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Abstract

We construct far-from-onset radially symmetric spot and gap solutions in a two-
component dryland ecosystem model of vegetation pattern formation on flat terrain,
using spatial dynamics and geometric singular perturbation theory. We draw con-
nections between the geometry of the spot and gap solutions with that of traveling
and stationary front solutions in the same model. In particular, we demonstrate the
instability of spots of large radius by deriving an asymptotic relationship between a
critical eigenvalue associated with the spot and a coefficient which encodes the side-
band instability of a nearby stationary front. Furthermore, we demonstrate that spots
are unstable to a range of perturbations of intermediate wavelength in the angular
direction, provided the spot radius is not too small. Our results are accompanied by
numerical simulations and spectral computations.

Keywords Localized radial structures - Geometric singular perturbation theory -
Reaction diffusion equations - Vegetation pattern formation - Spectral stability
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1 Introduction

The phenomenon of vegetation pattern formation in dryland ecosystems has attracted
attention in the last several decades as a mechanism of ecological resilience. While
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frequently considered to be an early warning sign for desertification (Gowda et al.
2018, 2014; May 1977; Noy-Meir 1975; Rietkerk et al. 2004; Rietkerk and van de
Koppel 2008; Rietkerk et al. 1997), the formation of localized vegetation patches or
patterns has also been viewed as a means of evading such critical transitions (Rietkerk
et al. 2021). The interaction of infiltration feedback mechanisms and competition
for water resources results in the formation of vegetation patches (Macfadyen 1950;
Rietkerk et al. 2002; Schlesinger et al. 1990; von Hardenberg et al. 2001; Wilcox
et al. 2003). On sloped terrain, one observes vegetation stripes, or bands, aligned
perpendicular to the slope, while on flat ground spots, gaps, or disorganized labyrinth
patterns are prevalent (Barbier et al. 2014; Deblauwe et al. 2012, 2011; Gandhi et al.
2018; Ludwig et al. 2005; Valentin et al. 1999). Spots, gaps, rings or other radially
symmetric patterns (sometimes called “fairy circles”) have been observed extensively
in drylands in Australia and Africa (Getzin et al. 2016; Meron 2018; Ravi et al. 2017)
(and other ecosystems, such as submarine seascapes (Ruiz-Reynés et al. 2017)), and
have served as the focus of many studies of self-organization in ecosystems.
Vegetation pattern formation is frequently modeled by multi-component reaction
diffusion systems. In such models, there is a well-developed theory of spot and stripe
pattern formation near the onset of Turing instabilities (Gowda et al. 2014, 2016; Siero
etal. 2015). However, far less is known analytically concerning large amplitude or far-
from-onset planar vegetation patterns. A number of studies have considered existence
and stability properties of banded vegetation (Bastiaansen et al. 2019; Carter and
Doelman 2018; Doelman and van der Ploeg 2002; Sewalt and Doelman 2017), as well
as desertification fronts (Carter et al. 2022; Fernandez-Oto et al. 2019), but less is
known concerning far-from-onset radially symmetric vegetation patches. Prior work
has considered small amplitude radial solutions (Hill 2021) and 1D simplifications
(Jaibi et al. 2020). However, to our knowledge, no rigorous studies exist concerning
large amplitude radially symmetric vegetation patches in a dryland ecosystem model.
We consider the model introduced in Bastiaansen et al. (2019)

U=AU+a—-U—-UV?
V, = 82°AV —mV +UV>(1 —bV), (1.1)

which is a modification of the dryland ecosystem model originally proposed by Klaus-
meier (1999). This model also coincides with that studied in Eigentler (2021), in the
case of a single species. Here, U represents water availability, V represents vegetation
density, and the parameters a, m, b are positive and represent rainfall, mortality, and
inverse of soil carrying capacity, respectively. The diffusion coefficient 8 represents
the ratio of timescales of diffusion of water vs. vegetation. Here, we assume that water
diffuses much faster than vegetation, so that 0 < § < 1 is a small parameter (Rietkerk
and van de Koppel 2008). We note that Klausmeier’s model originally had b = 0.
While a singular perturbation analysis of this case is possible (see, e.g., Carter and
Doelman 2018), this limit is highly singular, requiring several rescalings and blow
up techniques to account for passage near a non-hyperbolic slow manifold. Here, we
therefore focus on the case b > 0.
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We are interested in the formation of radially symmetric vegetation spots (localized
vegetation patches surrounded by bare soil) and gaps (localized regions of bare soil in
an otherwise uniformly vegetated state) in (1.1). Exploiting the small parameter § < 1,
we will use geometric singular perturbation methods to construct radially symmetric
solutions through a spatial dynamics approach in the radial coordinate. Our approach
is similar to that in Van Heijster and Sandstede (2011), in which the authors construct
far-from-onset spot solutions in a 3-component FitzHugh—Nagumo model. However,
the nonlinearities in (1.1) introduce complications in the analysis due to the fact that
the reduced flow on the resulting slow manifolds is no longer linear as in the case in
Van Heijster and Sandstede (2011). However, we will show that radial solutions can
still be constructed in (1.1).

Remark 1.1 In the setting of classical models like Gray-Scott, Gierer—Meinhardt and
Schnakenberg, the existence, stability and interactions of radially symmetric localized
‘spikes’ have been studied—see, for instance, (Chen and Ward 2011; Kolokolnikov
et al. 2009; Wei and Winter 2013) and the references therein. However, these patterns
differ from the ones considered here since they have a homoclinic nature: unlike the
present gaps and spots, the regions in which these spikes are not close to the background
states are asymptotically small. The patterns considered here can be seen as two-
dimensional (radially symmetric) versions of the one-dimensional ‘mesa patterns’
studied in Kolokolnikov et al. (2007) and Jaibi et al. (2020) in the setting of vegetation
patterns. Like in the present model, and unlike in Van Heijster and Sandstede (2011,
2014), the ‘slow flows’ (for the spatial dynamics) considered in these papers are
nonlinear—which is typically the case for ecosystem models (Doelman 2022).

The system (1.1) admits (up to) three homogeneous steady states: the desert state
(U, V) = (Ug, Vo) := (a,0) and if % > 2(b + /1 + b?), there are two additional
vegetated steady states (U, V) = (Uj 2, V1,2) where

2
< L) 41+ 4p
U,,Fm(a L» ) a3 -40+80) .

m  1—bViy 2(1+ 2p)

which coincide at the critical value % =20+ V1+b2).

We search for stationary solutions, which are radially symmetric, so that
w,vVyx,y,t) = (u,v)(r),r € [0,00), and A = 8,2 + =18, under planar radial
symmetry, where r = (x> + y%)!/2. Such solutions satisfy the ordinary differential

equation

O:urr+—ur+a—u—uv2
r

1
0=3s° (u,,+—u,> — mv + uv*(1 — bv), (1.3)
r
which can be rewritten as a first-order non-autonomous system
Ur =p
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Fig.1 Shown is a schematic of a radial profile for a vegetation spot solution (left) and gap solution (right)
of (1.3) as in Theorems 1.2 and 1.3, respectively. The profile contains a sharp transition from the vegetated
state to the bare soil state in an interval of width O(8) of the critical radius r; = O(1)

Pr =—£—a+u+uv2
,

dv, =¢q
8q 2

8qr = —— + mv —uv°(1 — bv), (1.4)
r

This system admits up to three equilibria given by the steady states above: the desert
state Py = (a, 0, 0, 0), and if % > 2(b++/1 + b?), there are two additional equilibria
P12 := (U12,0, Vi 2, 0) corresponding to uniform vegetation.

Spots, gaps, and other localized radially symmetric solutions are constructed as
orbits of (1.4) which are asymptotic as r — oo to one of these steady states, and
which are bounded as » — 0. In order to find solutions of this system, we construct
candidate solution orbits in different subsets of the spatial domain r € [0, co) and
glue these together to build a solution on the entire domain. In particular, we construct
the solution over three primary regions: the core r € [0, r¢], where ro. = O(§), the
far field r € [ry, 00), where r; = O(1), and the transition region(s) in between; see
Fig. 1.

Our main result concerning the existence of spots is the following.

Theorem 1.2 (Existence of spots) Fix a, m, b > 0 satisfying

b oyt oa %2 (1.5)
max § — - < — << — —. .
2T S m S 2 T

Suppose

e u —2mb + Vu? — 4umb
U, 2b2

1 2
du > E(a — Uy)~, (1.6)
or equivalently,
3 U, b b
5 —log)+ = (a—Uy) +log| —(a—U2) ) ——(a—U>)
2 2m m m
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262 + 1

5 @- Us)? (1.7)

>

where U is defined as in (1.2). Then, there exists V.(a, b, m) > Qandri(a, b, m) > 0
such that for all sufficiently small § > 0, (1.1) admits a stationary, bounded, radially
symmetric vegetation spot solution (U, V) = (usp, vsp)(r; a, b, m, 8) satisfying

lim vep(r; a, b,m, 8) = Ve(a, b,m) + O(5), lim vy (r;a,b,m,8) =0

r—0 r—00
with a single interface between the vegetated and desert states occurring at the radius
r=ri(a, b,m)+ O().
Similarly, we have the following theorem concerning the existence of gaps.
Theorem 1.3 (Existence of gaps) Fix a, m, b > 0 satisfying (1.5). Suppose

e u—2mb+Vu2—4umbd
v, 202

1 2
u < z(a —U») (1.8)
or equivalently,

3 U b b
5 —log(2) + 5= (a — Uz) + log (— (a — Uz)) ——(a—-Uy)
2 2m m m

207 + 1 5
< W ((l — Uz) (19)
where U is defined as in (1.2). Then, there exists ry(a, b, m) > 0 and v > 0 such that
for all sufficiently small § > 0, (1.1) admits a stationary, bounded, radially symmetric
vegetation gap solution (U, V) = (ug, vg)(r; a, b, m, §) satisfying

lim vy(r; @, b,m, 8) = O(e™""),  lim vy(r; @, b,m,8) = V2 +0(),
F— r—

where Vs is defined as in (1.2), with a single interface between the vegetated and desert
states occurring at the radius r = ry(a, b, m) + O(3).

See Fig. 2 for a visualization of the condition (1.5) necessary for the existence of
spots/gaps in Theorems 1.2—1.3.

Remark 1.4 The methods used in this paper to construct radially symmetric spot and
gap solutions can be applied in a similar manner for the construction of solutions such
as rings, targets, or other radially symmetric profiles, with different, perhaps more
complex, conditions on parameters which ensure their existence. We provide some
numerical evidence for the existence of such solutions in Sect. 5 and describe how
one might go about constructing these orbits, but do not provide the lengthy technical
details here.
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Fig.2 Plotted are the curves 1 = % (black), & = 4b + % (dotted red), and & = % + % (dashed blue).
The shaded region corresponds to the region in parameter space where the condition (1.5) is satisfied (Color
figure online)

The spot and gap solutions of Theorems 1.2—1.3 will be constructed as heteroclinic
orbits for » € [0, co0) using geometric singular perturbation theory. The main idea,
following Van Heijster and Sandstede (2011), is to find the orbits as intersections of a
core manifold of solutions which remain bounded at » — 0, and a far-field manifold
of solutions which decay to one of the states Py or P, as r — oo. These manifolds
are each three-dimensional, and, unlike in Van Heijster and Sandstede (2011), it is not
possible to obtain an explicit description of these manifolds due to the fact that the flow
on (one of) the slow manifolds of (1.4) is nonlinear. This introduces complications
which are handled through the use of an intermediate scaling and careful qualitative
analysis of the nonlinear non-autonomous reduced flow on this slow manifold. The
non-autonomous nature of Eq. (1.4) makes this a somewhat challenging construction.
To demonstrate how these orbits are constructed using the slow/fast geometry of (1.4),
it is helpful to first consider the simpler construction of traveling or stationary planar
frontsolutions of (1.1), which manifest as heteroclinic orbits in an appropriate traveling
equation with a similar geometry to that of (1.4).

It is shown in companion paper (Carter et al. 2022) that the invasion fronts in
(1.1)—that can be seen as spots or gaps with radius r; — oo—are unstable with
respect to a sideband/finger instability. Therefore, we next consider the stability of
spots. Without going into the details of a fully rigorous analysis, we first consider the
spectral stability problem for large spots. By a careful asymptotic analysis we recover
the sideband instability mechanism and conclude that large spots are unstable and
will typically form finger-like patterns—Ilike the planar invasion fronts. By similarity,
we conclude that the same is true for large gaps. These observations are confirmed
by direct simulations: in Fig. 9 in Sect. 5 we show snapshots of a spot and a gap
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that both evolve towards labyrinthine patterns after undergoing such an instability.
Moreover, we subsequently conclude by considering perturbations within a range
of intermediate wave numbers that spots (and gaps) with O(1) radius r; must also
be unstable: only sufficiently small spots and gaps may possibly be stable—see again
Sect. 5 and especially Fig. 10 for a brief numerical study. These small gaps correspond
to fairy circles (Getzin et al. 2016) and also appear as stable vegetation patterns in
numerical simulations of the dryland ecosystem model of Zelnik et al. (2015)—a
model that can be seen as a slightly more extended version of (1.1) (Carter et al. 2022)
(and that has been deduced from more extended models to study fairy circles).

The set-up of the paper is as follows. In Sect. 2, we consider the construction of
traveling fronts in (1.1), while in Sect. 3, we treat the radially symmetric case and
provide the proofs of Theorems 1.2—1.3. The spectral stability of the radial spot and
gap solutions is considered in Sect. 4 using formal asymptotic methods, and we include
numerical simulations and a brief discussion in Sect. 5.

2 Stationary and Traveling Planar Fronts

To motivate the approach for the existence analysis of radially symmetric solutions
of (1.1), we first consider the (simpler) case of constructing stationary and traveling
front solutions. We pose the traveling wave ansatz (u, v)(x, y, t) = (u, v)(§), where
& = x —ct is atraveling wave coordinate; here, ¢ = 0 corresponds to stationary front
solutions, while ¢ # 0 corresponds to solutions which propagate with wave speed §c.

Using a geometric singular perturbation approach, we can construct bistable front
solutions as perturbations from slow/fast heteroclinic orbits between the desert state
(U, V) = (a, 0) and the vegetated state (U, V) = (U, V») in the traveling wave ODE

0=u55+6cu5+a—u—uv2

0 = 8%ves + Scve — mv + uv?(1 — bv). 2.1)
We note that in the case ¢ = 0, the system (2.1) corresponds to (1.3) in the far field
limit » — oo. Thus, it is natural to first consider the geometry of (2.1), as solutions
with radial symmetry are constructed by matching a solution which is bounded near

the core r = 0, with a stationary solution which (approximately) satisfies (2.1) in the
far field limit » — oo.

2.1 Slow/Fast Analysis

We can write (2.1) as a first-order system

ug = p
De =—8cp—a—i—u+uv2

Svg =¢q

8qe = —cq +mv — uv2(1 — bv), 2.2)
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which we refer to as the slow system, and upon rescaling & = §¢, we obtain the
equivalent fast system

u; = 8[7

D =8(—8cp—a+u+uv2>

U;- =dq

q; = —cq +mv — uv2(1 — bv), 2.3)

Setting § = 0 in (2.3) yields the layer problem

UC =dq
qcr = —cq +mv — uv2(1 — bv). 2.4

This system admits up to three equilibria depending on u, given by Mo(u) := (0, 0),
and if u > 4bm, M1 (u) := (v+(u), 0), where

4b
1+ /1 m

5 (2.5)

vy (u) =

When u = 4bm, the two equilibria M (4bm) = M_(4bm) coincide. Computing the
linearization

0 1
Jayer = (m — 2uv + 3buv? —c) ’ (2.6)

a short computation shows that for m, b > 0 the fixed points My and My (1), u > 4bm
are always of saddle type, while M_(u) is focus or node for ¢ # 0, and a center for
¢ = 0. The equilibrium My (4bm) = M_(4bm) is non-hyperbolic. Taken together,
the set of equilibria of the layer Eq. (2.4) corresponds to the critical manifold

Mo = {(u,p,v,q) 6R4:q:0,mv:uv2(1—bv)}, 2.7)

obtained by setting § = 0 in (2.2). We therefore decompose My into three branches
Mo = MU Mg UF UM, where

M8:{v:q =0}, My={g=0,v=v_(u),u > 4bm},
Ma— = {q = O, V= U+(M), u > 4bm}, (28)

and the latter two manifolds /\/l(j)E meet along the non-hyperbolic fold curve F :=
{g =0,v =1/2b,u = 4bm}. The manifolds M8 and ./\/15r are normally hyperbolic
and of saddle-type.
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Fig.3 A singular heteroclinic U
orbit between P, and Py is
formed by concatenating slow aep v (u) v (
. L. . — )+ u)
orbits on the critical manifolds
2/18 atm:l ./\1/18' with SlfaSt((;ﬂii)t M8 My MO+
of the layer problem (2.
vd yer pi \/\ Vs N
9mb
U = —— <<
2 1
Py
4mb :
v
1
2b

The reduced flow on each branch of the critical manifold is obtained by setting
8 = 01in (2.2) and is given by

ug =p
pe =—a+u-+ uv*(u)2, 2.9)

where v, (1) = 0, v+ (1) on the branches /\/18 and M(j)t , respectively.

2.2 Singular Orbits

The desert equilibrium state Py = (a, 0, 0, 0) lies on the branch MY, while the
vegetated state Py = (Uy, 0, V1, 0) always lies on the branch M. The state P, =
(U2, 0, V3, 0) canlie on either M, or M(J{ ; the latter occurs provided a > 4mb+m /b.
In this case, a linear stability analysis shows that both (Uy, V) and (U, V») are
temporally stable as homogeneous equilibria of the PDE (1.1) (Carter et al. 2022), and
we can proceed to construct singular bistable fronts connecting Py and P, (or vice
versa); see Fig. 3.

To do this, we form a singular slow/fast/slow heteroclinic orbit between Py, Ps,
by concatenating a slow orbit on Mg with another slow orbit on /\/l(J)r via a fast
heteroclinic orbit in the layer problem. Within the layer problem (2.4), for any value
of (u, p) satisfying u > 4mb, by adjusting the speed c appropriately it is possible
to construct fast heteroclinic orbits ¢gy () = (vdv, gdv)(¢) from ./\/18 to ./\/l(J)r and
Hva(C) = (vyd, gvd)(¢) from MaL to /\/lg, corresponding to fast desert-to-vegetation
and vegetation-to-desert fronts, respectively. These orbits can be computed explicitly
as follows. Considering (2.4), we search for solutions satisfying the ansatzg = Cv(v—
vy (u)) for some value of C # 0. Substituting into (2.4), we obtain the algebraic
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equation
C?(v — vp (W) + C?v = —cC + ub(v — v_(u)), (2.10)

which can be solved to find C = £./bu/2 and wave speeds

bu
c=cuu) =, > (v () —2v_(u))
bu
c=cay(u) = —/ > (v (u) —2v_(w)) .

We then obtain the explicit profiles (up to translation)

b
m@:m?<hm%&%gi»,m@=%@ @.11)
Vay (£) 1= ”*2(”) (1 + tanh (%c)) aa(@) = V@), (2.12)

Examining the reduced flow on M)

Ug = p
pe =—a+u, (2.13)

we see that within MY, the equilibrium (a, 0), corresponding to Py, is a saddle-type
equilibrium with (un)stable manifolds WYs(a, 0) given by the lines p = £(u—a).On
/\/lar , the equilibrium (U», 0), corresponding to P, is also saddle-type equilibrium,
with (un)stable manifolds WY5(U,, 0) given by the level set E(u, p) = 0 of the
conserved quantity

E(u, p) = —%pz +/U i —a+a(vy()da, (2.14)
2

noting that £(U,, 0) = 0.

To construct a singular heteroclinic orbit from say P> to Py, we follow the slow
unstable manifold W"(U;, 0) of P, then a fast jump ¢yq, then the slow stable manifold
W5(a, 0), given by the line p = —(u —a). Since the slow variables (u, p) are constant
across the fast jump, this is only possible if there is an intersection of W" (U, 0) and
W5 (a, 0) when W"(U,, 0) is projected onto M?O, which occurs if there exists u = u,
such that E (uy, a — u,) = 0, or equivalently

1 2 f"* - ~ _\\2
—(a—uy)” = u—a+u(vy(u))-du, (2.15)
2 U,
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For an open region in (a, b, m) parameter space, there is a critical value Uy < u, < a,
depending on a, b, m, which satisfies this criterion, and therefore the speed c, is
determined so that the fast layer jump ¢4 exists for (u, p) = (u, a —u,). We denote
by (4,00, P+,00) (&) the solution of the reduced flow on ./\/la' corresponding to the
unstable manifold W*"(Us, 0), which satisfies (44 oo, P+.00)(0) = (uy, a — uy), and
we denote by (40,00, P0,00) (§) the solution of the reduced flow on Mg corresponding
to the stable manifold W¥(a, 0), which satisfies (110,00, 0.00)(0) = (Ux, @ — uy).

Thus, the singular front solution follows the solution (44 oo, P+.00)(§) of the
reduced flow on ME)", followed by the fast front ¢,q(¢), at finally the solution
(40,00, P0.00)(€) of the reduced flow on ./\/18. For 0 < § < 1, these singular fronts can
be shown to perturb to front solutions of (2.1) using standard methods of geometric
singular perturbation theory, using the wave speed c as a free bifurcation parameter.
The construction of fronts from Py to P> follows similarly.

2.3 Stationary Fronts

Stationary fronts correspond to the case ¢ = 0. We describe the geometry of the
singular orbit(s) in this case, as it will be useful in the forthcoming construction of
spot and gap solutions. Proceeding as in Sect. 2.2, we find that (2.4) admits a pair of
heteroclinic orbits ¢av(£) = (vav, gav)(§) and ¢va (&) = (vvd, gva)(§) when

U=us.=—, (2.16)

where

1
vay(0) 1= — <1 + tanh (@C)) . gav(l) = v, (0)

3b
1
v (§) = T <1 — tanh (JT% )) o qa(§) = vyg(©). (2.17)

where again ¢qy(¢) represents the desert-to-vegetation state transition front which
jumps from /\/18 and Mar , while ¢4 (&) represents the vegetation-to-desert state tran-
sition front which jumps from /\/lar and MY; see Figs. 4 and 5. Note that we assume
a > ug, so that the equilibrium Py lies ‘above’ the critical fronts ¢qy, ¢vd. A lengthy
but straightforward computation shows that U, < us provided - < % + %, so that
the equilibrium P; lies ‘below’ the fronts ¢gy, Pyq.

While this pair of heteroclinic orbits exists for any a, b, m > 0, in order to construct
a singular slow/fast heteroclinic orbit, we still require an intersection of W"(U,, 0) and
W5 (a, 0) in the reduced flow when W"(U,, 0) is projected onto M(O). Since the jump
height u = us is fixed by the condition ¢ = 0, this only occurs if E(uf, a — ur) = 0,
or equivalently

1 ut
—(a — uf)* = f i —a+ i(ve (i) di, (2.18)
2 U,
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Fig.4 The stationary fronts ¢yq
and ¢gy of (2.4)

\

0
My

Py

p

v

Fig. 5 Shown are singular orbits representing stationary fronts of (2.1) obtained by concatenating slow
orbits of (2.9) on the critical manifolds Mg and Mg with fast orbits ¢yq, ¢qy of the layer problem (2.4)
forc =0,u = ur

which gives an implicit condition on the parameters a, b, m for which a singular sta-
tionary front exists. We will show in Sect. 3 that this condition describes the boundary
(in parameter space) which separates the existence region of radial spots versus gaps,
which will be constructed as slow/fast fronts in the non-autonomous system (1.4). The
radius of the spot/gap will serve as a free parameter which allows for the construction
of a solution for parameters which satisfy (1.6) in the case of spots, or (1.8) in the case
of gaps.

2.4 Sideband (in)Stability of Planar Fronts

Given a front solution constructed as in Sect. 2.2, we briefly examine the stability of
the front as a planar interface, which will help motivate our formal stability results
in the case of radial spot and gap solutions in Sect. 4. We assume that a heteroclinic
vegetation-to-desert front solution (up, vh)(&; &) exists which connects the state P>
to Py (the case of a desert-to-vegetation front is similar), and has been constructed

@ Springer



Journal of Nonlinear Science (2023) 33:107 Page 130of 51 107

as a perturbation from one of the singular slow/fast fronts in Sect. 2.2, with speed
¢ = ch(8) = cva(us) + O(0).

We linearize (1.1) about this front solution in a comoving frame using an ansatz
(U, V) = (un, vp)(&; 8) + M8 (u, v) (&) for £ € R, which results in the eigenvalue
problem

hat = uge + Senug — u — (14 0(©)?) u = 2un@vn(©)v
v = 82vge + Scnvg — 82070 — mv + v (8)? (1 — bun(§)) u
+ un(®) (20n(6) = 3bun(©)?) v. (2.19)

Due to translation invariance, this eigenvalue problem has a solution when A = £ = 0,
with eigenfunction given by the derivative (uy, vj)(§; 8). For the purposes of this
discussion, we focus only on this critical, marginal eigenvalue, and we assume that
all other spectrum of the front for £ = 0 (that is, the spectrum corresponding to 1D
longitudinal perturbations in the direction of propagation) is bounded away from the
imaginary axis in the left half plane.

Focusing on this critical eigenvalue, we consider its continuation for small |¢]: as
the eigenvalue problem only depends on £ through terms of O(£?), we anticipate that
this critical translation eigenvalue expands as

Ae(£) = Aenl? + O@Y). (2.20)

This eigenvalue describes the stability of the front to long wavelength perturbations
transverse to the front, and the stability is thus determined by the sign of the coefficient
Ac2. In a companion paper (Carter et al. 2022), we have developed a procedure to
compute this coefficient in a general class of two-component singularly perturbed
reaction diffusion systems, which includes (1.1) as an example, and we briefly describe
the results here.

We rewrite the stability problem (2.19) in the form

L <z> =1 (3) + 02 ((Sé‘v) 2.21)

Lo (a&_ +8cnde — (14 vn()?) —2un (&) vp (§) )
' vh(E) (1 —bop(§)) 820 + Scnde + un() (2vn(§) — 3bun(§)?) )
(2.22)

where

We now expand

u . _ 7 2 (U2,c 4
(v) 0= (v:) & +e (vl) ©+0(¢*).
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Substituting into (2.21), at leading order we have the eigenvalue problem
L("2¢) =y () 4 (M (2.23)
ve) = e o) T2 ) :
This leads to the Fredholm solvability condition
/ / A
Uy Up Uy )\ —
) () (D)o e

where < U,V >= [ U(#)V(£)dE, and (u{}, v{)(&; §) denotes the bounded solu-
tion to the adjoint equation

AUy _
L <v> =0, (2.25)
where
LA <3ss — Sendz — (1+vh(§)?) ()2 (1 — bon(£)) )
' —2up (§) vy (§) §20er — Scnde + un () (2un(§) — 3bvn(6)?) )

(2.26)

From this we obtain an expression for A3 ¢

(%) C2)

Ao = — 8% )\t _ f (uhuh vhvh)dE 027)

SR
Uh Yh

In Carter et al. (2022), it is shown that to leading order A3 . is given by

)\2,0 =
foo Uvd({)z(l - vvd({))ec\'dgv\/,d(f)d; 0 , 2 *© / 2
) d d )
UV (1) f el (£)2dg (/700 WrooB)dE F /(; “000(8) S) e
o (2.28)

so that the traveling planar fronts are always unstable to long wavelength transverse
perturbations. This has implications for the (in)stability of spot/gap solutions, as we
will show in Sect. 4 using formal asymptotic methods that the spectrum for radial
spots/gaps of sufficiently large radius is approximated by that of a nearby stationary
front solution.
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3 Existence of Radially Symmetric Spots and Gaps

With the construction of the front solutions in Sect. 2 in mind, we now focus on
the construction of a vegetation spot solution, consisting of a single vegetation patch
localized near r = 0, with a single interface at some radius r = r; (to be specified),
at which the profile transitions from the vegetated state in the core to the desert state
in the far field. The case of gaps is similar, and we will briefly outline the differences
in Sect. 3.4.

Throughout the analysis, we treat 0 < § < 1 as a singular perturbation parameter.
At times, it will also be convenient to consider (1.4), which we refer to as the ‘slow’
system, with respect to the rescaled radial coordinate s = r/§, which results in the
system

ug =0p

psz—g—S(a—u—uvz)

Us =4

qs =—%+mv—uv2(1 — bv), 3.1

We refer to (3.1) as the ‘fast’ system.

The spot solution will be constructed as a perturbation from the singular limit
structure associated with (3.1), and consists of three pieces: The core vegetated and
far-field desert states are given as slow orbits which lie near equilibria on saddle-
type slow manifolds MY, M; within (3.1) (to be defined below), while the interface
between these states is given by a fast layer orbit between these slow manifolds which
is inserted at a particular radius r = r;. The construction has very similar geometry as
in the construction of traveling fronts in Sect. 2, though with some complications due to
the non-autonomous nature of the equation and the singularity at » = 0. Additionally,
since the spot interface is stationary, the speed is not available as a free parameter;
however, the jump value » = r;y can be thought of as a free parameter which is chosen in
such a way in order to ensure that the stable manifold of the far-field desert equilibrium
and the unstable manifold associated with the core vegetated states precisely intersect
transversely across the fast jump.

3.1 Far-Field Region and Fast Transition

In the far field, we consider » € [r, oo) for arbitrary 7 > 0 fixed independently of
8 > 0. Here, we define a new variable k := 1/r and similarly consider the region
k € [0, k] where k := 1/r for the corresponding (autonomous) system

Ur =p
prz—kp—a+u+uv2
vy =¢q
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8qr = —8kq +mv — uvZ(1 — bv)
ky = —k?, (3.2)

which is a slow—fast system with two fast variables and three slow variables.

3.1.1 Slow Manifolds Away from the Core

Setting § = 0, we see that (3.2) admits a three dimensional critical manifold defined
by

Mo = |(u, Pov. g k) €RY X [0,k]: g =0, mv = uv(1 — bv)] . (33)

Considering (3.2) on the fast scale s = r/§, we have the equivalent system

us =46p

ps =8(—kp —a+u+ uv?)

Vs =¢q

qs = —6kq + mv — uv>(1 — bv)

ks = —8k2, (3.4)

where k = (85)~!. Setting § = 0 in this system yields the layer problem

Vs = (¢

gs = mv — uv*(1 — bv), (3.5)

in which the slow variables (u, p, k) act as parameters. As in this case of the layer
problem (2.4) associated with the traveling fronts in Sect. 2, this system admits up
to three equilibria depending on u, given by My(u) := (0,0), and if u > 4bm,
My (u) := (v+(u), 0), where

14 ./1 = 4m
u
=— 3.6
v (u) b (3.6)
When u = 4bm, the two equilibria M (4bm) = M_(4bm) coincide. Computing the
linearization

0 1
ayer = (m — 2uv + 3buv? 0) ’ .7

we find that this corresponds to (2.6) in the stationary case ¢ = 0, so that form, b > 0,
the fixed points Mo and M (u), u > 4bm are always of saddle type, while M_(u) is a
center for u > 4bm. The equilibrium M, (4bm) = M_(4bm) is non-hyperbolic with
a double-zero eigenvalue. Taken together, the set of equilibria of the layer Eq. (3.5)
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corresponds to the critical manifold Mg = MO UM, UFU /\/l+ as in (2.8), where
/\/10 meet along the non- hyperbohc fold curve F :={g = 0,v = 1/2b, u = 4bm}.
The manifolds ./\/lo and ./\/l are normally hyperbolic, while M is not. We note
that compared With the analysis in Sect. 2, these manifolds are actually subsets of a
5-dimensional ambient space due to the additional slow variable k, but we slightly
abuse notation and continue to refer to these as M, for * = 0, &, as they are defined
by the same algebraic conditions.

Further, any compact portion of /\/18 or /\/l;)r admits local (un)stable manifolds
WHH(MG), for x = 0, +, comprised of the union of the local (un)stable manifolds
WS (M, (u)) of the equilibria M, (u), for * = 0, +.

To obtain the reduced dynamics on the critical manifolds, we consider (3.2) for
8 = 0, given by

Ur =p
pr=—kp —a+u+uv?
ky = —k2, (3.8)

where we substitute v = 0 (in the case of /\/l8) or v = v (u) (in the case of Mﬁ) into
the p-equation.

By standard results of geometric singular perturbation theory, (restricting to the
region u > 4bm in the case of /\/l+) for all sufficiently small 6 > 0 any compact
portions of the normally hyperbolic invariant manifolds MO and J\/l perturb to three-
dimensional locally invariant manifolds MO and M, Wthh are C L.O(8)-close to
their singular counterparts. The slow flow on MO and /\/l is an O(§)-perturbation of
the reduced flow (3.8). Similarly, the local (un)stable manifolds WS*“(MS), * =0, +
perturb to four-dimensional locally invariant manifolds WS’“(M§), for x = 0, +
which are again O(§)-close to their singular counterparts, and consist of the fast
(un)stable fibers associated with orbits which lie on the slow manifolds /\/lg and M;‘

3.1.2 Fast Transition Layers

We aim to construct fast transition layers consisting of fast jumps between the critical
manifolds /\/18 and /\/lg . We return to the fast system (3.4) and the associated layer
problem (3.5) for values of k € [0, k]. We note that the layer problem (3.5) corresponds
to (2.4) in the stationary case ¢ = 0. We recall from Sect. 2 that for values of u > 4mb,
this problem has three equilibria, Mo (u#) and M4 (1), and at the critical value u = uy :
%m , the layer problem admits a heteroclinic loop between Mg (u¢) and M (uy), while
a homochnic orbit to either Moy (u) or M4 (u) exists for values of u > ur or u < uy,
respectively. As in Sect. 2.3, we assume that @ > uy or equivalently, - > %, S0
that the equilibrium Py lies above the heteroclinic loop in the layer problem, and we
further assume 4b + % < % < % + b’ so that the equilibrium P, lies on /\/l and
below the heteroclinic loop.

The two heteroclinic orbits comprising the heteroclinic loop provide an opportunity
for orbits to jump between the manifolds ./\/18 and M, and effectively transition

between the desert/vegetated states. We recall from Sect. 2.3 that these two orbits
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$av(s) = (vav, gav)(s) and ¢ya(s) = (vvd, gva)(s) are given explicitly as

Vay () := 3lb <1 + tanh (?s)) (3.9)
Vyd(s) == % <1 — tanh (?s)) , (3.10)
and
qav(s) = 3bﬁvdv(s) (vdv(S) - 23—b> 3.11)
gva(s) = _3b\/n_1vvd(s) (vvd(S) - %) ; (3.12)

see Fig. 4. As in Sect. 2.3, ¢4y (s) represents the desert-to-vegetation state transition
front which jumps from M8 and M, while ¢q(s) represents the vegetation-to-desert
state transition front which jumps from /\/la' and /\/18. These singular orbits serve as
candidate interfaces between the desert and vegetated states.

Taking the union over values of the slow variables (p, r), or equivalently values of
(p, k), the orbits ¢4y form a two-parameter family of orbits lying in the intersection of
the four-dimensional manifolds WW" (Mg) and WS (./\/lg ), and likewise the orbits ¢yq
form a two-parameter family of intersections between W" (/\/lar ) and W* (Mg). In
order to determine that these intersections are non-degenerate and persist in a suitable
sense for 6 > 0, we show transversality of the intersections in the remaining slow
variable u.

Lemma 3.1 Consider (3.4) for § = 0 and b,m > 0, and fix p, k > 0. The following
hold:

(1) The manifolds YW" (/\/lg) and VVS(/\/I(J)r ) intersect transversely along the three-
dimensional manifold

Ho= |J  da (3.13)

|pl<p.ke[0,k]

(ii) The manifolds Wu(./\/lg_ ) and WS(MS) intersect transversely along the three-
dimensional manifold

Ha= |J ¢ (3.14)

|pl<p.kel0,k]

Proof We focus on the statement (i), as the proof of (ii) is nearly identical. To prove
transversality, it remains to show that the intersection breaks transversely when varying
the remaining slow variable u near u = us = %Tm. We accomplish this by computing
the splitting of the manifolds YW" (Mg) and WS(MJ ) to leading order in |u — u¢| via
a Melnikov-type computation.
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Given (p, k) € [—p, p] x [0, k], the front dav(s) = (vay, qdv)(s) which lies in the
intersection W“(./\/lg) N WS(M(J{) is a solution of the fast layer Eq. (3.5) at u = uj.
The adjoint equation associated with the linearization of (3.5) about ¢qy at u = us is

given by
v\ _ (0 —m+ug (2uay(s) — 3bvay(s)?) (v
()= ; )G e

and admits a unique bounded solution (up to multiplication by a constant) Y4y (s) :=
(—qav(s), vay(s)). To leading order, the splitting distance of the manifolds YW" (Mg) N
WS (/\/laL ) is determined to leading order in |u — u¢| by the Melnikov integral

Mg, 1=f Dy F(¢av(s); ur) - Yav(s)ds, (3.16)

where F (v, g; u) denotes the right-hand-side of (3.5). We compute

MY = /OO —0ay ()3 (1 = bugy(s))ds < 0, (3.17)

—00

from which we determine that the intersection W“(/\/lg) N )/VS(/\/I(J)r ) is transverse in
varying the slow variable u ~ uy.

The proof of (ii) proceeds similarly and transversality is then determined by the
Melnikov coefficient

o / DuF(va(s): ur) - Yra(s)ds, (3.18)

where Yyq(s) 1= (—gva(s), vva(s)). In that case, we similarly find that

o= /OO —0ya ()3 (1 = buya(s))ds < 0. (3.19)

—00

3.1.3 Far-field stable manifold WS(B?')

We now construct the set of orbits which remain bounded in the far-field, and in par-
ticular those which converge to the desert state v = 0; these orbits will be asymptotic
to the manifold /\/lg.

We first examine the reduced flow (3.8) on M, given by

Ur =p
pr=—kp—a+u
k = —k2. (3.20)
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Fig.6 Shown are the dynamics u
of (3.20) for § = 0 on the
far-field manifold M. The
manifold B(f)ar is the set of all
solutions which converge to the
equilibrium pfar = (a, 0, 0) and
remain bounded in the far field
ask — 0

This system admits a single equilibrium pfar (a, 0, 0) corresponding to the desert
steady state of (1.1) in the far-field limit r — oo. This fixed point is non-hyperbolic
when considered as a fixed point of (3.20), but is of saddle-type when restricted to
the invariant plane k = 0. Within Mg, this fixed point admits a two-dimensional
center-stable manifold B(f)‘“ representing the set of solutions (u, p)(r) of (3.20) which
remain bounded as r — oo.

To obtain a more explicit description of this set, we instead express (3.20) as the
linear equation

u
Upp +— —u+a=0, (3.21)

r
the solutions of which are given in terms of the modified Bessel functions Iy, Ko of

the first and second kind. In particular, the unique solution of (3.21) which is bounded
as r — oo and satisfies u(r) = u for given & € R and 7 > 0 is given by

ul (ry i, 7) = a iy Y (3.22)

Ko(r)

For any 7 > 0, we can therefore express BS‘“ as

far __ 2 (U _ a+K(,)K0(1/k) _
e = [ e 00 (5) = (L ERO) o

Ko(r)
_ 2 - (u) _ (a+cKo(1/k)
= {(u,p,k) e R° x [0,k]: <p> = ( —eKy(1/k) ,ceRy, (3.23)
where K(z) = —K|,(z), and we note that since Ko(z), K1(z) — 0 exponentially as

|z] — o0, the quantities Ko(1/k), K1(1/k) are well defined (and converge to zero
exponentially) as k — 0.
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Within the stable manifold WS(M ) of MO, we can construct the stable manifold
of B(f;‘r as the set WS(Bf‘”) of stable fibers over trajectories in Bf‘“ This set comprises
the singular limit of all solutions which are bounded in the far—ﬁeld The set of orbits
B2 perturbs within MO for sufficiently small § > 0 to a two-dimensional manifold
B consisting of 0rb1ts within MO which are bounded as r — oo and in partlcular
converge to the equilibrium pfalr = (a, 0, 0). Likewise, as a subset of W*(M?), the
manifold Wg(Bfar) perturbs to a three-dimensional invariant manifold W5 (B ?‘”) -
W*(MO) consisting of stable fibers lying over trajectories within Bm - MO

The manifold W* (Bfﬁr ) thus describes the set of solutions Wthh remain bounded
as r — oo and in particular those converging to the homogeneous equilibrium P
of (3.1). In light of the results of Lemma 3.1 in Sect. 3.1.2, the perturbed manifolds
wH (/\/l;) N WS(Mg) intersect transversely in a three-dimensional manifold which
lies within O(8) of the subspace u = u¢. Viewed as a three-dimensional submanifold
of W‘(MO) the manifold VV”(Bfar ) is an O(§)-perturbation of the singular manifold
ws (Bfar) consisting of stable fibers over trajectories within Bfar C MO defined as
in (3.23). The manifold WS(Bfar) therefore transversely 1ntersects W“(/\/l+) in a
two-dimensional manifold Hfar C Hyq consisting of the orbits

HE = Hyg N { S k(1K) k € [0, k]} (3.24)

K. (l/k)

within the subspace {u = u¢}. This transverse intersection persists for all sufficiently
small § > 0, with W$ (Bgar) transversely intersecting W (./\/l;’) in a two-dimensional
manifold Hgar which lies within O(8) of H", and likewise O(8)-close to the subspace
{u = us}.

3.2 The Core Region

In this section, we construct a three-dimensional manifold of orbits which remain
bounded and converge to a set of uniformly vegetated states as r — O.

3.2.1 The Center-Unstable Core Manifold W ©)

For the core region, we consider r € [0, r¢], where r. = ds¢, orequivalently s € [0, s¢],
for some s, > 0O fixed independently of § > 0. We use a blow-up rescaling z = log s
to obtain the dynamics in the core region as

U, = 8sp

p;=—p—23ds(a—u —uv?)

v, = sq

q;=—q+s (mv —uv*(1 — bv))

S; =S. (3.25)
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Note that this system admits a two-dimensional manifold of equilibria at s = 0 defined
by £ ={p =g = s =0}. When § = 0, (3.25) becomes

u, =0

pz=—pP

v, =8¢

q: =—q+s (mv —uv*(1 — bv))

S; =, (3.26)

and near values of (u, v) satisfying mv — uv3(1 — bv) = 0, solutions of (3.26) which
are bounded as z — —oo can be expanded in terms of modified Bessel functions as
follows. For given u > 4bm, there are three solutions v = v, (u) of mv—uv?(1—bv) =
0, namely v, (u) = 0 or v,(#) = v+(u). Fixing one of these choices, we consider
v &~ v, (u), so that v = v, (u) + v, where |v| < 1 is assumed small.

In the case of spots, we are interested in solutions near the vegetated state in the
core; hence, we take v, (1) = vy (u). Substituting into (3.26), we obtain

u, =0

Pz=—P

v, = sq

4. =—q+s (m‘; + 0(52))

5=, (3.27)
where « := ubvy(u)(v4+(u) — v_(u)). Our aim is to construct solutions of (3.25)

which remain bounded as z — —oo (s — 0). In view of (3.26), when § = 0, any
such solution must satisfy p = 0, while the equation for (v, ¢) can be re-expressed in
terms of the fast variable s as

bes + 2 — ki 4+ O@) =0, (3.28)
S

which, at the linear level, is a zero-order Bessel-type equation whose solutions can be
expressed as linear combinations of the modified Bessel functions Io( /ks), Ko(/ks)
of the first and second kind. The function /o (¢) is bounded at { = 0, while K diverges
logarithmically.

Therefore, given ug > 4mb and s; > 0, we linearize (3.25) about the solution
(u, p,v,q,s) = (uo, 0, vy(up), 0, ), integrate, and solve the resulting fixed-point
equation in terms of the Bessel functions y(-), Ko(-). Defining the subset C := {p =
q=s5s=0,v=uvi(u),u > 4bm} C &, this allows us to construct a local three-
dimensional center-unstable manifold W5 (C) of solutions which are bounded as s —
0 (z = —o00), and in particular converge to C as s — 0. This manifold admits the
expansion

@ Springer



Journal of Nonlinear Science (2023) 33:107 Page23of 51 107

u ug + O(5)
cu o s |p O(5)
Ws (€)= . p.v.q.5) eR7: 1Y) vi (o) + clo (Vis) + OB + ¢ |
q el (Vies) + O + ¢?)
ug > 4bm,0 < s < s, |c| < co (3.29)

for sufficiently small |co| and § < 1. Here [} = 16 is the first-order modified Bessel
function of the first kind. The manifold W§"(C) is parameterized by ug and c, both of
which will be selected by intersecting with the three-dimensional far-field manifold
WS(Bg‘“) to obtain a spot solution in the full five-dimensional phase space.

3.2.2 Core Transition Region

In the previous subsection, we constructed the core center-unstable manifold W5 (C)
of solutions which remain bounded as s — 0. Given s, > 0, we obtained expansions
for the manifold Wg” (C) valid for 0 < s < s, provided 4§ is taken sufficiently small.
We now aim to track this manifold into the region r = s = O(1).

Hence, we consider r € [§s., ro] where s is as above, fixed large independently of
38, and ro > 0 is fixed independently of §, and § is taken sufficiently small. We define
the quantity § := 8s., and we note that since s. > 1 will be fixed independently of
8, in the limit 8§ — O we have that § = O($) so that § can be bounded as small as
desired. We return to the fast system (3.1), appending an equation for r, which results
in the following system.

§
Us = —p
Sc
sp §
Ds ———p——(a u—uv?
Scr c
Us =4¢q
qs = 24 +mv — uvz(l — bv)
Scr
8
re = —. (3.30)
Sc

We view this as a slow—fast system with timescale separation parameter 1/s.. In the
region r > §, the variables u, p, r are slow, while v, ¢ are fast. Rescaling s = s.¢, we
obtain the corresponding slow system

Lt; =(§p

) -
——p—S(a—u—uvz)
P

P
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1
—Vy =
Sc ¢ =4

1 )
—qr = M + mv — uv*(1 — bv)
Sc r

re=24 (3.31)

Letting 1/s. — 0, this system admits a three-dimensional critical manifold Mg
{g = 0,mv = uv>(1 — bv)}, and the branch M5 = {¢g = 0,v = vi(u), u
4mb} C Mg is normally hyperbolic, of saddle type. The reduced flow on M8’+ is
given by

v

ur =8p
5
pe ==L —§a—u—uvi?
r
re =3, (3.32)

noting that the vector field is uniformly bounded in the region of interest r € [5, ro].
In order to determine the dynamics in this region, we desingularize the system and
rescale the independent variable d¢ = %d{, which results in the system

ug =rp
e r(a—u— uv+(u)2)
rg=r. (3.33)

The system (3.33) admits an invariant manifold at » = 0 with dynamics

MEZO

p;=-r (3.34)

and a line of equilibria given by g = {(u, p) = (ug,0),uo > 4bm} which are
attracting within the manifold {r = 0}, each with a one dimensional stable manifold.
In the normal (r) direction, this line of equilibria is repelling and admits a unique two-
dimensional unstable manifold W' (£¢), which satisfies the following proposition, the
proof of which follows by standard invariant manifold theory.

Proposition 3.2 Consider (3.33). The line of equilibria £y admits a unique two-
dimensional unstable manifold YWW" (L), which for all sufficiently small ro > 0 can be
represented as a graph W*(£y) = {p = ho(u,r),0 <r < ro} where

(u —a+ uv+(u)2)

ho(u,r) = 7

r(1+0()). (3.35)
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y

v W (£o) =

Fig.7 Shown is the slow flow on M§;+. The manifold YW (C) aligns along the unstable fibers YW" (EECL)

of the manifold Eﬁj in the full system (3.30). Within M$, ", Eﬁj aligns along WY (£) under the forward
evolution of (3.30)

However, it does not suffice to restrict our attention to small values of r, and in fact
r may need to be taken large. To understand how solutions originating near r = 0
behave for large values of r, we need further information on the nonlinear vector
field (3.33). In general, detailed estimates are not available for YW"(£() when r is not
small. However, more can be said near a value of # which satisfiesa —u—uv4 (u)2 =0.
Note that this is the condition satisfied by the equilibrium P, of the full system (3.1)
provided this equilibrium lies on the branch v = v (u).

In this case, since a — Uy — U21)+(U2)2 = 0, the line ¢, := {u = Uy, p = 0}
is invariant. Examining the linearization of (3.33) about the invariant line ¢, reveals
a single zero eigenvalue with eigenvector (1, 0, 0), and a negative eigenvalue A =
—1, while the dynamics along ¢, are simply r; = r. Therefore, there exists a two-
dimensional, normally attracting manifold YW°(¢£;) which contains the line £;, which
can be represented as a graph

W) ={p =ha(u,7),0 <r <o, lu—Us| <84}, (3.36)

where hy(u,r) = O(Ju — Uz|). Moreover, in the region 0 < r < 1, the manifold
WE(£,) coincides with YW"(£y), and hence for simplicity we denote the union of these
manifolds by W (€y). We emphasize that this (combined) manifold W" (¢) is locally
invariant and normally attracting. See Fig. 7 for a depiction of W" ().

In the full system (3.30), the manifold /\/l(c)’Jr perturbs to a three-dimensional
slow manifold M§;+ which is O(1/s¢)-close to M8’+, with slow flow given by an
O(1/s.) perturbation of the reduced flow (3.32). In particular, the manifold YW"(£g)
perturbs within M?C’Jr to a locally invariant manifold W (¢o). Furthermore, the
four-dimensional stable/unstable manifolds WS’“(M(C)’+) formed by the union of the
stable/unstable fibers of basepoints on M8’+ also perturb to stable/unstable mani-
folds WS*(M$ ). We can identify the subset of these manifolds corresponding to
the (un)stable fibers of basepoints on W;’C (o) as three-dimensional locally invariant
manifolds W*"(W( (£o)).
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We now track the core center-unstable manifold W;"(C) through the region
r € [8sc, ro]. We recall that, given any fixed (large) sc > 0, W5"(C) admits the
expansion (3.29), which is valid up to s = s. for all sufficiently small § > O.
At s = s. (corresponding to the subspace r = §), W5*(C) is aligned along the
unstable fibers within W“(M§;+) of base point orbits on M?;Jr lying on a curve
C§C’+ = {(u,p,r):r =68sc, p=0(,1/sc)}. In particular W5"(C) transversely
intersects the stable fibers of these orbits within WS(M§;+). Tracking under the
forward-flow of (3.30), by the exchange lemma, W5" (C) aligns O(e™*¢)-close to the
unstable fibers within YW" (M;*) of the forward evolution Etf of the manifold CSCC’+
within M§"; see Fig. 7.

As the flow on M§;+ is an O(1/s.) perturbation of the reduced flow (3.32), we
are thus able to determine how W' (C) emerges at r = ry, noting that for larger
values of r, we only have detailed estimates on WW§"(C) near the solution u = U, of
a—u— uv+(u)2 =0.

3.3 Dynamics on M}'

In the region r > rg, where ro > 0 is taken sufficiently small and fixed independently
of 8, we return to the fast system (3.1) and append an equation for r

us =048p

)
psz—Tp—S(a—u—uvz)
Us =4

8
qs = M +mv — uv2(1 — bv)
r
ry =96. (3.37)

In this region, when § = 0, this system admits a critical manifold M defined by (3.3),
which can be decomposed into the branches My = Mg UM, UFU ./\/lg asin (2.8).
For all sufficiently small § > 0, (any normally hyperbolic portion of) ./\/la' perturbs
to a three-dimensional invariant manifold M; and its four-dimensional (un)stable
manifolds perturb to four dimensional locally invariant manifolds W*" (M ). As a
result of the analysis of the previous section, we know that WWs* (C) approaches the set
r = ro aligned along the strong unstable fibers of orbits on My which are O(1/s. +4)-
close to the intersection W"(£g) N {r = ro}. By Proposition 3.2, this set is given by
the graph

(u —a+ uv+(u)2)
2

Fin ==y p = pin(u) := ho(u, ro) = ro (14+0(r0) ¢, (3.38)

and the projection of W§"(C) N {r = ro} onto ./\/l(s+ along the unstable fibers within
WH(MY) is therefore within O(1/sc + 8) of this graph.

@ Springer



Journal of Nonlinear Science (2023) 33:107 Page 27 of 51 107

Likewise, we consider the far-field stable manifold WS(Bfar) which we recall
from Sect. 3.1.3 transversely intersects YW M+) in a two-dimensional manifold Hf“r
which lies within O(8) of the set Hfar given by

HE = Hyg N { S k(1K) k € [0, k]} (3.39)

K (l/k)

where Hyq is as in Lemma 3.1 and we recall k = 1/r. In other words, )/\/S(Bgar )
intersects WY (M) transversely along the unstable fibers of orbits lying within O(3)
of the set

Cout 1= Bfar N{u = ur}

= {u = uf, p = pout(r) := %Kl(r) relr, 00)} (3.40)

where 7 > 0 is arbitrary.

We aim to show the existence of r = r; such that the manifolds WS(Bg‘”) and
W' (C) intersect transversely at 7 = r; near the fast jump in the set {u = us}. To do
this, we will track orbits on W§" (C) as they evolve according to the dynamics of (3.37)
until reaching the set {u = u¢}.

In order to track W§"(C) through this region, we examine the reduced flow on M,
given by

Mg’: =p
p
pe=—"—(a—u- vy (1))

e =1, (3.41)

where we’ve introduced the variable dé = dr. Atr = ry orbits of W5"(C) are aligned
along the unstable fibers of orbits crossing I'iy. At u = uy, WS(Bgar) are aligned
along orbits crossing I'y. Hence, we aim to show in the reduced flow (3.41) that the
forward evolution of trajectories in 'y, transversely intersects the set "oy within the
set {u = ur}. This transverse intersection will then persist under perturbation, thereby
obtaining the transverse intersection of WS(BgaI) and W5*(C) for sufficiently small
6> 0.
We have the following proposition, which is the main result of this section.

Proposition 3.3 Consider the set T'in of initial conditions at r = rg for the sys-
tem (3.41). The forward evolution of T'iy under the flow of (3.41) traces out a
two-dimensional manifold T, which intersects the set {u = ug} in a curve T. If
the parameters a, b, m, satisfy

/“f u —2mb + Vu? —4umbd
u

1 2
—(a — Uy)~", 3.42
A e > Sa—Uy) (3.42)
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then, within {u = u¢}, there exists r = r; > 0 such that the curve Ty transversely
intersects I'gu at v = ry.

We begin with the following lemma which describes the set I'oy¢, given by the graph
of the function poy(7) in (3.40).

Lemma 3.4 Regarding the function poy(r), the following hold.

(i) ply(r) <O0forr € (0, 00).
(ii) lim; 0 pout(r) = 00
(i) limy o0 pout(r) = a — us

Proof For (i), we recall that poy(r) = ;g(‘;f) K (r). Note that @ — us > 0. We have
that

b Ki(r)*  Kar) 1
P =@ (Ko(r)2 T 2Ko() 5)

a — ug s 1 1 2
= <K1(r) - EKz(V)Ko(V) - EKO(’") ) .

© Ko(r)?

Using the integral form for products of Bessel functions (Olver et al. 2021,
§10.32.17), we see that

o]

%Kl (r)2 = foo K> (2r cosh(t))dr = f Ko(2r cosh(t)) cosh(2¢)dt,
0 0
Kr(r)Ko(r) = 2/00 K>(2r cosh(t)) cosh(2¢)dt
0
Ko(r)* = 2/00 Ko(2r cosh(t))dt.
0
Note that
Kl(r)2 = /OO Ko(2r cosh(t)) cosh(2t)dt + /OO K> (2r cosh(t))dt,
0 0
so that
) | 1 2
Ki(r)” — sz(r)Ko(r) - EKO(”)
:/ Ko(Q2r cosh(z)) cosh(2t)dt —i—/ K>(2r cosh(t))dt
0 0

—/ K2(2rcosh(t))cosh(2t)dt—/ Ko(2r cosh(t))dt
0 0

- / [cosh(2¢) — 1]1[Ko(2r cosh(r)) — K (2r cosh(t))] dt
0

< 0,
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since cosh(2t) — 1 > 0 and Ko(x) — K2(x) < O for all x > 0, which completes the

proof of (i).
The limits (ii) and (iii) follow directly from asymptotic properties of the functions
Ko, K1 (Olver et al. 2021, §10.30). O

We now describe the evolution of the set of initial conditions I'j, to the set u =
ug. At r = ro, we represent the initial conditions I'j, via (3.38) as the graph p =
pin(u) = ho(u, ro). Fora/m > max {9b/2, 4b + 1/b}, the function f(u) := —(a —
U—Uvy (1)?) admits aunique zerou = Uy € (4bm, uy), coinciding with the uniformly
vegetated equilibrium state P,. We have the following lemma.

Lemma 3.5 Fix ui, € (Ua, ug). The forward evolution of the initial condition in iy
given by p = pin(uin) at r = ro eventually reaches the set {u = us} at some value of
(p.r) = (pt, re) (Uin)-

Proof We show that for any initial condition uj, € (U, us), under the flow of (3.41),
that u¢ is non-decreasing and therefore eventually the u coordinate will reach u = uy
at some r = r¢(uin). Since ug = p, we achieve this by showing that p: > 0 along
such a trajectory, which ensures that ug > pjn(#in) > 0. We note that pg > 0 initially
at r = ro (via (3.38) and (3.41)), and at any location where p: = 0, we have that
Dee = r% + f’(u)p > 0. Thus, ug = p is non-decreasing, which ensures that u will
increase towards u;p. O

Taken over all values of ui, € (Ua, ug), we obtain a curve (p,r) = (pr, rr) Uin)
parameterized by the initial u-coordinate ui, € (Ua, ur). In order to prove Proposi-
tion 3.3, we show that the curve (p, r) = (pr, rr) (4in) transversely intersects the curve
P = pout(r) (that is, the set I'yy) within the plane u = uy, for some value of u;, and
corresponding r = rf(ujn) =: r7y.

Lemma 3.6 The curve (p,r) = (pr, r)(uin) satisfies ri(uin) < 0 and pg(uin) < 0 for
uin € (Uz, ug).

Proof We begin with the statement concerning the sign of r{(ui,). Consider two
trajectories with two different initial conditions iy = uin,1 and uin = uin,2, With
Uin,1 < Uin2, Which trace out solution curves (u, p) = (u(r; uin), p(r; uin)). At
r = ro, we have that pi,(in,1) = p(ro; 4in,1) < p(ro; 4in,2) = Pin(Uin,2) by (3.38).

We claim this implies p(r; uin,1) < p(r; uin,2) for all > ro. Suppose for contra-
diction that p(¥; uin2) = p(#; uin,2), or for some r = r, which represents the first
r value where the two trajectories cross. (Note that since p(ro; #in,1) < p(ro; 4in,2),
and p(r; uj) is continuous, we know that there exists this first value 7.) Thus,
p(r; uin2) < p(r; uin2) forall » < r, which implies that u (r; uin 2) < u(r; uin,2) for
all ¥ < F, since uin,1 < uin2 and ug = p. Recall that p; = —£ + f(u). Then, since
f(u) is an increasing function of u, we have that pg (7; uin,1) < pe(F; uin,2). (Note
that this is a strict inequality since f’(u) > 0.) This contradicts the fact that these
solution curves intersect at 7 since p(r; uin2) < p(r; uin2) forallr <r.

Therefore p(r; uin2) < p(r; uin2) for all r. This also means that u'(r; uin,1) <
u'(r; uin2) for all r. Thus, since uin,; < uin2, we also obtain that u(r; uin,1) <
u(r; uin,2) for all r. Recall that u(r; uin,1) < u(r; uin2) < ug forr < re(uin,2). Thus,
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re(Uin,2) < re(uin,1). Thus, whenever uin 1 < uin,2, we have that re (tin,2) < r¢(tin,1),
so that r¢(uiy) is a strictly decreasing function.

We now turn to the sign of p@(uin). Again, we consider two trajectories with
initial conditions uj, = uin 1, Uin,2, With ujn 1 < uin2. Suppose for contradic-
tion that pf(uin,1) < pf(uin2). Since u'(r; uin,1), u'(r; uin2) > 0, there exists a
least u = u < uy and 71,72 < rp at which u(71; uin,1) = u(2; uin,2) = u and
p(F1; uin1) = p(F2; uinp) = p. Since f'(u) > 0, and using a similar argument as
above, we have that 7| > 75.

We express the solution curve (u, p) = (u(r; uin,1), p(r; uin,1)) as a graph u =
u1(p) over p, and similarly the curve (u, p) = (u(r; uin,1), p(r; uin,1)) asu = u2(p).
Then at p = p, we have

dui Py
dp  —£ 4 f@)

from which we see that ‘ilﬂ < ‘fi—b;f, which contradicts the fact that u(p) must cross
uz(p) from below. Thus, we conclude that for any uin,1 < uin,2, we have pr(uin,1) >

pr(uin,2), 80 pr(uin) is a strictly decreasing function of ujp. O

Lemma 3.6 shows that pg(ui,) and re(ujy) are both strictly decreasing functions
of ujn € (U, ug). We now consider the limiting behavior of (pr, rf)(uin) as uin
approaches the limits uj, = U, and uj;, = uy. In preparation, we consider (3.41) in
the limit » — oo, resulting in the vector field

Ug =p
pe =u—a+u(yw)? = f(u), (3.43)

which admits the conserved quantity

E(u, p) = —%pz + | fadi (3.44)
Us

= —1p2 +/ i —a+ i(vy (i) >dil. (3.45)
2 U,

Note that E(U2,0) = 0, and define pr o to be the unique positive solution of
E(ur, pr.oo) = 0, corresponding to the intersection of the unstable manifold of the
saddle equilibrium (u#, p) = (U3, 0) of (3.43) with the set u = uy. We have the
following.

Lemma 3.7 The curve (p,r) = (ps, rr)(uin) satisfies the following.

() Timyg, e (Pt (Win), e (Uin)) = (Pin(ug), 7o)
(1) limy,— v, (pr (uin), 7 (Uin)) = (Pf.00, 00)

Proof The limit (i) follows directly from the definition of (p¢(uin), ¢ (uin)) and (3.38).

@ Springer



Journal of Nonlinear Science (2023) 33:107 Page310of51 107

For (ii), we aim to compute the limit lim,;_, oo pr(rf). Note that pi, (uin) — 0 as
uin — U», as Ty, coincides at u = U, with the invariant line £, corresponding to the
fixed point (u, p) = (U, 0). Hence, to determine the behavior of trajectories lying
on I'j, with values of u ~ U;, we can track such trajectories along the invariant line
£ to large values of r. In particular, for any fixed Ry > 1, there exists §g, such
that the forward evolution of [j, traces out a two dimensional manifold Tj, which
contains the invariant line £, and intersects the plane » = Ry in a curve which can be
represented as a graph p = hy(u, Ry) over |u — Us| < g, satisfying d,h2(Ua, Ro) =

Vv f'(U2) + O(1/Ry).

We set r = 1/k and arrive at the system

ug =p
pe = —kp+ f(u)
ke = —k2. (3.46)

The invariant set k = 0 (corresponding to » = 00) contains the limiting system (3.43)
for the variables (u, p), whose solutions lie on level sets of the function E(u, p),
with the saddle-type equilibrium (u, p) = (Ua, 0) satisfying E(Uz, p) = 0. The
two branches of this level set correspond to the one-dimensional stable and unstable
manifolds WY/ $:%°(U,, 0) of the equilibrium within the invariant set k = 0, which
are tangent to the lines p = =+./f'(U2)(u — U,). The manifolds WY/ (U, 0)
extend to two-dimensional center-stable/center-unstable manifolds WS/ (U, 0)
for small k¥ <« 1 which intersect along the invariant line ¢, = {u = U, p = 0}.
Let ko := 1/Ry < 1. Recall the manifold T, intersects the set k = ko in a curve
which can be represented as a graph over [u — Uz| < dg, given by p = ha(u, Ro)
satisfying 9,h2(Uz, Ry) = +/ f'(Uz) + O(kg). Therefore at k = kg, [y, is aligned
close to W™ (U,, 0) at the linear level and transversely intersects YW:°° (U, 0)
along the invariant line ¢,. Thus, as k — 0, Tin aligns along the branch of the level
set E(Uj, p) = 0 corresponding to W*°°(U,, 0), and contains the invariant line ;.
From this, we see that as uj, — Ua, rf(uj) — 00 and the corresponding solution
approaches the manifold W (Uz, 0), so that pf(uin) — pr,c0 as claimed. O

Combining this with the results of Lemma 3.4, we are able to complete the proof
of Proposition 3.3.

Proof of Proposition 3.3 As described above, the forward evolution of I'j, reaches the
set u = uy in a curve (pr, rr)(ujn) parameterized by ui, € (Ua, ur). By Lemma 3.6,
pr(uin) and r¢(uiy) are both strictly decreasing functions of uj, € (Ua, ug), so we
can express the curve (ps, rr)(uin) as a graph pr = pg(r) satisfying pg(r) > 0 for
r € (rg, 00), limr%ro Pf(”) = pin(uf) = O(ro) and lim,_, Pf(”) = Pf,c0-

Furthermore, by Lemma 3.4, within the set u = uy, [y 1S given by a graph
P = pout(r) which satisfies p ,(r) < 0 for r € (0, 0o) with lim,_.¢ pout(r) = 00
and lim, oo pout(r) = a — us.

Therefore, in order for the sets I'j, and oy to intersect transversely at some r» = 7y,
it only remains to check whether pf o > a —u¢. Equivalently, a transverse intersection
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occurs provided E(uf, a — ug) > E(ug, pf,o0) = E(Uaz, 0) = 0, which occurs if
1 2 uf 2
0 < _E(a —up)? + u—a+u(vy(u)-du, (3.47)
%)

or equivalently

Uy —2mb + Nk —dumb 1
/ Az IMO R NI Z B i > —(a — Un), (3.48)
o 2b 2

3.4 Proof of Theorems 1.2-1.3

The results of the preceding Sects. 3.1-3.3 allow us to complete the construction of
radial spot solutions in (1.1).

Proof of Theorem 1.2 As in Sect. 3.3, we track the far-field manifold VVS(B’gar ) into
a neighborhood of M, where it aligns along the unstable fibers of orbits which
cross the set {u = ug} within O(8) of the set I'gy. Likewise, the manifold W§*(C)
of solutions bounded at the core can be tracked into a neighborhood of M, where
it aligns within O(1/s. + §) of the unstable fibers of orbits crossing the set {r = ro}
along the curve T'j,. By Proposition 3.3, the forward evolution of T, reaches the set
u = ug in the curve ['t which transversely intersects "oy at some r = ry, provided

uf /1,2
/ u—2mbt vui—dumb, 1o e (3.49)
Us 2b? 2

Therefore, the manifolds WS(BgaI) and W' (C) intersect transversely, correspond-
ing to a radial spot solution bounded on r € [0, c0), with a single sharp interface
occurring at r = r; + O(8). The value V.(a, b, m) is determined by the coordinate
vy (uo) in corresponding fiber of WW5"(C) in the limit § — 0; see (3.29).

Finally, the condition (1.7) can be obtained from a lengthy but straightforward
computation by carrying out the integration in (3.49) and using the steady equation
satisfied by Us. O

Regarding gaps, we similarly complete the proof of Theorem 1.3.

Proof of Theorem 1.3 The argument is similar to that of Theorem 1.2. We briefly outline
the differences which result in the opposite condition (1.8).

The geometry of the construction is quite similar, except opposite in that the far field
manifold consists of solutions asymptotic to the equilibrium (U3, V») on the critical
manifold M7, and the core manifold consisting of solutions bounded as r — 0 is
constructed from orbits originating near the desert state (Up, V) on Mg. In this case
building the core manifold is somewhat less involved since the flow on Mg is linear,
and the solutions are given explicitly in terms of modified Bessel functions. However,
in the far field one must deal with the nonlinear flow on M;r
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In this case, the manifold W§"(C) intersects WS(M;) in the set {u = us} trans-
versely along the unstable fibers of orbits lying within O(§) of the set

uf —a

Io(r)

T = {u =uf, p = pin(r) = I (r),r €0, f]} , (3.50)

where 7 > 0 is arbitrary. We note that, using asymptotic properties of modified Bessel
functions, it can be shown similarly as in Sect. 3.3 that pj, is an increasing function
of r with lim,_, o pin(r) = 0 and lim, . 5 pin(r) = ur — a.

In the far field, analogously to the case of spots, we can construct the two-
dimensional far field manifold B(f)ar within ./\/l(“)L as the set of solutions of the
system (3.41) which remain bounded as » — oo. In the limit r — oo, this sys-
tem approaches the system (3.43), the solutions of which are given by level sets of
the conserved quantity (3.44). Let prar(r7) denote the p coordinate at r = r; of the
solution which is bounded as r — oo and satisfies u(r;) = ur. Then, using similar
arguments as in Sect. 3.3, we see that py,, is an increasing function of r; which satisfies
lim;; — 00 Prar(r1) = — Ppr,c0» Where pg oo satisfies E(ug, — pf,00) = 0.

Thus, in order to have an intersection of W5 (C) and the stable fibers Wj (B};ﬁr), and
thus a radial gap solution with a single interface at some value of r = r;, a sufficient
condition is E (uf, ur — a) < E(ur, —pr.oo) = E(U2, 0) = 0, or equivalently,

us /

f uz2mbt vut = dumb Ly (3.51)
Us 2h? 2

which is precisely the opposite condition as that which guarantees the existence of

spots. The estimate for vg(r) as r — 0 is due to the exponential decay along the fast

fibers of W" (/\/lg), and the fact that the subspace {v = g = 0} is invariant under the

flow of (3.25) for § > 0. m]

3.5 Rings, Targets, and Other Radially Symmetric Solutions

The techniques used in Sects. 3.1-3.4 to construct spot and gap solution could be used
to construct other localized solutions with radial symmetry as follows: The general
strategy is the same, in that to construct a solution which is asymptotically constant,
and bounded as r — 0, as in the case of spots/gaps, we construct a core manifold
W4H(C) of states originating near one of the desert or vegetated steady states (U, Vo)
or (U, V»). We similarly construct a far-field stable manifold Wg(Bgar) of solutions
bounded as r — oo consisting of stable fibers of one of the steady states (Up, V) or
(Uz, V), which could be the same or different from the state near the core.

Then, to construct a radially symmetric profile with a desired number of interfaces,
the core manifold Wy (C) is tracked along a number of fast jumps alternating between
Mg and /\/l;' as a sequence of radii r;, j = 1,2,3, ..., in between which W§'(C)
follows the slow flow of the corresponding slow manifold Mg or M}, entering along
its fast stable fibers, and exiting aligned along its fast unstable fibers according to the
exchange lemma.
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This procedure could be used, in principle, to construct ring or target profiles with
any desired (finite) number of interfaces. Some examples obtained numerically are
presented in Sect. 5.

4 Spot Instabilities

In this section, we examine the stability of the spot solutions from Theorem 1.2,
and in particular we demonstrate several instabilities exhibited by these solutions
when considering 2D perturbations. As we are primarily interested in demonstrating
potential instability mechanisms, we do not take a rigorous approach, but rather employ
formal asymptotic arguments; however, we emphasize that rigorous results could be
obtained using similar methods as in the existence analysis in Sect. 3.
We linearize (1.1) about aradial spot solution (usp, Vsp) () = (usp, Usp) (r; @, b, m, 3)

of Theorem 1.2 using an ansatz of the form

(U, V) = (usp, vsp)(r) + 1 (u, v)(r)

for £ € Z, which results in the eigenvalue problem

1 e
AU = Uy + ;ur - r—zu — <1 + vsp(r)2> u — 2usp(rivsp(r)v
2 1 e 2
A =686|v,+ ;vr — r_2v —mv + vgp(r) (1 — bvsp(r)) u

+ up(r) (205p(r) = 3bugp (7 v. @1

We consider the essential spectrum associated with spot solutions in Sect. 4.1. The
point spectrum for wave numbers [£| = O(1) is considered in Sect. 4.2 and is evaluated
asymptotically in the limit of spots of large radius in Sect. 4.3, where the sideband
stability from nearby planar front solutions (see Sect. 2.4) is recovered in the limit
rr > 1. Finally, the point spectrum for large wavenumbers [£| > 1 is considered
in Sect. 4.4.

4.1 Essential Spectrum
The essential spectrum associated with the radial spot solution (usp, vsp) (r; a, b, m, §)

is determined by considering the limitr — oo in (4.1), and computing the 1D essential
spectrum of the asymptotic rest state lim, oo (sp, Vsp) (r) = (a, 0).

Lemma 4.1 Consider a spot solution (usp, vsp)(r; a, b,m, §) of Theorem 1.2. Then,
the essential spectrum Xess C {A € C: Re A < —B}, where $ = min{l, m} > 0.
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Proof Letting r — oo, and writing (4.1) as a first-order system, we obtain

ur

Pr| _
vy = Ao

qr

4.2)

Qe T
=~
3
Il

The essential spectrum Xg consists of A € C for which the matrix A is not hyper-
bolic. A short computation shows that this can only occur in the region {A € C :
Re A < —p}, where 8 = min{1, m} > 0. O

4.2 Point Spectrum for |[£| = O(1)

Near the interface r = rj, we change variables to r = r; + §s for s €
(—v|logél, v|logd|) for some v > 1. Due to the exponential convergence of the
front of the fast subsystem between the critical manifolds /\/l8 and M, for v chosen
sufficiently large, this interval captures the portion of the spot solution which lies out-
side an (O(8)-neighborhood of the slow manifolds ./\/lg and M; In this region, the
eigenvalue problem (4.1) becomes

52 P ik 52 (1 402 ) 262
u=1u Uy — u — V. u — UgpnVUgp U
48 0 (rp 4+ 8s)2 Sp SpYsp
8 82¢? )
A = vgg + e +6svs — = +5S)2v — mv + vg, (1 —bvsp)u
+ usp (20 = 3002 ) v. 43)

For wavenumbers |[£| = O(1) with respect to §, we expand solutions of this eigenvalue
problem in terms of the reduced fast system

AV = vgy — mv + ug <2vvd - 3bv3d) v, 4.4)

which is an eigenvalue problem of Sturm-Liouville type, obtained by linearizing the
fast subsystem about the front ¢yq, and which has a solution given by the derivative
v, 4 when A = 0. For (4.3), we expand the eigenfunction

(0-(2)-+(5) e
v Vig VU1

and eigenvalue parameter A(£) = SA1(€) + (’)(82), as well as the solution

<u5p> _ <Mf> 48 <M1> +O62).
Usp Uyvd U]
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Substituting into (4.3), we obtain to leading order

$ 292
0 = (it1)ss + —(#1)s — —5—i — 28ufvyavyy
rr ry

1 802 B
)\‘lvi/d - EOUI + _U;/d — —2v<,d + U\Z/d (1 — bvvd) ui
ry rI
+uy (2vvd — 3bu3d) Vg + ug (2 — 6bu§d) vivly, (4.5)
where
Lo:=0%—m—+u (2vvd - 3bv3d) . 4.6)

Considering the first equation of (4.3), we write as a first-order system
(u1)s =68p1

_ 5 _
(p1)s = -t 25 vy, 4.7
1

so that i1 is constant to leading order. We now expand the existence problem across
the fast jump near » ~ r; as

0= (u1)ss + (u1)s + 8(a — u — uv?)

ry +8s

1 5 )
0= @)ss o+ ——gethg + o)y = mvn (2vvd - 3bvvd) o
+ ugv2i(1 = buyg) (4.8)

and differentiate the second equation with respect to s to obtain to leading order

0= Lo(un) + vl + 1 (2 = 6ba) vivly + (vl = busa)
+ouy (2vvd - 3bu$d) Vg “.9)
Substituting into the second equation of (4.3), we have to leading order
vl = Lobt — Lo@1)s + veg (1 = bvva) it — (un)svg(1 = bvva).

Using the fact that Ly is self-adjoint, we take the inner product of this equation with
v, 4 and obtain the solvability condition

— [%0 2 (1 — buyg) vlyds
2 vAds

—o0 “vd

A= ((u1)s —iy)
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Since v} is strictly negative, the sign of A; is given by the sign of the prefactor
((u1)s — uyp). The value of (u1); is easily determined through the expansion of the
existence problem since

gy = 8(un)s + 0@, (4.10)

so that (u1)y = I‘(’O_(Lr‘lf) K1 (ry) corresponding to the leading-order p-value across the

fast jump at r = r;. From this, we obtain the solvability condition

- — [ w2, (1 — bvyg) vl,ds
AL = <—(“ “f)lq(r,)—zzl) S V‘{XE - 0) Nads, (4.11)
Ko(ry) 7o, vigds

It remains to determine the constant iz; in (4.11). To determine i, we recall
from (4.7) that it; is constant, whilst p; satisfies to leading order

o0

P =pl+ / 2usvyqvlyds

—00

~+ 2

where 13(1), 151+ denote the limiting values of p; on either side of the fast jump, when the
solution approaches the critical manifolds M9, M, respectively. To determine i,
we construct bounded eigenfunctions @, pO(r)and (i *, p1)(r) in the slow regions
near M9, M, respectively, such that across the fast jump at r = ry, we have

i (rp) = it (ry)

) = p(rr) — upv (up)® (4.12)

We begin by analyzing the linearized equation in the slow variables on Mg. We note
thathere vgp (r) = 0to leading order; inspecting (4.1) and recalling A = 8\, we obtain
that v = 0 to leading order on MY, so that u satisfies the leading-order equation

1 02
O:ur,—l——ur——zu—u, (4.13)
r r

which is a modified Bessel’s equation. For each ¢, this equation admits a unique
solution which is bounded as r — oo, which is the modified Bessel function of
the second kind K, (r). We therefore obtain the leading-order solution @°, pHr) =
(aKy¢, aK;)(r) in the slow region r > r;.

Near M7, the slow reduced equations are not as straightforward, due to the non-
linear reduced flow on M(J)r In particular inspecting (4.1), to leading order we have
that v satisfies

_ v (N1 — buy(r) .
T om—ug () Qui(r) = 3bvi(r)?)

(4.14)
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where v4(r) := vy (u4(r)) and uy (r) is the solution in the slow region for r < rj.
Substituting into (4.1), we obtain the leading order equation for « in the slow region

S S 2 24 (v (1) (1 = bv4(r)

0= e+ Zur = S = (L4 s ) = o S D"

oty = By O O 0P (4.15)
LA m — ui(r)Qus(r) — 3bvp(?) '

The solutions of this equation do not appear to have a nice representation in terms of
special functions. However, this equation is of the form

1 2

14
0=up + —u, — —Su—u-— fr(u, (4.16)
r r

where f4 (r) has a well-defined limit as r — 0. Asr — 0, the equation behaves like a
Bessel-type equation, and it is possible to show that there is a unique (up to a constant
multiple) solution u = uj;(r) for each £ which is bounded as r — 0. To see this, we
rewrite (4.16) as

uy =d
dy = Cu+r’u+ r2f+(r)u
ry=r, 4.17)

where n = log r. The system (4.17) has a fixed point at the origin which admits a two-
dimensional unstable manifold corresponding to a one-dimensional space of solutions
of the non-autonomous linear system (4.16) which are bounded as  — —oo (r — 0).
This space is spanned by a non-trivial solution, which we denote by u = uj(r), which
will serve as a candidate eigenfunction in the slow region r < r;. We therefore obtain
the leading-order solution (&, p™)(r) = (Bu}, B(u})")(r) in the slow region r < ry.
Using the conditions (4.12), we obtain

aK(rp) = Buj(ry)
aKy(rp) = B} (rr) — upvy (ug)?, (4.18)

which we can solve to determine

vy (up) > Ko (rpu (rp)

i = ok = , 4.19
=KD = Wy ) — Kyl () 19
and so
= Ay (0) = (a—up)Ki(rp) vaifuf)zlfz(H)/M}}‘(rl?k N
Ko(ry) Ko(rp)(uy) (rp) — K (rp)uy (rp)
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— ffooo v%d (1 — bvyg) v, ds
22 v%ds

—o0 “vd

(4.20)

In general, we require information about the solution 7 to be able to determine the
sign of this quantity as a function of £. This is non-trivial to do in general, as u likely
does not have a direct representation in terms of special functions. However, in certain
limiting cases we can approximate (4.20). For sufficiently large spots r; > 1, we
argue in Sect. 4.3 that such spots inherit instabilities from nearby planar front solutions
(see Sect. 2.4). We consider the case of large wavenumbers || > 1 in Sect. 4.4.

4.3 Large Spots: Recovering the Sideband Instability

In this section, we consider the critical eigenvalue expression (4.20) in the case of a very
large radial spot solution, thatis r; >> 1. Near the core, such a solution is approximately
constant, while at the interface, the solution resembles a stationary planar front between
the desert and vegetated equilibrium states. In the limit r; — oo, in the far field the
solution approaches the stationary planar front and inherits the (in)stability properties
of the front. To see this, in this section we estimate the expression (4.20) in the
asymptotic limit r; — oo.

Remark 4.2 To investigate this limit, one option would be to apply the approach
from Sect. 2.4 to (4.3) under the assumption r; > 1, as for the stability of travel-
ing fronts. However, since we do not intend to repeat the analysis from Carter et al.
(2022) which results in the expression (2.28), in this section we provide a more direct
method by estimating the expression (4.20) in the asymptotic limit ; — oo.

We estimate the expression (4.20) for finite values of £ € Z as r; — oo. The
expression is explicit (in terms of special functions) except for the value of uj(ry),
where u}‘(r) is the unique bounded solution (up to a constant) of (4.15) as r — 0.
In the case of large r; > 1, we can approximate u/’;(r]) as follows. Note that when
£ = +1, (4.15) reduces to

1 1 vy (N (m + uy (r)vy (r)?)
O=up +—-Uup — —u—u— u,
r r2 m — uy (r)Que(r) — 3bvy(r)?)

4.21)

which admits a solution bounded at r = 0, given by the derivative uq_(r), where u (r)
is the core solution on M(J{ which satisfies uy (r;) = ur and u/ (r) = %
Using reduction of order, we can find another linearly independent solution of this

equation, given by
=i [
ur(r) = ul (r ,
? ) sl s)?

and the Wronskian of u; := u’+ and uy is given by W(uy, uz)(r) = r~1. We now
assume r; >> 1 and attempt to construct the leading-order bounded solution of (4.15)
on the interval [0, r;] as r; — oo. We split this interval into [0, ;] = [0, 7] — R]U
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[r1 — R, rr], where r; 3> R > 1. Since the vector field for the existence problem on
Mg for large r is given by (3.43), by taking R sufficiently large, we can arrange for
(uy,u)(rr—R) = (U,0) +O(e™ ") for some v > 0 fixed independent of R. Thus
on the interval [0, r; — R] (4.15) is approximately

1 02

0=u;p + —u, — — U — Kol, (4.22)
r r

where

v+ (U2)2(m + Usvg (U2)?)
m — Up(2uy(Uz) — 3bvy (Un)?)’

Ko = (4.23)

which admits a unique bounded solution as r — 0 given by the modified Bessel func-

tion Iy (\/kor). Note that since r; > R, by asymptotic properties of Bessel functions
R —R)

Il(\/ K()(I"[ - R)) ~ N
On the interval [r; — R, r7], under the assumption ‘i—;l = ezr—lzl <1 + O <f—;>> <

1, we expand the bounded solution of (4.15) as u}‘ =ui(r)+ ezr—gl i (r) where i satisfies
1

2 2
0= iy + ity — i — SO AU OV oo
r r2 m — uy (r)uy(r) — 3bvy(r)?)

. .2 . . . . .
to leading order in Zrzl. We write the solution of this system using variation of

I

constants as

u(r) = Crui(r) + Coua(r) — Ml(r)f suy(s)uz(s)ds

+ us(r) sup(s)2ds. (4.25)
r1—R

. 21~ . .
Recalling uj(r) = uy(r) + Zr—zlu(r), in order to construct a bounded solution as
1

r — 0, we musthave (u, u’)(r) ~ (C31y, C31))(kor) atr = r; — R for some constant
C3 in order to match with the bounded solution Z; on the interval [0, 7; — R]. Using
the fact that u (r; — R) decays exponentially in R as R — oo, while u;(r; — R) grows
exponentially as R — oo and I (,/ko(r; —R)) ~ e VKR, (Vxorr) forl K R K ry,
we see that we must choose Cp & 0 in order to ensure u () remains bounded as r — 0.
Thus, we obtain the solution

. (62 _ 1) r
ug(r) ~ui(r) — o u1(r)/ sui(s)uz(s)ds
I r
) ’ >
+ 5 us(r) sui(s)“ds. (4.26)
r[ rr—R
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It remains to determine the coefficient (4.20). From (4.26), we have that

uy(ry) ~uy(rp) = uly (rp)

W}) (r) ~ uy(rp) + —Q)ug(rz) ) su(s)*ds
I rr—

— ) rr
=ul] (r1)+—/ su', (s)2ds
* r;’uﬁr(n) rI—R +
-1

r
1 / 2
~uy(r) + 5——— u', (s)"ds.
r1u+(r1) ri—R

From this, we find that

+(r1) rp—

(KeGrp) @) () — Ky (rpu () ~ Ke(rp) (u+(r1> + g u+(s)2ds>
— K (rpu’, (rp)

2 (Ez_ 1) " 1 2
= Ke(rp) | ur —a +ugvy(up)” + 5——— u, (s)°ds

r[”.t,.(rl) ri—R
K
) (Kg(m + ‘(”))

rr
-1 [m 2
= Ke(rpugvy (ug)” + Ke(r 1)2/— u+(S) ds
()
K
L W) (Ke(FI)Ko(V1)+K1(r1) <K2<r1)+ ”’”))
Ko(rp) ry
((ZEN)) 2
= Ko(rpusvy (ug)® + Ke(rz)— u+(S) ds
+( rr)

(uf — a)
Ko(rp)

(¢ —1) <Ke(r1) o, o la—upm
~ K¢(rpusv (uf)2 + u' (s)°ds + ————e 1),
PR r? w, () Sy T 4ryKo(ry)

(Ki(rp)Ky(r1) — Ke(r) K| (rl))

where we used the recurrence formulas (Olver et al. 2021, §10.29(i)) and asymptotic
relations (Olver et al. 2021, §10.40(1)) for modified Bessel functions. Therefore, we
obtain

21 T (= @) — [ veg (1= buvg) viyds
Ar) ~ IR MJ,_(S) ds + ) 0 12
rlufv+(uf) ri—R f 00 Vdds

2 -1 1 o 5 (ug — a)?
~ —_— u S dS + — X
ri o upvy(up)? (/oo +ool®) 2 >
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— ffooo v%d (1 — bvyg) v)yds
22 v2ds

—o0 “vd

, (4.27)

where we again use asymptotic properties of modified Bessel functions, and the fact
that on the interval r € [r; — R, ry], the solution u4(r) is approximately w4 (r) ~
U4 00(r —rp), where u4 o (s) is the solution for the reduced flow on Ma’ which forms
part of the singular stationary front solution in the limit r; — oo, which satisfies
U4,00(0) = us. Returning to (2.28), and noting that

U 00 (§) = (a — up)e® (4.28)

in the case of a stationary front cyq = 0, we see that for large r; > 1, we recover the
coefficient (2.28) for A1 (€¢) with the prefactor [231 .
1

r

4.4 Point Spectrum for [£| > 1

When |£] > 1 (but O(1) with respect to §), we can obtain asymptotic approximations
for Ky and uj in (4.20). For the former, we can employ standard asymptotic results
for modified Bessel functions (Olver et al. 2021). For the latter, we consider (4.15) in
the limit of large |¢|. Considering (4.20) and rearranging the term involving K, and
uy, we see that

M (a—up)Ki(ry) ugvy (ur)? — [ veq (1 = buya) vl yds
1 = - 7 .
Ko(rp) W) Ky 2 4
WD Ko Jso
(4.29)
Defining wj (r) = |;T| “;Z)('f; ), and using (4.15), we have that w = wj (r) satisfies the
4
equation
€] 2 r
wr=7<1—w )~|—m(1+f+(r)), (4.30)
where
vy ()2 (m + uy (N (r)?)
frlr) = — T (4.31)

m — ui(r)Qui(r) — 3bvi(r)?)

Appending an equation for r and rescaling the spatial coordinate, we have the equiv-
alent autonomous system

2
w = (1=w?) + 55 1+ £10)
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r=— (4.32)
€]

which, for large [¢] > 1, admits two invariant manifolds which are defined up to
r =0, given by wi(r; £) = £1 + O(l¢|™"). The manifold w = 1 is attracting while
w = —1 is repelling. For large |¢], in order for u}(r) to be bounded as » — 0, the
solution wjj(r) must lie on the manifold w4 (r; £), and hence wj (r) ~ 1 for large |£|.
@)™ e

Therefore, THE) = as [{] — oo. A similar argument (or using the asymptotic
expressions in Olver et al. 2021, §10.41) shows that 2 E:; \f\ . Finally, returning

to (4.29), we have that

() = <(a — u)Ki(rp) ufv+(uf)2r1> — /70 via (1~ bova) vigds

Korp) 2] [ v2ds
((la=unKi(rn) | — [ 75 vig (1 = bva) viyds
< Ko(rr) ) [25 vinds
>0

for [£] > 1 sufficiently large (but O(1) with respect to §), so that spots of radius r; =
O(1) are always unstable. In particular, the spots we have constructed in Sect. 3 are
unstable to (suitably) large wave numbers £. However, for sufficiently small spots (r; =
o(1) with respect to §), the above argument is no longer valid, and it is not possible to
rule out stable spots; see Sect. 5 for some solutions obtained numerically. However,
the regime r; = o(1) lies outside the scope of the existence analysis in Sect. 3.

Next, we note that if £ = £87'/2 for some 0 < £ = O(1), a similar analysis as
in Sect. 4.2 results in the solvability condition

A (@ — uf) S5 veq (1 = boyg) vyyds
A = = +< Koo Ko 1)) s (4.33)

(in place of (4. 20)) so that spots are always unstable to wavenumbers of the form
¢ = £5~'/2 where £ is small but O(1). For larger wavenumbers, the first term in (4.33)
dominates so that A{(£) < 0. Thus, a switch from unstable to stable wavenumbers
occurs at some critical £ = £5~1/2,

Finally, if £ = % for some 0 < £ = O(1), to construct a bounded solution of (4.3),
to leading order we must have u = 0, and the fast equation in (4.3) reduces to

72
AU+ SV = Usy —mv + us (Zvvd — 3bv\2,d> v, (4.34)
r1

which is just the Sturm—Liouville problem (4.4), but with A shifted by . The prob-
lem (4.4) has an eigenvalue at O due to translation invariance of the front Uvd, While

any other eigenvalues are bounded away from the imaginary axis. Hence, we have that
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any eigenvalues of (4.34) lie in the region {A e C:Rex < —f—;

}. Thus, there are no
1

further instabilities of A(£) for |[£| = O(1/8) or larger.

5 Numerical Simulations and Discussion

The results of Sect. 4 demonstrate that the spot and gap solutions of Theorems 1.2—
1.3 are unstable with respect to sufficiently large wave numbers [£| >> 1 for spots
of radius 0 < r; = O(1) with respect to §. We further showed in Sect. 4.3 that
spots are unstable to smaller wave numbers in the limit of large radius r; >> 1. The
radius can be controlled by choosing parameters closer/further from the hypersurface
in (a, b, m) parameter space given by the relation (2.18), which simultaneously rep-
resents the existence condition for stationary fronts, and the boundary between the
existence regions for the spots and gaps. Taking parameters closer to this threshold
results in spots/gaps of larger radius, which are therefore better approximated by the
corresponding nearby stationary front, with the leading order expression for A (£)
approximated by the asymptotic relation (4.27).

In Fig. 8, we demonstrate this for particular parameter values m = 0.5,b = 1,
and values of a nearby a =~ 2.6369 which is the value of a satisfying (2.18) for
(m, b) = (0.5, 1), thus representing the location of the stationary front from Sect. 2.3
inthelimité — 0. Figure 8 depicts aradial profile of a spot solution of radius r; =~ 5.66
(the value of r; is approximated by the location of the inflection point of the v-profile
of the solution), as well as the corresponding eigenvalues A(£) for —12 < ¢ < 12.
We see good agreement when comparing with the curve obtained by numerically
continuing the critical eigenvalue (2.20) under the rescaled wavenumber £ — ¢/ry,
for a (slowly) traveling front found for the same parameter values. (The front has a
wave speed close to zero, as we are near the parameter values corresponding to the
singular stationary front from Sect. 2.3.) Figure 8 shows similar agreement for the same
computations performed for a radial gap solution of radius r; & 5.85. We also point
out that these spectral computations show agreement with the analysis in Sect. 4.4, in
that the spots/gaps are unstable for a range of ‘large’ wave numbers (note here that
1/+/8 ~ 4.47), and that A(£) becomes negative for sufficiently large |£|.

A natural question concerns the nature of these linear instabilities in the nonlinear
dynamics of the spots/gaps. In the large radius limit, we expect such solutions to
inherit the sideband instability of the nearby stationary front; in Carter et al. (2022), it
was demonstrated that this sideband instability can lead to the appearance of finger-
like patterns along the front interface, which can in turn lead to labyrinthine patterns
which expand spatially into the homogeneous states. By performing direct numerical
simulations using the unstable spot and gap solutions from Fig. 8 as initial data, we
see a similar instability manifest along the (circular) interface; see Fig. 9 for snapshots
of these simulations. We leave a more detailed study of the appearance of such finger-
like patterns, and the relation to the corresponding instabilities in the stationary front
interface to future work.

While the spots and gaps of Theorems 1.2—1.3 are unstable for radii r; = O(1) (or
larger) with respect to §, the relation (4.27) is no longer valid when r; is not large,
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Fig. 8 Stationary radial profiles obtained in (1.3) for b = 1.0, m = 0.5, § = 0.05 corresponding to a spot
solution (top panels, a = 2.625) and a gap solution (bottom panels, a = 2.665). The left panels depict the
corresponding radial profiles («, v)(r) (u-profile in blue, v-profile in green), while the right panels depict
the corresponding critical eigenvalues (blue dots) A(€) for —12 < £ < 12. Also plotted (red) is the critical
eigenvalue curve for a (slowly) traveling front found for the same parameter values: fora = 2.625 (top), the
corresponding front has speed ¢ = 0.012, while for a = 2.665 (bottom), the front has speed ¢ = —0.013.
The radial profiles were obtained by solving the stationary Eq. (1.3) using Matlab’s fsolve routine, where
finite differences were employed for the spatial discretization with Neumann boundary conditions. The
eigenvalues A(£) were obtained by linearizing (1.1) about the radial profile and using Matlab’s eigs routine
(Color figure online)

and the analysis in Sect. 4.2 is not valid if r; = o(1) as § — 0. Hence it may be
possible to find smaller spots or gaps which are stable. Figure 10 depicts spot and
gap solutions of smaller radii (but nearby in parameter space to those in Fig. 8), for
which we see that A;(€) is no longer well approximated by (4.27). We see in this
case that A(£) is negative aside from the double zero eigenvalue A(£1) = O due to
translation invariance. Figure 11 shows a continuation of the eigenvalues A1 (¢), £ =
0,1,2,3,4,5 for decreasing r; for these spot and gap solutions, where we observe
that each eigenvalue eventually stabilizes as r; decreases. Additionally, as described
in Sect. 3.5, we are similarly able to find (seemingly) stable radially symmetric ring
and target patterns (see Fig. 10), which could be obtained in a similar manner to the
spots/gaps of Theorems 1.2—1.3 by constructing solutions with several sharp interfaces
at distinct radii r;.
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Fig. 9 (Upper panels) Snapshots of direct numerical simulation of a spot solution for a = 2.625,b =
1.0,m = 0.5, § = 0.05, with initial data given by the solution in Fig. 8 (top left panel). The spot develops
finger-type patterns along the interface which spread throughout the domain. (Lower panels) Snapshots of
direct numerical simulation of gap solution for a = 2.665,b = 1.0, m = 0.5, = 0.05, with initial data
given by the solution in Fig. 8 (bottom left panel), which develops similar finger-type patterns. Simula-
tions were performed in Matlab using finite differences for spatial discretization with periodic boundary
conditions, and Matlab’s ode15s routine for time integration

Obtaining the stability of spots of smaller radii rigorously appears to be a challeng-
ing problem, and we leave this to future work; in particular our existence analysis does
not immediately extend to this regime. Additionally, unlike prior works which consid-
ered the stability of radially symmetric solutions using singular perturbation methods
(Van Heijster and Sandstede 2011, 2014) in a 3-component FitzHugh—Nagumo sys-
tem, the solutions of the linearized Eq. (4.15) do not have explicit representations in
terms of special functions, which makes it difficult to determine A1 (¢) for smaller
values of ry. This is related to the challenges which arise in the existence analysis
in Sect. 3 due to the nonlinear reduced flow on the slow manifold M;“

Another natural line of further research concerns investigating whether the present
insights obtained on specific model (1.1) can be lifted to the general setting of the
2-component singularly perturbed reaction diffusion systems considered in the com-
panion paper (Carter et al. 2022). In that paper, we study the (in)stability of planar
fronts with respect to longitudinal perturbations, as we did for (1.1) in Sect. 2, and
derive two general, and relatively simple, criteria on the emergence of the sideband
instability mechanism (that typically leads to finger-like patterns). The present analysis
indicates that the same mechanism may drive the (in)stability of large spots and gaps
in the general setting of Carter et al. (2022), although one should not underestimate
the technicalities involved in establishing the counterparts of Theorems 1.2 and 1.3
for the general model. It is less clear from the combination of the present insights and
those of Carter et al. (2022), under which conditions spots and gaps with a radius r; of
O(1) will be unstable (as is the case for (1.1)). The nature of the analysis in Sect. 4.4
suggests that it is possible to derive a general (in)stability result for spots and gaps
with radius r; = O(1) against perturbations with [£| 3> 1. This suggests that also in
the general setting, spots and gaps with radius r; ‘sufficiently small’ are potentially
the ‘most stable’ (radially symmetric) localized patterns. Thus, the issue of the exis-
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Fig. 10 Radially symmetric solutions obtained for the parameter values b = 1.0, m = 0.5, = 0.05 for
different values of a. From top to bottom: spot (¢ = 2.55), gap (= 2.765), ring (¢ = 2.538), and target
pattern (@ = 2.78). The various solutions survive in direct numerical simulations suggesting they are indeed
stable. For each row, the left panel depicts the planar profile obtained by direct numerical simulationin (1.1)
using finite differences for spatial discretization with periodic boundary conditions. The middle panel depicts
a radial profile obtained by solving (1.3) using finite differences and Neumann boundary conditions, and
the right panel depicts the critical eigenvalue A(¢) for —12 < ¢ < 12, obtained by linearizing (1.1) about
the radial profile and using Matlab’s eigs routine

tence and stability of spots and gaps of sufficiently small radius is a central question
and resolving that question may explain the abundance of ‘spikes’ in the literature on
localized patterns in singularly perturbed reaction—diffusion systems—see Chen and
Ward (2011), Kolokolnikov et al. (2009), Wei and Winter (2013) and the references
therein and Remark 1.1. These spikes have a fully homoclinic nature, in the sense that
they are not close to a concatenation of almost heteroclinic orbits: away from the slow
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Fig. 11 Shown is a numerical continuation of the eigenvalues A1 (£) for £ = 0,1,2,3,4,5 for a spot
solution (left) and gap solution (right) as a function of the interface radius ;. The curves were obtained by
continuing the unstable spot and gap solutions from Fig. 8 to the stable spot and gap solutions of Fig. 10
by adjusting the parameter a for fixed (b, m, §). The interface location r; was computed at each step by
approximating the inflection point of the vegetation profile of the corresponding solution. From the figure,
we see that the unstable eigenvalues A1 (£), £ = 2, 3, 4, 5 eventually stabilize as r; decreases
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Fig. 12 (Left) Spot pattern solution obtained for @ = 2.55,b = 1.0,m = 0.5,8 = 0.05. (Right) Gap
pattern solution obtained for a = 2.765,b = 1.0,m = 0.5, § = 0.05

manifold Mg they only follow the fast (spatial) dynamics, they do not follow the slow
flow on a second slow manifold ./\/l;—as is the case for the patterns constructed here
(with r; = O(1)). Thus, by studying spot and gap patterns with radius r; decreasing
from being O(1) to asymptotically small, one needs to zoom in on the subtle process
through which a localized pattern detaches from M;‘ during its jump away from and
back to Mg—see also Kok et al. (2022).

Lastly, we briefly describe the appearance of far-from-onset spot patterns in (1.1).
While the analysis of Theorems 1.2—1.3 only applies to the construction of a single spot
or gap solution, we anticipate that one could construct periodic spot or gap patterns
by tiling the plane with well-separated copies of the primary spot or gap solution.
See Fig. 12 for results of direct numerical simulations in (1.1) which result in the
appearance of spatially periodic spot and gap lattice patterns. While the construction
of such patterns is beyond the scope of this work, we note that a spatial dynamics
approach, such as that described in Scheel (2003) could be used to construct such large
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amplitude spot patterns. However, the question of stability of the resulting patterns is
likely very challenging.
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