ARISE: High-Capacity AR Offloading Inference Serving via
Proactive Scheduling

Z. Jonny Kong*
Purdue University
West Lafayette, USA

ABSTRACT

With faster wireless networks and server GPUs, offloading high-
accuracy but compute-intensive AR tasks implemented in Deep
Neural Networks (DNNs) to edge servers offers a promising way
to support high-QoE Augmented/Mixed Reality (AR/MR) appli-
cations. A cost-effective way for AR app vendors to deploy such
edge-assisted AR apps to support a large user base is to use commer-
cial Machine-Learning-as-a-Service (MLaaS) deployed at the edge
cloud. To maximize cost-effectiveness, such an MLaaS provider
faces a key design challenge, i.e., how to maximize the number of
clients concurrently served by each GPU server in its cluster while
meeting per-client AR task accuracy SLAs. The above AR offloading
inference serving problem differs from generic inference serving or
video analytics serving in one fundamental way: due to the use of
local tracking which reuses the last server-returned inference result
to derive results for the current frame, the offloading frequency
and end-to-end latency of each AR client directly affect its AR task
accuracy (for all the frames).

In this paper, we present ARISE, a framework that optimizes
the edge server capacity in serving edge-assisted AR clients. Our
design exploits the intricate interplay between per-client offloading
schedule and batched inference on the server via proactively coor-
dinating offloading request streams from different AR clients. Our
evaluation using a large set of emulated AR clients and a 10-phone
testbed shows that ARISE supports 1.7x—6.9x more clients com-
pared to various baselines while keeping the per-client accuracy
within the client-specified accuracy SLAs.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; « Computer systems organization
— Real-time system architecture.

KEYWORDS

Mobile Augmented Reality, Edge Computing, DNN Offloading, DNN
Serving, Machine-Learning-as-a-Service

“Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOBISYS 24, June 3-7, 2024, Minato-ku, Tokyo, Japan

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06

hitps://doi.org/10.1145/3643832.3661894

Qiang Xu*
Purdue University
West Lafayette, USA

Y. Charlie Hu
Purdue University
West Lafayette, USA

ACM Reference Format:

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu. 2024. ARISE: High-Capacity
AR Offloading Inference Serving via Proactive Scheduling. In The 22nd
Annual International Conference on Mobile Systems, Applications and Services
(MOBISYS "24), June 3-7, 2024, Minato-ku, Tokyo, Japan. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3643832.3661894

1 INTRODUCTION

1.1 Motivation

To deliver a truly immersive and interactive experience to users,
Augmented Reality (AR) and Mixed Reality (MR) apps need to per-
form a number of challenging computer vision tasks to understand
and interact with the physical environment, such as object detec-
tion [18, 19, 41], depth estimation [45, 71], and odometry [13], at
acceptable accuracy. Furthermore, all of the tasks in the AR app
performed on each frame are latency-critical; the results for the
current frame need to be available in the current frame interval, e.g.,
16.7 ms at 60 FPS [41], as otherwise they will miss the rendering
task for the current frame.

Due to their high accuracy, Deep Neural Network (DNN) models
have been increasingly used to support these complex AR tasks
(e.g., [16, 22, 29, 30, 51, 52]). However, running state-of-the-art DNN
models on commodity mobile devices could take hundreds of mil-
liseconds or even seconds [41, 45, 60]. For example, it takes 254 ms
to run the DenseDepth [8] model on a Pixel 7 phone (on the mobile
GPU with TensorFlow Lite). While lightweight models like Fast-
Depth [59] and MobileNetV3-5SD [32] (for depth estimation and
object detection respectively) are capable of running on-device in
real-time, they fall short in accuracy; they achieve 0.35 AbsRel and
0.57 IoU on the datasets used in our evaluation (§6.2), compared to
server-grade models such as DenseDepth [8] and ByteTrack [72],
which achieve 0.12 AbsRel (lower is better) and 0.90 IoU (higher
is better). To this end, offloading, also known as edge-assisted de-
sign, has been proposed [10, 23, 41, 44], where camera frames are
uploaded to a cloud or edge GPU server for faster DNN inference.

To actually deploy AR apps based on edge-assisted AR design
requires effective edge server support for serving potentially a
large number of concurrent offloading requests of AR tasks from
many mobile clients. Instead of maintaining its own servers, a cost-
effective way is for an AR app vendor to use commercial Machine-
Learning-as-a-Service (MLaaS) [54, 58], e.g., deployed in the edge
cloud (e.g., AWS Wavelength [5], where edge servers are located
in the same city and connected to the 5G infrastructure via low-
latency links) to serve the AR clients in the vicinity. To effectively
manage cost, MLaaS services are usually powered by DNN models
under the control of service providers, e.g., one or a few models for
each AR task [11, 47]. A primary business objective of an MLaaS
provider is to increase the capacity of the cluster (i.e., the number of

https://doi.org/10.1145/3643832.3661894
https://doi.org/10.1145/3643832.3661894

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

AR clients that it can serve concurrently), or provision the cluster
size for a given user base in order to maximize its cost-effectiveness.

In such a shared edge-cloud setting, the AR apps running on
the mobile clients often exhibit diversity in task accuracy require-
ments. For example, healthcare apps [31] require high accuracy
while tourism apps can get by with moderate accuracy [61]. In such
a deployment, the vendor or the users of the AR apps specify an ac-
curacy SLA for each AR task (e.g., object detection) that is required
to ensure satisfactory app QoE, and the MLaaS provider tries to
maximize the capacity of the GPU cluster in concurrently serving
multiple AR clients. In this paper, we focus on optimizing the ca-
pacity of individual servers, which is a key challenge and building
block in increasing the capacity of a cluster.! We formally state
the AR offloading inference serving problem as: Given an edge/cloud
server cluster serving offloaded inference tasks from AR clients, how
to maximize the number of clients supported by individual servers
while meeting the per-client AR task accuracy SLAs?

AR apps often perform and need to offload multiple types of
tasks. An efficient way of serving multiple types of AR tasks for a
large client base is to divide up the servers in the cluster, such that
each server serves one type of AR tasks, since such specialization
unlocks more batching opportunities, as shown in previous serving
systems [57, 67]. We follow the same design principle and each
server only serves one type of AR task.

Difference from video analytics serving. Video analytics serv-
ing (e.g. [14, 26, 33, 34, 36, 38, 40, 44, 49, 68, 73]) is similar to AR
offloading serving in that one or multiple clients offload a stream of
requests to the server for inference. However, there is a subtle but
fundamental difference between AR offloading serving and video
analytics serving: AR apps desire task results for every frame in
order to render virtual objects per frame. When the E2E offloading
latency of an offloaded frame is longer than a frame interval due to
server inference and frame transfer delay, the AR client resorts to
local tracking (detailed in §2) to derive result for the current frame
based on the last server-returned result. As a result, the E2E of-
floading latency directly affects the staleness of the server-returned
result which impacts the AR task accuracy for all the frames. Most
of the video analytics systems do not factor in the impact of E2E
offloading latency on app accuracy. While a few works take it into
consideration [27, 42], they only support serving a single client.

Difference from generic inferences serving. Compared to generic
inference serving (e.g., [9, 20, 21, 24, 37, 50, 55, 57, 62, 67]), AR
inference serving faces a significant new complication. Generic
inference serving systems assume DNN inference requests are inde-
pendent, each with its own latency deadline or accuracy constraint.
In contrast, in AR offloading serving, the stream of continuous
requests offloaded from each AR client are not unrelated: due to the
use of local tracking, for each client, the choice of which frame to
offload (offloading frequency and timing) and E2E offloading latency
of the offloaded inference directly affect the AR task accuracy of all
the frames of that client.

'"We leave cluster-wide optimizations such as load balancing and dynamic scaling as
future work.

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

1.2 Our Contributions

In this paper, we present a framework that tackles this important
AR inference serving problem. We observe that the key design opti-
mization in generic inference serving systems — batched inference
— is only exploited opportunistically, since such systems assume
the inference requests are independent and have no control over
request arrivals. The above key difference of AR offloading serving,
namely, the AR task accuracy for consecutive frames is also affected
by the offloading frequency and E2E delay, also presents a unique
design opportunity — coordinating client offloading schedules to
work synergistically with batched inference on the server to maximize
the effectiveness of batched server inference while meeting per-client
accuracy SLAs. While some video analytics serving systems also
control clients’ offloading schedules [34, 38, 40, 68], they do not
coordinate client schedules with server inference; coordinating
client schedules can boost the effectiveness of batching, as requests
within a batch are from different clients.

Exploiting the above design opportunity, i.e., coordinating AR
client offloading schedules to maximize the batched server infer-
ence, however, faces several challenges: (1) there exists complex
relationship between the control knob values (client offloading
schedule and server batch size) and the accuracy of a single client;
(2) there exists interference among the effects of the control knobs
across clients, as the schedule for any client affects server batching
and hence E2E offloading latency (and accuracy) for other clients;
(3) modeling per-client accuracy, a pre-requisite for online sched-
uling, is hard as it is not only affected by the per-client offloading
schedule and server batch size, but also frame content, which can
change dynamically during the execution of an AR app.

Our proposed AR offloading inference framework ARISE (AR In-
ference Serving Engine) untangles the intricate interplay among the
control knobs across clients via a centralized but scalable scheduler
that proactively coordinates the offloading schedules of AR clients
and the batched inference on the edge server. We first develop a
novel lightweight, online accuracy estimator that estimates the AR
task accuracy for the current frame for each AR client under differ-
ent offloading frequency, E2E latency, and dynamically changing
frame content. We then design a novel scheduler that decouples
deriving per-client offloading schedules and server batching sched-
ule in two steps: (1) it first calculates a pseudo-optimal offloading
frequency per-client leveraging the accuracy estimator; (2) it then
greedily packs future offloaded requests from all clients into fewer
large batches and coordinates client requests accordingly without
violating per-client accuracy requirements.

We implemented the ARISE framework on commodity Android
phones and GPU servers. Our evaluation using a large set of emu-
lated AR clients and a small-scale testbed of 10 phones show that
compared to Clipper-like [21] and Chameleon-like [34] systems,
ARISE provides significantly higher capacity in serving AR clients,
by up to 5.2x and 6.9x for the depth estimation task and by 1.9x and
2.0x for object detection on an NVIDIA A40 GPU server.

In summary, our main contributions are as follows:

e We present, to our best knowledge, the first framework for serv-
ing concurrent edge-assisted AR clients that maximizes the serv-
ing capacity of a server while satisfying the accuracy SLAs of
originating AR apps.

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

| |
| |
Server | | Inference l i | Inference]
| |
| I

\)
Client D D JJU _]_]__]__]Uj“*—-‘mcal

" Ik tracking

FramelD L
Figure 1: The offloading+local tracking paradigm, with of-
floading interval of L, and E2E offloading latency of k frame
intervals. Frames L +k to 2L + k — 1 reuse the inference result
for frame L through local tracking.

e We present an AR inference serving scheduler that proactively co-
ordinates offloading request streams from AR clients to maximize
server batching opportunities.

e We present a lightweight AR task accuracy estimator under the
commonly used offloading+local tracking based edge-assisted
design (§2).

e We implement and experimentally validate our ARISE framework
design by comparing it with various baselines including Clipper-
like and Chameleon-like systems for two representative AR tasks.

2 BACKGROUND: AR TASK ACCURACY
UNDER EDGE-ASSISTED DESIGN

2.1 The Offloading + Local Tracking Paradigm

In edge-assisted AR, even with powerful GPUs, typical DNN in-
ferences still take tens of milliseconds, failing to return the result
within the same frame interval. For example, models in Meta’s
object detection model zoo [2] have a median inference time of
52.5 ms on Tesla V100, much longer than the of 16.7 ms frame
interval needed by AR apps running at 60 FPS [41], and the result
of an offloaded frame may come back several frame intervals later.

Instead of simply using the last server-return result for the cur-
rent frame, which was for the last offloaded frame, recent edge-
assisted designs [7, 12, 18, 19, 27, 39, 41, 42, 45, 61, 63, 64, 66, 69]
have adopted the local tracking technique to generate more accu-
rate results for AR tasks including object detection, human pose
estimation, odometry, and more. Specifically, a local tracker runs
on mobile device and adjusts the DNN inference results for the
last offloaded frame f; sent back by the server to generate refined
results for the current frame f;, by analyzing the changes between
the stale frame fj and the current frame f;, as shown in Figure 1.
Such local trackers are fast and can typically finish in a fraction
of the current frame interval. Local trackers are task-specific and
often custom-designed for each type of tasks (e.g., [41, 66]).

2.2 Impact of Tracking Stride on Accuracy

While local tracking improves the accuracy of the result for the cur-
rent frame f; (compared to directly reusing the last server-returned
result), the gap between its accuracy and that of running the server
DNN model directly on f; (if we could) still widens with track-
ing stride, defined as the frame distance between f; and f, due
to increased staleness of the results for frame fj. For example, in
Figure 1, the client offloads every L-th frame, and E2E offloading
latency is k. The result for frame L (offloaded at frame interval L)
will return at frame interval L+k-1, and be used by local tracking to

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Video Segment 1 Video Segment 2

]
4-0.03300.041 0.048 0.055 f.—....
]

z | = z
H 3 - 0.026 (I.(I33l0.0‘;1 0.048 H 3-0.051 ...
3 . 3
w I w j
o 2-0.019 0.026 0.033 I 0.041 o 2- l].l136| 0.051
= - ==
1- 0.011 0.019 0.026 0.033 1- 0.022 l].l136| 0.051 .
2 & 6 8 2 & 6 8

L (offloading interval) L (offloading interval)
Figure 2: Accuracy drop (our accuracy SLA metric) of offload-
ing the depth estimation task relative to running the DNN
model directly, under different (L, k) combinations for two 2-
second video segments. With an accuracy SLA of 0.040, only
combinations below the red line satisfy the accuracy SLA.

generate tracked results for frames L+k, ..., 2L+k-1, which would
have tracking strides of k (min), k+1, ..., L+k-1 (max), respectively.
In scenarios where AR task accuracy can be met with less fre-
quent offloading, whether in single-client scenarios (e.g., [19, 41,
42]) or in multi-client scenarios (this paper), reduced offloading fre-
quency (L) saves server and network resources used by the client.
Furthermore, in multi-client scenarios, employing batched infer-
ence leads to variable E2E offloading latency (k) that is dependent
on the batch size. This variability in offloading frequency and E2E
latency has three immediate implications on AR task accuracy:

01: Higher offloading frequency (smaller L) improves AR
task accuracy. Offloading more frequently reduces the number of
times a stale result is used (L), which improves tracking accuracy.

02: Lower E2E offloading latency (smaller k) improves AR
task accuracy. Lower E2E offloading latency reduces the staleness
of last server-returned result used in tracking, which also improves
tracking accuracy.

03: The same accuracy SLA can be achieved by trading off
offloading frequency (L) with E2E offloading latency (k). It
follows from O1 and O2 that AR task accuracy can be improved by
reducing either the offloading frequency (L) or the E2E offloading
latency (k).

Accuracy measurements in Figure 2 corroborates our observa-
tions. We control the offloading of two 2-second video segments
(60 FPS) under different offloading frequencies and E2E offloading
latencies, and the server runs the DenseDepth [8] model for the
depth estimation task. The AR task accuracy improves with lower
offloading interval (0O1) and lower E2E offloading latency (02). It
also shows that the same accuracy SLA can be achieved by trading
off the two (03). However, the range of satisfactory L and k varies
with different video segments (contents), indicating the need for an
accuracy estimator that takes frame content into account (§4.3).

3 DESIGN OPPORTUNITIES AND
CHALLENGES

3.1 Design Opportunities

Main idea. Generic inference serving systems maximize the server
throughput while satisfying the latency or accuracy constraints

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Feasible (k, L) Pairs Requests
Client 1, 2, 3| Client4, 5 from:

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

(a) Generic inference serving.

k [L[k][L | clent1| I iy r3 r o 3 J
20 8 |15 6 Client2 | T I r3 r m I 1 r
25 4 20 4
Client 3 | 1 2 r3 1 o r3 M rn
Inference Latency) - b f s — A P L |
Batch Size | Latency | CPent4 11X n2x 3% il (2] (2] r } r2 {B
1 15 Client5 | 1Y 2x 13X Mx n2x 3% 1 2 3
2 2 T T T T T T T T T T T T T T T T
3 25 o 2 4 6 8 o 4 1 &8 10 o 2 4 1] 8 10
- Frame times Frame times Frame times

(b) Controlling batching and offload- (c) Controlling batching, offloading
ing timing.

timing and frequency.

Figure 4: Controlling offloading schedules (timing and frequency) of AR clients unlocks more batched inference opportunities
and enables server to support more clients. The top-left table lists for each client the feasible choices of E2E offloading latency
(k) and offloading interval (L) pairs due to accuracy SLA. The bottom-left table gives the maximum batch sizes that can be
tolerated by different E2E offloading latencies (k). Each blue box corresponds to one batched inference on the server.

AR

Client 1 D "

Timing: 0,3,6,..

Edge Server

Frames

10928A00 =

Timing: 1,4,7,..

AR ™)
Client 2 L.

Frames

AR B
Client 3 L-J

Timing: 1,3,5,.-

Figure 3: Control knobs in AR offloading serving, including
(1) offloading frequency and (2) offloading timing for each
client, and the (3) batch size for batched inference on server.

of individual requests. To this end, such systems employ adap-
tive batched inference as a main optimization technique. However,
batched inference in such systems is only exploited opportunisti-
cally, since such systems assume the inference requests are inde-
pendent and have no control over request arrivals. An AR client,
on the other hand, offloads a stream of requests, and the AR task
accuracy for consecutive frames is atfected by both the offloading
frequency and E2E delay. this key difference presents a unique de-
sign opportunity: the client offloading schedules can be coordinated to
work synergistically with batched inference on the server to maximize
the effectiveness of batched server inference while meeting per-client
AR task accuracy SLAs.

Control knobs. In generic inference serving, adaptive batched
inference is achieved by dynamically tuning one important control
knob:

e Server batch size: It controls the number of requests to group
together and perform DNN inference in a single shot. A larger
batch size improves GPU efficiency and thus server capacity. The
downside of a larger batch size is longer inference latency, which
could negatively impact the application performance or accuracy.

The adaptive batched inference technique also applies to the AR

offloading inference problem, where the choice of batch size affects

the E2E offloading latency (k).

Additionally, the offloading schedule of individual AR clients
can be dynamically adjusted via two client-side knobs (Figure 3):
e Offloading frequency: It determines how many frames each

client offloads in a period of time (L), e.g., the 3 clients in Figure 3

offload every 3rd, 3rd, and 2nd frames, respectively. Higher of-
floading frequency improves AR task accuracy (01) and allows
for relaxed E2E latency and hence a larger server batch size for a
given accuracy SLA (03).

o Offloading timing: It determines which (and hence when) frames
are offloaded, e.g., client 1 offloads its frames 0, 3, 6, etc., whereas
client 2 offloads frames 1, 4, 7, etc.. As we will see below, tuning
this knob impacts the grouping of requests into batches, and thus
the server capacity.

An example. Figure 4 gives an example on how these additional
knobs help unlock more batched inference opportunities and hence
improve the server capacity. Under a given accuracy SLA, AR clients
can trade off offloading frequency (L) with E2E offloading latency
(k) (O3). For example, we assume clients 1-3 can either offload
once every 8 frames, which allows an E2E latency of 2 frame times
(resulting in batch sizes up to 2), or once every 4 frames which
allows an E2E latency of 2.5 (batch size 3), while clients 4 and 5
have different tradeoffs due to content difference (§2).

Figure 4a shows one possible trace of generic inference serving
where all clients offload requests every 4 frame times. While 5
requests arrive at the sever at the same time, the system can only
process at most 3 (restricted by the first 3 clients” E2E offloading
latency limit) in one batch, which will finish at time 2.5. By this
point it is too late to process the other 2 requests, as they require
a maximum E2E latency of 1.5 frame times but have already been
queued for 2.5 frame times. As a result, requests from clients 4 and
5 are dropped and the server is unused from time 2.5 to 4.0.

In contrast, in an AR inference serving system, the system can
control request arrivals by adjusting each client’s offloading timing
and frequency. In Figure 4b, by shifting the first request of client 4 to
arrive at time 2.5, the server can additionally perform an inference
of batch size 1, from time 2.5 to 4.0, increasing server capacity to
support 4 clients.

Further, by controlling both request arrival timing and offloading
frequency, the server can support all 5 clients, as shown in Figure 4c.
By reducing the offloading frequencies of clients 1-3 to once every
8 frames, although this will result in requiring a tighter E2E latency
(of 2 frame times) and thus a smaller batch size of 2 for these clients,
the request arrival timing of the clients can be coordinated such
that requests from all 5 clients can be served under their batch size
constraints (and hence their accuracy SLAs).

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

Task
Accuracy

+ Synergistic

- Conflicting

(D Goals / constraints
_ Intermediate

metrics

[Knobs

Offoading | * | . [*/"] | offloading
Frequency g B Timing

Figure 5: Relationships between control knobs and design
goals in AR inference serving.

3.2 Design Challenges

Exploiting the above new design opportunity, i.e., jointly tuning per-
client offloading frequency and timing and server batching (control
knobs) to maximize the server capacity (objective) while meeting
the per-client accuracy SLAs, however, faces several challenges:

C1: Complex relationship between control knob values and
design goals for a single client. For each client, tuning the of-
floading frequency and batch size can affect the server capacity and
task accuracy in complex ways, as shown in Figure 5. (1) Increasing
the offloading frequency improves the task accuracy (01) and the
chance of building larger batches which indirectly increases server
capacity, but (directly) reduces the server capacity as each client
imposes more load on the server. (2) Increasing the batch size di-
rectly improves the server capacity, but incurs higher queuing and
batch inference time, which in turn results in higher per-request
EZ2E delay and thus lower accuracy (02). (3) The reduced accuracy
from larger batch size can be compensated by higher offloading fre-
quency (03), which in turn reduces the server capacity. The amount
of compensation depends on the relationship between accuracy,
EZE delay, and offloading frequency. It is challenging to determine
the optimal balance between batch size and offloading frequency.

C2: Intricate interplay among the control knobs across clients.
Further, finding the combinations of control knobs for a set of clients
becomes even more challenging as the choices for multiple clients
can interfere with each other in complex ways. (1) The latency of
a chosen batch size that is sufficient for some clients (e.g., with
lower accuracy SLAs) may be too long for others (e.g., with higher
accuracy SLAs). (2) Under local tracking based AR offloading (§2),
interference among offloading requests by different clients, due
to incompatible offloading timings, can further elongate the E2E
offloading delay and hence lower the client accuracy (Figure 5).
Consider the server is serving 10 clients and the minimum batch
sizes calculated for the 10 clients in isolation is 5. If the requests
from the 10 clients happen to arrive at the same time, the server has
to either select a batch size of 5, which meets the accuracy target
of the most stringent client, but postpones the rest 5 requests to
the next batch, causing batch-level queuing delay and violation of
accuracy constraint for those clients, or it selects a larger batch
size which violates the accuracy target of the most stringent client.
In an alternative scenario, if the requests from the 10 clients are
evenly spaced out in time, creating a batch of 5 requests will require
the first arrival request to wait for 4 more request arrival, causing
intra-batch queuing delay.

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Client i Server

l)
4 N\ //,,1 Frames ™\

|
O-«--@-- =] Scheduley, | —l
Camera |~ A @
Lolcal E‘E DNM >< @

'@
e =] resuit %ﬂ\eﬂule
@ @ Clierlﬂ state

Proactive " Q@

@ i scheduler |7~ '
\ D Z2ANG J

addiremove
Load
balancer R)

Figure 6: The workflow of ARISE with one of the served
clients. The proactive scheduler coordinates the offloading
schedules across clients and with batched inference. The
accuracy estimator estimates task accuracy by exploiting
unique properties of local tracking.

4 ARISE DESIGN

4.1 Design Rationale

ARISE schedules client offloading requests and server batched in-
ferences to maximize the server capacity while satistying the ac-
curacy SLAs of all clients. One possible approach is letting each
client decide on its own offloading schedule in a distributed manner.
However, such a distributed approach makes it hard to tackle the
intricate interplay among the control knobs across the clients (C2).
For example, a client experiencing longer E2E request delay may
react by increasing its offloading frequency to meet the accuracy
SLA, which can lead to higher load on the server and even longer
EZ2E delay. To this end, we propose a centralized scheduler on the
server side that proactively coordinates requests from all clients
and optimizes server capacity. We also design the scheduler’s com-
plexity to be linear in the number of requests, which ensures the
scheduler is scalable to support a large number of clients. On the
other hand, to ensure all clients meet their accuracy SLAs, an accu-
racy estimator is needed for each client to work in tandem with the
scheduler. We design a lightweight accuracy estimator that runs on
each client and sends the accuracy estimates to the server. With the
accuracy estimates, the scheduler is able to calculate the accuracy
of all clients in a specific scheduling plan and ensure all clients
meet their accuracy SLAs.

4.2 Architecture Overview

Figure 6 shows the workflow of ARISE. We envision ARISE will
be deployed on the servers in a cluster, where a load balancer
is responsible for directing new clients to the servers and help
migrate extra clients that exceed the capacity of a server. Each
server’s scheduler determines whether to take up more clients or
to remove clients depending on the resource requirements of the
current clients it is serving (evicted clients are redirected by the
load balancer to other servers). As we will see shortly, frequent

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

= p.o8 |,."}’uccumcyr drop of tracking from frame 200 to 220 (stride 20)

i 353; ///////////////WW

0 1000 2000 3000 4000 150 200 250 300 350 400

Erame ID Frame ID
Figure 7: The accu- Figure 8: The local tracker accu-
racy drop (relative racy drop (relative to DNN in-
to reference setup) ference) under different tracking
varies across frames. strides (from 1 to 30).

[E Y]

scheduler invocation (every 200 ms) allows ARISE to respond to
client arrival and departure promptly.

The rest of Figure 6 shows the workflow between the server and
one of the served clients. The server consists of a DNN inference
engine, a proactive scheduler, a data store for the schedule generated
by the scheduler, and a data store for storing client states, including
client task accuracy estimates and the timing of recently processed
batches and frames. The client is equipped with a camera capturing
frames in real time, e.g., at 60 FPS, a stored copy of the latest schedule
that dictates the frames to offload, a local tracker, and the accuracy
estimator.

Periodically (every 200 ms), the scheduler generates a schedule
for the near future, e.g,, 1 s, based on the latest client states @. The
schedule contains IDs of the frames to be offloaded by each client
and the grouping of the frames from multiple clients into batches,
and is both stored on the server and sent to the clients @. The
client offloads selected frames ®, and the server performs batched
inference of client requests @, both as dictated by the schedule.
After inference, the server updates the client state (timing of both
the batch and frames in it) for future scheduling ®, and it sends
the inference results back to each client for both local tracking and
accuracy estimation ®. The local tracker is executed for every frame
using the latest DNN results and generates result for the current
frame for use by upper level AR applications @. Finally, the accuracy
estimator of each client calculates the current accuracy estimates
based on DNN results and local tracking results for the same frame
(the one with the last server-returned result), and updates the client
states for future scheduling ©.

4.3 Accuracy Estimation

ARISE expects each client to specify its accuracy SLA according to
their application needs. In practice, the accuracy is upper-bounded
by what can be achieved in an idealistic offloading scenario where
each user is given a dedicated GPU server. Therefore, it is more
meaningful for ARISE to meet accuracy drop targets (e.g., within
each time window) relative to this idealistic scenario, which we
refer to as the reference setup. We envision ARISE users will specify
their accuracy SLAs as the accuracy drop from the reference setup.

Challenges. As suggested in 01, 02, and 03 (§2), a client’s task
accuracy is directly affected by the offloading frequency and per-
request E2E latency. In addition, even under the same offloading
frequency and EZ2E latency, the local tracker’s accuracy may vary
over time due to changing frame contents. Figure 7 shows the
accuracy drop of offloading to a dedicated GPU server under batch
size 1 and offloading interval 8 for depth estimation, with the task
accuracy measured in absolute relative error (AbsRel). We observe

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

Acc. Drop

~—7 ~—~7

f f+k f+L f+L+k Frame
Figure 9: The estimation of accuracy drop d for frame f+L is
done by comparing two results for frame f + L, one obtained
by local tracking on server-returned result for frame f, and
one obtained by directly offloading frame f + L, whose result
comes back at frame f +L +k.

that the accuracy drop varies significantly across frames (0.007-
0.077). The detailed setup, including the dataset, DNN model, local
tracker, GPU server, and network condition, can be found in §6.1.

Key insights. We make a key observation that all the factors affect-
ing AR task accuracy mentioned above directly affect the staleness
of the latest DNN result, which in turn affects the task accuracy,
and thus a feature that captures the staleness of the DNN result
(ie., staleness of the frame the result is for) could potentially bridge
the gap between the affecting factors and resulting accuracy and
be used to develop a lightweight accuracy estimator.

We observe that tracking stride, a unique feature in AR offloading
(§2), is an ideal candidate to bridge accuracy estimation and im-
pacting factors. First, tracking stride well captures the staleness of
the DNN result. The relationship between the affecting factors and
tracking stride is straightforward, as shown in observations 01 and
02. Second, tracking stride directly correlates with the accuracy
drop. In Figure 8, we plot for a sample video the accuracy drop
compared to performing DNN inference on each frame individually.
For each line, the x-intercept corresponds to the source frame of
the local tracking, while each data point on the line corresponds to
the accuracy of local tracking for a different destination frame. We
observe that (1) The accuracy drop increases linearly with tracking
stride, which enables us to estimate the accuracy drop rate (the
slope) and multiply it with the tracking stride to get the accuracy
drop under any tracking stride. (2) The accuracy drop rate exhibits
temporal locality, e.g., the slopes of the lines for frames between
150 and 250 stay the same. This allows as to approximate the accu-
racy drop rate of the current frame by estimating that of the last
server-returned frame.

Accuracy drop estimator. We start with estimating the accuracy
drop rate, as illustrated in Figure 9. Assuming the E2E offloading
latency is k frame intervals and the offloading interval is every L
frames. Frame f is offloaded, and its result returns at f +k and is
used by the local tracker till frame f +L +k — 1 (including f +L).
Similarly, frame f +L is offloaded, and its result returns at f +L +k.
At time f +L +k the client holds both the DNN result and the local
tracker result for f+L (tracking result for frame f +L is derived from
DNN result for f), and it calculates the accuracy drop d between
the two and divides it by the tracking stride (f +L) — f = L, which
gives the slope f/L as the estimated accuracy drop rate.

We now use the accuracy drop rate to estimate the accuracy drop
with regard to the reference setup. For both the schedule being pro-
filed and the reference setup, we first estimate their accuracy drops
with regard to offline DNN inference: we first calculate the tracking
stride of each frame based on the offloading frequency (L) and E2E
offloading latency (k), and then multiply the tracking strides with

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

the accuracy drop rate to get the accuracy drops compared to offline
DNN inference. Next, we calculate the accuracy drop difference
between the schedule being profiled and the reference setup, which
gives us the accuracy drop with regard to the reference setup.

4.4 Proactive Scheduling

Using the lightweight task accuracy estimator discussed above, the
scheduler tries to maximize the number of supported clients while
ensuring clients meet their accuracy SLA (expressed as accuracy
drop thresholds) by dynamically adjusting the control knobs. How-
ever, the intricate interplay among the knobs makes it complicated
to directly derive the optimal settings of all control knobs at once.
To this end, we first decouple the knobs and generate offloading
schedule per-client and serving batching plan in two steps. In Step
1, we derive the pseudo-optimal offloading frequency and batch
size for each client, since their relationship with server capacity
and task accuracy can be expressed in closed form. In Step 2, we
“fine-tune” the generated schedule by greedily packing requests
into larger batches and proactively adjusting the request arrivals
according to the batch schedule to coordinate client requests and
further improve the server capacity.

4.4.1 Step 1: Pseudo-Optimal Offloading Settings. The scheduler
first calculates the optimal offloading settings — offloading interval
and batch size — for individual clients assuming no queuing delay.
Even so, the optimal settings are hard to compute as the optimal
settings for a client need to be determined collectively by consider-
ing the states of other clients as well. This is because the accuracy
for a client depends on both the client’s offloading interval and
server batch size, while the optimal batch size in turn depends on
the optimal settings of other clients in the same batch, i.e, a cyclic
dependency. To this end, we propose a heuristic where we first
calculate the optimal settings for each client i assuming that all
clients have the same accuracy drop rate and SLA as the client of
interest. Under this assumption, all clients share the same optimal
settings, which can be obtained by solving the following equation:
e2eps+0i—1
Iolil,{ilj.')s(1::35 /@ s.t. i Z daccs — dacepep < 0

5=E2€hy

oi

where oi, bs, and 6 represent the offloading interval, batch size,
and accuracy SLA respectively, latps and e2eps are the inference
latency (in seconds) and the end-to-end offloading latency (in frame
intervals) under a specific batch size, dacc; is the accuracy drop
under tracking stride s, and daccy,f is the accuracy drop under the
reference setup.

The above equation maximizes the number of supported clients
(pretending they are identical to client i), which equals to the server
inference throughput (1:—:‘”) divided by the offloading frequency of

each client (%), subject to the accuracy SLA, which is calculated as
the average accuracy drop across all the frames that rely on tracking
the offloaded frame, i.e., with tracking strides e2ep, to e2epg+0i-1.

4.4.2 Step 2: Greedy Request Packing and Coordination. The opti-
mal schedule calculated per client above assumes no queuing delay
and perfect batching. In practice, offloading requests of uncoordi-
nated clients may arrive at the server at any time, disrupting the
above schedule. In Step 2, we perform greedy request packing and

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

o ot

L —

el
n

Model b ®
bf _:a; B2 2 13
2 5 - o3 18 13
—_ s 1 12 14
Clients A1 1 18 17
id | oi |bs| f | at 8 2 16 17
1|13 |2(6]|8 1 =20 17
2l4al2|8]|o %
3/4]2(12|9 p_ 1 B =
i Adjust
Add/remove .
client .
o o vﬁ&@
E scneduie S
1 08 N
A o2 1 m
3 18 13
_ M . @ o1 M 13
1 13 15
R A A2 14 15
3 20 17
Apply 115 17

8

Figure 10: An example of greedy request packing and coor-
dination. The “Model” table gives inference latencies of an
example DNN model under different batch size. The “Clients”
table gives the current states of the clients, including their
ID, the selected offloading interval (oi) and batch size (bs),
and the last offloaded frame (f) along with its arrival time
(at). All latencies and timestamps are in frame intervals.

coordination that explicitly coordinates the timing of client request
arrivals and batch formation. The algorithm consists of four steps:
simulate, adjust, verify, and apply (Figure 10), which are described
in detail below.

Simulate. Before packing and coordinating the client requests,
we need to first simulate the request arrivals in the near future
based on knob settings calculated in Step 1 and last frame’s arrival
time for each client. For example, in Figure 10, the last request
of client 1 is frame 6, which arrives at time 8, and the offloading
interval is 3. Thus, the next request will be frame 9 and should
arrive by time 11. As a reference, in Figure 10, the requests are also
grouped into batches similarly as how they would have been pro-
cessed by a general inference serving framework, i.e.,, opportunistic
batching [21]. For example, at time 11, only 1 request is available,
and thus a batch of size 1 is formed despite client 1 can tolerate a
batch size of 2. On the other hand, at time 17, a batch of size 2 is
formed despite 3 requests are available, since all the clients require
a maximum batch size of 2.

Adjust. As the core step of greedy packing and coordination,
we adjust both the batches and the individual requests. Algorithm 1
shows the adjust algorithm that produces the adjusted scheduling
plan. The outer loop (lines 2-11) goes through all the requests in
the near future (generated in the simulate step) and packs them into
batches; the inner loop (lines 5-8) goes through each request in
the batch and coordinates them with server batched inference. The
algorithm runs in linear time in terms of the number of requests be-
ing processed. To ensure the server resources are fully utilized, we
regroup the requests into batches greedily without considering the
arrival times of the requests (the batch size restrictions still apply).
For example, in Figure 10, the first and the second requests are now

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Algorithm 1: Request packing and coordination (adfust step)

input :list of requests R from simulate step in arrival order
completion time #; of current batched inference

output :scheduling plan P

1 i=0,f=1p

2 while i < Rlength do

// pack

3 bs = argmax_ {r.client.bs > n, Vr € R[i:i+n]};

4 batch = R[i:i+bs];

// coordinate

5 for r in batch do

6 r.arrival = ¢;

7 r.frameld = timeToFrameld(r.client, ¢);
8 end

9 P.add(batch);

10 i += bs, t += InferenceLatency(bs);
n end

grouped into the same batch that starts at time 11. Next, to resolve
any conflicts between requests and minimize the queuing delay, we
adjust the expected request arrival time and the frame ID of the
requests according to the expected start time of the batches. For ex-
ample, in Figure 10, client 1 and client 2 requests originally arriving
at time 17 are now moved forward to time 15, no longer conflicting
with frame 20 from client 3. This adjustment step minimizes both
batch-level and intra-batch queuing delays.

Verify. As the adjusted schedule affects offload timing and batch-
ing, which in turn affects task accuracy, we next verify the adjusted
schedule whether all clients still meet their accuracy SLAs, by going
through the adjusted schedule and calculating the accuracy drop
of each client using the per-client accuracy estimator. If not, we
remove one client from the server, and if yes, we add one more
client from the list of available clients (along with their state when
running on the previous server) provided by the cluster load bal-
ancer. We then repeat the simulate-adjust process until there is no
need to remove a client and adding a client is not possible.

Apply. Finally, we apply the final schedule, which grants im-
proved server capacity and meets the accuracy SLAs of all clients
at the same time, by sending it to all clients. Both client offloading
and server batched inference will follow the new schedule till the
next scheduling iteration.

Practical issues. We perform several optimizations to ensure that
the scheduler works smoothly in practice. (1) We impose a small
overlap between the old and new scheduling plans, i.e., the tail of
the old plan is the same as the head of the new plan, which ensures
clients can transition smoothly to the new plan without accuracy
degradation. (2) Due to network bandwidth fluctuation, requests
may not arrive at the exact time in the schedule. Our schedule sets
aside a grace period, e.g., 10% of the inference time for every batch
to tolerate late requests, which strikes a balance between flexibility
of the schedule and wasted server resource. (3) Network bandwidth
fluctuation may also make estimating future request arrival time
simply based on the last request unreliable. To this end, we perform
regression based on recent request arrivals of a client and predict
future request arrivals based on the regression model.

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

As different AR tasks are served by different servers (§1), they
are typically scheduled independently for applications that rely on
multiple AR tasks. In certain cases, e.g., whether to execute one task
depends conditionally on other tasks [33, 57], the scheduler, which
executes at a fine granularity (200 ms), can leverage the temporal
locality of task results (§4.3) and determine whether to run the task
based on the most recent result of the dependency task.

4.5 Other Optimizations

ARISE automatically achieves pipelining between network trans-
mission and server inference in the adjust step of proactive schedul-
ing, where clients requests are regrouped to remove gaps between
batches and offloaded frames are adjusted so that they arrive right
before the batches begin execution. Furthermore, we perform JPEG
encoding on both frames and DNN results (if applicable), which is
efficient and has minimal impact on accuracy [46].

5 IMPLEMENTATION

We have implemented the ARISE server in about 2K lines of C++
code. We use TensorRT [3] as our DNN inference engine, and per-
form GPU-accelerated JPEG encoding and decoding using nvJPEG [4].
We implement two client implementations — an Android client and
an emulated client. The Android client is implemented in a mix
of Java and C++ and runs on the Android phone. The number of
Android clients that can run is limited by the phones we have. To
evaluate our system for a larger number of AR clients, we imple-
mented an emulated client, written in Python, that emulates the
behavior (including the computational latencies) of the Android
client but runs on a server. In particular, the emulated client offloads
the frames and receives the results like the real client, but emulates
the local tracker latency and performs table lookup to get the local
tracker accuracy, and hence is light-weight; a single server is able
to host hundreds of emulated clients.

6 EVALUATION
6.1 Evaluation Setup

Emulation. We run ARISE and other baselines on a server with
an NVIDIA A40 GPU. We first evaluate our system with emulated
clients. We emulate the mean and variance of dynamic 5G mmWave
(1715 + 57 Mbps downlink, 152 + 6 Mbps uplink, 14 + 2 ms RTT)
and LTE (110 + 17 Mbps downlink, 44 + 8 Mbps uplink, 32 + 5 ms
RTT) network conditions [28] for each client using the tc tool
(the clients’ network conditions are independent). We simulate the
client arrival following a Poisson process (on average 10 clients per
second). Each client randomly selects a video from the dataset (see
below) and replays frames in that video. Each experiment lasts 10
minutes. During the experiment, as the clients come and go, the
server decides whether to add or remove clients depending on the
clients’ resource requirements. While in real-world deployment,
a load balancer will help migrate the clients between servers in
the cluster, for this experiment, we simply set up another server to
serve the extra clients that exceed the capacity of the server being
measured. The average number of concurrent clients served by the
first server is measured and compared against the baselines.

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

w

£ } = DenseDepth (1740 MHz)
- 20+ == DenseDepth (1200 MHz)
o

c == ByteTrack

@ 154 |\w

£ .

o

ki

E=

]

E

<< T

4 8 12 16 20 24 28 32
Batch size

Figure 11: The testbed setup Figure 12: Amortized DNN in-

(server is not shown). ference latency.

0

Testbed. To verify the performance of ARISE against real mobile
phones, we next evaluate our system on a small scale testbed setup
(Figure 11) that consists of 10 smartphones (7 Google Pixel 5 and 3
Google Pixel 2). All phones are connected to an 802.11ac AP, which
connects to the server through a 1 Gbps link. We still emulate
the dynamic 5G mmWave network condition on top of it. Upon
arrival, a client is assigned to one of the available phones and
an instance of the Android client implementation is started on the
phone. The phone will be free again when the client session finishes.
An arriving client is rejected when all phones are busy. The rest of
the setup are the same as above.

6.2 Evaluation Tasks

We test our system with two representative AR tasks separately:
depth estimation and object detection. Due to the lack of AR-specific
datasets, we follow the practice of recent AR systems [39, 41, 65]
and use datasets collected for the target tasks.

Depth estimation. Depth estimation is an essential AR task that
estimates the depth map — the distance of each pixel relative
to the camera — given an RGB frame. We employ the popular
DenseDepth [8] model. Figure 12 (1740 MHz) shows the amortized
DNN inference latencies (batch inference latency divided by batch
size) under different batch sizes. We use warping [15] as the local
tracker. We use a dataset generated by CARLA [25], which con-
tains 20 videos with resolution 448x128 (the input resolution of
DenseDepth?), each lasting for 70 seconds at 60 FPS with diverse
frame content and varying accuracy drop rates. We evaluate the ac-
curacy of the depth maps using the absolute relative error (AbsRel,
lower is better) [17].

Object detection. Object detection is another important AR task
that helps AR devices to understand the semantics of the surround-
ing environment. We use ByteTrack [72], a video object detection
model that provides smooth object trajectories compared to image
object detection models, as our DNN model. Figure 12 shows the
amortized DNN inference latencies. We use a Lucas-Kanade based
local tracker that estimates new bounding box locations based on
the optical flow [1]. We use videos from MOT17 [48] and evaluate
object detection accuracy using Intersection over Union (IOU).

6.3 Baselines
We compare ARISE against the following baselines.
Static. This baseline uses the same offloading interval and batch size

during the experiment and across all clients. The maximum number

“While AR device cameras usually have high resolution, the camera frames are typically
down-sampled to match the input resolution of DNN models [19, 39, 41].

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

| EA Static

[E= Clipper-like

1 =3 Chameleon-like
| E=2 ARISE-a

B3 ARISE

(=]

=R W L
o o o

Average client count
[=]

Zsug]

[0.02, 0.06]

(=]

Accu.racy drop threshold
Figure 13: Average number of concurrent clients and the
standard deviation under different accuracy SLAs.

of clients it can support and the corresponding configuration values
and are determined offline based on pilot experiments that search
through the configurations, such that the averaged accuracy across
all frames for each client meets its accuracy SLA. The clients are
equipped with local trackers.

Clipper-like (dynamic batching, no dynamic offloading interval).
DNN serving systems like Clipper [21] are not directly compara-
ble to ARISE due to their focus on per-request accuracy (which
is latency oblivious) or just latency. To this end, we implement
a Clipper-like system that is enhanced with local tracking and
lightweight accuracy estimation as in ARISE. It performs dynamic
batching in the same way as in the simulate step in §4.4. However,
all clients offload at a fixed offloading interval (the value is chosen
offline in the same way as Static), since requests from the same
client are treated independently by such DNN serving systems.

Chameleon-like (dynamic offloading interval, no dynamic batch-
ing). We also implement a system that resembles video analytics
pipelines like Chameleon [34] but enhanced with local tracking.
Chameleon uses profiling-based accuracy estimation which is too
compute-intensive to scale, and thus we replace it with the light-
weight, online accuracy estimation method in ARISE. The offload-
ing interval of each client is dynamically determined based on the
accuracy estimate. However, batching is not employed.

ARISE-c. This baseline takes advantage of most techniques em-
ployed by ARISE, including lightweight accuracy estimation, dy-
namic offloading interval, and dynamic batching. However, the
server-side scheduling is done reactively, without the greedy pack-
ing in the adjust step in §4.4. Essentially, the offloading schedule
is the output of the simulate step, governed by the verify step to
ensure that the SLA is met.

Note that the first 3 baselines are “strong baselines” beyond
practical algorithms because key offline parameters are chosen
based on prior knowledge of the target workload.

Load adjustment for the baselines work as follows. For Clipper-
like, Chameleon-like, and ARISE-a, clients are added or removed
based on the presence of pending requests, i.e., a fixed number of
clients are removed when some requests are delayed till the next
batch, which cause them to miss their accuracy SLA, while more
clients are added if no requests are delayed within 400 ms. For
the Static baseline, the number of clients to support is fixed, as
discussed above.

6.4 Main Results

We first evaluate the systems with emulated clients and the A40
GPU on the depth estimation task.

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

0061 — y=
5 y=x .
- 3 30
£ 2 0.044
Se @
] 5 201
84 s
wd i =
g 0.02 =104
g Z
I

0.00 T T T (1]

0.00 0.02 004 0.06 Easy H:rd All
Accuracy drop threshold Video
(A AbsRel)

Figure 14: Average accuracy Figure 15: Average client
drops vs. accuracy SLAs for count under different frame
ARISE with SLAs in [0.02, difficulties and accuracy
0.06]. SLAs in [0.02, 0.06].

First, Figure 13 compares the number of clients supported by
different systems under 5G mmWave when all clients have the same
accuracy SLAs 0.02, 0.04, 0.06 (SLA values are picked as a fraction of
the typical range of the task’s accuracy metric), and when the SLAs
are drawn randomly from a uniform distribution of range [0.02,
0.06]. In all experiments, Static is configured with fixed offloading
interval 3 and batch size 5, while Clipper-like has a fixed offloading
interval of 3. The average accuracy for all clients meet the SLAs.
For example, in Figure 14, which plots the average accuracy drops
vs. the accuracy SLA when ARISE serves clients with accuracy SLA
drawn from [0.02, 0.06], all data points are below y = x, indicating
that ARISE meets the accuracy SLAs of all clients.

We make the following observations about Figure 13. (1) ARISE
improves over all baselines under all accuracy SLA choices by 1.7x-
6.9x. ARISE improves over ARISE-a by 1.7x-3.9x, indicating the
importance of proactive scheduling in resolving the conflicts be-
tween requests and increasing the number of clients supported by
the server. (2) On the other hand, the improvement of ARISE-a
over Clipper-like (by 1.8x-2.4x) and Chameleon-like (by 1.6x—4.0x)
shows that tuning both dynamic offloading intervals and batching
is important in improving serving performance. (3) Static performs
better than other baselines such as ARISE-a under tighter accuracy
SLAs. This is because Static’s configuration values are selected so
that the per-client average accuracy drops are with the SLA, while
all other baselines instead strive to ensure that the clients meet
their accuracy SLAs at all times (by adjusting the number of clients).
Thus, while Static allows exira delays caused by uncoordinated
requests as long as the per-client average accuracy drops are within
the SLA, the dynamic baselines without proactive scheduling try to
keep request conflicts minimal, which causes the server to be under-
utilized, as we will discuss in §6.6. (4) The ratio of average client
count between ARISE and other dynamic baselines (Clipper-like,
Chameleon-like, and ARISE-a) becomes smaller as the accuracy
SLA becomes larger, since the impact of request conflicts becomes
smaller as clients can tolerate longer E2E offloading latencies.

Impact of frame content. To study the impact of frame content
on ARISE performance, we partition the 20 videos in the CARLA
dataset into two groups of 10 videos each, one with high accuracy
drop rates (on average 0.007 per frame) and the other with low ac-
curacy drop rates (on average 0.005 per frame). We next run ARISE
with only high accuracy drop videos (hard clients), low accuracy

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

EFstatic E=IClipperlike E3Chameleon-like EEIARISE-a EHARISE

6 254
§15- ° .
8 Al | & 207
] 54_
Em p E £ 151
= et
v
£
& 1| & T 10
g 357 C 2 4|5
o o
2 2 & s A
0 o
Systems oLt 0 =

Figure 16: Average client Figure 18: Average batch

count under LTE at accuracy size and server idle time of

SLA 0.02. ARISE-a vs. ARISE at accu-
racy SLA 0.02.

FFAstatic E=IClipperlike EChameleon-like EEIARISE-a TEHARISE

€ 84

p=1

8

£6 -

£ %

o 4]

= o

e

@ 24 P

0 o : : :
Systems 0.005 0.010 0.015 0.020
Awverage accuracy drop
(A AbsRel)

(a) Average number of concur- (b) CDF of per-client average ac-
rent clients. curacy drops.

Figure 17: Testbed results at accuracy SLA 0.02.

drop videos (easy clients), and all videos together, respectively. Fig-
ure 15 shows the average number of clients (accuracy SLA [0.02,
0.06]) that ARISE can support. Compared to serving hard clients,
ARISE can support 50% more easy ones. In either case, ARISE dy-
namically adjusts the number of supported clients to ensure all
clients meet their accuracy SLAs.

Impact of network condition. Figure 16 shows the average number
of clients supported by each system under LTE network condition,
which entails longer network latency and different network dynam-
ics. In this experiment, Static is configured with offloading interval
3 and batch size 3 for all clients to meet the accuracy SLA (0.02),
and Clipper-like uses fixed offloading interval 3. While all systems
support fewer clients compared to running under 5G network con-
dition, ARISE still significantly improves over other baselines and
supports 2.5x-5.6x more clients, which demonstrates the robustness
of ARISE under different network conditions.

6.5 Testbed Verification

To verify that our framework works on real clients, we next evaluate
the systems on the small-scale testbed. As the number of clients
supported by some of the baselines exceeds the number of phones
we have, which makes it hard to compare between the systems,
we restrict the GPU clock frequency to 1200 MHz, and Figure 12
shows the longer batch inference latency compared to no GPU
clock frequency limit.

Figure 17 shows the number of clients supported and per-client
accuracy drops for different systems under 5G mmWave when all

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

Average accuracy drop rate across clients

5 2 0.0125
28
3 + 0.0100
<1 % 0.0075 1
Average offloading frequency across clients
2
£5<1
gi
ga

Batch size

L g

Client count

60
] W

20

=
[=]

-]

-4

0 5 10 15 20 25 30 35 40

Time (s)
Figure 19: Timeline of server execution stats at accuracy SLA
of 0.06.

clients have an accuracy SLA of 0.02. The Static baseline is con-
figured with fixed offloading interval 3 and batch size 3, while
Clipper-like has a fixed offloading interval of 3, based on the afore-
mentioned configuration search (§6.3). While all systems ensure
that all clients meet their accuracy SLAs, ARISE supports on aver-
age 7.6 clients and significantly improves over other baselines by
2.6x-3.8x, validating that the performance gain of ARISE is simi-
lar as in the larger-scale emulation experiment. We note that the
per-client average accuracy drops of Clipper-like and ARISE-a are
only up to 0.011 and 0.013 respectively, which are far from the accu-
racy SLA of 0.02. This is due to the smaller batch sizes and shorter
end-to-end latencies as the server in both baselines try to minimize
extra delays caused by request conflicts, as we will discuss in §6.6.

System overhead. The proactive scheduler takes 0.8 ms per exe-
cution, which is negligible compared to the scheduler execution
interval of every 200 ms. The depth estimation local tracker (warp-
ing) takes 3.8 ms on Pixel 5 and 4.0 ms on Pixel 2, while the accuracy
estimator takes 2.0 ms on Pixel 5 and 2.7 ms on Pixel 2, both satis-
fying the real-time requirement at 60 FPS.

6.6 In-Depth Analysis

Benefits of proactive scheduling. The number of clients that a
server can support depends on both client offloading frequencies
and the server inference throughput, i.e,, the number of requests
the server processes in a unit time, which in turn depends on both
inference batch sizes and GPU idle times (periods when no DNN
inference is performed). While reactive and proactive scheduling
require clients to offload at similar frequencies, the server’s perfor-
mance is different due to the uncoordinated requests in reactive
scheduling. We plot the average batch size and server idle time of
ARISE vs. ARISE-a with accuracy SLA of 0.02 in Figure 18. While
both scheduling algorithms select similar batch sizes for the clients,
ARISE-a fails to reach the chosen batch sizes. In reactive schedul-
ing, requests arrivals are uncoordinated and may arrive densely at
times and sparsely at other times. When they arrive densely, the
server will remove some clients to maintain the normal batch size

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

—-= 0.02 —— 0.06
0.04 — [0.02, 0.06]
1.00 1.00 .
0.75 0.75
E e
o 0.50 8 0.50
0.25 0.25 4
0.001 el x10-3
-10 0o 10 20 30 4202 26 8
Delay (ms) Accuracy estimator error (A AbsRel)

Figure 20: CDF of actual start Figure 21: CDF of accuracy es-
time minus scheduled start timation error over different
time of the batches at accu- videos and under different ac-
racy SLA 0.06. curacy SLAs. A positive value
means over-estimation.

that it can handle. When they arrive sparsely, the server cannot
fill up the batch in time (and it cannot add clients quickly enough),
and the resulting smaller batch size will lead to shorter end-to-end
offloading latency and thus better task accuracy per-client. For the
same reason, ARISE-a has a much higher percentage of GPU idle
time (24.7%) compared to that of ARISE (8.8%), which is just below
the 10% grace period (§4.4).

Server adaptation analysis. To see how ARISE adapts as the
client content changes, in Figure 19 we plot the timeline of the
average accuracy drop rate across clients, the average offloading
frequencies across clients, the average batch size, and the number
of concurrent clients with a 1 second moving window. Firstly,
the average accuracy drop across clients shows high fluctuation
over time, ranging from 0.007 to 0.013, which is due to changes in
video content. Secondly, the average offloading frequency closely
follows changes of the accuracy drop rate. The batch size is also
affected by the accuracy drop rate. For example, the batch size
reaches its peak value when the average accuracy drop rate drops
to the lowest at around the 40-th second. By controlling both the
offloading frequency and batch size accordingly as client accuracy
drop rate changes, ARISE is able to dynamically adjust the number
of supported clients (bottom figure) so that the number of supported
clients is maximized while keeping accuracy drops within SLAs.

Consistency between schedule and runtime. In practice, varia-
tions such as network dynamics may cause the runtime behavior
to deviate from the generated schedule. We plot the difference be-
tween the scheduled start time and the actual start time of each
batch in Figure 20. We see that most of the differences are below 0
(but greater than -16.7 ms), meaning that the batches start a little
earlier than expected. This happens as the scheduled starting time
assumes a buffering time (10% of inference time), but can start right
away if all the expected requests for the batch have arrived. On
the other hand, only 1.6% of the batches start later than the sched-
uled time, indicating that the runtime behavior closely follows the
schedule by the proactive scheduler.

Accuracy estimation error. In Figure 21, we evaluate ARISE’s
accuracy estimator by measuring the difference between the esti-
mated and actual average accuracy drops for each video and under
different accuracy SLAs. The accuracy estimator shows minimal
errors. For example, at accuracy SLA 0.06, the maximum estima-
tion error is 0.008, which is below 15% of the accuracy SLA and

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

FFstatic E=IClipperlike ESChameleon-like EEARISE-a EHARISE

12.5
10.0
7.5

5.0

2.5
o

0.0 -- T T T
Systems 0.10 0.15 0.20
Average accuracy drop
10U)

Average client count

(a) Average number of concur- (b) CDF of per-client average ac-
rent clients. curacy drops.

Figure 22: Performance comparison on the object detection
task with accuracy SLA 0.2.

is sufficient for guiding scheduler decisions. Furthermore, we no-
tice that the accuracy estimator tends to be more accurate under
stricter SLAs. At accuracy SLA of 0.02, the estimation error narrows
down to between -0.002 and 0.004. This is because clients offload
more frequently under tighter SLA, which results in more recent
frames being used for accuracy estimation (§4.3), and thus smaller
estimation error.

6.7 Evaluation on Object Detection

To evaluate the generalizability of our framework, we evaluate
ARISE against the baselines on a second task — object detection
with emulated clients. Figure 22 shows the average number of
supported clients and the CDF of per-client accuracy drops with
all clients having an accuracy SLA of 0.2. The Static baseline is
configured with fixed offloading interval 5 and batch size 5, while
Clipper-like has a fixed offloading interval of 9. All baselines ensure
that all clients meet the accuracy SLA. However, ARISE is able
to support 9.6 clients on average, outperforming other baselines
by 1.9x-2.1x, which shows the generalizability of ARISE to object
detection. Compared to depth estimation, the object detection DNN
model has a higher inference latency, and the benefit of batching
diminishes faster (Figure 12).

The characteristics of DNN models have an impact on ARISE’s
tradeoff between offloading frequency and batching. For example, in
the object detection experiment in Figure 22, clients have an average
offloading frequency of every 13.0 frames, and the average batch
size is just 1.2. On the other hand, the depth estimation experiment
in Figure 17 supports similar number of clients, but the average
offloading frequency is every 4.6 frames and the average batch size
is 3.1. ARISE prefers longer offloading interval over larger batch size
in the presence of heavy DNN models, which exhibits its ability to
dynamically adjust to different task characteristics. The difference
in inference latency also explains the relatively higher number
of clients supported by Chameleon-like, which does not support
batching, compared to that in depth estimation.

7 RELATED WORK

The large amount of prior work on DNN inference serving fall into
generic inference serving, video analytics pipelines, or single-AR-
client serving.

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

Generic DNN serving. As discussed in §3.1, the large number of
generic DNN serving systems (e.g., [9, 20, 21, 24, 37, 50, 55, 57,
62, 67]) serve requests from multiple clients but do not assume
any correlation among requests. Additionally, cluster-level DNN
serving optimizations, e.g., auto scaling [67], assignment of requests
to servers [37], and assignment of different tasks to servers [20,
37], are complementary to our work, which focuses on optimizing
individual servers.

Single-client and multi-client video analytics. Similar to AR
offloading serving, video analytics clients also offload a stream of
frames and the frames are processed for video analytics tasks, e.g.,
object detection, on the edge server. A major distinction between
video analytics serving and AR offloading serving is that video
analytics serving typically have relaxed latency requirements of
hundreds of milliseconds, i.e., analytics results on a frame do not
need to be available in the current frame interval and are optimized
for such latency-oblivious accuracy [14, 40], or are for retrospec-
tive analysis [6, 36]. Second, existing video analytics serving sys-
tems [14, 34, 35, 38, 40, 44, 49, 68, 73] focus on dynamically adjusting
client-side offloading configurations to optimize the accuracy un-
der network dynamics or server resource constraints; they do not
control server-side configurations, i.e., batch size, by coordinating
requests on the server. A few video analytic systems incorporate
local tracking, but with a focus on a single client [27, 42]; these
works can be augmented with ARISE to support multiple clients
efficiently.

Single-client AR offloading serving. Many DNN offloading sys-
tems have been proposed for a single AR client for tasks such as
object detection [18, 19, 41], human pose estimation [41], and depth
estimation [45]. Such systems assume a dedicated server is used
for each AR client.

Collaborative edge-assisted AR. A few collaborative edge-assisted
AR systems optimize AR offloading serving by an edge server [43,
53, 56, 70] by exploiting caching and serving cached results of previ-
ously offloaded frames. Such optimizations are applicable when AR
clients encounter the same scene and are orthogonal to our design.

8 CONCLUSION

A cost-effective solution to deploying popular edge-assisted AR
apps to support a large user base is to use MLaaS to serve offloaded
AR inference requests. In this paper, we presented to our knowl-
edge the first framework that addresses the AR inference serving
problem. The framework employs an online accuracy estimator
that estimates the accuracy for each AR client under various con-
figurations and an online scheduler that proactively coordinate
requests from the clients served by a server. Our evaluation using
a large set of emulated AR clients and a 10-phone testbed show
that ARISE supports 1.7x—6.9x more clients compared to various
baselines while keeping the per-client accuracy drops with the
client-specified SLA.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Chulhong
Min for their helpful comments. This work is supported in part by
NSF grants 2112778, 2113893, and 2312834.

ARISE: High-Capacity AR Offloading Inference Serving via Proactive Scheduling

REFERENCES

[1] 2020. TensorFlow Android Camera Demo.
tensorflow/tree/48a2944c94b190434418d5a7c7f0df452c3adeds/tensorflow/
examples/android

[2] 2022. Detectron2. htips://github.com/facebookresearch/detectron2/blob/main/

MODEL_Z0O.md.

[3] NVIDIA Corporation 2024. NVIDIA TensorRT. NVIDIA Corporation. https:

//developer.nvidia.com/tensorrt

[4] NVIDIA Corporation 2024. nvJPEG Libraries. NVIDIA Corporation. https:

//developer.nvidia.com/nvjpeg

[5] Online. AWS Wavelength - Deliver ultra-low latency applications for 5G devices.

https://aws.amazon.com/wavelength/

[6] Neil Agarwal and Ravi Netravali. 2023. Boggart: Towards General-Purpose

Acceleration of Retrospective Video Analytics. In Proc. of USENIX NSDL

[7] Adel Ahmadyan and Tingbo Hou. 2020. Real-Time 3D Object Detection on Mobile
Devices with MediaPipe. Retrieved July 13, 2022 from https://ai.googleblog.com/

2020/03/real-time-3d-object-detection- on-mobile.html

[8] Ibraheem Alhashim and Peter Wonka. 2018. High quality monocular depth

estimation via transfer learning. arXiv preprint arXiv:1812.11941 (2018).

[9] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. BATCH:
Machine Learning Inference Serving on Serverless Platforms with Adaptive

Batching. In Proc. of SC.

[10] Mario Almeida, Stefanos Laskaridis, Abhinav Mehrotra, Lukasz Dudziak, llias
Leontiadis, and Nicholas D. Lane. 2021. Smart at What Cost? Characterising
Mobile Deep Neural Networks in the Wild. In Proc. of ACM IMC (Virtual Event)
(IMC "21). Association for Computing Machinery, New York, NY, USA, 658-672.

https://doi.org/10.1145/3487552.3487863

[11] Inc. Amazon Web Services. 2024. Amazon Rekognition: Automate and lower the
cost of your image recognition and video analysis with machine learning. https:

/laws.amazon.com/rekognition/

[12] Kittipat Apicharttrisorn et al. 2019. Frugal Following: Power Thrifty Object
Detection and Tracking for Mobile Augmented Reality. In Proc. of ACM SenSys.
[13] Ali]. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:

Edge-Assisted Visual Simultaneous Localization and Mapping. (2020).

[14] Romil Bhardwaj, Zhengyxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. 2022.
Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers.

In Proc. of USENIX NSDL

[15] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-
Ming Cheng, and Ian Reid. 2019. Unsupervised scale-consistent depth and ego-

motion learning from monocular video. Proc. of NeurIPS 32 (2019).

[16] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934

(2020).

[17] Cesar Cadena, Yasir Latif, and Ian D. Reid. 2016. Measuring the performance of
single image depth estimation methods. In Proc. of [EEE/RSJ IROS. 4150-4157.

https://doi.org/10.1109/IROS.2016.7759611

[18] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E. Culler, and Randy H. Katz. 2018.
MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-
tency. In Proc. of ACM SenSys (Shenzhen, China) (SenSys '18). Association for
Computing Machinery, New York, NY, USA, 292-304. https://doi.org/10.1145/

3274783.3274834

[19] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile

devices. In Proc. of ACM SenSys.

[20] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning Models on Multi-
GPU Servers with Spatio-Temporal Sharing. In Proc. of USENIX ATC. USENIX
Association, Carlsbad, CA, 199-216. https://www.usenix.org/conference/atc22/

tation/choi-

oh

P
[21] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving

System. In Proc. of USENIX NSDL

[22] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: Object detection via

region-based fully convolutional networks. In Proc. of NeurIPS. 379-387.

[23] Pranab Dash, Z Jonny Kong, Y Charlie Hu, Chris Turner, Dell Wolfensparger,
Mun Gi Choi, Abhinav Kshitij, and Viviane E McLandrich. 2023. How to Pipeline
Frame Transfer and Server Inference in Edge-assisted AR to Optimize AR Task

Accuracy?. In Proc. of ACM EdgeSys. 36-41.
[24

—

SoCC.

[25] A.Dosovitskiy et al. 2017. CARLA: An open urban driving simulator. In Proc. of

CoRL.

[26] Kuntai Du et al. 2020. Server-driven video streaming for deep learning inference.

In Proc. of ACM SIGCOMM.

https://github.com/tensorflow/

Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. GSLICE: Con-
trolled Spatial Sharing of GPUs for a Scalable Inference Platform. In Proc. of ACM

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]
[52]

[53]

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

Chengsi Gao, Ying Wang, Weiwei Chen, and Lei Zhang. 2021. An Intelligent Video
Processing Architecture for Edge-cloud Video Streaming. In Proc. of ACM/IEEE
DAC. 415-420. https://doi.org/10.1109/DAC18074.2021.9586328

Moinak Ghoshal et al. 2022. Can 5G mmWave support Multi-User AR?. In Proc.
of PAM.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Froc. of IEEE CVFR. 580-587.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask r-cnn.
In Proc. of IEEE/CVFICCV. 2961-2969.

Florian Heinrich, Luisa Schwenderling, Fabian Joeres, Kai Lawonn, and Christian
Hansen. 2020. Comparison of Augmented Reality Display Techniques to Support
Medical Needle Insertion. Proc. of IEEE TVCG 26, 12 (2020), 3568—-3575.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proc. of [IEEE/CVFICCV. 1314-1324.

Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. 2021. Scrooge: A Cost-Effective
Deep Learning Inference System. In Proc. of ACM SoCC.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: Scalable Adaptation of Video Analytics. In Proc. of ACM
SIGCOMM.

Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flexible
High-Resolution Object Detection on Edge Devices with Tunable Latency. In
Proc. of ACM MobiCom (New Orleans, Louisiana) (MobiCom '21). Association for
Computing Machinery, New York, NY, USA, 559-572. https://doi.org/10.1145/
3447993.3483274

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
Noscope: Optimizing Neural Network Queries over Video at Scale. Proc. of VLDB
(2017).

Liu Ke, Udit Gupta, Mark Hempsteadis, Carole-Jean Wu, Hsien-Hsin 5. Lee, and
Xuan Zhang. 2022. Hercules: Heterogeneity-Aware Inference Serving for At-Scale
Personalized Recommendation. In Proc. of IEEE HPCA.

Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh, Junchen Jiang, Ravi
Netravali, Yuanchao Shu, Mohammad Alizadeh, and Victor Bahl. 2023. RECL:
Responsive Resource-Efficient Continuous Learning for Video Analytics. In Proc.
of USENIX NSDL

Z. Jonny Kong, Qiang Xu, Jiayi Meng, and Y. Charlie Hu. 2023. AccuMO: Accuracy-
Centric Multitask Offloading in Edge-Assisted Mobile Augmented Reality. In Proc.
of ACM MobiCom.

Yuanai Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoging Harry
Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering for resource-efficient
real-time video analytics. In Proc. of ACM SIGCOMM. 359-376.

Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object
detection for mobile augmented reality. In Proc. of ACM MobiCom.

Ruoyang Liu, Lu Zhang, Jingyu Wang, Huazhong Yang, and Yongpan Liu. 2021.
PETRI: Reducing Bandwidth Requirement in Smart Surveillance by Edge-Cloud
Collaborative Adaptive Frame Clustering and Pipelined Bidirectional Tracking.
In Proc. of ACM/IEEE DAC.

Zida Liu, Guohao Lan, Jovan Stojkovic, Yunfan Zhang, Carlee Joe-Wong, and

Maria Gorlatova. 2020. CollabAR: Edge-assisted Collaborative Image Recognition

for Mobile Augmented Reality. In Proc. of ACM/IEEE IPSN.

Jiachen Mao et al. 2019. MobiEye: An Efficient Cloud-Based Video Detection

System for Real-Time Mobile Applications. In Proc. of ACM/IEEE DAC.

Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y Charlie Hu. 2021. Do Larger

(More Accurate) Deep Neural Network Models Help in Edge-assisted Augmented

Reality?. In Proc. of ACM SIGCOMM NAL

Jiayi Meng, Z. Jonny Kong, Y Charlie Hu, Mun Gi Choi, and Dhananjay Lal. 2022.
Do We Need Sophisticated System Design for Edge-assisted Augented Reality?.
In Proc. of ACM EdgeSys.

Microsoft. 2024. Azure Al Vision. https://azure.microsoft.com/en-us/products/ai-
services/ai-vision/

Anton Milan et al. 2016. MOT16: A Benchmark for Multi-Object Tracking. arXiv
preprint arXiv:1603.00831 (2016).

Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan Sankaradas, Oliver Po,
Y. Charlie Hu, , and Srimat T. Chakradhar. 2022. Enhancing Video Analytics

Accuracy via Real-time Automated Camera Parameter Tuning. In Proc. of ACM
SenSys.

Heyang Qin, Syed Zawad, Yangi Zhou, Lei Yang, Dongfang Zhao, and Feng

Yan. 2019. Swift Machine Learning Model Serving Scheduling: A Region Based

Reinforcement Learning Approach. In Proc. of SC.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In Proc.
of IEEE CVFPR. 7263-7271.

Joseph Redmon and Ali Farhadi. 2018. YOLOwv3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

Pei Ren et al. 2020. Edge AR X5: An Edge-Assisted Multi-User Collaborative

Framework for Mobile Web Augmented Reality in 5G and Beyond. IEEE Transac-
tions on Cloud Computing (2020), 1-1.

https://github.com/tensorflow/tensorflow/tree/48a2944c94b190434418d5a7c7f0df452c3aded5/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/48a2944c94b190434418d5a7c7f0df452c3aded5/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/48a2944c94b190434418d5a7c7f0df452c3aded5/tensorflow/examples/android
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://aws.amazon.com/wavelength/
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://doi.org/10.1145/3487552.3487863
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://doi.org/10.1109/IROS.2016.7759611
https://doi.org/10.1145/3274783.3274834
https://doi.org/10.1145/3274783.3274834
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://doi.org/10.1109/DAC18074.2021.9586328
https://doi.org/10.1145/3447993.3483274
https://doi.org/10.1145/3447993.3483274
https://azure.microsoft.com/en-us/products/ai-services/ai-vision/
https://azure.microsoft.com/en-us/products/ai-services/ai-vision/

MOBISYS "24, June 3-7, 2024, Minato-ku, Tokyo, Japan

[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63)

Mauro Ribeiro, Katarina Grolinger, and Miriam A.M. Capretz. 2015. MLaaS5:
Machine Learning as a Service. In Proc. of IEEE ICMLA.

Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2021.
INFaa$S: Automated Model-less Inference Serving. In Proc. of USENIX ATC.
Pravin Shankar, Tamer Nadeem, Justinian Rosca, and Liviu Iftode. 2008. CARS:
Context-Aware Rate Selection for Vehicular Networks. In Proc. of IEEE ICNP.
Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: A GPU
cluster engine for accelerating DNN-based video analysis. In Proc. of USENIX
SOSP.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaa$ in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In Proc. of
USENIX NSDL

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze.
2019. FastDepth: Fast Monocular Depth Estimation on Embedded Systems. In
Proc. of ICRA.

Ran Xu, Jayoung Lee, Pengcheng Wang, Saurabh Bagchi, Yin Li, and Somali
Chaterji. 2022. LiteReconfig: Cost and Content Aware Reconfiguration of Video
Object Detection Systems for Mobile GPUs. In Proc. of EuroSys (Rennes, France)
(EuroSys "22). Association for Computing Machinery, New York, NY, USA, 334-351.
https://doi.org/10.1145/3492321.3519577

Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra, Somali
Chaterji, Yin Li, and Saurabh Bagchi. 2020. ApproxDet: Content and Contention-
Aware Approximate Object Detection for Mobiles. In Proc. of ACM SenSys (Virtual
Event, Japan) (SenSys '20). Association for Computing Machinery, New York, NY,
USA, 449-462. https://doi.org/10.1145/3384419.3431159

Feng Yan, Olatunji Ruwase, Yuxiong He, and Evgenia Smirni. 2016. SERF: Efficient
Scheduling for Fast Deep Neural Network Serving via Judicious Parallelism. In
Proc. of SC.

Chun-Han Yao, Chen Fang, Xiaohui Shen, Yangyue Wan, and Ming-Hsuan Yang.
2020. Video Object Detection via Object-Level Temporal Aggregation. In Proc.
of ECCV, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Z. Jonny Kong, Qiang Xu, and Y. Charlie Hu

(Eds.). Springer International Publishing, Cham, 160-177.

Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
2020. NEMO: Enabling Neural-Enhanced Video Streaming on Commodity Mobile
Devices. In Proc. of ACM MobiCom (London, United Kingdom) (MobiCom "20).
Association for Computing Machinery, New York, NY, USA, Article 28, 14 pages.
https://doi.org/10.1145/3372224.3419185

Juheon Yi and Youngki Lee. 2020. Heimdall: Mobile GPU Coordination Platform
for Augmented Reality Applications. In Proc. of ACM MobiCom.

M. Yong. 2019. Object Detection and Tracking using MediaPipe. https://developers.
googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html
Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In Proc. of USENIX ATC.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael]. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In Proc. of USENIX NSDL

Jinrui Zhang, Deyu Zhang, Xiaohui Xu, Fucheng Jia, Yunxin Liu, Xuanzhe Liu, Ju
Ren, and Yaoxue Zhang. 2020. MobiPose: Real-Time Multi-Person Pose Estimation
on Mobile Devices. In Proc. of ACM SenSys (Virtual Event, Japan) (SenSys "20).
Association for Computing Machinery, New York, NY, USA, 136-149. https:
//doi.org/10.1145/3384419.3430726

Wenxiao Zhang, Bo Han, and Pan Hui. 2022, SEAR: Scaling Experiences in
Multi-user Augmented Reality. Proc. of IEEE TVCG 28, 5 (2022), 1982-1992.
Yunfan Zhang, Tim Scargill, Ashutosh Vaishnav, Gopika Premsankar, Mario
Di Francesco, and Maria Gorlatova. 2022. InDepth: Real-Time Depth Inpainting
for Mobile Augmented Reality. In Proc. ACM IMWUT.

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping
Luo, Wenyu Liu, and Xinggang Wang. 2022. ByteTrack: Multi-object Tracking
by Associating Every Detection Box. In Proc. of ECCV.

Zhang, Wuyang and He, Zhezhi and Liu, Luyang and Jia, Zhenhua and Liu,
Yunxin and Gruteser, Marco and Raychaudhuri, Dipankar and Zhang, Yanyong.
2021. ELF: Accelerate High-resolution Mobile Deep Vision with Content-aware
Parallel Offloading. In Proc. of ACM MobiCom.

https://doi.org/10.1145/3492321.3519577
https://doi.org/10.1145/3384419.3431159
https://doi.org/10.1145/3372224.3419185
https://developers.googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html
https://developers.googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html
https://doi.org/10.1145/3384419.3430726
https://doi.org/10.1145/3384419.3430726

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Background: AR Task Accuracy under Edge-Assisted Design
	2.1 The Offloading + Local Tracking Paradigm
	2.2 Impact of Tracking Stride on Accuracy

	3 Design Opportunities and Challenges
	3.1 Design Opportunities
	3.2 Design Challenges

	4 ARISE Design
	4.1 Design Rationale
	4.2 Architecture Overview
	4.3 Accuracy Estimation
	4.4 Proactive Scheduling
	4.5 Other Optimizations

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Evaluation Tasks
	6.3 Baselines
	6.4 Main Results
	6.5 Testbed Verification
	6.6 In-Depth Analysis
	6.7 Evaluation on Object Detection

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

