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We find all solutions to the constant Yang–Baxter

equation R12R13R23 = R23R13R12 in three dimensions,

subject to an additive charge-conservation (ACC)

ansatz. This ansatz is a generalization of (strict)

charge-conservation, for which a complete classifi

cation in all dimensions was recently obtained. ACC

introduces additional sector-coupling parameters—in

three dimensions, there are four such parameters. In

the generic dimension 3 case, in which all of the four

parameters are non-zero, we find there is a single three

parameter family of solutions. We give a complete

analysis of this solution, giving the structure of the

centralizer (symmetry) algebra in all orders. We also

solve the remaining cases with three, two or one

non-zero sector-coupling parameter(s).

1. Introduction
The Yang–Baxter equation (YBE) reads (in shorthand

form)

R12R13R23 = R23R13R12. (1.1)

It is a fundamental equation for many applications—see

for example [1–8] and references therein.

To make (1.1) explicit, one first fixes a dimension N

for a vector space V = CN . We can also pick bases for

V and V ⊗ V. Then, we have an underlying matrix R

acting on V ⊗ V. Each matrix Rij acts on V ⊗ V ⊗ V,

acting on the ith and jth factors as R, and on the other

factor as the identity. Thus in explicit form, the YBE reads

2024 The Author(s) Published by the Royal Society. All rights reserved.
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∑

α1,α2,α3

R
i1i2
α1α2

R
α1i3
j1α3

R
α2α3

j2j3
=

∑

β1,β2,β3

R
i2i3
β2β3

R
i1β3

β1j3
R

β1β2

j1j2
, (1.2)

where the indices range over 0, 1, . . . , N − 1 and R
i1i2
α1α2 is the appropriate matrix entry of R. (See

also §2a.)

With various applications in mind, we impose

det(R) �= 0. (1.3)

For some applications, the R matrices depend on spectral parameters that can be different for

each Rij [3,7], but in this paper, we will consider the constant YBE. By construction, any Ř gives a

representation of the braid group Bn for each n.

Observe that R will have N2 × N2 entries and there will be, in principle, N3 × N3 equations. It

is clear that such an overdetermined set of nonlinear equations is difficult to solve, even in this

constant form. Indeed, while many individual solutions are known, a complete solution is known

only for dimension two [9] and for higher dimensions knowledge is far from complete. The three-

dimensional upper triangular case was solved in [10], but for further progress, it is important to

make a meaningful ansatz.

Recently, Martin & Rowell proposed [11] charge-conservation of the form

R
kl
ij = 0, if {i, j} �= {k, l} as a set, (1.4)

as an effective constraint and with it they were able to find all solutions for all dimensions. The

above constraint may be called ‘strict charge conservation’ (SCC). In this paper, we will explore

the results obtained by relaxing the SCC rule to ‘additive charge conservation’ (ACC) defined by

R
kl
ij = 0, if i + j �= k + l. (1.5)

Observe that ACC differs from SCC first in dimension 3. In practice, this change increases

the complexity of the underlying computational problem by introducing four further ‘mixing’

parameters (SCC itself having 15 parameters in dimension 3).

The paper is organized as follows. In §2, we discuss notational matters and symmetries of the

problem. In §3, we present the solutions. The set of solutions is organized according to the non-

vanishing conditions on the four mixing parameters (together with their symmetries). Thus, the

first family of solutions is the generic case, with all parameters non-zero—it is solved in detail in

§3b. The various possibilities are then addressed in turn, the last case being the set of solutions

where all but one mixing parameter vanishes—§3f.

It turns out that several solutions have the ‘Hecke’ property (i.e. having precisely two distinct

eigenvalues). In §4a, we use this to analyse the representations, giving a complete analysis for the

generic case.

One natural realization of the constant Yang–Baxter problem is as a problem in categorical

representation theory, and this is the perspective largely taken in [11] (see also [12], for example).

However, here we will keep to a simple analytical setting. Direct transliteration of results between

the settings is a routine exercise.

2. The set-up
For the braid group point of view, we first define

Ř = P R, where P
kl
ij = δl

iδ
k
j , i.e. Ř

kl
ij =R

kl
ji , (2.1)

and furthermore

(PR)12 = Ř1 := Ř ⊗ 1 and (PR)23 = Ř2 := 1 ⊗ Ř,

acting on V ⊗ V ⊗ V. Then, the YBE in (1.1) becomes

Ř1Ř2Ř1 = Ř2Ř1Ř2, (2.2)
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i.e. the braid group version of the YBE.

(a) Presenting matrices

Set V = C3 with basis labelled by {0, 1, 2}. We will order this basis as the symbols suggest. Using

the standard ket notation, i.e. i ⊗ j =: |ij〉, we may order the basis of V ⊗ V, for example, using

lexicographical order

|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉,
or reverse lexicographical order (rlex)

|00〉, |10〉, |20〉, |01〉, |11〉, |21〉, |02〉, |12〉, |22〉.

Still another possibility is to use a ‘graded’ reverse lexicographical ordering (grlex)

|00〉, |10〉, |01〉, |20〉, |11〉, |02〉, |21〉, |12〉, |22〉.

The name is borrowed from monomial orderings, in which setting the symbols are numbers,

rather than being arbitrarily associated with numbers as in our case.

The matrix entries are defined as

R
kl
ij := 〈ij|R|kl〉.

In the present case with ACC (1.5) and the rlex ordering, we get the matrix

Rrlex =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R
0,0
0,0 . . . . . . . .

. R
1,0
1,0 . R

0,1
1,0 . . . . .

. . R
2,0
2,0 . R

1,1
2,0 . R

0,2
2,0 . .

. R
1,0
0,1 . R

0,1
0,1 . . . . .

. . R
2,0
1,1 . R

1,1
1,1 . R

0,2
1,1 . .

. . . . . R
2,1
2,1 . R

1,2
2,1 .

. . R
2,0
0,2 . R

1,1
0,2 . R

0,2
0,2 . .

. . . . . R
2,1
1,2 . R

1,2
1,2 .

. . . . . . . . R
2,2
2,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.3)

Indeed, the ‘shape’—the non-vanishing pattern—is the same for R, Rrlex and Ř. The grlex matrix

is obtained from this with

Rgrlex = PGRrlexPG,

where PG implements the transpositions |01〉 ↔ |20〉 and |21〉 ↔ |02〉. Then, an ACC matrix takes

the block form exemplified by

Rgrlex =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R
0,0
0,0 . . . . . . . .

. R
1,0
1,0 R

0,1
1,0 . . . . . .

. R
1,0
0,1 R

0,1
0,1 . . . . . .

. . . R
2,0
2,0 R

1,1
2,0 R

0,2
2,0 . . .

. . . R
2,0
1,1 R

1,1
1,1 R

0,2
1,1 . . .

. . . R
2,0
0,2 R

1,1
0,2 R

0,2
0,2 . . .

. . . . . . R
2,1
2,1 R

1,2
2,1 .

. . . . . . R
2,1
1,2 R

1,2
1,2 .

. . . . . . . . R
2,2
2,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.4)
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In order to save space, we will in the following just give the blocks as

Rgrlex =
[

R
0,0
0,0

]

⎡

⎣

R
1,0
1,0 R

0,1
1,0

R
1,0
0,1 R

0,1
0,1

⎤

⎦

⎡

⎢

⎢

⎢

⎣

R
2,0
2,0 R

1,1
2,0 R

0,2
2,0

R
2,0
1,1 R

1,1
1,1 R

0,2
1,1

R
2,0
0,2 R

1,1
0,2 R

0,2
0,2

⎤

⎥

⎥

⎥

⎦

⎡

⎣

R
2,1
2,1 R

1,2
2,1

R
2,1
1,2 R

1,2
1,2

⎤

⎦

[

R
2,2
2,2

]

. (2.5)

Recall that Ř is obtained from R by exchanging lower indices, which corresponds to up-down

reflection within the block. In order to match with [11] (using shifted basis labels {0, 1, 2} �

{1, 2, 3}), highlight the new parameters, and to save from writing many double indices we

introduce shorthand notation for Ř:

Ř = PR =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 · · · · · · · ·
· a12 · b12 · · · · ·
· · a13 · x1 · b13 · ·
· c12 · d12 · · · · ·
· · x2 · a2 · x3 · ·
· · · · · a23 · b23 ·
· · c13 · x4 · d13 · ·
· · · · · c23 · d23 ·
· · · · · · · · a3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.6)

Then, the block form is

[

a1

]

[

a12 b12

c12 d12

]

⎡

⎢

⎣

a13 x1 b13

x2 a2 x3

c13 x4 d13

⎤

⎥

⎦

[

a23 b23

c23 d23

]

[

a3

]

. (2.7)

(b) Symmetries

Naturally, it is useful to consider ACC solutions to (2.2) up to transformations that preserve (2.2)

and the ACC condition.

(i) Scaling symmetry: equation (2.2) and the ACC condition is invariant under rescaling Ř

by a non-zero complex number.
(ii) Transpose symmetry: the ACC is preserved under transpose: Ř �→ ŘT; and of course (2.2)

is satisfied by ŘT if it is satisfied by Ř quite generally. Indeed, note that from the form of

(1.2), it is easy to see that if Řk,l
i,j solves the equation, then so does Ř

i,j
k,l. The effect on the

variable choices in (2.6) are bij ↔ cij and x1 ↔ x2 and x3 ↔ x4.
(iii) Left-right (LR) symmetry: changing the ordering of the basis from lex to rlex the resulting

matrix will also be a solution. This can be seen in matrix entries because if Řk,l
i,j solves

equation (2.2), then so does Řl,k
j,i . This corresponds to reflecting each of the blocks in (2.7)

across both the diagonal and the skew-diagonal, i.e. aij ↔ dij, bij ↔ cij as well as x1 ↔ x4

and x2 ↔ x3.
(iv) 02- or |0〉 ↔ |2〉 symmetry: while (2.2) is clearly invariant under local basis changes, the

ACC condition is not. However, the local basis change (permutation) |j〉 ↔ |2 − j〉 with

indices {0, 1, 2} taken modulo 3 does preserve the form of an ACC matrix: the span of the

|ij〉 with i + j = 2 is preserved, while the |ij〉 with i + j = 1 and i + j = 3 are interchanged as

are the vectors |00〉 and |22〉. The effect on the block form (2.7) is to interchange the pairs

of 1 × 1 and 2 × 2 blocks followed by a reflection across both the diagonal and skew-

diagonal of each block.

Of course, these symmetries can be composed with one another and, discounting the rescaling,

one finds that the group of such symmetries is the dihedral group of order 8. This can be seen by

tracking the orbit of the 2 × 2 matrix
[

a12 b12

c12 d12

]

, since there are no symmetries that fix it. Indeed,
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we see that there are four forms it can take, generated by the reflections across the diagonal and,

independently across the skew-diagonal, and two positions in (2.7), it can occupy.

3. The solutions
For constant Yang–Baxter solutions, a necessary and sufficient set of constraint equations on the

indeterminate matrix entries arises as follows. First compute, say,

AR := Ř1Ř2Ř1 − Ř2Ř1Ř2, (3.1)

which we call the braid anomaly so that the constraints are obtained from AR = 0.

The SCC case in which all xi vanish was solved in [11]. Note that in ACC, some xi can be

non-zero and there will be mixing between more states |ij〉, but always with i + j constant, so

this is a computationally relatively modest generalization. However, the full symmetry of indices

that exists for SCC is now broken. This ansatz-relaxing obviously increases the complexity of the

system of cubic equations, but they can still be solved, as given below.

We organize the solutions according to which xis are vanishing. In principle, there are 24 − 1 =
15 cases (excluding the SCC case), but we can use the above symmetries in order to omit some x

configurations. This leads to the following classification into six cases:

(i) All xi are non-zero. See §3a,b.

(ii) Precisely one x vanishes, by symmetry it can be assumed to be x4. See §3c.

(iii) x3x4 �= 0 and x1 = x2 = 0, related by the LR symmetry to x1x2 �= 0 and x3 = x4 = 0. See §3d.

(iv) x1x3 �= 0 and x2 = x4 = 0, related to x2x4 �= 0 and x1 = x3 = 0 by transposition. See §3c.

(v) x1x4 �= 0, x2 = x3 = 0, related to x2x3 �= 0 and x1 = x4 = 0 by transposition, §3e.

(vi) Only one x is non-zero, by symmetry it can be assumed to be x4, §3f.

As noted, the solution of constant Yang–Baxter is equivalent to solving AR = 0. We write out

AR explicitly in appendix Aa. We solve for the various cases as above in the following §3a–f. In

the first of these, we treat case 1 relatively gently. After that, we will proceed more rapidly though

all cases.

(a) The x1x2x3x4 �= 0 solutions

Recall the ACC ansatz for Ř, which is as in (2.6). Consider now the refinement of this ansatz

indicated by the block structure

[1]

[

1 ·
· 1

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a x1 b

x3(a − 1)

b

x1x3 + b

b
x3

x1
2x3

2

b3
−x1(ab + x1x3)

ab2
−x1x3

ab

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

1 ·
· 1

]

[1],
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that is

Řj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 · · · · · · · ·
· 1 · · · · · · ·
· · a · x1 · b · ·
· · · 1 · · · · ·

· · x3(a − 1)

b
· x1x3 + b

b
· x3 · ·

· · · · · 1 · · ·

· · x3
2x1

2

b3
· −x1(ab + x1x3)

a b2
· −x3x1

ab
· ·

· · · · · · · 1 ·
· · · · · · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.2)

Here, the parameters a13, b13, x1, x3 are indeterminate (we write a = a13, b = b13) but the remaining

parameters are replaced with functions of these four as shown.

Proposition 3.1. (I) Consider the ansatz for Ř in (2.6). If we leave parameters a13, b13, x1, x3

indeterminate (here we write a = a13, b = b13) but replace the remaining parameters with functions of these

four as shown in (3.2) then the braid anomaly AR has an overall factor

x2
3x2

1a + a2b2 + x1bx3a − a b2 − x1bx3 = b2a(a − 1) + bx3x1(a − 1) + ax2
3x2

1.

That is, we have a family of solutions obeying Ř1Ř2Ř1 = Ř2Ř1Ř2 with free non-zero parameters (say)

a, x1, x3, and parameter b determined by

b

x1x3
= −(1/a) ±

√

(1/a2) − (4/(a − 1))

2
or

x1x3

b
= −(a − 1) ±

√

(a − 1)2 − 4a2(a − 1)

2a
, (3.3)

and the remaining entries determined as in (3.2) above.

(II) If x1x2x3x4 �= 0 then the above (with a �= 1) gives the complete set of solutions up to overall rescaling.

Proof. (I) is simply a brutal but straightforward calculation, plugging in to AR as given for

example in appendix Aa. For (II), we proceed as follows. The matrix AR is rather large to write

out (again see appendix Aa), but a subset of its entries is

SR = {−a12b12c12 − a1a12(a12 − a1), −b23c23d23 − a3d23(d23 − a3), (3.4)

− b23x1x3, −b12x1x3, (a12 − d12)x1x3, ((−d12 + a1)b13 − b2
12)x1, (3.5)

a13(b12c12 − b23c23) + a12a23(a12 − a23), (d12 − d23)x1x2, (d23 − a23)x1x3,

− a12x1x3 − a13b13d13, −a12x2x4 − a13c13d13, a12c12d12, a23c23d23, (3.6)

− a13b13x4 + (a1a12 − a12a2 − a1a13)x1, (3.7)

(a1d13 + a2d12 − a1d12)x3 + b13d13x2, (a13d13 + a2a23 − a13a23)x3 + (a3b13 − b2
23)x2, (3.8)

a13c13x3 + (a13a3 − a23a3 + a2a23)x2, a12c13x3 + (−a2d23 + a13d23 − b23c12 + a2
2)x2, (3.9)

(a1c13 − c2
12)x3 + (a13d13 − d12d13 + a2d12)x2, (3.10)

− a2x1x2 + a13d2
12 − a2

13d12 − a23b13c13 + a23b12c12, (3.11)

a1x3x4 + d13x1x2 − a2d2
12 − b12c12d12 + a2

2d12, (3.12)

a13x3x4 + a3x1x2 − a23b23c23 − a2a2
23 + a2

2a23, · · · }. (3.13)

Imposing AR = 0 and x1x3 �= 0, we thus get b12 = b23 = 0 and a12 = d12 from (3.5). Note that Ř is

invertible, so a1, a3 �= 0 and

a12d12 − b12c12 �= 0 and a23d23 − b23c23 �= 0. (3.14)
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Thus, a12, d12, a23, d23 �= 0. Thus, d12 = a23 = a12 = a1 = d23 = a3 and c12 = c23 = 0 from (3.6). Note

that if Ř is a solution then so is any non-zero scalar multiple, so we first scale Ř by an overall

factor, so that a1 = 1. This confirms the form for Ř above outside the 3×3 block.

Observe now from (3.6) that a13b13d13 = −x1x3 �= 0, and that we may either replace a13 =
−(x1x3/b13d13), or d13 = −(x1x3/a13b13). The latter gives the form of d13 in the Proposition.

Before proceeding, we will need to show that d = 1 cannot occur here. (Recall a = a13, and write

also d = d13.) Comparing (3.12) and (3.13), we find

(a − 1)x3x4 = (d − 1)x1x2.

So a = 1 if and only if d = 1. So if a = 1 then b13 = −x1x3 and c13 = −x2x4 (consider (3.6i/ii)).

Evaluating (3.9ii)–(3.10) here, we find

a2
2 − a2 + a − a2 + d − ad = (a2 − 1)2 − (a − 1)(d − 1) = 0.

So if a = 1 then a2 = 1. Further, if a = 1 then (3.11) becomes −x1x2 − b13c13 = −x1x2 − x1x2x3x4 = 0

so x3x4 = −1. But if a = 1 then (18) gives x4 = (−x1)/(−x1x3) = 1/x3 – a contradiction. We conclude

here that (a − 1) �= 0; and hence (d − 1) �= 0.

From (3.8), we have two formulae for b13x2. Equating we have

(a1d13 + a2d12 − a1d12)

d13
= (a13d13 + a2a23 − a13a23),

that is
(d13 + a2 − 1)

d13
= (a13d13 + a2 − a13), thus

(a2 − 1)(1 − d13)

d13
= −a13(1 − d13).

Since d13 − 1 �= 0 we have a2 − 1 = −a13d13 = x1x3/b13 giving a2 as in the Proposition. Plugging

back in we find (d13 + a2 − 1)x3 = −b13d13x2, ((a13 − 1)x3/b13) = x2 as in the Proposition.

From (3.7), we have

x4 = x1
1 − a2 − a13

a13b13
= x1

−x1x3 − a13b13

a13b2
13

,

as in the Proposition. Finally, from (3.9), we now have

c13 = − (a13 + a2 − 1)x2

a13x3
= − (a13b13 + x1x3)(a13 − 1)

a13b2
13

and

c13x3 = −(a13 + a2(a2 − 1))x2 = −(a + (x1x3 + b)

b

x1x3

b
)
(a13 − 1)x3

b

= −x3((ab2 + x1x3(x1x3 + b13))(a13 − 1))

b3
13

.

Equating the two formulae for c13, and noting that a13 − 1 �= 0, we have

a13(x1x3)2 + (a13 − 1)b13x1x3 + (a13 − 1)a13b2
13 = 0.

Plugging back in to (3.9), we obtain c13 as in the Proposition, so we are done. �

(b) Case 1: x1x2x3x4 �= 0 revisited

In this section, we solve the case in which x1x2x3x4 �= 0 again, but leaning directly on the appendix

(as we shall below for the remaining cases). Since all xi are non-zero, we conclude from equations

(A 5)–(A 8) that b12 = c12 = b23 = c23 = 0, and from (A 11)–(A 13) a12 = d12 = a23 = d23. Then since

a12 �= 0 from (A 29), we get a12 = 1 and since a3 �= 0 from (A 30) a3 = 1.

Now from (A 18), we find a13b13d13 �= 0 and we can solve d13 = −(x1x3/a13b13), and from (A 23)

c13 = b13x2x4/x1x3. Then from (A 70), we find x4 = x1(1 − a2 − a13)/a13b13. Now it turns out that

some equations factorize, for example (A 94) can be written as x1(a13 − 1)[(a2 − 1)b13 − x1x3] = 0.

If we were to choose a13 = 1, we reach a contradiction: from (A 58), we get a2 = 1 and then (A 50)
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and (A 66) are contradictory since xi �= 0. Thus, we can solve a2 = (b13 + x1x3)/b13, and then from

(A 50) x2 = x3(a13 − 1)/b13.

After this, all remaining non-zero equations simplify to

b2
13a13(a13 − 1) + b13x1x3(a13 − 1) + a13x2

1x2
3 = 0.

This biquadratic equation can be resolved using Weierstrass elliptic function ℘:

a = −℘ + 5

12
, β = 6

12℘ + 7 + 12℘′

(12℘ − 5)(12℘ + 7)
and (℘′)2 = 4℘3 − 1

12
℘ + 7 · 23

23 33
,

where a13 = a and b13 = x1x3β. The solution in block form now reads

[1]

[

1 .

. 1

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a x1 βx1x3

a − 1

βx1

β + 1

β
x3

1

β3x1x3

−(aβ + 1)

aβ2x3

−1

aβ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

1 .

. 1

]

[1], (3.15a)

with constraint

β2a(a − 1) + β(a − 1) + a = 0. (3.15b)

(c) Cases 2 and 4: x1x3 �= 0 and x4x2 = 0

From (A 7), (A 8), we get b12 = b23 = 0 and then since the matrix is non-singular, we must have

a12d12a23d23 �= 0. Then, from (A 1), (A 2), we get c12 = c23 = 0, from (A 29), (A 31) a12 = d12 = 1

(recall that we have scaled a1 = 1) and from (A 84), (A 85) a23 = d23 = 1. Next from (A 30) a3 = 1.

Since x1x3 �= 0, we have from (A 18) that a13b13d13 �= 0 and then from (A 24), we find c13 = 0.

To continue, we consider first the case x2 = 0, x4 free. Then, from (A 52), we get a13 = 1 and

from (A 76) d13 = 1 − a2. Then since d13 �= 0 we cannot have a2 = 1 but (A 106) is x3(a2 − 1)2 = 0, a

contradiction.

Next assume x2 �= 0, x4 = 0. Then, from (A 66), we get d13 = 1 and from (A 70) a13 = 1 − a2 but

(A 98) yields a2 = 1, which is in contradiction with a13 �= 0.

Thus, there are no solutions in this case.

(d) Case 3: x1 = x2 = 0, x3x4 �= 0

From (A 16), we get a23 = a12 and from (A 94) and (A 104) b13 = b2
12 and c13 = c2

12. On the basis of

(A 42) and (A 46), we can divide the problem into two branches: Case 3.1: a12 = 0, b12c12 �= 0, and

Case 3.2: a12d12 �= 0, b12 = c12 = 0.

(i) Case 3.1: a12 = 0, b12c12 �= 0

From (A 46), we get a13 = 0 and then from (A 41) d12 = 1 − b12c12 and from (A 76) d13 = (1 − a2)(1 −
b12c12). Then, from (A 100) and (A 101), b23 = a2

2/c12, c23 = a2
2/b12 and from (A 95) a3 = a4

2/(b12c12)2.

Since a3 �= 0, we have a2 �= 0 and can solve d23 from (A 43): d23 = (a4
2 − (b12c12)3)/(b12c12)2.

Now (A 82) factorizes as (a2
2 − b12c12)(a2

2 + a2b12c12 + (b12c12)2) = 0.

Case 3.1.1: If we choose the first factor and set b12 = a2
2/c12 the remaining equations simplify to

x3 = a2(a2
2 − 1)2/x4, yielding the first solution (a2 → a, c12 → c);

[1]

⎡

⎢

⎣

.
a2

c

c 1 − a2

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. .
a4

c2

. a
a(a2 − 1)2

x4

c2 x4 (a + 1)(a − 1)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
a2

c

c 1 − a2

⎤

⎥

⎦
[1]. (3.16)

The eigenvalues of this solution are 1, −a2 and a3 with multiplicities 5, 3 and 1, respectively.
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Case 3.1.2: For the second solution, we solve (A 82) by b12 = aω/c12, where ω is a cubic root of

unity ω �= 1. Then, the remaining equation is solved by x3 = a2(a2 − 1)(1 − ωa2)/x4 and we have

[1]

⎡

⎣

.
ωa

c

c 1 − ωa

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

. .
ω2a2

c2

. a
(ω2 − a)(a − 1)a

x4

c2 x4 (1 − ωa)(1 − a)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
a2

c

ω2ac ωa(a − 1)

⎤

⎥

⎦
[ωa2]. (3.17)

The eigenvalues are {1, −ωa, ωa2} each with multiplicity 3.

For both solutions a �= 0, 1 and for the first a �= −1. Note that for the second case if a = −1, there

are only two eigenvalues: 1 and ω.

(ii) Case 3.2: a12d12 �= 0, b12 = c12 = 0

From equations (A 9), (A 29) we get a12 = d12 = 1 and from (A 44), (A 47) b23 = c23 = 0. Due to non-

singularity, we may now assume a23d23 �= 0 and then from (A 10), (A 16), we get a23 = d23 = 1.

Since a3 �= 0 (A 30) yields a3 = 1. Now from (A 69) and (A 100), we get a2 = 1, d13 = 0, after which

we get a contradiction in (A 50).

(e) Case 5: x2x3 �= 0, x1 = x4 = 0

This case contains many solutions and therefore it is necessary to do some basic classification first.

We do this on the basis of the 2 × 2 blocks.

For the first 2 × 2 block (the ‘12’ block), consider equations (A 1), (A 2), (A 9), (A 29) and (A 31).

The solutions to these equations can be divided into the following:

α : a12d12 �= 0. Then, one finds b12 = c12 = 0 and a12 = d12 = a1.

β : a12 �= 0, d12 = 0 and b12c12 �= 0, then a12 = a1 − b12c12/a1.

γ : d12 �= 0, a12 = 0 and b12c12 �= 0, then d12 = a1 − b12c12/a1.

δ : a12 = d12 = 0.

The results for the other 2 × 2 block (the ‘23’ block) are obtained by index changes, including

a1 → a3, we denote them as α′, etc.

In principle, there would be 4 × 4 = 16 cases, but we can omit several using the known

symmetries. First of all for the ‘12’ block, we can omit γ because it is related to β by LR symmetry.

The list of cases is as follows:

(i) (α, α′): [a1]

[

a1 .

. a1

]

[3 × 3]

[

a3 .

. a3

]

[a3].

(ii) (α, β ′): [a1]

[

a1 .

. a1

]

[3 × 3]

[

a3 − b23c23/a3 b23

c23 .

]

[a3].

(iii) (α, δ′): [a1]

[

a1 .

. a1

]

[3 × 3]

[

. b23

c23 .

]

[a3].

(iv) (β, β ′): [a1]

[

a1 − b12c12/a1 b12

c12 .

]

[3 × 3]

[

a3 − b23c23/a3 b23

c23 .

]

[a3].

(v) (β, γ ′): [a1]

[

a1 − b12c12/a1 b12

c12 .

]

[3 × 3]

[

. b23

c23 a3 − b23c23/a3

]

[a3].

(vi) (β, δ′): [a1]

[

a1 − b12c12/a1 b12

c12 .

]

[3 × 3]

[

. b23

c23 .

]

[a3].
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(vii) (δ, δ′): [a1]

[

. b12

c12 .

]

[3 × 3]

[

. b23

c23 .

]

[a3].

Here, we have omitted (α, γ ′), (β, α′), (δ, α′), (δ, β ′) and (δ, γ ′), because they are related to entries

in the above list of seven by some symmetry. Specifically, note that the vanishing of x1 and x4 and

the non-vanishing of x2x3 is preserved under LR-symmetry and the |0〉 ↔ |2〉 symmetry, but not

the transpose symmetry. Moreover, the composition of the LR and 02-symmetries has the effect

of simply interchanging the pairs of 2 × 2 and 1 × 1 blocks.

(i) Case 5.1 (α,α′)

We scale to a1 = 1 and from (A 30) get a3 = 1. According to (A 86) a2
2 − a2 = 0 and then from (A 106)

and (A 108), we get d13 = −b13x2/x3 and c13 = −c13x2/x3 but then the 3 × 3 block matrix becomes

singular. Therefore, no solutions for this subcase.

(ii) Case 5.2 (α,β ′)

From (A 39) and (A 43), we get c13 = c2
23/a3 and b13 = b23a3/c23. Next from (A 58) d13 = 0 and from

(A 76) a2 = 1 and from (A 54) a23 = a13. After setting a3 = −x3c2
23/x2 from (A 104), the GCD of the

remaining equations is (x3c23 − x2b23)(x2 + x3c23)2 and we get two solutions: ( c23 → c, b23 → b)

5.2.1: x2 = −x3c2
23

[1]

[

1 .

. 1

]

⎡

⎢

⎢

⎢

⎢

⎣

1 − bc .
b

c

−x3c2 1 x3

c2 . .

⎤

⎥

⎥

⎥

⎥

⎦

[

1 − bc b

c .

]

[1] (3.18)

The eigenvalues are −bc with multiplicity 2 and 1 with multiplicity 7.

5.2.2: x2 = x3c23/b23

[1]

[

1 .

. 1

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − bc . −b2

x3c

b
1 x3

−c

b
. .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

1 − bc b

c .

]

[−bc]. (3.19)

The eigenvalues are −bc with multiplicity 3 and 1 with multiplicity 6.

(iii) Case 5.3 (α, δ′)

From (A 54) and (A 62), we get a13 = d13 = 0 and from (A 72) a2 = 1. Next, (A 40) and (A 43) yield

c13 = b13 = a3 and (A 102) x3 = −x2a3. The remaining equations are satisfied with a3 = ε1 and c23 =
ε2, where ε2

j = 1. The result is

[1]

[

1 .

. 1

]

⎡

⎢

⎣

. . ε1

x2 1 −x2ε1

ε1 . .

⎤

⎥

⎦

[

. ε2

ε2 .

]

[ε1]

The eigenvalues are 1 and −1 with multiplicity 7 and 2 if ε1 = 1 and 6 and 3 otherwise. However,

when ε1 = −1, this is a special case of (3.19) by setting b = c = −1. For ε1 = 1, we may take b = c = 1

in (3.18). Thus, this case may be discarded a posteriori as a subcase.

(iv) Case 5.4 (β ,β ′)

From (A 37) and (A 39), we get c13 = c2
12 and a3 = c2

23/c2
12. Next, since a12 = 1 − b12c12 �= 0, we get

d13 = 0 from (A 61). From (A 41) b13 = b12/c12 and from (A 78) a13 = 1 − b12c12. For non-singularity,

we must have a2 �= 0 and then from (A 82), we get b23 = b12 and from (A 43) c23 = c12. Now from
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(A 74), we find a2 = −x3c2
12/x2 and after that the remaining equations factorize and we have two

solutions:

5.4.a x2 = −c2
12x3

[1]

[

1 − bc b

c .

]

⎡

⎢

⎢

⎢

⎢

⎣

1 − bc .
b

c

−x3c2 1 x3

c2 . .

⎤

⎥

⎥

⎥

⎥

⎦

[

1 − bc b

c .

]

[1]. (3.20)

Eigenvalues are 1 with multiplicity 6 and −bc with multiplicity 3.

5.4.b x2 = c12x3/b12

[1]

[

1 − bc b

c .

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − bc .
b

c
x3c

b
−bc x3

c2 . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

[

1 − bc b

c .

]

[1]. (3.21)

Eigenvalues are 1 with multiplicity 5 and −bc with multiplicity 4.

(v) Case 5.5 (β , γ ′)

Since the matrix is non-singular, we must have a2 �= 0. From (A 38) and (A 41), we get c13 = c2
12 and

b13 = b12/c12, and from (A 39) and (A 43) b12 = b2
23c12/a3, c23 = b23c2

12/a3. Then, we get from several

equations the condition a13d13 = 0. If both a13 = d13 = 0, we would get from (A 78) a12 = 0, which

would lead to case δ′. Therefore, we have two branches:

5.5.1 Assume a13 = 0, d13 �= 0. From (A 76), we get x3 = −x2b2
23/a3 and then since a12 �= 0

equation (A 102) yields a2 = 1. From (A 66), we get d13 = 1 − b2
23c2

12/a3. If we use (A 81) to eliminate

second and higher powers of a3 of equation (A 82), it factorizes as (a3 − 1)(1 + b23c12) = 0, and we

get two branches:

5.5.1.1 If we choose a3 = 1 all other equations are satisfied with b23 = ω2/c12, where ω3 = 1 but

we must have ω �= 1 to stay in the (β, γ ′) case.

[1]

⎡

⎣

1 − ω
ω

c

c .

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

. .
ω

c2

x2 1
−x2ω

c2

c2 . 1 − ω

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎣

.
ω2

c
cω2 1 − ω

⎤

⎦ [1] (3.22)

The eigenvalues are 1 with multiplicity 6 and ω with multiplicity 3.

5.5.1.2 Now, we choose b23 = −1/c12 and then the remaining equations are satisfied with a3 =
ς = ±i.

[1]

⎡

⎢

⎣

ς + 1
−ς

c

c .

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

. .
−ς

c2

x2 1
x2ς

c2

c2 . ς + 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
−1

c

ςc ς + 1

⎤

⎥

⎦
[ς ]. (3.23)

The eigenvalues are 1 with multiplicity 5 and ς with multiplicity 4.

5.5.2 The case d13 = 0, a13 �= 0 is obtained by 02-symmetry from 5.5.1. Indeed, we see that the

form (β, γ ′) is invariant under the |0〉 ↔ |2〉 symmetry, with the 3 × 3 block having the following

pairs interchanged (a13, d13), (b13, c13), (x2, x3) and (x1, x4) = (0, 0). Thus, any solution obtained for

d13 = 0 and a13 �= 0 may be transformed into a solution with d13 �= 0 and a13 = 0.
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(vi) Case 5.6 (β , δ′)

Since in this case a12 �= 0, we have from (A 54) and (A 63) that a13 = d13 = 0 but then (A 78) implies

a12 = 0, a contradiction.

(vii) Case 5.7 (δ, δ′)

From det �= 0, we get a2 �= 0 and then (A 81) and (A 82) imply c23 = c12 and b23 = b12. Next from

(A 38) and (A 42), we get c13 = c2
12 and b13 = b2

12. Equation (A 39) then gives a3 = 1 and (A 40)

implies c12 = 1/b12. After this (A 52) and (A 66) yield a13 = d13 = 0. The remaining equations are

satisfied with a2 = ε, ε = ±1.

[1]

⎡

⎢

⎣

. b

1

b
.

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎣

. . b2

x2 ε x3

1

b2
. .

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎣

. b

1

b
.

⎤

⎥

⎦
[1]. (3.24)

The eigenvalues are 1 and −1 with multiplicities 5 and 4 if ε = −1 and multiplicities 6 and 3

otherwise.

(f) Case 6: x1 = x2 = x3 = 0, x4 �= 0

From the outset, it is best to divide this into two cases depending on whether or not b12 vanishes.

(i) Case 6.1: b12 = 0 therefore a12d12 �= 0

Then, from (A 1) c12 = 0 and from (A 29) and (A 31) a12 = d12 = 1. From (A 94), we get b13 = 0,

and hence a13a2d13 �= 0 and then from (A 90), (A 86) and (A 66) a13 = a2 = d13 = 1, which leads to a

contradiction with (A 68).

(ii) Case 6.2: Now that b12 �= 0, we get from (A 68) and (A 72) a13 = d13 = 0

From (A 72) a13 = a12 and from (A 94) b13 = b2
12 and then from (A 98) and (A 99) a12 = a23 = 0 and

therefore c12b23c23 �= 0. Next from (A 46) c13 = c2
12 and from (A 100) and (A 101) b23 = a2

2/c12, b12 =
a2

2/c23 and from (A 95) a3 = c2
23/c2

12.

At this point, we divide the problem into two branches on whether or not d12 vanishes.

Case 6.2.1: d12 = 0. Then, from (A 68) d13 = 0 and from (A 95) c23 = a2
2c12 and from (A 83) d23 =

a2(1 − a2
2). After this, the remaining equations imply that we must have either a2 = ε, ε = ±1 or

a2 = ω with ω3 = 1, ω �= 1. After changing c12 → c, one solution is

[1]

⎡

⎢

⎣

.
1

c

c .

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

. .
1

c2

. ε .

c2 x4 .

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
1

c

c .

⎤

⎥

⎦
[1]. (3.25)

The eigenvalues are 1 and −1, with multiplicities 5 and 4 if ε = −1, otherwise multiplicities 6 and

3. Note that this solution may be obtained from (3.24) by setting x2 = 0 and taking the transpose,

but this violates the case 5 assumption that x2 �= 0.

The second solution is

[1]

⎡

⎢

⎣

.
1

c

c .

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎣

. .
1

c2

. ω .

c2 x4 .

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
ω2

c

ω2c ω − 1

⎤

⎥

⎦
[ω]. (3.26)

The eigenvalues are 1, ω and −1, each with multiplicity 3.
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Case 6.2.2: d12 �= 0. From (A 64) and (A 68), we get d13 = d23 = d12(1 − a2) and then from (A 63)

a2 = 1. The remaining equations are solved by d12 = (c23 − c12)/c23 and c23 = c12ω with ω3 = 1,

ω �= 1, yielding

[1]

⎡

⎢

⎣

.
1

cω

c ω + 2

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎣

. .
1

c2ω2

. 1 .

c2 x4 .

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎣

.
1

c

ωc .

⎤

⎥

⎦
[ω2]. (3.27)

The eigenvalues are 1, ω2 and −ω2, each with multiplicity 3.

Altogether, we have established the following:

Theorem 3.2. For the YBE (2.2) in three dimensions, the complete list of solutions satisfying ACC but

not SCC (see [11] for SCC) is given, up to noted symmetries (see §2b, in the formulae (3.15)–(3.27), and

collected in table 1).

4. Analysis of the generic representations (3.2/3.3)
Constant Yang–Baxter solutions can be of considerable intrinsic interest. But they are also often

interesting because of their symmetry algebras. In the XXZ case (one of the SCC cases), for

example, the symmetry algebra is the quantum group Uqsl2. This holds true in all ranks (i.e.

all system sizes n)—as we go up in ranks, we simply see more of the symmetry algebra—i.e. the

action of the symmetry algebra on n-fold tensor space has a smaller kernel as n increases. It is not

immediate that such a strong outcome would hold in general. But it is interesting to investigate.

In §4a, we analyse our new solutions. (In §4b, we recall some classical facts about the classical

cases for comparison.)

(a) Analysis of the generic solution: spectrum of Ř

Now, we consider the solution in (3.2/3.3). Observe that the trace of the 3 × 3 block is

a + x1x3 + b

b
− x1x3

ab
= a2b + abx1x3 + ab2 − x1x3

ab
.

Consider Řj − 1, so that all but the 3×3 block is zero. Restricting to the 3×3 block of Ř, call it ř, we

have

ř − 13 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a x1 b

x3(a − 1)

b

x1x3 + b

b
x3

x2
3x2

1

b3
−x1(ab + x1x3)

a b2
−x3x1

ab

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 13

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a − 1 x1 b

x3(a − 1)

b

x1x3

b
x3

x2
3x2

1

b3
−x1(ab + x1x3)

a b2
−b(x3x1 + ab)

ab2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.1)

Note that x2
3x2

1/b3 = (−(a − 1)(ab + x1x3))/ab2 so this is clearly rank 1. Thus, only one eigenvalue

of Ř − 1 is not 0, and so only one eigenvalue of Ř is not 1. We have

Trace(Ř − 1) = a − 1 + x1x3

b
− b(x1x3 + ab)

ab2
= a2b2 + abx1x3 − b(x1x3 + ab)

ab2
− 1.
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Table 1. Table of all ACC solutions to the Yang–Baxter equation (2.2) in rank-3. Here, x denotes a non-zero variable possibly

with further constraints described in the text;ω is a primitive third root of unity; and ς is a primitive fourth root of unity. In

the continuous/discrete parameter column, entry 3 /1 means a 3-free-parameter family, not counting overall scaling, with 1

discrete parameter (which always take on exactly two values). (Hyphens and omitted ‘names’ correspond to choices leading to

no solution.)

soln. name non-zero xis block form parameters cont./discrete eigenvalues, degeneracies

1 (3.15) 3 /0

(

1 , x

×8 ×1

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 - -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 (3.16) 3 /0

(

1 , −x
2 , x

3

×5 ×3 ×1

)

3.1.2 (3.17) 3 /1

(

1 , −ωx , ωx2

×3 ×3 ×3

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 - -
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1 (3.18) 3 /0

(

1 , x

×7 ×2

)

5.2.2 (3.19) 3 /0

(

1 , x

×6 ×3

)

5.4.a (3.20) 3 /0

(

1 , x

×6 ×3

)

5.4.b (3.21) 3 /0

(

1 , x

×5 ×4

)

5.5.1.1 (3.22) 2 /1

(

1 , ω

×6 ×3

)

5.5.1.2 (3.23) 2 /1

(

1 , ς

×5 ×4

)

5.7 (3.24) 3 /1

(

1 , −1

×5 ×4

)

/

(

1 , −1

×6 ×3

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.1 (3.25) 2 /1

(

1 , −1

×5 ×4

)

/

(

1 , −1

×6 ×3

)

6.2.1’ (3.26) 2 /1

(

1 , ω , −1

×3 ×3 ×3

)

6.2.2 (3.27) 2 /1

(

1 , ω , −ω

×3 ×3 ×3

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The other eigenvalue of Ř is

λ2 = a(a − 1)b2 + (a − 1)bx1x3

ab2
= −

(x1x3

b

)2
= −

(

−(a − 1) ±
√

(a − 1)2 − 4a2(a − 1)

2a

)2

—note from (3.3) that this depends only on a.

In particular, each of our braid representations (varying the parameters appropriately) is a

Hecke representation.
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We see that the eigenvalue λ2 can be varied over an open interval (in each branch, it is

a continuous function of a, small for a close to 1; and large for large negative a). So (by

Hecke representation theory, specifically that the Hecke algebras are generically semisimple, and

abstract considerations [13,14]) the representation is generically semisimple.

Returning to (4.1), we have

ř − 13 =
[

1,
x3

b
,
−ab − x1x3

ab2

]t

[a − 1, x1, b] = 1

ab2

⎡

⎢

⎣

ab2

abx3

−ab − x1x3

⎤

⎥

⎦
[a − 1, x1, b]

and

Ř − 19 =
[

0, 0, 1, 0,
x3

b
, 0,

−ab − x1x3

ab2
, 0, 0

]t

[0, 0, a − 1, 0, x1, 0, b, 0, 0].

Armed with this, we have a Temperley–Lieb category representation (i.e. an embedded TQFT—

we assume familiarity with the standard Uqsl2 version, which can be used for comparison—see

[15, Sec.6.2] and references therein). In this form, the duality is going to be skewed (not a simple

conjugation) but should be workable. In particular, the loop parameter is

[0, 0, a − 1, 0, x1, 0, b, 0, 0]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

1

0
x3

b

0
(−ab − x1x3)

ab2

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= (a − 1) + x1x3

b
− b(ab + x1x3)

ab2

= a2b2 − 2ab2 + (a − 1)bx1x3

ab2
= a − 1

a

(

a + x1x3

b

)

− 1 = λ2 − 1,

which, note, depends only on a.

(b) Irreducible representation content of the generic solutionρn

The following analysis gives us an invariant, and thus a way to classify solutions Ř (or

equivalently R).

Thus, in principle, we can classify R-matrices according to the Bn-representation structure (the

irrep content and so on) for each (and all) n. In general, such an approach is very hard (due to the

limits on knowledge of the braid groups Bn and their representation theory). Certain properties

can, however, make the problem more tractable.

In our case, call the representation ρn (or just ρ if no ambiguity arises, or to denote the monoidal

functor from the braid category, as in [11]). Depending on the field we are working over, this might

mean the rep with indeterminate parameters, or a generic point in parameter space (i.e. the rep

variety or a point on that variety).

Since this Ř has two eigenvalues (see §4a), we have a Hecke representation—a representation

of the algebra Hn = Hn(q), a quotient of the group algebra of Bn for each n, for some q. (With the

same understanding about parameters.)

Since eigenvalue λ1 = 1, this Hn(q) is essentially in the ‘Lusztig’ convention—we can write ti

for the braid generators in Hn, so

Ri = ρ(ti) = ρn(ti);

then the quotient relation is

(ti − 1)(ti + q) = 0, (4.2)
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for some q = −λ2, as in [16]. Here, it is convenient to define

Ui = ti − 1

α
,

so αUi(αUi + 1 + q) = 0, i.e. αU2
i = −(1 + q)Ui.

In a convention/parameterization as in (4.2), the operator

e′ = 1 − t1 − t2 + t1t2 + t2t1 − t1t2t1,

is an unnormalized idempotent, and hence

ρn(e′) = 1 − R1 − R2 + R1R2 + R2R1 − R1R2R1,

is an unnormalized (possibly zero) idempotent, whenever Ř gives such a Hecke representation.

In our case, in fact, e′ is zero (by direct computation)

ρn(e′) = 0. (4.3)

Note that

α3U1U2U1 = (t1 − 1)(t2 − 1)(t1 − 1) = t1t2t1 − t1t2 − t2t1 − t1t1 + 2t1 + t2 − 1,

so in our case

ρn(α3U1U2U1) = (R1 − 1)(R2 − 1)(R1 − 1) = R1R2R1 − R1R2 − R2R1 − R1R1 + 2R1 + R2 − 1,

so

ρn(α3U1U2U1) = −R2
1 + R1 = −R1(R1 − 1) = ρn(qαU1) so ρn(U1U2U1) = ρn

( q

α2
U1

)

,

so if we put α = ±√
q then we have the relations of the usual generators for Temperley–Lieb [17].

We assume familiarity with the generic irreducible representations of Hn, which we write, up

to isomorphism, as Lλ with λ � n an integer partition of n. The idempotent e′ induces the irrep L13 .

The unnormalized idempotent inducing the irrep L3 is

e′
3 = 1 + 1

q
(R1 + R2) + 1

q2
(R1R2 + R2R1) + 1

q3
R1R2R1. (4.4)

This gives

L3(e′
3) = 1

q3
(1 + q)(1 + q + q2),

which gives the normalization factor, so

e3 = q3

(1 + q)(1 + q + q2)
e′

3.

The generalization to irrep Ln in rank n will hopefully be clear (in fact we will not really need it

except for checking).

We can write χλ for the irreducible character associated with irrep Lλ. That is,

χλ(ti) = Trace(Lλ(ti)).

We can evaluate these characters in various ways, but a simple device is the restriction rule for

the inclusion Hn−1 ⊗ 11 ↪→ Hn; together with the easy cases

χn(ti) = 1 and χ1n (ti) = λ2. (4.5)

For example,

χ2,1(ti) = χ2(ti) + χ12 (ti) = 1 + λ2

and so on.
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Observe that the eigenvalues of Ri, specifically R1 = Ř ⊗ 13, are three copies each of the

eigenvalues of Ř. Hence, there are 24 eigenvalues λ1 = 1 and three copies of the other eigenvalue,

call it λ2

χρ (ti) = 3(8 + λ2) = 24 + 3λ2.

The 1d irrep L3, when present, contributes 1 eigenvalue λ1 = 1. The 2d irrep L2,1 contributes 1

eigenvalue λ1 = 1 and 1 of the other eigenvalue λ2. The 1d irrep L13 contributes just 1 of the other

eigenvalue λ2. Since e′ = 0 the multiplicity of this irrep in ρ is 0. Therefore, all the three eigenvalues

λ2 come from L2,1 summands. The identity (4.3) therefore tells us that the irreducible content of

our representation of H3 (the Hecke quotient of B3) is

ρ = 21 L3 + 3 L2,1. (4.6)

(The sum is generically but not necessarily always direct.) In particular, we have re-verified

Proposition 4.1. Representation ρ is a representation of Temperley–Lieb.

Note that it follows from the tensor construction that this TL property holds (i.e. the image of

e′ continues to vanish) for all n.

Next, we address the question of faithfulness of ρn as a TL representation, and determine the

centralizer, for all n.

Write mλ for the multiplicity of the generic irrep Lλ in our rep ρ (the generic character is well-

defined in all specializations, but the corresponding rep is not irreducible in all specializations)

χρn =
∑

λ�n

mλχλ. (4.7)

Note that integer partitions can be considered as vectors (‘weights’ in Lie theory) and hence

added. For example, if µ = (µ1, µ2, µ3, . . . , µl) then

µ + 11 = µ + (1, 1) = µ + (1, 1, 0, . . . , 0) = (µ1 + 1, µ2 + 1, µ3, . . . , µl).

Stability Lemma. The multiplicity mµ at level n − 2 is the same as mµ+11 at level n.Outline Proof

The method of ‘virtual Lie theory’ works here (e.g. [14,18]). Let us define

Ui = Ři − 1,

our rank-1 operator. Thus, Ui is itself an unnormalized idempotent—indeed it is, up to scalar, the

image of the cup-cap operator in the TL diagram algebra.

Write Tn for TL on n strands. Recall that U1Tn is a left Tn−2 right Tn bimodule. Recall the

algebra isomorphism U1TnU1
∼= Tn−2; and recall that Tn/TnU1Tn

∼= k, where k is the ground field

(for us it is C). It follows that the category Tn−2 − mod embeds in Tn − mod, with the embedding

functor given by

M �→ TnU1 ⊗Tn−2
M. (4.8)

The irrep Lµ = Lµ1,µ2 is taken to Lµ+11 = Lµ1+1,µ2+1. Here, Ln is the module not hit by the

embedding—this is the module corresponding to Tn/TnU1Tn
∼= k, so the one that is annihilated

by the localization M �→ U1M.

The Theorem below is a corollary of this lemma.

It might also be of interest to show how to compute the further multiplicities mµ by direct

calculation. For n = 4, we have χρ4 (ti) = 3χρ3 (ti) = 72 + 9λ2. A direct calculation gives χρ4 (e4) =
55 so m4 = 55, and we have χρ4 (t1) = 55 + m3,1(2 + λ2) + m2,2(1 + λ2). We have 2m31 + m22 = 72 −
55 = 17 and m31 + m22 = 9, giving m3,1 = 8 and m2,2 = 1.

Observe that this is in agreement with the Stability Lemma.

For n = 5, we have χρ5 (ti) = 3χρ4 (ti) = 216 + 27λ2. A direct calculation gives χρ5 (e5) = 144 and so

we have χρ5 (t1) = 144 + m4,1(3 + λ2) + m3,2(3 + 2λ2). We have 3m41 + 3m32 = 216 − 144 = 72 and

m41 + 2m32 = 27, giving m4,1 = 21 and m3,2 = 3.
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We observe a pattern of repeated multiplicities, in agreement with the Stability Lemma

mλ 1 3 8 21 55 144

λ 11 2

21 3

22 31 4

32 41 5

33

.

Besides the Stability Lemma or a direct calculation, the last entry above may be guessed based

on Perron–Frobenius applied to the Hamiltonian H =
∑

i Ři—if some power of H is positive, then

there is a unique largest magnitude eigenvalue, and hence the corresponding multiplicity is 1.

We know from the XXZ chain, which has the same eigenvalues but different multiplicities, that

λ = mm gives the largest eigenvalue when n = 2m.

Theorem 4.2. The multiplicity mn in (4.7) is given by A001906 from Sloane/OEIS [19], with all other

multiplicities mµ determined by the Stability Lemma.

The Temperley–Lieb algebras are generically semisimple; and a representation of a semisimple

algebra is faithful if and only if every irrep appears as a summand. The latter is immediate from

the Theorem, so generical faithfulness of our representations ρn is similarly immediate.

This brings us back to the original question about the stability of the centralizer as n varies—

the possibility of an overarching symmetry algebra analogous to Uqsl2 in the XXZ case. Of course,

by Schur’s Lemma, the Stability Lemma exactly says that there is a limit symmetry algebra, with

all finite cases simply quotients of this limit. But the combinatorial fact does not of itself imply

that the symmetry algebra is something as beautiful as a quantum group (cf. appendix B).

Data accessibility. This article has no additional data.

Declaration of AI use. We have not used AI-assisted technologies in creating this article.

Authors’ contributions. J.H.: conceptualization, formal analysis, investigation, methodology, validation, writing—

original draft, writing—review and editing; P.M.: conceptualization, formal analysis, investigation,

methodology, validation, writing—original draft, writing—review and editing; E.C.R.: conceptualization,

formal analysis, investigation, methodology, validation, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed

therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. P.M. thanks EPSRC for funding under grant no. EP/W007509/1. E.C.R. was partially funded by US

NSF grant nos DMS-2000331 and DMS-2205962.

Acknowledgements. We thank Frank Nijhoff for various important contributions, including initiating our

collaboration, and Paula Martin for useful conversations.

Appendix A. The equations

(a) The cubic constraints

Here, we write out the system of cubics corresponding to entries in AR as in (3.1), hence the cubics

that must vanish, in the ACC ansatz.

In fact, the first few cubics in AR are unchanged (ordering 000 001 002 010 011 012 020 021 022

100 101 102 . . . 222) from the strict CC ansatz. Row 000 has vanishing anomaly. Row 001 gives

〈001|AR|001〉 = −a12b12c12 − a1a2
12 + a2

1a12 and 〈001|AR|010〉 = −a12b12d12,

with all other entries vanishing. The first departure from SCC is in the 002 row, which is

〈002|AR = [0, 0, −a12x1x2 − a13b13c13 − a1a2
13 + a2

1a13, 0,

− a13b13x4 + (a1a12 − a12a2 − a1a13)x1, 0, −a12x1x3 − a13b13d13, 0, 0, 0,

− b13c12x1 − a12b12x1 + a1b12x1, 0,

− b13d12x1 + a1b13x1 − b2
12x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
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(b) List of equations

We give the complete list of equations that are distinct up to an overall sign, organized by the

number of terms (in computations, we use the scale freedom to assume a1 = 1).

a12 c12 d12 = 0, (A 1)

a12 b12 d12 = 0, (A 2)

a23 c23 d23 = 0, (A 3)

a23 b23 d23 = 0, (A 4)

x2 x4 c12 = 0, (A 5)

x2 x4 c23 = 0, (A 6)

x1 x3 b12 = 0, (A 7)

x1 x3 b23 = 0 (A 8)

a12 d12 (a12 − d12) = 0, (A 9)

a23 d23 (a23 − d23) = 0, (A 10)

x1 x2 (d12 − d23) = 0, (A 11)

x1 x3 (a12 − d12) = 0, (A 12)

x1 x3 (a23 − d23) = 0, (A 13)

x2 x4 (a12 − d12) = 0, (A 14)

x2 x4 (a23 − d23) = 0, (A 15)

x3 x4 (a12 − a23) = 0, (A 16)

x1 x3 c12 − a12 b12 d12 = 0, (A 17)

x1 x3 d23 + a13 b13 d13 = 0, (A 18)

x1 x3 a12 + a13 b13 d13 = 0, (A 19)

x1 x3 c23 − a23 b23 d23 = 0, (A 20)

x1 x3 d12 + a13 b13 d13 = 0, (A 21)

x1 x3 a23 + a13 b13 d13 = 0, (A 22)

x2 x4 d12 + a13 c13 d13 = 0, (A 23)

x2 x4 a12 + a13 c13 d13 = 0, (A 24)

x2 x4 b12 − a12 c12 d12 = 0, (A 25)

x2 x4 d23 + a13 c13 d13 = 0, (A 26)

x2 x4 a23 + a13 c13 d13 = 0, (A 27)

x2 x4 b23 − a23 c23 d23 = 0, (A 28)

a12 (a2
1 − a1 a12 − c12 b12) = 0, (A 29)

a23 (c23 b23 − a2
3 + a3 a23) = 0, (A 30)

d12 (a2
1 − a1 d12 − c12 b12) = 0, (A 31)

d23 (c23 b23 − a2
3 + a3 d23) = 0, (A 32)

x1 (a1 b12 − c12 b13 − a12 b12) = 0, (A 33)

x1 (a1 b13 − d12 b13 − b2
12) = 0, (A 34)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

3
 A

u
g
u
st

 2
0

2
4
 



20

royalsocietypublishing.org/journal/rspa
P
ro
c.
R
.So

c.
A
480:20230810

..........................................................

x1 (c23 b13 − a3 b23 + a23 b23) = 0, (A 35)

x1 (a3 b13 − d23 b13 − b2
23) = 0, (A 36)

x2 (a1 c12 − c12 a12 − c13 b12) = 0, (A 37)

x2 (a1 c13 − c2
12 − c13 d12) = 0, (A 38)

x2 (c13 a3 − c13 d23 − c2
23) = 0, (A 39)

x2 (c13 b23 − c23 a3 + c23 a23) = 0, (A 40)

x3 (a1 b12 − c12 b13 − d12 b12) = 0, (A 41)

x3 (a1 b13 − a12 b13 − b2
12) = 0, (A 42)

x3 (c23 b13 − a3 b23 + d23 b23) = 0, (A 43)

x3 (a3 b13 − a23 b13 − b2
23) = 0, (A 44)

x4 (a1 c12 − c12 d12 − c13 b12) = 0, (A 45)

x4 (a1 c13 − c2
12 − c13 a12) = 0, (A 46)

x4 (c13 a3 − c13 a23 − c2
23) = 0, (A 47)

x4 (c13 b23 − c23 a3 + c23 d23) = 0, (A 48)

x3 x4 (a12 − a23) + x1 x2 (−d12 + d23) = 0, (A 49)

x3 x4 a23 − x2 x1 d23 + d13 a13 (d13 − a13) = 0, (A 50)

x3 x4 a12 − x2 x1 d12 + d13 a13 (d13 − a13) = 0, (A 51)

x1 x2 a12 + a13 (−a2
1 + a1 a13 + c13 b13) = 0, (A 52)

x1 x2 a23 + a13 (c13 b13 − a2
3 + a3 a13) = 0, (A 53)

x1 x2 b12 + b23 (−d23 a13 + a12 a13 − a12 a23) = 0, (A 54)

x1 x2 b23 + b12 (−d12 a13 − a12 a23 + a13 a23) = 0, (A 55)

x1 x2 c12 + c23 (−d23 a13 + a12 a13 − a12 a23) = 0, (A 56)

x1 x2 c23 + c12 (−d12 a13 − a12 a23 + a13 a23) = 0, (A 57)

x1 x3 a2 + b13 (d13 a12 − d23 a12 + d23 a13) = 0, (A 58)

x1 x3 a2 + b13 (d12 a13 − d12 a23 + d13 a23) = 0, (A 59)

x2 x4 a2 + c13 (d12 a13 − d12 a23 + d13 a23) = 0, (A 60)

x2 x4 a2 + c13 (d13 a12 − d23 a12 + d23 a13) = 0, (A 61)

x3 x4 b12 + b23 (d12 d13 − d12 d23 − d13 a23) = 0, (A 62)

x3 x4 b23 + b12 (−d12 d23 + d13 d23 − d13 a12) = 0, (A 63)

x3 x4 c12 + c23 (d12 d13 − d12 d23 − d13 a23) = 0, (A 64)

x3 x4 c23 + c12 (−d12 d23 + d13 d23 − d13 a12) = 0, (A 65)

x3 x4 d12 + d13 (−a2
1 + a1 d13 + c13 b13) = 0, (A 66)

x3 x4 d23 + d13 (c13 b13 − a2
3 + a3 d13) = 0, (A 67)

x4 (a1 d12 − a1 d13 − a2 d12) − x1 c13 d13 = 0, (A 68)

x4 (a2 d23 + a3 d13 − a3 d23) + x1 c13 d13 = 0, (A 69)

x4 a13 b13 + x1 (a2 a23 + a3 a13 − a3 a23) = 0, (A 70)

x4 a13 b13 + x1 (−a1 a12 + a1 a13 + a2 a12) = 0, (A 71)
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x4 b12 (a12 − a13) + x1 c12 (−d12 + d13) = 0, (A 72)

x4 b23 (a13 − a23) + x1 c23 (−d13 + d23) = 0, (A 73)

x2 (a1 a12 − a1 a13 − a2 a12) − x3 c13 a13 = 0, (A 74)

x2 (a2 a23 + a3 a13 − a3 a23) + x3 c13 a13 = 0, (A 75)

x2 d13 b13 + x3 (−a1 d12 + a1 d13 + a2 d12) = 0, (A 76)

x2 d13 b13 + x3 (a2 d23 + a3 d13 − a3 d23) = 0, (A 77)

x2 b12 (d12 − d13) + x3 c12 (−a12 + a13) = 0, (A 78)

x2 b23 (d13 − d23) + x3 c23 (−a13 + a23) = 0, (A 79)

x1 (a2 b12 − a2 b23 + a12 b23 − a23 b12) = 0, (A 80)

x2 (c12 a2 − c12 a23 − a2 c23 + c23 a12) = 0, (A 81)

x3 (a2 b12 − a2 b23 + d12 b23 − d23 b12) = 0, (A 82)

x4 (c12 a2 − c12 d23 − a2 c23 + c23 d12) = 0, (A 83)

c12 d13 b12 − c23 d13 b23 + d2
12 d23 − d12 d2

23 = 0, (A 84)

c12 a13 b12 − c23 a13 b23 + a2
12 a23 − a12 a2

23 = 0, (A 85)

x1 x2 a1 + x3 x4 a13 + a12 (−a12 a2 − b12 c12 + a2
2) = 0, (A 86)

x1 x2 a3 + x3 x4 a13 + a23 (−a23 a2 − b23 c23 + a2
2) = 0, (A 87)

x1 x2 d13 + x3 x4 a3 + d23 (−b23 c23 + a2
2 − a2 d23) = 0, (A 88)

x1 x2 d13 + x3 x4 a1 + d12 (−b12 c12 + a2
2 − a2 d12) = 0, (A 89)

x1 x2 a2 − c12 a23 b12 + c13 a23 b13 − d2
12 a13 + d12 a2

13 = 0, (A 90)

x1 x2 a2 + c13 a12 b13 − c23 a12 b23 − d2
23 a13 + d23 a2

13 = 0, (A 91)

x3 x4 a2 − c12 d23 b12 + c13 d23 b13 + d2
13 a12 − d13 a2

12 = 0, (A 92)

x3 x4 a2 + c13 d12 b13 − c23 d12 b23 + d2
13 a23 − d13 a2

23 = 0, (A 93)

x1 (a13 d13 + a2 d12 − d12 d13) + x4 (−b2
12 + b13 a1) = 0, (A 94)

x1 (a13 d13 + a2 d23 − d13 d23) + x4 (b13 a3 − b2
23) = 0, (A 95)

x1 (a1 c13 − c2
12) + x4 (−a12 a13 + a12 a2 + a13 d13) = 0, (A 96)

x1 (c13 a3 − c2
23) + x4 (−a13 a23 + a13 d13 + a23 a2) = 0, (A 97)

x1 (a13 d12 − b23 c12 + a2
2 − a2 d12) + x4 a23 b13 = 0, (A 98)

x1 (a13 d23 − b12 c23 + a2
2 − a2 d23) + x4 a12 b13 = 0, (A 99)

x1 c13 d12 + x4 (−a23 a2 + a23 d13 − b23 c12 + a2
2) = 0, (A 100)

x1 c13 d23 + x4 (−a12 a2 + a12 d13 − b12 c23 + a2
2) = 0, (A 101)

x2 (a1 b13 − b2
12) + x3 (a2 a12 + d13 a13 − a12 a13) = 0, (A 102)

x2 (a3 b13 − b2
23) + x3 (a2 a23 + d13 a13 − a13 a23) = 0, (A 103)

x2 (a2 d12 − d12 d13 + d13 a13) + x3 (a1 c13 − c2
12) = 0, (A 104)

x2 (a2 d23 − d13 d23 + d13 a13) + x3 (c13 a3 − c2
23) = 0, (A 105)

x2 d12 b13 + x3 (a2
2 − a2 a23 − c23 b12 + d13 a23) = 0, (A 106)

x2 d23 b13 + x3 (−c12 b23 + a2
2 − a2 a12 + d13 a12) = 0, (A 107)
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x2 (c12 b23 − a2
2 + a2 d23 − d23 a13) − x3 c13 a12 = 0 (A 108)

and x2 (a2
2 − a2 d12 − c23 b12 + d12 a13) + x3 c13 a23 = 0, (A 109)

Appendix B. Aside on further analysing solutions
A step even further than the all-ranks representation theory analysis in §4 above would be to give

an intrinsic characterization of the centralizer algebra. We do not do this, but we can briefly set

the scene.

For an example Ř = P as in (2.1) is itself a solution—this specific case, and also the

corresponding P for each N. This solution is relatively simple, and completely understood in

all cases, but still highly non-trivial. Of course, it factors through the symmetric group. (It is

the Schur–Weyl dual to the natural general linear group action on tensor space.) Its kernel as a

symmetric group representation depends on N as well as n. Assuming we work over the complex

field, then the kernel is generated exactly by the rank N + 1 antisymmetrizer. Thus, in particular,

for N = 2, we have a faithful representation of ‘classical’ Temperley–Lieb. While for N = 3 the

rank-3 antisymmetrizer does not vanish (so faithful on the corresponding algebras—e.g. [20]).

More explicitly, we have the charge-conserving decomposition

ρ = (ρ111 ⊕ ρ222 ⊕ ρ333) ⊕ (ρ112 ⊕ ρ122 ⊕ ρ113 ⊕ ρ133 ⊕ ρ223 ⊕ ρ233) ⊕ (ρ123)

∼= 3ρ111 ⊕ 6ρ112 ⊕ ρ123
∼= 10L3 ⊕ 8L21 ⊕ L13 , (B 1)

where the bracketed sums are of isomorphic reps, and ρ111 is trivial; ρ112 = L3 ⊕ L21; ρ123 = L3 ⊕
2L21 ⊕ L13 (i.e. the regular rep). Observe that the multiplicities 10, 8, 1 are the dimensions of the

corresponding GL3 irreps (recall these may be indexed by integer partitions of at most two rows,

or equivalently of at most three rows where we delete all length-3 columns) as dictated by the

duality. Note that this structure will be preserved by any generic deformation.

We can characterize this in the classical way, starting with the spectrum of Ř itself

(B 2)

3 × 3 = 6 + 3, (B 3)

(B 4)

and 3 × 3 × 3 = (6 + 3) × 3 = 10 + 2.8 + 1 (B 5)

cf. (B 1). Recall that this continues

and

3 × 3 × 3 × 3 = 15 + 3.15 + 2.6 + 3.3.

(Side note for future reference: here in each third rank up, the reps from three ranks down

reappear (along with some more). This ‘three’ is one sign that we are with gl3 or sl3 in this case.)

Observe that the solution for Ř in (3.2) (in §3a) certainly does not have the multiplicities in

(B 3). Indeed, it agrees formally initially with

and

3 × 3 = 8 + 1

(e.g. [21])—formally, in the sense that the symmetry needed for the symmetric group(/Hecke/braid)

action is broken here. In this formal picture, it is not clear how the labels would correspond
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with the Hecke algebra/symmetric group labels—we are in rank-2 (but at least there are two

summands). And it is not clear how to continue. We have

(B 6)

and

3 × 8 = 15 + 6 + 3, (B 7)

for example (so at least the centralized algebra of is—miraculously—isomorphic to

the Hecke quotient of B3). But this is nowhere close to what we have. This suggests that it is at

least time to pass to the Lie supergroups again, such as GL(2|1) (cf. e.g. [21–23]). (Alternatively, it

could be that the construction is not dual to a quantum group action.)
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