z. Equation (A 39) then gives a3 =1 and (A 40)
implies c1p = 1/b1p. After this (A 52) and (A 66) yield a13 =d13 = 0. The remaining equations are
satisfied with ay =€, e = +£1.

b2
b X € X b
2 3
[11] 4 ) 1 [1]. (3.24)
b - 7 b
The eigenvalues are 1 and —1 with multiplicities 5 and 4 if ¢ = —1 and multiplicities 6 and 3

otherwise.

(f) Gseb:xi=x=x3=0,x#£0

From the outset, it is best to divide this into two cases depending on whether or not by, vanishes.

(i) Case 6.1: by = 0 therefore apdyp £ 0

Then, from (A1) ¢;p =0 and from (A29) and (A31) a;p =di» =1. From (A 94), we get b3 =0,
and hence aq3a2d13 # 0 and then from (A 90), (A 86) and (A 66) a3 =a, = dq3 = 1, which leads to a
contradiction with (A 68).

(ii) Case 6.2: Now that by == 0, we get from (A68) and (A72) a3 = di3 =0

From (A 72) a;3 =ayp and from (A 94) b1z = b%z and then from (A 98) and (A 99) a12 =ap3 =0 and
therefore c12bp3¢23 # 0. Next from (A 46) ¢13 = C%Z and from (A 100) and (A 101) byz = a% /c12, bip =
a5 /c3 and from (A 95) a3 = c3,/c3,.

At this point, we divide the problem into two branches on whether or not dj» vanishes.

Case 6.2.1: dip = 0. Then, from (A 68) di3 =0 and from (A 95) cp3 = a%clz and from (A 83) dy3 =
ax(1 — a%). After this, the remaining equations imply that we must have either a, =¢, e ==+1 or
1y =ow with w® =1, w#1. After changing c12 — ¢, one solution is

1
1 B 1
| el . || elm (3.25)
c c
C2 X4
The eigenvalues are 1 and —1, with multiplicities 5 and 4 if € = —1, otherwise multiplicities 6 and

3. Note that this solution may be obtained from (3.24) by setting x = 0 and taking the transpose,
but this violates the case 5 assumption that x # 0.
The second solution is

1 B ?
c

|
w . 2

c . 5 wc w-—1

[w]. (3.26)

The eigenvalues are 1, w and —1, each with multiplicity 3.
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Case 6.2.2: d1p # 0. From (A 64) and (A 68), we get dj3 =dp3 = d12(1 — a3) and then from (A 63)
ap =1. The remaining equations are solved by d1p = (c23 — c12)/c23 and cp3 = c1pw with =1,
w #1, yielding

TR T L
e 2a? -
[1] cw . ¢ | [o?]. (3.27)
c w+2 5 ’ wc
C X4 .

The eigenvalues are 1, ®? and —w?, each with multiplicity 3.
Altogether, we have established the following:

Theorem 3.2. For the YBE (2.2) in three dimensions, the complete list of solutions satisfying ACC but
not SCC (see [11] for SCC) is given, up to noted symmetries (see §2b, in the formulae (3.15)—(3.27), and
collected in table 1).

4. Analysis of the generic representations (3.2/3.3)

Constant Yang—Baxter solutions can be of considerable intrinsic interest. But they are also often
interesting because of their symmetry algebras. In the XXZ case (one of the SCC cases), for
example, the symmetry algebra is the quantum group Ugsl. This holds true in all ranks (i.e.
all system sizes n)—as we go up in ranks, we simply see more of the symmetry algebra—i.e. the
action of the symmetry algebra on n-fold tensor space has a smaller kernel as 7 increases. It is not
immediate that such a strong outcome would hold in general. But it is interesting to investigate.

In §4a, we analyse our new solutions. (In §4b, we recall some classical facts about the classical
cases for comparison.)

(a) Analysis of the generic solution: spectrum of R

Now, we consider the solution in (3.2/3.3). Observe that the trace of the 3 x 3 block is

x1x3+b  x1x3 a2b + abxix3 + ab® — x1x3
b ab ab ‘
Consider IVQj — 1, so that all but the 3x3 block is zero. Restricting to the 3x3 block of IV{, call it 7, we

have

a X1 b
x3(a—1) x1x3+b
v _ X3
r—13= b b -13
3x? _x(ab+x1x3)  x3xq
L b ab? ab
M a—1 X1 b
x3(a —1) X1X3
=" b b 3 : (4.1)
¥ x@b+xixs)  b(xsx +ab)
L b ab? ab?

Note that x%x% /b3 = (—(a — 1)(ab + x1x3))/ab? so this is clearly rank 1. Thus, only one eigenvalue
of R — 1is not 0, and so only one eigenvalue of R is not 1. We have
. x1x3 b(x1x3 +ab) a2b?% + abxix3 — b(x1x3 + ab) B

T R—1=a-1+—"72 = 1.
race( )=a + b 2 2
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Table 1. Table of all ACC solutions to the Yang—Baxter equation (2.2) in rank-3. Here, x denotes a non-zero variable possibly
with further constraints described in the text; e is a primitive third root of unity; and ¢ is a primitive fourth root of unity. In
the continuous/discrete parameter column, entry 3 /1 means a 3-free-parameter family, not counting overall scaling, with 1
discrete parameter (which always take on exactly two values). (Hyphens and omitted ‘names’ correspond to choices leading to
no solution.)

soln.name  non-zerox;s  blockform  parameters cont./discrete  eigenvalues, degeneracies

_________________________________________________________________________________________________________________________________________ T
521 alln (318) 3/0 X)
x7 x2
1 '
522 ek (319) 3/0 ¥
x6 x3
1 ’
542 alln (320) 3/0 X
X6 x3
1 1]
54b ek (32 3/0 X
x5 x4
1 ’
5511 alln (3.22) 21 @
X6 %3
1 1]
5512 ek (3.23) 2/1 § )
x5 x4
- 1,
57 aka (3.24) 3N /
x5 x4 X6 x3

B

6

627 B (3.26) 2/1 Ve _1)
B

The other eigenvalue of Ris

e a@— D +@—Dbxixz a2 (—(@—1)£/(a—1)2—4a2(a—1) ?
2= ab? - <T) - 2a

—note from (3.3) that this depends only on a.
In particular, each of our braid representations (varying the parameters appropriately) is a
Hecke representation.

0180520708 ¥ 705 % 2014 edsi/jeuinolBioSuiysijgnd/iaposiefor H



Downloaded from https://royalsocietypublishing.org/ on 03 August 2024

We see that the eigenvalue 1, can be varied over an open interval (in each branch, it is
a continuous function of a, small for a close to 1; and large for large negative a). So (by
Hecke representation theory, specifically that the Hecke algebras are generically semisimple, and
abstract considerations [13,14]) the representation is generically semisimple.

Returning to (4.1), we have

t 1 {sz
] [a_llxlrb]:ﬁ ﬂbx3 [a_llxllb]
a —ab — x1x3

. x3 —ab — x1x3
Ft= [

and

—ab — x1x3

t
R—1o= [0,0, 1,0,2,0,~ ,0,0] [0,0,a —1,0,x1,0,b,0,0].

b ab

Armed with this, we have a Temperley-Lieb category representation (i.e. an embedded TQFT—
we assume familiarity with the standard Ujsl, version, which can be used for comparison—see
[15, Sec.6.2] and references therein). In this form, the duality is going to be skewed (not a simple
conjugation) but should be workable. In particular, the loop parameter is

— 0 -
0
1
0
X3
7 b(ab
[O/O/a_llolxllolblolol b :(a_l)—"_@_w
0 b ab
(—ab — x1x3)
ab?
0
L 0 A

212 2
a“b- — 2ab +(a—1)bx1x3_a—1 X1X3 _
) = <a+—b )—1—)»2—1,

which, note, depends only on a.

(b) lrreducible representation content of the generic solution

The following analysis gives us an invariant, and thus a way to classify solutions R (or
equivalently R).

Thus, in principle, we can classify R-matrices according to the Bj-representation structure (the
irrep content and so on) for each (and all) . In general, such an approach is very hard (due to the
limits on knowledge of the braid groups B, and their representation theory). Certain properties
can, however, make the problem more tractable.

In our case, call the representation p, (or just p if no ambiguity arises, or to denote the monoidal
functor from the braid category, as in [11]). Depending on the field we are working over, this might
mean the rep with indeterminate parameters, or a generic point in parameter space (i.e. the rep
variety or a point on that variety).

Since this R has two eigenvalues (see §4a), we have a Hecke representation—a representation
of the algebra H, = H;(q), a quotient of the group algebra of B, for each n, for some g. (With the
same understanding about parameters.)

Since eigenvalue 11 =1, this Hy(g) is essentially in the ‘Lusztig’ convention—we can write ¢;
for the braid generators in Hy, so

Ri=p(t;) = pa(ti);
then the quotient relation is
(i — 1)(t + ) =0, (42)
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for some g = —A, as in [16]. Here, it is convenient to define

ti—1
Ui=-+—,
o

soalj(al;+1+¢)=0,ie al?=—(1+q)U,.
In a convention/parameterization as in (4.2), the operator

€ =1—t —t) +t1tr + trt] — titrty,
is an unnormalized idempotent, and hence
pn(€)=1—R; — Ry + RiRy 4+ RoR1 — R1RyRy,

is an unnormalized (possibly zero) idempotent, whenever R gives such a Hecke representation.
In our case, in fact, ¢’ is zero (by direct computation)

on(€)=0. (4.3)
Note that
BU UL Uy = () — 1)(tr — 1)(t — 1) = ttaty — bitp — boty — bty + 20 + 1 — 1,
so in our case
pn(@®Urlath) = (R = 1)(Ry — 1)(Ry — 1) = RiRaRy — RiRy — RaRy — RiRy +2R; + Ry — 1,
SO
pule®Urlnlh) = =R} + Ry = —Ri(R1 = 1) = pu(qally) s pu(UUally) = pu (U1 ),

so if we put « = £, /7 then we have the relations of the usual generators for Temperley-Lieb [17].

We assume familiarity with the generic irreducible representations of H,;, which we write, up
to isomorphism, as L, with A -7 an integer partition of n. The idempotent ¢’ induces the irrep Lys.
The unnormalized idempotent inducing the irrep L3 is

1 1 1
eé =1+ 6(R1 + Rp) + qu(Rle + RoRqp) + qf3R1R2R1. (4.4)
This gives
1
La(eh) = S+ +q+ 7),

which gives the normalization factor, so

q3

A+9l+q+P™

e3 =

The generalization to irrep L, in rank n will hopefully be clear (in fact we will not really need it
except for checking).
We can write y;, for the irreducible character associated with irrep L;. That is,

X (t;) = Trace(L; ().

We can evaluate these characters in various ways, but a simple device is the restriction rule for
the inclusion H,,_1 ® 11 = Hj; together with the easy cases

Xﬂ(ti) =1 and X1n (fl) = )‘-2- (45)
For example,
xea(t) = xa(t) + x2(t) =1+ 22

and so on.
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Observe that the eigenvalues of R;, specifically Ry = R® 13, are three copies each of the
eigenvalues of R. Hence, there are 24 eigenvalues 11 = 1 and three copies of the other eigenvalue,
call it Ao

Xp(t) =3(8 + A2) =24 + 3);.

The 1d irrep L3, when present, contributes 1 eigenvalue A1 =1. The 2d irrep L1 contributes 1
eigenvalue A1 =1 and 1 of the other eigenvalue A,. The 1d irrep L;s contributes just 1 of the other
eigenvalue 2. Since ¢’ = 0 the multiplicity of this irrep in p is 0. Therefore, all the three eigenvalues
A2 come from L1 summands. The identity (4.3) therefore tells us that the irreducible content of
our representation of H3 (the Hecke quotient of B3) is

p=21L3+3Lp;. (4.6)
(The sum is generically but not necessarily always direct.) In particular, we have re-verified
Proposition 4.1. Representation p is a representation of Temperley—Lieb.

Note that it follows from the tensor construction that this TL property holds (i.e. the image of
¢’ continues to vanish) for all n.

Next, we address the question of faithfulness of p;, as a TL representation, and determine the
centralizer, for all n.

Write m;, for the multiplicity of the generic irrep L, in our rep p (the generic character is well-
defined in all specializations, but the corresponding rep is not irreducible in all specializations)

Xpw =D _ M3 (47)
An

Note that integer partitions can be considered as vectors (‘weights” in Lie theory) and hence
added. For example, if = (u1, o, 3, - - ., ) then

p+1l=p+0,)=pn+1Q,10,...,00=(u1 + 1, u2 +1,u43,..., 7).

Stability Lemma. The multiplicity m,, atlevel n — 2 is the same as 11,11 at level n.Outline Proof
The method of ‘virtual Lie theory” works here (e.g. [14,18]). Let us define

U=R;—1,

our rank-1 operator. Thus, U; is itself an unnormalized idempotent—indeed it is, up to scalar, the
image of the cup-cap operator in the TL diagram algebra.

Write Ty, for TL on n strands. Recall that U Ty, is a left T),_p right T, bimodule. Recall the
algebra isomorphism U; T, U1 = T),_; and recall that T, /T,,U; T, =k, where k is the ground field
(for us it is C). It follows that the category T,_p — mod embeds in T), — mod, with the embedding
functor given by

M T, Uy ®7, , M. (4.8)

The irrep L, =Ly, is taken to L, 411 =Ly 4+1,,+1. Here, L, is the module not hit by the
embedding—this is the module corresponding to T, /T, U1 T, =k, so the one that is annihilated
by the localization M — Ui M.

The Theorem below is a corollary of this lemma.

It might also be of interest to show how to compute the further multiplicities m,, by direct
calculation. For n =4, we have x,,(t;) =3xp,(t;) =72+ 94. A direct calculation gives x,,(es) =
55 so my =55, and we have x,, (t1) =554 m31(2 + A2) + mp (1 + A2). We have 2mzq + mp =72 —
55 =17 and m31 + my =9, giving m31 = 8 and mpp = 1.

Observe that this is in agreement with the Stability Lemma.

Forn =5, wehave x,.(t;) =3 x,,(t;)) =216 + 271,. A direct calculation gives x,,(e5) = 144 and so
we have x,,(t1) =144 + my1(3 + A2) + m32(3 + 212). We have 3myy + 3m3zp =216 — 144 =72 and
my1 + 2mzpy =27, giving my 1 =21 and m3, =3.
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We observe a pattern of repeated multiplicities, in agreement with the Stability Lemma

my | 1 3 8 21 55 144
A 11 2
21 3
22 31 4
32 41 5
33

Besides the Stability Lemma or a direct calculation, the last entry above may be guessed based
on Perron-Frobenius applied to the Hamiltonian H=)"; Ivii—if some power of H is positive, then
there is a unique largest magnitude eigenvalue, and hence the corresponding multiplicity is 1.
We know from the XXZ chain, which has the same eigenvalues but different multiplicities, that
A =mm gives the largest eigenvalue when n =2m.

Theorem 4.2. The multiplicity my, in (4.7) is given by A001906 from Sloane/OEIS [19], with all other
multiplicities m,, determined by the Stability Lemma.

The Temperley-Lieb algebras are generically semisimple; and a representation of a semisimple
algebra is faithful if and only if every irrep appears as a summand. The latter is immediate from
the Theorem, so generical faithfulness of our representations p; is similarly immediate.

This brings us back to the original question about the stability of the centralizer as n varies—
the possibility of an overarching symmetry algebra analogous to Ugsly in the XXZ case. Of course,
by Schur’s Lemma, the Stability Lemma exactly says that there is a limit symmetry algebra, with
all finite cases simply quotients of this limit. But the combinatorial fact does not of itself imply
that the symmetry algebra is something as beautiful as a quantum group (cf. appendix B).
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Appendix A. The equations

(@) The cubic constraints

Here, we write out the system of cubics corresponding to entries in Ag as in (3.1), hence the cubics
that must vanish, in the ACC ansatz.

In fact, the first few cubics in Ag are unchanged (ordering 000 001 002 010 011 012 020 021 022
100 101 102 ... 222) from the strict CC ansatz. Row 000 has vanishing anomaly. Row 001 gives

(001]AR|001) = —a1pbiacia — 143, +a3a;y  and  (001]AR|010) = —ajobindia,
with all other entries vanishing. The first departure from SCC is in the 002 row, which is
(002]AR =[0,0, —a1px1x2 — a13b13c13 — a1a3, + ajas, 0,
— a13bizxy + (a1a12 — a12a2 — ma13)x1,0, —apx1x3 — azbizdis, 0,0,0,
— bizc1x1 — a12bipxy + a1bixy, 0,

— byad1axy + a1bizxy — b2yx1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0].
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(b) List of equations

We give the complete list of equations that are distinct up to an overall sign, organized by the

number of terms (in computations, we use the scale freedom to assume a; = 1).

aipc1pdip =0,
a1 b1pd12 =0,
a23 23 do3 =0,

a3 bz dr3 =0,

X2 x4¢12=0,
X2 x4 €23 =0,
x1x3b12 =0,
X1 X3 b23 =0

a12d12 (a12 — d12) =0,
ap3 dp3 (a3 — do3) =0,
x1x2 (d12 — do3) =0,

x1 %3 (412 — d12) =0,
x1x3 (a3 — d23) =0,

X2 x4 (412 — d12) =0,

X2 X4 (23 — dp3) =0,

x3 x4 (a12 —a23) =0,
x1X3¢12 —a12b1od12 =0,
x1x3dp3 +a13 b3 d13 =0,
X1 X312 +a13b13d13 =0,
X1 X3 €23 — 23 b3 doz =0,
x1x3d12 +a13b13d13 =0,
X1 x3a23 + a13 b13 d13 =0,
x2 x4 d1p +a13c13d13 =0,
X2 x4a12 +a13c13d13 =0,

X2 x4 b1p —arpc12d12 =0,
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X2 X4 dp3 +a13c13d13 =0,

X2 X423 + a13 c13d13 =0,

X2 X4 bz — az3 co3d3 =0,

a12 (a3 —ay a2 — c12bin) =0,
a3 (c23 bz — a3 + a3 a23) =0,

d12 (@3 — a1 d1p — c12b12) =0,
da3 (c23 bas — @3 + a3 daz) =0,

x1 (a1 b1z — c12 b13 — a12 b12) =0,

x1 (a1 biz — dip biz — b3,) =0,

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)
(A10)
(A11)
(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)
(A20)
(A21)
(A22)
(A23)
(A24)
(A25)
(A26)
(A27)
(A28)
(A29)
(A 30)
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x1 (c23 D13 — a3 bz + a3 ba3) =0,

x1 (a3 bis — daz b1z — b35) =0,

X2 (a1 c12 — 12412 — €13 b12) =0,

X (a1 c13 — ¢y — c13d12) =0,

X2 (c1383 — €13 da3 — c33) =0,

X2 (c13 b23 — c23a3 + c23 423) =0,

x3 (a1 b1 — c12 b1z — d12 b12) =0,

x3 (a1 b1z — a1a bz — bi,) =0,

x3 (€23 D13 — a3 bz + doz bp3) =0,

x3(a3biz — a3 bz — b33) =0,

x4 (a1 c12 — c12d12 — 13 b12) =0,

xq (a1 c13 — ¢y — c13a12) =0,

x4 (c13a3 — €13 23 — C%g) =0,

x4 (c13 baz — c23a3 + €23 d23) =0,

x3 X4 (12 — a23) + x1 X2 (—d12 + d23) =0,

X3 X4 423 — X2 X1 do3 + d13 a13 (d13 — a13) =0,
x3X4a12 — X2 X1 d1p +diza13 (di3 —a13) =0,
xX1Xpa12 +a13 (—a3 + a1 a13 + c13 b13) =0,

X1 X2 423 + a13 (c13 b1z — a3 + aza13) =0,

x1 X2 b1z + boz (—daz a13 + a12 413 — a12a23) =0,
x1 X2 boz + b1 (—d12 413 — a12 a3 + 413 423) =0,
X1 X2 €12 + €23 (—da3 A13 + a12 413 — a12a23) =0,
X1 X2 €23 + €12 (—d12 413 — 12 423 + a13423) =0,
x1x3a2 + b1z (d13 412 — doz a1z + daz a13) =0,
x1 X3 a2 + b1z (d12 a13 — dip an3 + di3 a23) =0,
Xo X4 a2 + c13 (d12 a13 — d12 a3 + d13 a23) =0,

X2 X4 a3 + €13 (d13 a12 — daz a1z + dxz a13) =0,
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x3 x4 big + bos (d12 di1z — dip doz — d13 a23) =0,
x3 X4 boz + b1z (—dip dos + di3 dos — di3 a12) =0,
X3 x4 €12 + €23 (d12 d13 — d12 doz — di13 az3) =0,
X3 X4 €23 + €12 (—d12 do3 + di3 doz — d13a12) =0,
x3x4d1p + d13 (—a? + a1 diz + c13 b13) =0,

x3 x4 do3 + dz (c13 b1z — a3 + azdi3) =0,

x4 (a1 d1g — a1 diz — azdip) — x1c13d13 =0,

x4 (a2 dp3 + a3 di3 — a3 dy3) +x1 c13d13 =0,

x4 413 b13 + x1 (a2 a23 + az a13 — az ax3) =0,

xga13 b13 + x1 (—ay a2 + a1 a13 +az a12) =0,

(A35)
(A 36)
(A37)
(A38)
(A39)
(A 40)
(A41)
(A42)
(A43)
(A44)
(A 45)
(A 46)
(A47)
(A 48)
(A 49)
(A 50)
(A51)
(A52)
(A53)
(A 54)
(A55)
(A 56)
(A57)
(A58)
(A59)
(A 60)
(A61)
(A62)
(A63)
(A 64)
(A 65)
(A 66)
(A67)
(A 68)
(A 69)
(A70)
(A71)
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X4 b12 (412 — a13) + x1 c12 (—d12 +d13) =0,

x4 b3 (413 — a23) + x1 23 (—d13 + do3) =0,

X2 (a1 a12 — a1 a13 — az a12) — x3 13413 =0,

xp (a2 az3 +as a13 — az a3) + x3 c13a13 =0,

x2d13 13 + x3 (—a1d1p + a1 di3 + a2 di2) =0,

x2 d13 b1z + x3 (a2 dos + a3 di3 — az daz) =0,

X2 b1z (d12 — d13) + x3 12 (—a12 +a13) =0,

X2 bps (d13 — da3) + x3 23 (—a13 + ax3) =0,

x1 (a2 bip — ap bz + a1 byz — axz b12) =0,

X2 (c12 42 — €12 23 — a2 €23 + €23 412) =0,

x3 (a2 b1p — ap bz + d12 by — doz b12) =0,

x4 (1242 — c12d23 — az c23 + c23d12) =0,

c12d13 b1a — co3di3 bog + d3, dog — d1p d33 =0,

1213 b1 — c23a13 bz + ﬂ%z az3 — a1 ”%3 =0,

X1X2a1 + X3 X413 + 12 (—a1242 — bia c1p +a3) =0,
X1%2a3 + X3 Xaa13 + 23 (—az3 ap — boz 23 +a3) =0,

X1 X2 d13 + x3 x4 a3 + doz (—ba3 23 + a3 — ap da3) =0,
xX1X2d13 + X3 X481 + d1o (~bia c12 + a3 — axd12) =0,

X1 X8y — C12 a3 b1p + c13 423 b1z — d3, 413 + d1p a2, =0,
X1X22 + €13 812 13 — €23 412 bz — day 413 + dagady =0,
X3X40y — €12 do3 b1a + c13dos bis + d35 a1n — diz a3, =0,
X3 X4y + €13 d12 b1z — o3 d1p bog + da5 ans — dizady =0,
x1 (a13 d13 + ap d1p — dio diz) + x4 (b3, + b3 a1) =0,
x1 (13 d13 + ap dos — dy3 dos) + x4 (13 a3 — b33) =0,

x1 (a1 ¢13 — €3,) + X4 (—a12a13 + a1p a2 + a13d13) =0,
x1(C13 83 — €33) + x4 (—a13 423 + a13 d13 + a3 a2) =0,

2
x1 (a13d12 — bz c12 + a5 — ap d12) + x4 a3 013 =0,
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x1(a13dos — bip e + a3 — ax dos) + x4 a12b13 =0,

x1c13d12 + x4 (—az3 02 + a3 diz — boz e +a3) =0,
x1 c13da3 + X4 (—a12.82 + a12 d13 — bip 023 +a3) =0,
X2 (a1 b1z — b3y) + x3 (a2 112 + d13 413 — a12a13) =0,
%2 (a3 b1z — b33) + x3 (a2 3 + d13 13 — A13.423) =0,
X (a2 d12 — dip diz + diz a13) + X3 (a1 c13 — ¢3,) =0,
X (a2 dos — di dos + di3 a13) + x5 (c1343 — ¢33) =0,
Xpd12 b1z + X3 (a3 — ap a3 — c23 b1p + di3 a23) =0,

X2 daz b1z + x3 (—c12 bog + a3 — aparp + diza12) =0,

(A72)
(A73)
(A74)
(A75)
(A76)
(A77)
(A78)
(A79)
(A 80)
(A81)
(A82)
(A83)
(A 84)
(A85)
(A86)
(A 87)
(A88)
(A 89)
(A 90)
(A91)
(A92)
(A93)
(A 94)
(A 95)
(A 96)
(A 97)
(A 98)
(A 99)

(A 100)

(A101)

(A102)

(A103)

(A104)

(A 105)

(A 106)

(A107)
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X2 (c12 bz — a5 + ap dos — doza13) — x3c13a12 =0 (A108)

and X2 (a3 — apdip — co3 b1p + d1p a13) + X3 c13.a23 =0, (A109)

Appendix B. Aside on further analysing solutions

A step even further than the all-ranks representation theory analysis in §4 above would be to give
an intrinsic characterization of the centralizer algebra. We do not do this, but we can briefly set
the scene.

For an example R=P as in (2.1) is itself a solution—this specific case, and also the
corresponding P for each N. This solution is relatively simple, and completely understood in
all cases, but still highly non-trivial. Of course, it factors through the symmetric group. (It is
the Schur-Weyl dual to the natural general linear group action on tensor space.) Its kernel as a
symmetric group representation depends on N as well as n. Assuming we work over the complex
field, then the kernel is generated exactly by the rank N + 1 antisymmetrizer. Thus, in particular,
for N =2, we have a faithful representation of ‘classical’ Temperley-Lieb. While for N =3 the
rank-3 antisymmetrizer does not vanish (so faithful on the corresponding algebras—e.g. [20]).

More explicitly, we have the charge-conserving decomposition

P =(p111 © 222 ® p333) @ (P112 D P122 D P113 D 133 © 223 @ p233) © (0123)
=3p111 © 60112 © p123 = 10L3 © 8L21 D L3, (B1)

where the bracketed sums are of isomorphic reps, and p111 is trivial; p110 = L3 @ Lo1; p123 = L3 @
2151 ® L5 (i.e. the regular rep). Observe that the multiplicities 10, 8, 1 are the dimensions of the
corresponding GL3 irreps (recall these may be indexed by integer partitions of at most two rows,
or equivalently of at most three rows where we delete all length-3 columns) as dictated by the
duality. Note that this structure will be preserved by any generic deformation.

We can characterize this in the classical way, starting with the spectrum of R itself

OO = MmMae
B (B2)
3x3=6+3, (B3)
Oeded = (D]@B)@D:DZD@ZEP@@
(B4)
and 3x3x3=(6+3)x3=10+28+1 (B5)

cf. (B1). Recall that this continues
Oep0de0e0 = ® 3. @255@35

and
3x3x3x3=15+3.154+26+33.

(Side note for future reference: here in each third rank up, the reps from three ranks down
reappear (along with some more). This ‘three’ is one sign that we are with gl3 or sl3 in this case.)

Observe that the solution for R in (3.2) (in §3a) certainly does not have the multiplicities in
(B3). Indeed, it agrees formally initially with

D®H = HD@Q

3x3=8+1

and

(e.g. [21])—formally, in the sense that the symmetry needed for the symmetric group(/Hecke/braid)

action is broken here. In this formal picture, it is not clear how the labels would correspond
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with the Hecke algebra/symmetric group labels—we are in rank-2 (but at least there are two
summands). And it is not clear how to continue. We have

D@EP = H:DeaEE@D 56
3x8=15+6+3, (B7)

D@B@D

for example (so at least the centralized algebra of is—miraculously—isomorphic to
the Hecke quotient of B3). But this is nowhere close to what we have. This suggests that it is at
least time to pass to the Lie supergroups again, such as GL(2|1) (cf. e.g. [21-23]). (Alternatively, it
could be that the construction is not dual to a quantum group action.)

and
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