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Abstract
We construct far-from-onset radially symmetric spot and gap solutions in a two-
component dryland ecosystem model of vegetation pattern formation on flat terrain,
using spatial dynamics and geometric singular perturbation theory. We draw con-
nections between the geometry of the spot and gap solutions with that of traveling
and stationary front solutions in the same model. In particular, we demonstrate the
instability of spots of large radius by deriving an asymptotic relationship between a
critical eigenvalue associated with the spot and a coefficient which encodes the side-
band instability of a nearby stationary front. Furthermore, we demonstrate that spots
are unstable to a range of perturbations of intermediate wavelength in the angular
direction, provided the spot radius is not too small. Our results are accompanied by
numerical simulations and spectral computations.

Keywords Localized radial structures · Geometric singular perturbation theory ·
Reaction diffusion equations · Vegetation pattern formation · Spectral stability

Mathematics Subject Classification 35B25 · 35B35 · 35B36 · 35K57 · 34E15 · 92D40

1 Introduction

The phenomenon of vegetation pattern formation in dryland ecosystems has attracted
attention in the last several decades as a mechanism of ecological resilience. While
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frequently considered to be an early warning sign for desertification (Gowda et al.
2018, 2014; May 1977; Noy-Meir 1975; Rietkerk et al. 2004; Rietkerk and van de
Koppel 2008; Rietkerk et al. 1997), the formation of localized vegetation patches or
patterns has also been viewed as a means of evading such critical transitions (Rietkerk
et al. 2021). The interaction of infiltration feedback mechanisms and competition
for water resources results in the formation of vegetation patches (Macfadyen 1950;
Rietkerk et al. 2002; Schlesinger et al. 1990; von Hardenberg et al. 2001; Wilcox
et al. 2003). On sloped terrain, one observes vegetation stripes, or bands, aligned
perpendicular to the slope, while on flat ground spots, gaps, or disorganized labyrinth
patterns are prevalent (Barbier et al. 2014; Deblauwe et al. 2012, 2011; Gandhi et al.
2018; Ludwig et al. 2005; Valentin et al. 1999). Spots, gaps, rings or other radially
symmetric patterns (sometimes called “fairy circles”) have been observed extensively
in drylands in Australia and Africa (Getzin et al. 2016; Meron 2018; Ravi et al. 2017)
(and other ecosystems, such as submarine seascapes (Ruiz-Reynés et al. 2017)), and
have served as the focus of many studies of self-organization in ecosystems.

Vegetation pattern formation is frequently modeled by multi-component reaction
diffusion systems. In such models, there is a well-developed theory of spot and stripe
pattern formation near the onset of Turing instabilities (Gowda et al. 2014, 2016; Siero
et al. 2015). However, far less is known analytically concerning large amplitude or far-
from-onset planar vegetation patterns. A number of studies have considered existence
and stability properties of banded vegetation (Bastiaansen et al. 2019; Carter and
Doelman 2018; Doelman and van der Ploeg 2002; Sewalt and Doelman 2017), as well
as desertification fronts (Carter et al. 2022; Fernandez-Oto et al. 2019), but less is
known concerning far-from-onset radially symmetric vegetation patches. Prior work
has considered small amplitude radial solutions (Hill 2021) and 1D simplifications
(Jaibi et al. 2020). However, to our knowledge, no rigorous studies exist concerning
large amplitude radially symmetric vegetation patches in a dryland ecosystem model.

We consider the model introduced in Bastiaansen et al. (2019)

Ut = �U + a −U −UV 2

Vt = δ2�V − mV +UV 2(1 − bV ), (1.1)

which is a modification of the dryland ecosystemmodel originally proposed by Klaus-
meier (1999). This model also coincides with that studied in Eigentler (2021), in the
case of a single species. Here,U represents water availability, V represents vegetation
density, and the parameters a,m, b are positive and represent rainfall, mortality, and
inverse of soil carrying capacity, respectively. The diffusion coefficient δ2 represents
the ratio of timescales of diffusion of water vs. vegetation. Here, we assume that water
diffuses much faster than vegetation, so that 0 < δ � 1 is a small parameter (Rietkerk
and van de Koppel 2008). We note that Klausmeier’s model originally had b = 0.
While a singular perturbation analysis of this case is possible (see, e.g., Carter and
Doelman 2018), this limit is highly singular, requiring several rescalings and blow
up techniques to account for passage near a non-hyperbolic slow manifold. Here, we
therefore focus on the case b > 0.
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We are interested in the formation of radially symmetric vegetation spots (localized
vegetation patches surrounded by bare soil) and gaps (localized regions of bare soil in
an otherwise uniformly vegetated state) in (1.1). Exploiting the small parameter δ � 1,
we will use geometric singular perturbation methods to construct radially symmetric
solutions through a spatial dynamics approach in the radial coordinate. Our approach
is similar to that in Van Heijster and Sandstede (2011), in which the authors construct
far-from-onset spot solutions in a 3-component FitzHugh–Nagumo model. However,
the nonlinearities in (1.1) introduce complications in the analysis due to the fact that
the reduced flow on the resulting slow manifolds is no longer linear as in the case in
Van Heijster and Sandstede (2011). However, we will show that radial solutions can
still be constructed in (1.1).

Remark 1.1 In the setting of classical models like Gray-Scott, Gierer–Meinhardt and
Schnakenberg, the existence, stability and interactions of radially symmetric localized
‘spikes’ have been studied—see, for instance, (Chen and Ward 2011; Kolokolnikov
et al. 2009; Wei and Winter 2013) and the references therein. However, these patterns
differ from the ones considered here since they have a homoclinic nature: unlike the
present gaps and spots, the regions inwhich these spikes are not close to the background
states are asymptotically small. The patterns considered here can be seen as two-
dimensional (radially symmetric) versions of the one-dimensional ‘mesa patterns’
studied in Kolokolnikov et al. (2007) and Jaibi et al. (2020) in the setting of vegetation
patterns. Like in the present model, and unlike in Van Heijster and Sandstede (2011,
2014), the ‘slow flows’ (for the spatial dynamics) considered in these papers are
nonlinear—which is typically the case for ecosystem models (Doelman 2022).

The system (1.1) admits (up to) three homogeneous steady states: the desert state
(U , V ) = (U0, V0) := (a, 0) and if a

m > 2(b + √
1 + b2), there are two additional

vegetated steady states (U , V ) = (U1,2, V1,2) where

U1,2 = m

(
a

m
− V1,2

1 − bV1,2

)
, V1,2 =

a
m ∓

√( a
m

)2 − 4
(
1 + a

m b
)

2
(
1 + a

m b
) (1.2)

which coincide at the critical value a
m = 2(b + √

1 + b2).
We search for stationary solutions, which are radially symmetric, so that

(U , V )(x, y, t) = (u, v)(r), r ∈ [0,∞), and � = ∂2r + r−1∂r under planar radial
symmetry, where r = (x2 + y2)1/2. Such solutions satisfy the ordinary differential
equation

0 = urr + 1

r
ur + a − u − uv2

0 = δ2
(

vrr + 1

r
vr

)
− mv + uv2(1 − bv), (1.3)

which can be rewritten as a first-order non-autonomous system

ur = p
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Fig. 1 Shown is a schematic of a radial profile for a vegetation spot solution (left) and gap solution (right)
of (1.3) as in Theorems 1.2 and 1.3, respectively. The profile contains a sharp transition from the vegetated
state to the bare soil state in an interval of width O(δ) of the critical radius rI = O(1)

pr = − p

r
− a + u + uv2

δvr = q

δqr = −δq

r
+ mv − uv2(1 − bv), (1.4)

This system admits up to three equilibria given by the steady states above: the desert
state P0 = (a, 0, 0, 0), and if a

m > 2(b+√
1 + b2), there are two additional equilibria

P1,2 := (U1,2, 0, V1,2, 0) corresponding to uniform vegetation.
Spots, gaps, and other localized radially symmetric solutions are constructed as

orbits of (1.4) which are asymptotic as r → ∞ to one of these steady states, and
which are bounded as r → 0. In order to find solutions of this system, we construct
candidate solution orbits in different subsets of the spatial domain r ∈ [0,∞) and
glue these together to build a solution on the entire domain. In particular, we construct
the solution over three primary regions: the core r ∈ [0, rc], where rc = O(δ), the
far field r ∈ [rI ,∞), where rI = O(1), and the transition region(s) in between; see
Fig. 1.

Our main result concerning the existence of spots is the following.

Theorem 1.2 (Existence of spots) Fix a,m, b > 0 satisfying

max

{
9b

2
, 4b + 1

b

}
<

a

m
<

9b

2
+ 2

b
. (1.5)

Suppose

∫ 9bm
2

U2

u − 2mb + √
u2 − 4umb

2b2
du >

1

2
(a −U2)

2, (1.6)

or equivalently,

3

2
− log(2) + U2

2m2 (a −U2) + log

(
b

m
(a −U2)

)
− b

m
(a −U2)
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>
2b2 + 1

2m2 (a −U2)
2 (1.7)

whereU2 is defined as in (1.2). Then, there exists Vc(a, b,m) > 0 and rI (a, b,m) > 0
such that for all sufficiently small δ > 0, (1.1) admits a stationary, bounded, radially
symmetric vegetation spot solution (U , V ) = (usp, vsp)(r; a, b,m, δ) satisfying

lim
r→0

vsp(r; a, b,m, δ) = Vc(a, b,m) + O(δ), lim
r→∞ vsp(r; a, b,m, δ) = 0

with a single interface between the vegetated and desert states occurring at the radius
r = rI (a, b,m) + O(δ).

Similarly, we have the following theorem concerning the existence of gaps.

Theorem 1.3 (Existence of gaps) Fix a,m, b > 0 satisfying (1.5). Suppose

∫ 9bm
2

U2

u − 2mb + √
u2 − 4umb

2b2
du <

1

2
(a −U2)

2 (1.8)

or equivalently,

3

2
− log(2) + U2

2m2 (a −U2) + log

(
b

m
(a −U2)

)
− b

m
(a −U2)

<
2b2 + 1

2m2 (a −U2)
2 (1.9)

where U2 is defined as in (1.2). Then, there exists rI (a, b,m) > 0 and ν > 0 such that
for all sufficiently small δ > 0, (1.1) admits a stationary, bounded, radially symmetric
vegetation gap solution (U , V ) = (ug, vg)(r; a, b,m, δ) satisfying

lim
r→0

vg(r; a, b,m, δ) = O(e−ν/δ), lim
r→∞ vg(r; a, b,m, δ) = V2 + O(δ),

where V2 is defined as in (1.2), with a single interface between the vegetated and desert
states occurring at the radius r = rI (a, b,m) + O(δ).

See Fig. 2 for a visualization of the condition (1.5) necessary for the existence of
spots/gaps in Theorems 1.2–1.3.

Remark 1.4 The methods used in this paper to construct radially symmetric spot and
gap solutions can be applied in a similar manner for the construction of solutions such
as rings, targets, or other radially symmetric profiles, with different, perhaps more
complex, conditions on parameters which ensure their existence. We provide some
numerical evidence for the existence of such solutions in Sect. 5 and describe how
one might go about constructing these orbits, but do not provide the lengthy technical
details here.
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Fig. 2 Plotted are the curves a
m = 9b

2 (black), a
m = 4b + 1

b (dotted red), and a
m = 9b

2 + 2
b (dashed blue).

The shaded region corresponds to the region in parameter space where the condition (1.5) is satisfied (Color
figure online)

The spot and gap solutions of Theorems 1.2–1.3 will be constructed as heteroclinic
orbits for r ∈ [0,∞) using geometric singular perturbation theory. The main idea,
following Van Heijster and Sandstede (2011), is to find the orbits as intersections of a
core manifold of solutions which remain bounded at r → 0, and a far-field manifold
of solutions which decay to one of the states P0 or P2 as r → ∞. These manifolds
are each three-dimensional, and, unlike in Van Heijster and Sandstede (2011), it is not
possible to obtain an explicit description of thesemanifolds due to the fact that the flow
on (one of) the slow manifolds of (1.4) is nonlinear. This introduces complications
which are handled through the use of an intermediate scaling and careful qualitative
analysis of the nonlinear non-autonomous reduced flow on this slow manifold. The
non-autonomous nature of Eq. (1.4) makes this a somewhat challenging construction.
To demonstrate how these orbits are constructed using the slow/fast geometry of (1.4),
it is helpful to first consider the simpler construction of traveling or stationary planar
front solutions of (1.1),whichmanifest as heteroclinic orbits in an appropriate traveling
equation with a similar geometry to that of (1.4).

It is shown in companion paper (Carter et al. 2022) that the invasion fronts in
(1.1)—that can be seen as spots or gaps with radius rI → ∞—are unstable with
respect to a sideband/finger instability. Therefore, we next consider the stability of
spots. Without going into the details of a fully rigorous analysis, we first consider the
spectral stability problem for large spots. By a careful asymptotic analysis we recover
the sideband instability mechanism and conclude that large spots are unstable and
will typically form finger-like patterns—like the planar invasion fronts. By similarity,
we conclude that the same is true for large gaps. These observations are confirmed
by direct simulations: in Fig. 9 in Sect. 5 we show snapshots of a spot and a gap
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that both evolve towards labyrinthine patterns after undergoing such an instability.
Moreover, we subsequently conclude by considering perturbations within a range
of intermediate wave numbers that spots (and gaps) with O(1) radius rI must also
be unstable: only sufficiently small spots and gaps may possibly be stable—see again
Sect. 5 and especially Fig. 10 for a brief numerical study. These small gaps correspond
to fairy circles (Getzin et al. 2016) and also appear as stable vegetation patterns in
numerical simulations of the dryland ecosystem model of Zelnik et al. (2015)—a
model that can be seen as a slightly more extended version of (1.1) (Carter et al. 2022)
(and that has been deduced from more extended models to study fairy circles).

The set-up of the paper is as follows. In Sect. 2, we consider the construction of
traveling fronts in (1.1), while in Sect. 3, we treat the radially symmetric case and
provide the proofs of Theorems 1.2–1.3. The spectral stability of the radial spot and
gap solutions is considered in Sect. 4 using formal asymptoticmethods, andwe include
numerical simulations and a brief discussion in Sect. 5.

2 Stationary and Traveling Planar Fronts

To motivate the approach for the existence analysis of radially symmetric solutions
of (1.1), we first consider the (simpler) case of constructing stationary and traveling
front solutions. We pose the traveling wave ansatz (u, v)(x, y, t) = (u, v)(ξ), where
ξ = x−δct is a traveling wave coordinate; here, c = 0 corresponds to stationary front
solutions, while c �= 0 corresponds to solutions which propagate with wave speed δc.

Using a geometric singular perturbation approach, we can construct bistable front
solutions as perturbations from slow/fast heteroclinic orbits between the desert state
(U , V ) = (a, 0) and the vegetated state (U , V ) = (U2, V2) in the traveling wave ODE

0 = uξξ + δcuξ + a − u − uv2

0 = δ2vξξ + δcvξ − mv + uv2(1 − bv). (2.1)

We note that in the case c = 0, the system (2.1) corresponds to (1.3) in the far field
limit r → ∞. Thus, it is natural to first consider the geometry of (2.1), as solutions
with radial symmetry are constructed by matching a solution which is bounded near
the core r = 0, with a stationary solution which (approximately) satisfies (2.1) in the
far field limit r → ∞.

2.1 Slow/Fast Analysis

We can write (2.1) as a first-order system

uξ = p

pξ = −δcp − a + u + uv2

δvξ = q

δqξ = −cq + mv − uv2(1 − bv), (2.2)
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which we refer to as the slow system, and upon rescaling ξ = δζ , we obtain the
equivalent fast system

uζ = δ p

pζ = δ
(
−δcp − a + u + uv2

)
vζ = q

qζ = −cq + mv − uv2(1 − bv), (2.3)

Setting δ = 0 in (2.3) yields the layer problem

vζ = q

qζ = −cq + mv − uv2(1 − bv). (2.4)

This system admits up to three equilibria depending on u, given by M0(u) := (0, 0),
and if u > 4bm, M±(u) := (v±(u), 0), where

v±(u) :=
1 ±

√
1 − 4bm

u

2b
. (2.5)

When u = 4bm, the two equilibria M+(4bm) = M−(4bm) coincide. Computing the
linearization

Jlayer =
(

0 1
m − 2uv + 3buv2 −c

)
, (2.6)

a short computation shows that form, b > 0 the fixed pointsM0 andM+(u), u > 4bm
are always of saddle type, while M−(u) is focus or node for c �= 0, and a center for
c = 0. The equilibrium M+(4bm) = M−(4bm) is non-hyperbolic. Taken together,
the set of equilibria of the layer Eq. (2.4) corresponds to the critical manifold

M0 =
{
(u, p, v, q) ∈ R

4 : q = 0,mv = uv2(1 − bv)
}

, (2.7)

obtained by setting δ = 0 in (2.2). We therefore decompose M0 into three branches
M0 = M0

0 ∪ M−
0 ∪ F ∪ M+

0 , where

M0
0 = {v = q = 0}, M−

0 = {q = 0, v = v−(u), u > 4bm},
M+

0 = {q = 0, v = v+(u), u > 4bm}, (2.8)

and the latter two manifolds M±
0 meet along the non-hyperbolic fold curve F :=

{q = 0, v = 1/2b, u = 4bm}. The manifolds M0
0 and M+

0 are normally hyperbolic
and of saddle-type.
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Fig. 3 A singular heteroclinic
orbit between P2 and P0 is
formed by concatenating slow
orbits on the critical manifolds
M0

0 andM+
0 with a fast orbit

φvd of the layer problem (2.4)

The reduced flow on each branch of the critical manifold is obtained by setting
δ = 0 in (2.2) and is given by

uξ = p

pξ = −a + u + uv∗(u)2, (2.9)

where v∗(u) = 0, v±(u) on the branches M0
0 and M±

0 , respectively.

2.2 Singular Orbits

The desert equilibrium state P0 = (a, 0, 0, 0) lies on the branch M0
0, while the

vegetated state P1 = (U1, 0, V1, 0) always lies on the branch M−
0 . The state P2 =

(U2, 0, V2, 0) can lie on eitherM−
0 orM+

0 ; the latter occurs provided a > 4mb+m/b.
In this case, a linear stability analysis shows that both (U0, V0) and (U2, V2) are
temporally stable as homogeneous equilibria of the PDE (1.1) (Carter et al. 2022), and
we can proceed to construct singular bistable fronts connecting P0 and P2 (or vice
versa); see Fig. 3.

To do this, we form a singular slow/fast/slow heteroclinic orbit between P0, P2,
by concatenating a slow orbit on M0

0 with another slow orbit on M+
0 via a fast

heteroclinic orbit in the layer problem. Within the layer problem (2.4), for any value
of (u, p) satisfying u > 4mb, by adjusting the speed c appropriately it is possible
to construct fast heteroclinic orbits φdv(ζ ) = (vdv, qdv)(ζ ) from M0

0 to M+
0 and

φvd(ζ ) = (vvd, qvd)(ζ ) from M+
0 to M0

0, corresponding to fast desert-to-vegetation
and vegetation-to-desert fronts, respectively. These orbits can be computed explicitly
as follows. Considering (2.4), we search for solutions satisfying the ansatz q = Cv(v−
v+(u)) for some value of C �= 0. Substituting into (2.4), we obtain the algebraic
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equation

C2(v − v+(u)) + C2v = −cC + ub(v − v−(u)), (2.10)

which can be solved to find C = ±√
bu/2 and wave speeds

c = cvd(u) =
√
bu

2
(v+(u) − 2v−(u))

c = cdv(u) = −
√
bu

2
(v+(u) − 2v−(u)) .

We then obtain the explicit profiles (up to translation)

vvd(ζ ) := v+(u)

2

(
1 − tanh

(
v+(u)

√
bu

2
√
2

ζ

))
, qvd(ζ ) = v′

vd(ζ ) (2.11)

vdv(ζ ) := v+(u)

2

(
1 + tanh

(
v+(u)

√
bu

2
√
2

ζ

))
, qdv(ζ ) = v′

dv(ζ ). (2.12)

Examining the reduced flow on M0
0

uξ = p

pξ = −a + u, (2.13)

we see that within M0
0, the equilibrium (a, 0), corresponding to P0, is a saddle-type

equilibriumwith (un)stablemanifoldsW u/s(a, 0) given by the lines p = ±(u−a). On
M+

0 , the equilibrium (U2, 0), corresponding to P2, is also saddle-type equilibrium,
with (un)stable manifolds W u/s(U2, 0) given by the level set E(u, p) = 0 of the
conserved quantity

E(u, p) = −1

2
p2 +

∫ u

U2

ũ − a + ũ(v+(ũ))2dũ, (2.14)

noting that E(U2, 0) = 0.
To construct a singular heteroclinic orbit from say P2 to P0, we follow the slow

unstablemanifoldW u(U2, 0) of P2, then a fast jumpφvd, then the slow stablemanifold
W s(a, 0), given by the line p = −(u−a). Since the slow variables (u, p) are constant
across the fast jump, this is only possible if there is an intersection of W u(U2, 0) and
W s(a, 0) when W u(U2, 0) is projected ontoM0

0, which occurs if there exists u = u∗
such that E(u∗, a − u∗) = 0, or equivalently

1

2
(a − u∗)2 =

∫ u∗

U2

ũ − a + ũ(v+(ũ))2dũ, (2.15)
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For an open region in (a, b,m) parameter space, there is a critical valueU2 < u∗ < a,
depending on a, b,m, which satisfies this criterion, and therefore the speed c∗ is
determined so that the fast layer jump φvd exists for (u, p) = (u∗, a−u∗). We denote
by (u+,∞, p+,∞)(ξ) the solution of the reduced flow on M+

0 corresponding to the
unstable manifold W u(U2, 0), which satisfies (u+,∞, p+,∞)(0) = (u∗, a − u∗), and
we denote by (u0,∞, p0,∞)(ξ) the solution of the reduced flow onM0

0 corresponding
to the stable manifold W s(a, 0), which satisfies (u0,∞, p0,∞)(0) = (u∗, a − u∗).

Thus, the singular front solution follows the solution (u+,∞, p+,∞)(ξ) of the
reduced flow on M+

0 , followed by the fast front φvd(ζ ), at finally the solution
(u0,∞, p0,∞)(ξ) of the reduced flow onM0

0. For 0 < δ � 1, these singular fronts can
be shown to perturb to front solutions of (2.1) using standard methods of geometric
singular perturbation theory, using the wave speed c as a free bifurcation parameter.
The construction of fronts from P0 to P2 follows similarly.

2.3 Stationary Fronts

Stationary fronts correspond to the case c = 0. We describe the geometry of the
singular orbit(s) in this case, as it will be useful in the forthcoming construction of
spot and gap solutions. Proceeding as in Sect. 2.2, we find that (2.4) admits a pair of
heteroclinic orbits φdv(ζ ) = (vdv, qdv)(ζ ) and φvd(ζ ) = (vvd, qvd)(ζ ) when

u = uf := 9bm

2
, (2.16)

where

vdv(ζ ) := 1

3b

(
1 + tanh

(√
m

2
ζ

))
, qdv(ζ ) = v′

dv(ζ )

vvd(ζ ) := 1

3b

(
1 − tanh

(√
m

2
ζ

))
, qvd(ζ ) = v′

vd(ζ ). (2.17)

where again φdv(ζ ) represents the desert-to-vegetation state transition front which
jumps fromM0

0 andM+
0 , while φvd(ζ ) represents the vegetation-to-desert state tran-

sition front which jumps from M+
0 and M0

0; see Figs. 4 and 5. Note that we assume
a > uf , so that the equilibrium P0 lies ‘above’ the critical fronts φdv, φvd. A lengthy
but straightforward computation shows that U2 < uf provided a

m < 9b
2 + 2

b , so that
the equilibrium P2 lies ‘below’ the fronts φdv, φvd.

While this pair of heteroclinic orbits exists for any a, b,m > 0, in order to construct
a singular slow/fast heteroclinic orbit, we still require an intersection ofW u(U2, 0) and
W s(a, 0) in the reduced flow when W u(U2, 0) is projected onto M0

0. Since the jump
height u = uf is fixed by the condition c = 0, this only occurs if E(uf , a − uf) = 0,
or equivalently

1

2
(a − uf)

2 =
∫ uf

U2

ũ − a + ũ(v+(ũ))2dũ, (2.18)

123



107 Page 12 of 51 Journal of Nonlinear Science (2023) 33 :107

Fig. 4 The stationary fronts φvd
and φdv of (2.4)

Fig. 5 Shown are singular orbits representing stationary fronts of (2.1) obtained by concatenating slow
orbits of (2.9) on the critical manifolds M0

0 and M+
0 with fast orbits φvd, φdv of the layer problem (2.4)

for c = 0, u = uf

which gives an implicit condition on the parameters a, b,m for which a singular sta-
tionary front exists. We will show in Sect. 3 that this condition describes the boundary
(in parameter space) which separates the existence region of radial spots versus gaps,
which will be constructed as slow/fast fronts in the non-autonomous system (1.4). The
radius of the spot/gap will serve as a free parameter which allows for the construction
of a solution for parameters which satisfy (1.6) in the case of spots, or (1.8) in the case
of gaps.

2.4 Sideband (in)Stability of Planar Fronts

Given a front solution constructed as in Sect. 2.2, we briefly examine the stability of
the front as a planar interface, which will help motivate our formal stability results
in the case of radial spot and gap solutions in Sect. 4. We assume that a heteroclinic
vegetation-to-desert front solution (uh, vh)(ξ ; δ) exists which connects the state P2
to P0 (the case of a desert-to-vegetation front is similar), and has been constructed
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as a perturbation from one of the singular slow/fast fronts in Sect. 2.2, with speed
c = ch(δ) = cvd(u∗) + O(δ).

We linearize (1.1) about this front solution in a comoving frame using an ansatz
(U , V ) = (uh, vh)(ξ ; δ)+ eλt+i
y(u, v)(ξ) for 
 ∈ R, which results in the eigenvalue
problem

λu = uξξ + δchuξ − 
2u −
(
1 + vh(ξ)2

)
u − 2uh(ξ)vh(ξ)v

λv = δ2vξξ + δchvξ − δ2
2v − mv + vh(ξ)2 (1 − bvh(ξ)) u

+ uh(ξ)
(
2vh(ξ) − 3bvh(ξ)2

)
v. (2.19)

Due to translation invariance, this eigenvalue problem has a solution when λ = 
 = 0,
with eigenfunction given by the derivative (u′

h, v
′
h)(ξ ; δ). For the purposes of this

discussion, we focus only on this critical, marginal eigenvalue, and we assume that
all other spectrum of the front for 
 = 0 (that is, the spectrum corresponding to 1D
longitudinal perturbations in the direction of propagation) is bounded away from the
imaginary axis in the left half plane.

Focusing on this critical eigenvalue, we consider its continuation for small |
|: as
the eigenvalue problem only depends on 
 through terms ofO(
2), we anticipate that
this critical translation eigenvalue expands as

λc(
) = λc,2

2 + O(
4). (2.20)

This eigenvalue describes the stability of the front to long wavelength perturbations
transverse to the front, and the stability is thus determined by the sign of the coefficient
λc,2. In a companion paper (Carter et al. 2022), we have developed a procedure to
compute this coefficient in a general class of two-component singularly perturbed
reaction diffusion systems, which includes (1.1) as an example, andwe briefly describe
the results here.

We rewrite the stability problem (2.19) in the form

L

(
u
v

)
= λ

(
u
v

)
+ 
2

(
u

δ2v

)
(2.21)

where

L :=
(

∂ξξ + δch∂ξ − (1 + vh(ξ)2
) −2uh(ξ)vh(ξ)

vh(ξ)2 (1 − bvh(ξ)) δ2∂ξξ + δch∂ξ + uh(ξ)
(
2vh(ξ) − 3bvh(ξ)2

)
)

,

(2.22)

We now expand

(
u
v

)
(ξ ; 
) =

(
u′
h

v′
h

)
(ξ) + 
2

(
u2,c
v2,c

)
(ξ) + O

(

4
)

.
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Substituting into (2.21), at leading order we have the eigenvalue problem

L

(
u2,c
v2,c

)
= λ2,c

(
u′
h

v′
h

)
+
(

u′
h

δ2v′
h

)
. (2.23)

This leads to the Fredholm solvability condition

〈
λ2,c

(
u′
h

v′
h

)
+
(

u′
h

δ2v′
h

)
,

(
uA
h

vA
h

)〉
= 0, (2.24)

where < U , V >= ∫∞
−∞ U (ξ)V (ξ)dξ , and (uA

h , vA
h )(ξ ; δ) denotes the bounded solu-

tion to the adjoint equation

L
A
(
u
v

)
= 0, (2.25)

where

L
A :=

(
∂ξξ − δch∂ξ − (1 + vh(ξ)2

)
vh(ξ)2 (1 − bvh(ξ))

−2uh(ξ)vh(ξ) δ2∂ξξ − δch∂ξ + uh(ξ)
(
2vh(ξ) − 3bvh(ξ)2

)
)

.

(2.26)

From this we obtain an expression for λ2,c

λ2,c = −

〈(
u′
h

δ2v′
h

)
,

(
uA
h

vA
h

)〉
〈(

u′
h

v′
h

)
,

(
uA
h

vA
h

)〉 = −
∫∞
−∞(u′

hu
A
h + δ2v′

hv
A
h )dξ∫∞

−∞(u′
hu

A
h + v′

hv
A
h )dξ

. (2.27)

In Carter et al. (2022), it is shown that to leading order λ2,c is given by

λ2,c =

δ

∫∞
−∞ vvd(ζ )2(1 − vvd(ζ ))ecvdζ v′

vd(ζ )dζ

u∗v+(u∗)2
∫∞
−∞ ecvdζ v′

vd(ζ )2dζ

(∫ 0

−∞
u′+,∞(ξ)2dξ +

∫ ∞

0
u′
0,∞(ξ)2dξ

)
+ o(δ)

> 0, (2.28)

so that the traveling planar fronts are always unstable to long wavelength transverse
perturbations. This has implications for the (in)stability of spot/gap solutions, as we
will show in Sect. 4 using formal asymptotic methods that the spectrum for radial
spots/gaps of sufficiently large radius is approximated by that of a nearby stationary
front solution.
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3 Existence of Radially Symmetric Spots and Gaps

With the construction of the front solutions in Sect. 2 in mind, we now focus on
the construction of a vegetation spot solution, consisting of a single vegetation patch
localized near r = 0, with a single interface at some radius r = rI (to be specified),
at which the profile transitions from the vegetated state in the core to the desert state
in the far field. The case of gaps is similar, and we will briefly outline the differences
in Sect. 3.4.

Throughout the analysis, we treat 0 < δ � 1 as a singular perturbation parameter.
At times, it will also be convenient to consider (1.4), which we refer to as the ‘slow’
system, with respect to the rescaled radial coordinate s = r/δ, which results in the
system

us = δ p

ps = − p

s
− δ(a − u − uv2)

vs = q

qs = −q

s
+ mv − uv2(1 − bv), (3.1)

We refer to (3.1) as the ‘fast’ system.
The spot solution will be constructed as a perturbation from the singular limit

structure associated with (3.1), and consists of three pieces: The core vegetated and
far-field desert states are given as slow orbits which lie near equilibria on saddle-
type slow manifoldsM0

δ ,M+
δ within (3.1) (to be defined below), while the interface

between these states is given by a fast layer orbit between these slow manifolds which
is inserted at a particular radius r = rI . The construction has very similar geometry as
in the construction of traveling fronts in Sect. 2, thoughwith some complications due to
the non-autonomous nature of the equation and the singularity at r = 0. Additionally,
since the spot interface is stationary, the speed is not available as a free parameter;
however, the jumpvalue r = rI can be thought of as a free parameterwhich is chosen in
such a way in order to ensure that the stable manifold of the far-field desert equilibrium
and the unstable manifold associated with the core vegetated states precisely intersect
transversely across the fast jump.

3.1 Far-Field Region and Fast Transition

In the far field, we consider r ∈ [r̄ ,∞) for arbitrary r̄ > 0 fixed independently of
δ > 0. Here, we define a new variable k := 1/r and similarly consider the region
k ∈ [0, k̄] where k̄ := 1/r̄ for the corresponding (autonomous) system

ur = p

pr = −kp − a + u + uv2

δvr = q
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δqr = −δkq + mv − uv2(1 − bv)

kr = −k2, (3.2)

which is a slow–fast system with two fast variables and three slow variables.

3.1.1 SlowManifolds Away from the Core

Setting δ = 0, we see that (3.2) admits a three dimensional critical manifold defined
by

M0 =
{
(u, p, v, q, k) ∈ R

4 × [0, k̄] : q = 0,mv = uv2(1 − bv)
}

. (3.3)

Considering (3.2) on the fast scale s = r/δ, we have the equivalent system

us = δ p

ps = δ(−kp − a + u + uv2)

vs = q

qs = −δkq + mv − uv2(1 − bv)

ks = −δk2, (3.4)

where k = (δs)−1. Setting δ = 0 in this system yields the layer problem

vs = q

qs = mv − uv2(1 − bv), (3.5)

in which the slow variables (u, p, k) act as parameters. As in this case of the layer
problem (2.4) associated with the traveling fronts in Sect. 2, this system admits up
to three equilibria depending on u, given by M0(u) := (0, 0), and if u > 4bm,
M±(u) := (v±(u), 0), where

v±(u) :=
1 ±

√
1 − 4bm

u

2b
. (3.6)

When u = 4bm, the two equilibria M+(4bm) = M−(4bm) coincide. Computing the
linearization

Jlayer =
(

0 1
m − 2uv + 3buv2 0

)
, (3.7)

we find that this corresponds to (2.6) in the stationary case c = 0, so that form, b > 0,
the fixed points M0 and M+(u), u > 4bm are always of saddle type, while M−(u) is a
center for u > 4bm. The equilibrium M+(4bm) = M−(4bm) is non-hyperbolic with
a double-zero eigenvalue. Taken together, the set of equilibria of the layer Eq. (3.5)
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corresponds to the critical manifoldM0 = M0
0 ∪M−

0 ∪F ∪M+
0 as in (2.8), where

M±
0 meet along the non-hyperbolic fold curve F := {q = 0, v = 1/2b, u = 4bm}.

The manifolds M0
0 and M+

0 are normally hyperbolic, while M−
0 is not. We note

that compared with the analysis in Sect. 2, these manifolds are actually subsets of a
5-dimensional ambient space due to the additional slow variable k, but we slightly
abuse notation and continue to refer to these asM∗

0, for ∗ = 0,±, as they are defined
by the same algebraic conditions.

Further, any compact portion of M0
0 or M+

0 admits local (un)stable manifolds
Ws,u(M∗

0), for ∗ = 0,+, comprised of the union of the local (un)stable manifolds
Ws,u(M∗(u)) of the equilibria M∗(u), for ∗ = 0,+.

To obtain the reduced dynamics on the critical manifolds, we consider (3.2) for
δ = 0, given by

ur = p

pr = −kp − a + u + uv2

kr = −k2, (3.8)

where we substitute v = 0 (in the case ofM0
0) or v = v±(u) (in the case ofM±

0 ) into
the p-equation.

By standard results of geometric singular perturbation theory, (restricting to the
region u > 4bm in the case of M+

0 ) for all sufficiently small δ > 0 any compact
portions of the normally hyperbolic invariant manifoldsM0

0 andM+
0 perturb to three-

dimensional locally invariant manifolds M0
δ and M+

δ , which are C1-O(δ)-close to
their singular counterparts. The slow flow onM0

δ andM+
δ is anO(δ)-perturbation of

the reduced flow (3.8). Similarly, the local (un)stable manifoldsWs,u(M∗
0), ∗ = 0,+

perturb to four-dimensional locally invariant manifolds Ws,u(M∗
δ ), for ∗ = 0,+

which are again O(δ)-close to their singular counterparts, and consist of the fast
(un)stable fibers associated with orbits which lie on the slow manifoldsM0

δ andM+
δ .

3.1.2 Fast Transition Layers

We aim to construct fast transition layers consisting of fast jumps between the critical
manifolds M0

0 and M+
0 . We return to the fast system (3.4) and the associated layer

problem (3.5) for values of k ∈ [0, k̄].We note that the layer problem (3.5) corresponds
to (2.4) in the stationary case c = 0.We recall from Sect. 2 that for values of u > 4mb,
this problemhas three equilibria,M0(u) andM±(u), and at the critical value u = uf :=
9bm
2 , the layer problem admits a heteroclinic loop between M0(uf) and M+(uf), while

a homoclinic orbit to either M0(u) or M+(u) exists for values of u > uf or u < uf ,
respectively. As in Sect. 2.3, we assume that a > uf or equivalently, a

m > 9b
2 , so

that the equilibrium P0 lies above the heteroclinic loop in the layer problem, and we
further assume 4b + 1

b < a
m < 9b

2 + 2
b , so that the equilibrium P2 lies on M+

0 and
below the heteroclinic loop.

The two heteroclinic orbits comprising the heteroclinic loop provide an opportunity
for orbits to jump between the manifolds M0

0 and M+
0 , and effectively transition

between the desert/vegetated states. We recall from Sect. 2.3 that these two orbits
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φdv(s) = (vdv, qdv)(s) and φvd(s) = (vvd, qvd)(s) are given explicitly as

vdv(s) := 1

3b

(
1 + tanh

(√
m

2
s

))
(3.9)

vvd(s) := 1

3b

(
1 − tanh

(√
m

2
s

))
, (3.10)

and

qdv(s) = 3b
√
m

2
vdv(s)

(
vdv(s) − 2b

3

)
(3.11)

qvd(s) = −3b
√
m

2
vvd(s)

(
vvd(s) − 2b

3

)
, (3.12)

see Fig. 4. As in Sect. 2.3, φdv(s) represents the desert-to-vegetation state transition
front which jumps fromM0

0 andM+
0 , whileφvd(s) represents the vegetation-to-desert

state transition front which jumps from M+
0 and M0

0. These singular orbits serve as
candidate interfaces between the desert and vegetated states.

Taking the union over values of the slow variables (p, r), or equivalently values of
(p, k), the orbits φdv form a two-parameter family of orbits lying in the intersection of
the four-dimensional manifolds Wu(M0

0) and Ws(M+
0 ), and likewise the orbits φvd

form a two-parameter family of intersections between Wu(M+
0 ) and Ws(M0

0). In
order to determine that these intersections are non-degenerate and persist in a suitable
sense for δ > 0, we show transversality of the intersections in the remaining slow
variable u.

Lemma 3.1 Consider (3.4) for δ = 0 and b,m > 0, and fix p̄, k̄ > 0. The following
hold:

(i) The manifolds Wu(M0
0) and Ws(M+

0 ) intersect transversely along the three-
dimensional manifold

Hdv =
⋃

|p|≤ p̄,k∈[0,k̄]
φdv. (3.13)

(ii) The manifolds Wu(M+
0 ) and Ws(M0

0) intersect transversely along the three-
dimensional manifold

Hvd =
⋃

|p|≤ p̄,k∈[0,k̄]
φvd. (3.14)

Proof We focus on the statement (i), as the proof of (ii) is nearly identical. To prove
transversality, it remains to show that the intersection breaks transverselywhen varying
the remaining slow variable u near u = uf = 9bm

2 . We accomplish this by computing
the splitting of the manifoldsWu(M0

0) andWs(M+
0 ) to leading order in |u − uf | via

a Melnikov-type computation.
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Given (p, k) ∈ [− p̄, p̄] × [0, k̄], the front φdv(s) = (vdv, qdv)(s) which lies in the
intersection Wu(M0

0) ∩ Ws(M+
0 ) is a solution of the fast layer Eq. (3.5) at u = uf .

The adjoint equation associated with the linearization of (3.5) about φdv at u = uf is
given by

(
vs
qs

)
=
(

0 −m + uf
(
2vdv(s) − 3bvdv(s)2

)
−1 0

)(
v

q

)
, (3.15)

and admits a unique bounded solution (up to multiplication by a constant) ψdv(s) :=
(−qdv(s), vdv(s)). To leading order, the splitting distance of themanifoldsWu(M0

0)∩
Ws(M+

0 ) is determined to leading order in |u − uf | by the Melnikov integral

Mu
dv :=

∫ ∞

−∞
DuF(φdv(s); uf) · ψdv(s)ds, (3.16)

where F(v, q; u) denotes the right-hand-side of (3.5). We compute

Mu
dv :=

∫ ∞

−∞
−vdv(s)

3(1 − bvdv(s))ds < 0, (3.17)

from which we determine that the intersectionWu(M0
0) ∩ Ws(M+

0 ) is transverse in
varying the slow variable u ≈ uf .

The proof of (ii) proceeds similarly and transversality is then determined by the
Melnikov coefficient

Mu
vd :=

∫ ∞

−∞
DuF(φvd(s); uf) · ψvd(s)ds, (3.18)

where ψvd(s) := (−qvd(s), vvd(s)). In that case, we similarly find that

Mu
vd :=

∫ ∞

−∞
−vvd(s)

3(1 − bvvd(s))ds < 0. (3.19)

��

3.1.3 Far-field stable manifoldWs(Bfar
ı )

We now construct the set of orbits which remain bounded in the far-field, and in par-
ticular those which converge to the desert state v = 0; these orbits will be asymptotic
to the manifold M0

δ .
We first examine the reduced flow (3.8) onM0

0, given by

ur = p

pr = −kp − a + u

kr = −k2. (3.20)
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Fig. 6 Shown are the dynamics
of (3.20) for δ = 0 on the
far-field manifoldM0

0. The

manifold Bfar
0 is the set of all

solutions which converge to the
equilibrium pfar0 = (a, 0, 0) and
remain bounded in the far field
as k → 0

This system admits a single equilibrium pfar0 = (a, 0, 0) corresponding to the desert
steady state of (1.1) in the far-field limit r → ∞. This fixed point is non-hyperbolic
when considered as a fixed point of (3.20), but is of saddle-type when restricted to
the invariant plane k = 0. Within M0

0, this fixed point admits a two-dimensional
center-stable manifold Bfar

0 representing the set of solutions (u, p)(r) of (3.20) which
remain bounded as r → ∞.

To obtain a more explicit description of this set, we instead express (3.20) as the
linear equation

urr + ur
r

− u + a = 0, (3.21)

the solutions of which are given in terms of the modified Bessel functions I0, K0 of
the first and second kind. In particular, the unique solution of (3.21) which is bounded
as r → ∞ and satisfies u(r̄) = ū for given ū ∈ R and r̄ > 0 is given by

ufar0 (r; ū, r̄) = a + ū − a

K0(r̄)
K0(r). (3.22)

For any r̄ > 0, we can therefore express Bfar
0 as

Bfar
0 =

{
(u, p, k) ∈ R

2 × [0, k̄] :
(
u
p

)
=
(
a + ū−a

K0(r̄)
K0(1/k)

a−ū
K0(r̄)

K1(1/k)

)
, ū ∈ R

}

=
{
(u, p, k) ∈ R

2 × [0, k̄] :
(
u
p

)
=
(
a + cK0(1/k)
−cK1(1/k)

)
, c ∈ R

}
, (3.23)

where K1(z) = −K ′
0(z), and we note that since K0(z), K1(z) → 0 exponentially as

|z| → ∞, the quantities K0(1/k), K1(1/k) are well defined (and converge to zero
exponentially) as k → 0.
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Within the stable manifoldWs(M0
0) ofM0

0, we can construct the stable manifold
of Bfar

0 as the setWs(Bfar
0 ) of stable fibers over trajectories in Bfar

0 . This set comprises
the singular limit of all solutions which are bounded in the far-field. The set of orbits
Bfar
0 perturbs within M0

0 for sufficiently small δ > 0 to a two-dimensional manifold
Bfar

δ consisting of orbits within M0
δ which are bounded as r → ∞ and in particular

converge to the equilibrium pfar0 = (a, 0, 0). Likewise, as a subset of Ws(M0
0), the

manifold Ws(Bfar
0 ) perturbs to a three-dimensional invariant manifold Ws(Bfar

δ ) ⊂
Ws(M0

δ ) consisting of stable fibers lying over trajectories within Bfar
δ ⊂ M0

δ .
The manifold Ws(Bfar

δ ) thus describes the set of solutions which remain bounded
as r → ∞ and in particular those converging to the homogeneous equilibrium P2
of (3.1). In light of the results of Lemma 3.1 in Sect. 3.1.2, the perturbed manifolds
Wu(M+

δ ) ∩ Ws(M0
δ ) intersect transversely in a three-dimensional manifold which

lies withinO(δ) of the subspace u = uf . Viewed as a three-dimensional submanifold
ofWs(M0

δ ), the manifoldWs(Bfar
δ ) is an O(δ)-perturbation of the singular manifold

Ws(Bfar
0 ) consisting of stable fibers over trajectories within Bfar

0 ⊂ M0
0 defined as

in (3.23). The manifold Ws(Bfar
0 ) therefore transversely intersects Wu(M+

0 ) in a
two-dimensional manifold Hfar

0 ⊂ Hvd consisting of the orbits

Hfar
0 = Hvd ∩

{
p = a − uf

K0(1/k)
K1(1/k), k ∈ [0, k̄]

}
(3.24)

within the subspace {u = uf}. This transverse intersection persists for all sufficiently
small δ > 0, withWs(Bfar

δ ) transversely intersectingWu(M+
δ ) in a two-dimensional

manifoldHfar
δ which lies withinO(δ) ofHfar

0 , and likewiseO(δ)-close to the subspace
{u = uf}.

3.2 The Core Region

In this section, we construct a three-dimensional manifold of orbits which remain
bounded and converge to a set of uniformly vegetated states as r → 0.

3.2.1 The Center-Unstable Core ManifoldWcu
ı (C)

For the core region,we consider r ∈ [0, rc], where rc = δsc, or equivalently s ∈ [0, sc],
for some sc > 0 fixed independently of δ > 0. We use a blow-up rescaling z = log s
to obtain the dynamics in the core region as

uz = δsp

pz = −p − δs(a − u − uv2)

vz = sq

qz = −q + s
(
mv − uv2(1 − bv)

)
sz = s. (3.25)
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Note that this system admits a two-dimensional manifold of equilibria at s = 0 defined
by E = {p = q = s = 0}. When δ = 0, (3.25) becomes

uz = 0

pz = −p

vz = sq

qz = −q + s
(
mv − uv2(1 − bv)

)
sz = s, (3.26)

and near values of (u, v) satisfying mv − uv2(1− bv) = 0, solutions of (3.26) which
are bounded as z → −∞ can be expanded in terms of modified Bessel functions as
follows. For given u > 4bm, there are three solutions v = v∗(u) ofmv−uv2(1−bv) =
0, namely v∗(u) = 0 or v∗(u) = v±(u). Fixing one of these choices, we consider
v ≈ v∗(u), so that v = v∗(u) + v̄, where |v̄| � 1 is assumed small.

In the case of spots, we are interested in solutions near the vegetated state in the
core; hence, we take v∗(u) = v+(u). Substituting into (3.26), we obtain

uz = 0

pz = −p

v̄z = sq

qz = −q + s
(
κv̄ + O(v̄2)

)
sz = s, (3.27)

where κ := ubv+(u)(v+(u) − v−(u)). Our aim is to construct solutions of (3.25)
which remain bounded as z → −∞ (s → 0). In view of (3.26), when δ = 0, any
such solution must satisfy p ≡ 0, while the equation for (v, q) can be re-expressed in
terms of the fast variable s as

v̄ss + v̄s

s
− κv̄ + O(v̄2) = 0, (3.28)

which, at the linear level, is a zero-order Bessel-type equation whose solutions can be
expressed as linear combinations of the modified Bessel functions I0(

√
κs), K0(

√
κs)

of the first and second kind. The function I0(ζ ) is bounded at ζ = 0, while K0 diverges
logarithmically.

Therefore, given u0 > 4mb and sc > 0, we linearize (3.25) about the solution
(u, p, v, q, s) = (u0, 0, v+(u0), 0, ez), integrate, and solve the resulting fixed-point
equation in terms of the Bessel functions I0(·), K0(·). Defining the subset C := {p =
q = s = 0, v = v+(u), u > 4bm} ⊂ E , this allows us to construct a local three-
dimensional center-unstable manifoldWcu

δ (C) of solutions which are bounded as s →
0 (z → −∞), and in particular converge to C as s → 0. This manifold admits the
expansion
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Wcu
δ (C) =

⎧⎪⎪⎨
⎪⎪⎩

(u, p, v, q, s) ∈ R
5 :

⎛
⎜⎜⎝
u
p
v

q

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u0 + O(δ)

O(δ)

v+(u0) + cI0
(√

κs
)+ O(δ + c2)

c
√

κ I1
(√

κs
)+ O(δ + c2)

⎞
⎟⎟⎠ ,

u0 > 4bm, 0 ≤ s ≤ sc, |c| ≤ c0

⎫⎪⎪⎬
⎪⎪⎭

(3.29)

for sufficiently small |c0| and δ � 1. Here I1 = I ′
0 is the first-order modified Bessel

function of the first kind. The manifoldWcu
δ (C) is parameterized by u0 and c, both of

which will be selected by intersecting with the three-dimensional far-field manifold
Ws(Bfar

δ ) to obtain a spot solution in the full five-dimensional phase space.

3.2.2 Core Transition Region

In the previous subsection, we constructed the core center-unstable manifoldWcu
δ (C)

of solutions which remain bounded as s → 0. Given sc > 0, we obtained expansions
for the manifold Wcu

δ (C) valid for 0 ≤ s ≤ sc, provided δ is taken sufficiently small.
We now aim to track this manifold into the region r = δs = O(1).

Hence, we consider r ∈ [δsc, r0] where sc is as above, fixed large independently of
δ, and r0 > 0 is fixed independently of δ, and δ is taken sufficiently small. We define
the quantity δ̃ := δsc, and we note that since sc � 1 will be fixed independently of
δ, in the limit δ → 0 we have that δ̃ = O(δ) so that δ̃ can be bounded as small as
desired. We return to the fast system (3.1), appending an equation for r , which results
in the following system.

us = δ̃

sc
p

ps = − δ̃ p

scr
− δ̃

sc
(a − u − uv2)

vs = q

qs = − δ̃q

scr
+ mv − uv2(1 − bv)

rs = δ̃

sc
. (3.30)

We view this as a slow–fast system with timescale separation parameter 1/sc. In the
region r ≥ δ̃, the variables u, p, r are slow, while v, q are fast. Rescaling s = scζ , we
obtain the corresponding slow system

uζ = δ̃ p

pζ = − δ̃ p

r
− δ̃(a − u − uv2)
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1

sc
vζ = q

1

sc
qζ = − δ̃q

r
+ mv − uv2(1 − bv)

rζ = δ̃ (3.31)

Letting 1/sc → 0, this system admits a three-dimensional critical manifold Mc
0 =

{q = 0,mv = uv2(1 − bv)}, and the branch Mc,+
0 = {q = 0, v = v+(u), u >

4mb} ⊂ Mc
0 is normally hyperbolic, of saddle type. The reduced flow on Mc,+

0 is
given by

uζ = δ̃ p

pζ = − δ̃ p

r
− δ̃(a − u − uv+(u)2)

rζ = δ̃, (3.32)

noting that the vector field is uniformly bounded in the region of interest r ∈ [δ̃, r0].
In order to determine the dynamics in this region, we desingularize the system and
rescale the independent variable dζ = r

δ̃
dζ̃ , which results in the system

u ζ̃ = rp

pζ̃ = −p − r(a − u − uv+(u)2)

rζ̃ = r . (3.33)

The system (3.33) admits an invariant manifold at r = 0 with dynamics

u ζ̃ = 0

pζ̃ = −p (3.34)

and a line of equilibria given by 
0 := {(u, p) = (u0, 0), u0 > 4bm} which are
attracting within the manifold {r = 0}, each with a one dimensional stable manifold.
In the normal (r ) direction, this line of equilibria is repelling and admits a unique two-
dimensional unstable manifoldWu(
0), which satisfies the following proposition, the
proof of which follows by standard invariant manifold theory.

Proposition 3.2 Consider (3.33). The line of equilibria 
0 admits a unique two-
dimensional unstable manifoldWu(
0), which for all sufficiently small r0 > 0 can be
represented as a graph Wu(
0) = {p = h0(u, r), 0 ≤ r < r0} where

h0(u, r) =
(
u − a + uv+(u)2

)
2

r (1 + O(r)) . (3.35)
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Fig. 7 Shown is the slow flow onMc,+
sc . The manifoldWcu

δ (C) aligns along the unstable fibersWu(Cc,+sc )

of the manifold Cc,+sc in the full system (3.30). WithinMc,+
sc , Cc,+sc aligns alongWu

sc (
0) under the forward
evolution of (3.30)

However, it does not suffice to restrict our attention to small values of r , and in fact
r may need to be taken large. To understand how solutions originating near r = 0
behave for large values of r , we need further information on the nonlinear vector
field (3.33). In general, detailed estimates are not available for Wu(
0) when r is not
small. However,more can be said near a value of uwhich satisfies a−u−uv+(u)2 = 0.
Note that this is the condition satisfied by the equilibrium P2 of the full system (3.1)
provided this equilibrium lies on the branch v = v+(u).

In this case, since a − U2 − U2v+(U2)
2 = 0, the line 
2 := {u = U2, p = 0}

is invariant. Examining the linearization of (3.33) about the invariant line 
2 reveals
a single zero eigenvalue with eigenvector (1, 0, 0), and a negative eigenvalue λ =
−1, while the dynamics along 
2 are simply rζ̃ = r . Therefore, there exists a two-
dimensional, normally attracting manifold Wc(
2) which contains the line 
2, which
can be represented as a graph

Wc(
2) = {p = h2(u, r), 0 ≤ r ≤ r0, |u −U2| ≤ δu} , (3.36)

where h2(u, r) = O(|u − U2|). Moreover, in the region 0 ≤ r � 1, the manifold
Wc(
2) coincides withWu(
0), and hence for simplicity we denote the union of these
manifolds byWu(
0). We emphasize that this (combined) manifoldWu(
0) is locally
invariant and normally attracting. See Fig. 7 for a depiction of Wu(
0).

In the full system (3.30), the manifold Mc,+
0 perturbs to a three-dimensional

slow manifold Mc,+
sc which is O(1/sc)-close to Mc,+

0 , with slow flow given by an
O(1/sc) perturbation of the reduced flow (3.32). In particular, the manifold Wu(
0)

perturbs within Mc,+
sc to a locally invariant manifold Wu

sc(
0). Furthermore, the

four-dimensional stable/unstable manifolds Ws,u(Mc,+
0 ) formed by the union of the

stable/unstable fibers of basepoints on Mc,+
0 also perturb to stable/unstable mani-

folds Ws,u(Mc,+
sc ). We can identify the subset of these manifolds corresponding to

the (un)stable fibers of basepoints on Wu
sc(
0) as three-dimensional locally invariant

manifolds Ws,u(Wu
sc(
0)).
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We now track the core center-unstable manifold Wcu
δ (C) through the region

r ∈ [δsc, r0]. We recall that, given any fixed (large) sc > 0, Wcu
δ (C) admits the

expansion (3.29), which is valid up to s = sc for all sufficiently small δ > 0.
At s = sc (corresponding to the subspace r = δ̃), Wcu

δ (C) is aligned along the
unstable fibers within Wu(Mc,+

sc ) of base point orbits on Mc,+
sc lying on a curve

Cc,+sc = {(u, p, r) : r = δsc, p = O(δ, 1/sc)}. In particular Wcu
δ (C) transversely

intersects the stable fibers of these orbits within Ws(Mc,+
sc ). Tracking under the

forward-flow of (3.30), by the exchange lemma, Wcu
δ (C) aligns O(e−sc)-close to the

unstable fibers withinWu(Mc,+
sc ) of the forward evolution Cc,+sc of the manifold Cc,+sc

withinMc,+
sc ; see Fig. 7.

As the flow on Mc,+
sc is an O(1/sc) perturbation of the reduced flow (3.32), we

are thus able to determine how Wcu
δ (C) emerges at r = r0, noting that for larger

values of r , we only have detailed estimates on Wcu
δ (C) near the solution u = U2 of

a − u − uv+(u)2 = 0.

3.3 Dynamics onM+
ı

In the region r ≥ r0, where r0 > 0 is taken sufficiently small and fixed independently
of δ, we return to the fast system (3.1) and append an equation for r

us = δ p

ps = −δ p

r
− δ(a − u − uv2)

vs = q

qs = −δq

r
+ mv − uv2(1 − bv)

rs = δ. (3.37)

In this region, when δ = 0, this system admits a critical manifoldM0 defined by (3.3),
which can be decomposed into the branchesM0 = M0

0 ∪M−
0 ∪F ∪M+

0 as in (2.8).
For all sufficiently small δ > 0, (any normally hyperbolic portion of) M+

0 perturbs
to a three-dimensional invariant manifold M+

δ and its four-dimensional (un)stable
manifolds perturb to four dimensional locally invariant manifolds Ws,u(M+

δ ). As a
result of the analysis of the previous section, we know thatWcu

δ (C) approaches the set
r = r0 aligned along the strong unstable fibers of orbits onM+

δ which areO(1/sc+δ)-
close to the intersection Wu(
0) ∩ {r = r0}. By Proposition 3.2, this set is given by
the graph


in :=
{
p = pin(u) := h0(u, r0) =

(
u − a + uv+(u)2

)
2

r0 (1 + O(r0))

}
, (3.38)

and the projection of Wcu
δ (C) ∩ {r = r0} onto M+

δ along the unstable fibers within
Wu(M+

δ ) is therefore within O(1/sc + δ) of this graph.
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Likewise, we consider the far-field stable manifold Ws(Bfar
δ ), which we recall

from Sect. 3.1.3 transversely intersectsWu(M+
δ ) in a two-dimensional manifoldHfar

δ

which lies within O(δ) of the set Hfar
0 given by

Hfar
0 = Hvd ∩

{
p = a − uf

K0(1/k)
K1(1/k), k ∈ [0, k̄]

}
, (3.39)

where Hvd is as in Lemma 3.1 and we recall k = 1/r . In other words, Ws(Bfar
δ )

intersectsWu(M+
δ ) transversely along the unstable fibers of orbits lying withinO(δ)

of the set


out := Bfar
0 ∩ {u = uf}

=
{
u = uf , p = pout(r) := a − uf

K0(r)
K1(r), r ∈ [r̄ ,∞)

}
, (3.40)

where r̄ > 0 is arbitrary.
We aim to show the existence of r = rI such that the manifolds Ws(Bfar

δ ) and
Wcu

δ (C) intersect transversely at r = rI near the fast jump in the set {u = uf}. To do
this, we will track orbits onWcu

δ (C) as they evolve according to the dynamics of (3.37)
until reaching the set {u = uf}.

In order to trackWcu
δ (C) through this region, we examine the reduced flow onM+

0 ,
given by

uξ = p

pξ = − p

r
− (a − u − uv+(u)2)

rξ = 1, (3.41)

where we’ve introduced the variable dξ = dr . At r = r0 orbits ofWcu
δ (C) are aligned

along the unstable fibers of orbits crossing 
in. At u = uf , Ws(Bfar
δ ) are aligned

along orbits crossing 
out. Hence, we aim to show in the reduced flow (3.41) that the
forward evolution of trajectories in 
in transversely intersects the set 
out within the
set {u = uf}. This transverse intersection will then persist under perturbation, thereby
obtaining the transverse intersection of Ws(Bfar

δ ) and Wcu
δ (C) for sufficiently small

δ > 0.
We have the following proposition, which is the main result of this section.

Proposition 3.3 Consider the set 
in of initial conditions at r = r0 for the sys-
tem (3.41). The forward evolution of 
in under the flow of (3.41) traces out a
two-dimensional manifold 
in which intersects the set {u = uf} in a curve 
f . If
the parameters a, b,m, satisfy

∫ uf

U2

u − 2mb + √
u2 − 4umb

2b2
du >

1

2
(a −U2)

2, (3.42)
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then, within {u = uf}, there exists r = rI > 0 such that the curve 
f transversely
intersects 
out at r = rI .

We begin with the following lemma which describes the set 
out, given by the graph
of the function pout(r) in (3.40).

Lemma 3.4 Regarding the function pout(r), the following hold.

(i) p′
out(r) < 0 for r ∈ (0,∞).

(ii) limr→0 pout(r) = ∞
(iii) limr→∞ pout(r) = a − uf

Proof For (i), we recall that pout(r) = a−uf
K0(r)

K1(r). Note that a − uf > 0. We have
that

p′(r) = (a − uf)

(
K1(r)2

K0(r)2
− K2(r)

2K0(r)
− 1

2

)

= a − uf
K0(r)2

(
K1(r)

2 − 1

2
K2(r)K0(r) − 1

2
K0(r)

2
)

.

Using the integral form for products of Bessel functions (Olver et al. 2021,
§10.32.17), we see that

1

2
K1(r)

2 =
∫ ∞

0
K2(2r cosh(t))dt =

∫ ∞

0
K0(2r cosh(t)) cosh(2t)dt ,

K2(r)K0(r) = 2
∫ ∞

0
K2(2r cosh(t)) cosh(2t)dt

K0(r)
2 = 2

∫ ∞

0
K0(2r cosh(t))dt .

Note that

K1(r)
2 =

∫ ∞

0
K0(2r cosh(t)) cosh(2t)dt +

∫ ∞

0
K2(2r cosh(t))dt,

so that

K1(r)
2 − 1

2
K2(r)K0(r) − 1

2
K0(r)

2

=
∫ ∞

0
K0(2r cosh(t)) cosh(2t)dt +

∫ ∞

0
K2(2r cosh(t))dt

−
∫ ∞

0
K2(2r cosh(t)) cosh(2t)dt −

∫ ∞

0
K0(2r cosh(t))dt

=
∫ ∞

0
[cosh(2t) − 1] [K0(2r cosh(t)) − K2(2r cosh(t))] dt

< 0,

123



Journal of Nonlinear Science (2023) 33 :107 Page 29 of 51 107

since cosh(2t) − 1 ≥ 0 and K0(x) − K2(x) < 0 for all x ≥ 0, which completes the
proof of (i).

The limits (ii) and (iii) follow directly from asymptotic properties of the functions
K0, K1 (Olver et al. 2021, §10.30). ��

We now describe the evolution of the set of initial conditions 
in to the set u =
uf . At r = r0, we represent the initial conditions 
in via (3.38) as the graph p =
pin(u) := h0(u, r0). For a/m > max {9b/2, 4b + 1/b}, the function f (u) := −(a −
u−uv+(u)2) admits a unique zero u = U2 ∈ (4bm, uf), coincidingwith the uniformly
vegetated equilibrium state P2. We have the following lemma.

Lemma 3.5 Fix uin ∈ (U2, uf). The forward evolution of the initial condition in 
in
given by p = pin(uin) at r = r0 eventually reaches the set {u = uf} at some value of
(p, r) = (pf , rf)(uin).

Proof We show that for any initial condition uin ∈ (U2, uf), under the flow of (3.41),
that uξ is non-decreasing and therefore eventually the u coordinate will reach u = uf
at some r = rf(uin). Since uξ = p, we achieve this by showing that pξ ≥ 0 along
such a trajectory, which ensures that uξ > pin(uin) > 0. We note that pξ > 0 initially
at r = r0 (via (3.38) and (3.41)), and at any location where pξ = 0, we have that
pξξ = p

r2
+ f ′(u)p > 0. Thus, uξ = p is non-decreasing, which ensures that u will

increase towards uin. ��
Taken over all values of uin ∈ (U2, uf), we obtain a curve (p, r) = (pf , rf)(uin)
parameterized by the initial u-coordinate uin ∈ (U2, uf). In order to prove Proposi-
tion 3.3, we show that the curve (p, r) = (pf , rf)(uin) transversely intersects the curve
p = pout(r) (that is, the set 
out) within the plane u = uf , for some value of uin and
corresponding r = rf(uin) =: rI .
Lemma 3.6 The curve (p, r) = (pf , rf)(uin) satisfies r ′

f(uin) < 0 and p′
f(uin) < 0 for

uin ∈ (U2, uf).

Proof We begin with the statement concerning the sign of r ′
f(uin). Consider two

trajectories with two different initial conditions uin = uin,1 and uin = uin,2, with
uin,1 < uin,2, which trace out solution curves (u, p) = (u(r; uin), p(r; uin)). At
r = r0, we have that pin(uin,1) = p(r0; uin,1) < p(r0; uin,2) = pin(uin,2) by (3.38).

We claim this implies p(r; uin,1) < p(r; uin,2) for all r > r0. Suppose for contra-
diction that p(r̃; uin,2) = p(r̃; uin,2), or for some r = r̃ , which represents the first
r value where the two trajectories cross. (Note that since p(r0; uin,1) < p(r0; uin,2),
and p(r; uin) is continuous, we know that there exists this first value r̃ .) Thus,
p(r; uin,2) < p(r; uin,2) for all r < r̃ , which implies that u(r; uin,2) < u(r; uin,2) for
all r < r̃ , since uin,1 < uin,2 and uξ = p. Recall that pξ = − p

r + f (u). Then, since
f (u) is an increasing function of u, we have that pξ (r̃; uin,1) < pξ (r̃; uin,2). (Note
that this is a strict inequality since f ′(u) > 0.) This contradicts the fact that these
solution curves intersect at r̃ since p(r; uin,2) < p(r; uin,2) for all r < r̃ .

Therefore p(r; uin,2) < p(r; uin,2) for all r . This also means that u′(r; uin,1) <

u′(r; uin,2) for all r . Thus, since uin,1 < uin,2, we also obtain that u(r; uin,1) <

u(r; uin,2) for all r . Recall that u(r; uin,1) < u(r; uin,2) < uf for r < rf(uin,2). Thus,
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rf(uin,2) < rf(uin,1). Thus, whenever uin,1 < uin,2, we have that rf(uin,2) < rf(uin,1),
so that rf(uin) is a strictly decreasing function.

We now turn to the sign of p′
f(uin). Again, we consider two trajectories with

initial conditions uin = uin,1, uin,2, with uin,1 < uin,2. Suppose for contradic-
tion that pf(uin,1) ≤ pf(uin,2). Since u′(r; uin,1), u′(r; uin,2) > 0, there exists a
least u = ũ < uf and r̃1, r̃2 < rf at which u(r̃1; uin,1) = u(r̃2; uin,2) = ũ and
p(r̃1; uin,1) = p(r̃2; uin,2) = p̃. Since f ′(u) > 0, and using a similar argument as
above, we have that r̃1 > r̃2.

We express the solution curve (u, p) = (u(r; uin,1), p(r; uin,1)) as a graph u =
u1(p) over p, and similarly the curve (u, p) = (u(r; uin,1), p(r; uin,1)) as u = u2(p).
Then at p = p̃, we have

dui
dp

= p̃

− p̃
r̃i

+ f (ũ)
, i = 1, 2

from which we see that du1
dp < du2

dp , which contradicts the fact that u1(p) must cross
u2(p) from below. Thus, we conclude that for any uin,1 < uin,2, we have pf(uin,1) >

pf(uin,2), so pf(uin) is a strictly decreasing function of uin. ��
Lemma 3.6 shows that pf(uin) and rf(uin) are both strictly decreasing functions

of uin ∈ (U2, uf). We now consider the limiting behavior of (pf , rf)(uin) as uin
approaches the limits uin = U2 and uin = uf . In preparation, we consider (3.41) in
the limit r → ∞, resulting in the vector field

uξ = p

pξ = u − a + u(v+(u))2 = f (u), (3.43)

which admits the conserved quantity

E(u, p) = −1

2
p2 +

∫ u

U2

f (ũ)dũ (3.44)

= −1

2
p2 +

∫ u

U2

ũ − a + ũ(v+(ũ))2dũ. (3.45)

Note that E(U2, 0) = 0, and define pf,∞ to be the unique positive solution of
E(uf , pf,∞) = 0, corresponding to the intersection of the unstable manifold of the
saddle equilibrium (u, p) = (U2, 0) of (3.43) with the set u = uf . We have the
following.

Lemma 3.7 The curve (p, r) = (pf , rf)(uin) satisfies the following.

(i) limuin→uf (pf(uin), rf(uin)) = (pin(uf), r0)
(ii) limuin→U2(pf(uin), rf(uin)) = (pf,∞,∞)

Proof The limit (i) follows directly from the definition of (pf(uin), rf(uin)) and (3.38).
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For (ii), we aim to compute the limit limrf→∞ pf(rf). Note that pin(uin) → 0 as
uin → U2, as 
in coincides at u = U2 with the invariant line 
2 corresponding to the
fixed point (u, p) = (U2, 0). Hence, to determine the behavior of trajectories lying
on 
in with values of u ≈ U2, we can track such trajectories along the invariant line

2 to large values of r . In particular, for any fixed R0 � 1, there exists δR0 such
that the forward evolution of 
in traces out a two dimensional manifold 
in which
contains the invariant line 
2 and intersects the plane r = R0 in a curve which can be
represented as a graph p = h2(u, R0) over |u−U2| < δR0 satisfying ∂uh2(U2, R0) =√

f ′(U2) + O(1/R0).
We set r = 1/k and arrive at the system

uξ = p

pξ = −kp + f (u)

kξ = −k2. (3.46)

The invariant set k = 0 (corresponding to r = ∞) contains the limiting system (3.43)
for the variables (u, p), whose solutions lie on level sets of the function E(u, p),
with the saddle-type equilibrium (u, p) = (U2, 0) satisfying E(U2, p) = 0. The
two branches of this level set correspond to the one-dimensional stable and unstable
manifolds Wu/s,∞(U2, 0) of the equilibrium within the invariant set k = 0, which
are tangent to the lines p = ±√ f ′(U2)(u − U2). The manifolds Wu/s,∞(U2, 0)
extend to two-dimensional center-stable/center-unstable manifolds Wcu/cs,∞(U2, 0)
for small k � 1 which intersect along the invariant line 
2 = {u = U2, p = 0}.
Let k0 := 1/R0 � 1. Recall the manifold 
in intersects the set k = k0 in a curve
which can be represented as a graph over |u − U2| < δR0 given by p = h2(u, R0)

satisfying ∂uh2(U2, R0) = √
f ′(U2) + O(k0). Therefore at k = k0, 
in is aligned

close to Wcu,∞(U2, 0) at the linear level and transversely intersects Wcs,∞(U2, 0)
along the invariant line 
2. Thus, as k → 0, 
in aligns along the branch of the level
set E(U2, p) = 0 corresponding to Wu,∞(U2, 0), and contains the invariant line 
2.
From this, we see that as uin → U2, rf(uin) → ∞ and the corresponding solution
approaches the manifold Wu

0 (U2, 0), so that pf(uin) → pf,∞ as claimed. ��

Combining this with the results of Lemma 3.4, we are able to complete the proof
of Proposition 3.3.

Proof of Proposition 3.3 As described above, the forward evolution of 
in reaches the
set u = uf in a curve (pf , rf)(uin) parameterized by uin ∈ (U2, uf). By Lemma 3.6,
pf(uin) and rf(uin) are both strictly decreasing functions of uin ∈ (U2, uf), so we
can express the curve (pf , rf)(uin) as a graph pf = pf(r) satisfying p′

f(r) > 0 for
r ∈ (r0,∞), limr→r0 pf(r) = pin(uf) = O(r0) and limr→∞ pf(r) = pf,∞.

Furthermore, by Lemma 3.4, within the set u = uf , 
out is given by a graph
p = pout(r) which satisfies p′

out(r) < 0 for r ∈ (0,∞) with limr→0 pout(r) = ∞
and limr→∞ pout(r) = a − uf .

Therefore, in order for the sets
in and
out to intersect transversely at some r = rI ,
it only remains to checkwhether pf,∞ > a−uf . Equivalently, a transverse intersection
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occurs provided E(uf , a − uf) > E(uf , pf,∞) = E(U2, 0) = 0, which occurs if

0 < −1

2
(a − uf)

2 +
∫ uf

U2

u − a + u(v+(u))2du, (3.47)

or equivalently

∫ uf

U2

u − 2mb + √
u2 − 4umb

2b2
du >

1

2
(a −U2)

2. (3.48)

��

3.4 Proof of Theorems 1.2–1.3

The results of the preceding Sects. 3.1–3.3 allow us to complete the construction of
radial spot solutions in (1.1).

Proof of Theorem 1.2 As in Sect. 3.3, we track the far-field manifold Ws(Bfar
δ ) into

a neighborhood of M+
δ , where it aligns along the unstable fibers of orbits which

cross the set {u = uf} within O(δ) of the set 
out. Likewise, the manifold Wcu
δ (C)

of solutions bounded at the core can be tracked into a neighborhood of M+
δ , where

it aligns within O(1/sc + δ) of the unstable fibers of orbits crossing the set {r = r0}
along the curve 
in. By Proposition 3.3, the forward evolution of 
in reaches the set
u = uf in the curve 
f which transversely intersects 
out at some r = rI , provided

∫ uf

U2

u − 2mb + √
u2 − 4umb

2b2
du >

1

2
(a −U2)

2. (3.49)

Therefore, the manifoldsWs(Bfar
δ ) andWcu

δ (C) intersect transversely, correspond-
ing to a radial spot solution bounded on r ∈ [0,∞), with a single sharp interface
occurring at r = rI + O(δ). The value Vc(a, b,m) is determined by the coordinate
v+(u0) in corresponding fiber ofWcu

δ (C) in the limit δ → 0; see (3.29).
Finally, the condition (1.7) can be obtained from a lengthy but straightforward

computation by carrying out the integration in (3.49) and using the steady equation
satisfied by U2. ��

Regarding gaps, we similarly complete the proof of Theorem 1.3.

Proof of Theorem 1.3 The argument is similar to that ofTheorem1.2.Webrieflyoutline
the differences which result in the opposite condition (1.8).

The geometry of the construction is quite similar, except opposite in that the far field
manifold consists of solutions asymptotic to the equilibrium (U2, V2) on the critical
manifold M+

δ , and the core manifold consisting of solutions bounded as r → 0 is
constructed from orbits originating near the desert state (U0, V0) onM0

δ . In this case
building the core manifold is somewhat less involved since the flow on M0

δ is linear,
and the solutions are given explicitly in terms of modified Bessel functions. However,
in the far field one must deal with the nonlinear flow onM+

δ .
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In this case, the manifold Wcu
δ (C) intersects Ws(M+

δ ) in the set {u = uf} trans-
versely along the unstable fibers of orbits lying within O(δ) of the set


in :=
{
u = uf , p = pin(r) := uf − a

I0(r)
I1(r), r ∈ [0, r̄ ]

}
, (3.50)

where r̄ > 0 is arbitrary. We note that, using asymptotic properties of modified Bessel
functions, it can be shown similarly as in Sect. 3.3 that pin is an increasing function
of r with limr→0 pin(r) = 0 and limr→∞ pin(r) = uf − a.

In the far field, analogously to the case of spots, we can construct the two-
dimensional far field manifold Bfar

0 within M+
0 as the set of solutions of the

system (3.41) which remain bounded as r → ∞. In the limit r → ∞, this sys-
tem approaches the system (3.43), the solutions of which are given by level sets of
the conserved quantity (3.44). Let pfar(rI ) denote the p coordinate at r = rI of the
solution which is bounded as r → ∞ and satisfies u(rI ) = uf . Then, using similar
arguments as in Sect. 3.3, we see that pfar is an increasing function of rI which satisfies
limrI→∞ pfar(rI ) = −pf,∞, where pf,∞ satisfies E(uf ,−pf,∞) = 0.

Thus, in order to have an intersection ofWcu
δ (C) and the stable fibersWs

δ(Bfar
δ ), and

thus a radial gap solution with a single interface at some value of r = rI , a sufficient
condition is E(uf , uf − a) < E(uf ,−pf,∞) = E(U2, 0) = 0, or equivalently,

∫ uf

U2

u − 2mb + √
u2 − 4umb

2b2
du <

1

2
(a −U2)

2, (3.51)

which is precisely the opposite condition as that which guarantees the existence of
spots. The estimate for vg(r) as r → 0 is due to the exponential decay along the fast
fibers of Wu(M0

δ ), and the fact that the subspace {v = q = 0} is invariant under the
flow of (3.25) for δ > 0. ��

3.5 Rings, Targets, and Other Radially Symmetric Solutions

The techniques used in Sects. 3.1–3.4 to construct spot and gap solution could be used
to construct other localized solutions with radial symmetry as follows: The general
strategy is the same, in that to construct a solution which is asymptotically constant,
and bounded as r → 0, as in the case of spots/gaps, we construct a core manifold
Wu

δ (C) of states originating near one of the desert or vegetated steady states (U0, V0)
or (U2, V2). We similarly construct a far-field stable manifold Ws

δ(Bfar
δ ) of solutions

bounded as r → ∞ consisting of stable fibers of one of the steady states (U0, V0) or
(U2, V2), which could be the same or different from the state near the core.

Then, to construct a radially symmetric profile with a desired number of interfaces,
the core manifoldWu

δ (C) is tracked along a number of fast jumps alternating between
M0

δ and M+
δ as a sequence of radii r j , j = 1, 2, 3, . . ., in between which Wu

δ (C)

follows the slow flow of the corresponding slow manifoldM0
δ orM+

δ , entering along
its fast stable fibers, and exiting aligned along its fast unstable fibers according to the
exchange lemma.
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This procedure could be used, in principle, to construct ring or target profiles with
any desired (finite) number of interfaces. Some examples obtained numerically are
presented in Sect. 5.

4 Spot Instabilities

In this section, we examine the stability of the spot solutions from Theorem 1.2,
and in particular we demonstrate several instabilities exhibited by these solutions
when considering 2D perturbations. As we are primarily interested in demonstrating
potential instabilitymechanisms,wedonot take a rigorous approach, but rather employ
formal asymptotic arguments; however, we emphasize that rigorous results could be
obtained using similar methods as in the existence analysis in Sect. 3.

We linearize (1.1) about a radial spot solution (usp, vsp)(r) = (usp, vsp)(r; a, b,m, δ)

of Theorem 1.2 using an ansatz of the form

(U , V ) = (usp, vsp)(r) + eλt+i
θ (u, v)(r)

for 
 ∈ Z, which results in the eigenvalue problem

λu = urr + 1

r
ur − 
2

r2
u −

(
1 + vsp(r)

2
)
u − 2usp(r)vsp(r)v

λv = δ2
(

vrr + 1

r
vr − 
2

r2
v

)
− mv + vsp(r)

2 (1 − bvsp(r)
)
u

+ usp(r)
(
2vsp(r) − 3bvsp(r)

2
)

v. (4.1)

We consider the essential spectrum associated with spot solutions in Sect. 4.1. The
point spectrum forwave numbers |
| = O(1) is considered in Sect. 4.2 and is evaluated
asymptotically in the limit of spots of large radius in Sect. 4.3, where the sideband
stability from nearby planar front solutions (see Sect. 2.4) is recovered in the limit
rI � 1. Finally, the point spectrum for large wavenumbers |
| � 1 is considered
in Sect. 4.4.

4.1 Essential Spectrum

The essential spectrum associated with the radial spot solution (usp, vsp)(r; a, b,m, δ)

is determined by considering the limit r → ∞ in (4.1), and computing the 1D essential
spectrum of the asymptotic rest state limr→∞(usp, vsp)(r) = (a, 0).

Lemma 4.1 Consider a spot solution (usp, vsp)(r; a, b,m, δ) of Theorem 1.2. Then,
the essential spectrum �ess ⊂ {λ ∈ C : Re λ ≤ −β}, where β = min{1,m} > 0.
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Proof Letting r → ∞, and writing (4.1) as a first-order system, we obtain

⎛
⎜⎜⎝
ur
pr
vr
qr

⎞
⎟⎟⎠ = A∞

⎛
⎜⎜⎝
u
p
v

q

⎞
⎟⎟⎠ , A∞ =

⎛
⎜⎜⎝

0 1 0 0
1 + λ 0 0 0
0 0 0 1

δ

0 0 m+λ
δ

0

⎞
⎟⎟⎠ . (4.2)

The essential spectrum �ess consists of λ ∈ C for which the matrix A∞ is not hyper-
bolic. A short computation shows that this can only occur in the region {λ ∈ C :
Re λ ≤ −β}, where β = min{1,m} > 0. ��

4.2 Point Spectrum for |�| = O(1)

Near the interface r = rI , we change variables to r = rI + δs for s ∈
(−ν| log δ|, ν| log δ|) for some ν � 1. Due to the exponential convergence of the
front of the fast subsystem between the critical manifoldsM0

0 andM+
0 , for ν chosen

sufficiently large, this interval captures the portion of the spot solution which lies out-
side an O(δ)-neighborhood of the slow manifolds M0

δ and M+
δ . In this region, the

eigenvalue problem (4.1) becomes

δ2λu = uss + δ

rI + δs
us − δ2
2

(rI + δs)2
u − δ2

(
1 + v2sp

)
u − 2δ2uspvspv

λv = vss + δ

rI + δs
vs − δ2
2

(rI + δs)2
v − mv + v2sp

(
1 − bvsp

)
u

+ usp
(
2vsp − 3bv2sp

)
v. (4.3)

For wavenumbers |
| = O(1)with respect to δ, we expand solutions of this eigenvalue
problem in terms of the reduced fast system

λv = vss − mv + uf
(
2vvd − 3bv2vd

)
v, (4.4)

which is an eigenvalue problem of Sturm–Liouville type, obtained by linearizing the
fast subsystem about the front φvd, and which has a solution given by the derivative
v′
vd when λ = 0. For (4.3), we expand the eigenfunction

(
u
v

)
=
(

0
v′
vd

)
+ δ

(
ū1
v̄1

)
+ O(δ2)

and eigenvalue parameter λ(
) = δλ1(
) + O(δ2), as well as the solution

(
usp
vsp

)
=
(
uf
vvd

)
+ δ

(
u1
v1

)
+ O(δ2).
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Substituting into (4.3), we obtain to leading order

0 = (ū1)ss + δ

rI
(ū1)s − δ2
2

r2I
ū − 2δufvvdv

′
vd

λ1v
′
vd = L0v̄1 + 1

rI
v′′
vd − δ
2

r2I
v′
vd + v2vd (1 − bvvd) ū1

+ u1
(
2vvd − 3bv2vd

)
v′
vd + uf

(
2 − 6bv2vd

)
v1v

′
vd, (4.5)

where

L0 := ∂2s − m + uf
(
2vvd − 3bv2vd

)
. (4.6)

Considering the first equation of (4.3), we write as a first-order system

(ū1)s = δ p̄1

( p̄1)s = − δ

rI
p̄1 + 2ufvvdv

′
vd, (4.7)

so that ū1 is constant to leading order. We now expand the existence problem across
the fast jump near r ≈ rI as

0 = (u1)ss + δ

rI + δs
(u1)s + δ(a − u − uv2)

0 = (v1)ss + 1

rI + δs
v′
vd + δ

rI + δs
(v1)s − mv1 + uf

(
2vvd − 3bv2vd

)
v1

+ u1v
2
vd(1 − bvvd) (4.8)

and differentiate the second equation with respect to s to obtain to leading order

0 = L0(v1)s + 1

rI
v′′
vd + uf (2 − 6bvvd) v1v

′
vd + (u1)sv

2
vd(1 − bvvd)

+ u1
(
2vvd − 3bv2vd

)
v′
vd. (4.9)

Substituting into the second equation of (4.3), we have to leading order

λ1v
′
vd = L0v̄1 − L0(v1)s + v2vd (1 − bvvd) ū1 − (u1)sv

2
vd(1 − bvvd).

Using the fact that L0 is self-adjoint, we take the inner product of this equation with
v′
vd and obtain the solvability condition

λ1 = ((u1)s − ū1)
− ∫∞

−∞ v2vd (1 − bvvd) v′
vdds∫∞

−∞ v′2
vdds

.
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Since v′
vd is strictly negative, the sign of λ1 is given by the sign of the prefactor

((u1)s − ū1). The value of (u1)s is easily determined through the expansion of the
existence problem since

u′
sp = δ(u1)s + O(δ2), (4.10)

so that (u1)s = a−uf
K0(rI )

K1(rI ) corresponding to the leading-order p-value across the
fast jump at r = rI . From this, we obtain the solvability condition

λ1 =
(

(a − uf)

K0(rI )
K1(rI ) − ū1

) − ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds
. (4.11)

It remains to determine the constant ū1 in (4.11). To determine ū1, we recall
from (4.7) that ū1 is constant, whilst p̄1 satisfies to leading order

p̄01 = p̄+
1 +

∫ ∞

−∞
2ufvvdv

′
vdds

= p̄+
1 − ufv+(uf)

2,

where p̄01, p̄
+
1 denote the limiting values of p̄1 on either side of the fast jump, when the

solution approaches the critical manifolds M0
0,M+

0 , respectively. To determine ū1,
we construct bounded eigenfunctions (ū0, p̄0)(r) and (ū+, p̄+)(r) in the slow regions
near M0

0,M+
0 , respectively, such that across the fast jump at r = rI , we have

ū0(rI ) = ū+(rI )

p̄0(rI ) = p̄+(rI ) − ufv+(uf)
2. (4.12)

We begin by analyzing the linearized equation in the slow variables on M0
0. We note

that here vsp(r) = 0 to leading order; inspecting (4.1) and recalling λ = δλ1, we obtain
that v = 0 to leading order on M0

0, so that u satisfies the leading-order equation

0 = urr + 1

r
ur − 
2

r2
u − u, (4.13)

which is a modified Bessel’s equation. For each 
, this equation admits a unique
solution which is bounded as r → ∞, which is the modified Bessel function of
the second kind K
(r). We therefore obtain the leading-order solution (ū0, p̄0)(r) =
(αK
, αK ′


)(r) in the slow region r > rI .
Near M+

0 , the slow reduced equations are not as straightforward, due to the non-
linear reduced flow on M+

0 . In particular inspecting (4.1), to leading order we have
that v satisfies

v = v+(r)2(1 − bv+(r))

m − u+(r)(2v+(r) − 3bv+(r)2)
u, (4.14)
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where v+(r) := v+(u+(r)) and u+(r) is the solution in the slow region for r < rI .
Substituting into (4.1), we obtain the leading order equation for u in the slow region

0 = urr + 1

r
ur − 
2

r2
u −

(
1 + v+(r)2

)
u − 2u+(r)v+(r)3(1 − bv+(r))

m − u+(r)(2v+(r) − 3bv+(r)2)
u

= urr + 1

r
ur − 
2

r2
u − u − v+(r)2(m + u+(r)v+(r)2)

m − u+(r)(2v+(r) − 3bv+(r)2)
u. (4.15)

The solutions of this equation do not appear to have a nice representation in terms of
special functions. However, this equation is of the form

0 = urr + 1

r
ur − 
2

r2
u − u − f+(r)u, (4.16)

where f+(r) has a well-defined limit as r → 0. As r → 0, the equation behaves like a
Bessel-type equation, and it is possible to show that there is a unique (up to a constant
multiple) solution u = u∗


(r) for each 
 which is bounded as r → 0. To see this, we
rewrite (4.16) as

uη = d

dη = 
2u + r2u + r2 f+(r)u

rη = r , (4.17)

where η = log r . The system (4.17) has a fixed point at the origin which admits a two-
dimensional unstable manifold corresponding to a one-dimensional space of solutions
of the non-autonomous linear system (4.16) which are bounded as η → −∞ (r → 0).
This space is spanned by a non-trivial solution, which we denote by u = u∗


(r), which
will serve as a candidate eigenfunction in the slow region r < rI . We therefore obtain
the leading-order solution (ū+, p̄+)(r) = (βu∗


, β(u∗

)

′)(r) in the slow region r < rI .
Using the conditions (4.12), we obtain

αK
(rI ) = βu∗

(rI )

αK ′

(rI ) = β(u∗


)
′(rI ) − ufv+(uf)

2, (4.18)

which we can solve to determine

ū1 = αK
(rI ) = ufv+(uf)2K
(rI )u∗

(rI )

K
(rI )(u∗

)

′(rI ) − K ′

(rI )u

∗

(rI )

, (4.19)

and so

λ1 = λ1(
) =
(

(a − uf)K1(rI )

K0(rI )
− ufv+(uf)2K
(rI )u∗


(rI )

K
(rI )(u∗

)

′(rI ) − K ′

(rI )u

∗

(rI )

)
×
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− ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds
. (4.20)

In general, we require information about the solution u∗

 to be able to determine the

sign of this quantity as a function of 
. This is non-trivial to do in general, as u∗

 likely

does not have a direct representation in terms of special functions. However, in certain
limiting cases we can approximate (4.20). For sufficiently large spots rI � 1, we
argue in Sect. 4.3 that such spots inherit instabilities from nearby planar front solutions
(see Sect. 2.4). We consider the case of large wavenumbers |
| � 1 in Sect. 4.4.

4.3 Large Spots: Recovering the Sideband Instability

In this section,we consider the critical eigenvalue expression (4.20) in the case of a very
large radial spot solution, that is rI � 1.Near the core, such a solution is approximately
constant,while at the interface, the solution resembles a stationary planar front between
the desert and vegetated equilibrium states. In the limit rI → ∞, in the far field the
solution approaches the stationary planar front and inherits the (in)stability properties
of the front. To see this, in this section we estimate the expression (4.20) in the
asymptotic limit rI → ∞.

Remark 4.2 To investigate this limit, one option would be to apply the approach
from Sect. 2.4 to (4.3) under the assumption rI � 1, as for the stability of travel-
ing fronts. However, since we do not intend to repeat the analysis from Carter et al.
(2022) which results in the expression (2.28), in this section we provide a more direct
method by estimating the expression (4.20) in the asymptotic limit rI → ∞.

We estimate the expression (4.20) for finite values of 
 ∈ Z as rI → ∞. The
expression is explicit (in terms of special functions) except for the value of u∗


(rI ),
where u∗


(r) is the unique bounded solution (up to a constant) of (4.15) as r → 0.
In the case of large rI � 1, we can approximate u∗


(rI ) as follows. Note that when

 = ±1, (4.15) reduces to

0 = urr + 1

r
ur − 1

r2
u − u − v+(r)2(m + u+(r)v+(r)2)

m − u+(r)(2v+(r) − 3bv+(r)2)
u, (4.21)

which admits a solution bounded at r = 0, given by the derivative u′+(r), where u+(r)

is the core solution on M+
0 which satisfies u+(rI ) = uf and u′+(rI ) = (a−uf )K1(rI )

K0(rI )
.

Using reduction of order, we can find another linearly independent solution of this
equation, given by

u2(r) := u′+(r)
∫ r

rI

ds

su′+(s)2
,

and the Wronskian of u1 := u′+ and u2 is given by W (u1, u2)(r) = r−1. We now
assume rI � 1 and attempt to construct the leading-order bounded solution of (4.15)
on the interval [0, rI ] as rI → ∞. We split this interval into [0, rI ] = [0, rI − R] ∪
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[rI − R, rI ], where rI � R � 1. Since the vector field for the existence problem on
M+

0 for large r is given by (3.43), by taking R sufficiently large, we can arrange for
(u+, u′+)(rI − R) = (U2, 0)+O(e−νR) for some ν > 0 fixed independent of R. Thus
on the interval [0, rI − R] (4.15) is approximately

0 = urr + 1

r
ur − 
2

r2
u − κ0u, (4.22)

where

κ0 = 1 + v+(U2)
2(m +U2v+(U2)

2)

m −U2(2v+(U2) − 3bv+(U2)2)
, (4.23)

which admits a unique bounded solution as r → 0 given by the modified Bessel func-
tion I
(

√
κ0r). Note that since rI � R, by asymptotic properties of Bessel functions

I
(
√

κ0(rI − R)) ∼ e
√

κ0(rI −R)√
2πrI

.

On the interval [rI −R, rI ], under the assumption 
2−1
r2

= 
2−1
r2I

(
1 + O

(
R2

r2I

))
�

1,we expand the bounded solution of (4.15) as u∗

 = u1(r)+ 
2−1

r2I
ũ(r)where ũ satisfies

0 = ũrr + 1

r
ũr − 1

r2
ũ − ũ − v+(r)2(m + u+(r)v+(r)2)

m − u+(r)(2v+(r) − 3bv+(r)2)
ũ = u1 (4.24)

to leading order in 
2−1
r2I

. We write the solution of this system using variation of

constants as

ũ(r) = C1u1(r) + C2u2(r) − u1(r)
∫ r

rI
su1(s)u2(s)ds

+ u2(r)
∫ r

rI−R
su1(s)

2ds. (4.25)

Recalling u∗

(r) = u1(r) + 
2−1

r2I
ũ(r), in order to construct a bounded solution as

r → 0, we must have (u, u′)(r) ≈ (C3 I
,C3 I ′

)(κ0r) at r = rI − R for some constant

C3 in order to match with the bounded solution I
 on the interval [0, rI − R]. Using
the fact that u1(rI −R) decays exponentially in R as R → ∞, while u2(rI −R) grows
exponentially as R → ∞ and I
(

√
κ0(rI −R)) ∼ e−√

κ0R I
(
√

κ0rI ) for 1 � R � rI ,
we see that wemust chooseC2 ≈ 0 in order to ensure u(r) remains bounded as r → 0.
Thus, we obtain the solution

u∗

(r) ∼ u1(r) − (
2 − 1)

r2I
u1(r)

∫ r

rI
su1(s)u2(s)ds

+ (
2 − 1)

r2I
u2(r)

∫ r

rI−R
su1(s)

2ds. (4.26)
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It remains to determine the coefficient (4.20). From (4.26), we have that

u∗

(rI ) ∼ u1(rI ) = u′+(rI )

(u∗

)

′(rI ) ∼ u′
1(rI ) + (
2 − 1)

r2I
u′
2(rI )

∫ rI

rI−R
su1(s)

2ds

= u′′+(rI ) + (
2 − 1)

r3I u
′+(rI )

∫ rI

rI−R
su′+(s)2ds

∼ u′′+(rI ) + (
2 − 1)

r2I u
′+(rI )

∫ rI

rI−R
u′+(s)2ds.

From this, we find that

(
K
(rI )(u

∗

)

′(rI ) − K ′

(rI )u

∗

(rI )

) ∼ K
(rI )

(
u′′+(rI ) + (
2 − 1)

r2I u
′+(rI )

∫ rI

rI−R
u′+(s)2ds

)

− K ′

(rI )u

′+(rI )

= K
(rI )

(
uf − a + ufv+(uf)

2 + (
2 − 1)

r2I u
′+(rI )

∫ rI

rI−R
u′+(s)2ds

)

− u′+(rI )

(
K ′


(rI ) + K
(rI )

rI

)

= K
(rI )ufv+(uf)
2 + K
(rI )

(
2 − 1)

r2I u
′+(rI )

∫ rI

rI−R
u′+(s)2ds

+ (uf − a)

K0(rI )

(
K
(rI )K0(rI ) + K1(rI )

(
K ′


(rI ) + K
(rI )

rI

))

= K
(rI )ufv+(uf)
2 + K
(rI )

(
2 − 1)

r2I u
′+(rI )

∫ rI

rI−R
u′+(s)2ds

+ (uf − a)

K0(rI )

(
K1(rI )K

′

(rI ) − K
(rI )K

′
1(rI )

)

∼ K
(rI )ufv+(uf)
2 + (
2 − 1)

r2I

(
K
(rI )

u′+(rI )

∫ rI

rI−R
u′+(s)2ds + (a − uf) π

4rI K0(rI )
e−2rI

)
,

where we used the recurrence formulas (Olver et al. 2021, §10.29(i)) and asymptotic
relations (Olver et al. 2021, §10.40(i)) for modified Bessel functions. Therefore, we
obtain

λ1(
) ∼ 
2 − 1

r2I ufv+(uf)2

(∫ rI

rI−R
u′+(s)2ds + (uf − a)2

2

) − ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds

∼ 
2 − 1

r2I

1

ufv+(uf)2

(∫ 0

−∞
u′+,∞(s)2ds + (uf − a)2

2

)
×
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− ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds
, (4.27)

where we again use asymptotic properties of modified Bessel functions, and the fact
that on the interval r ∈ [rI − R, rI ], the solution u+(r) is approximately u+(r) ∼
u+,∞(r−rI ), where u+,∞(s) is the solution for the reduced flow onM+

0 which forms
part of the singular stationary front solution in the limit rI → ∞, which satisfies
u+,∞(0) = uf . Returning to (2.28), and noting that

u′
0,∞(ξ) = (a − uf)e

ξ (4.28)

in the case of a stationary front cvd = 0, we see that for large rI � 1, we recover the
coefficient (2.28) for λ1(
) with the prefactor 
2−1

r2I
.

4.4 Point Spectrum for |�| � 1

When |
| � 1 (butO(1) with respect to δ), we can obtain asymptotic approximations
for K
 and u∗


 in (4.20). For the former, we can employ standard asymptotic results
for modified Bessel functions (Olver et al. 2021). For the latter, we consider (4.15) in
the limit of large |
|. Considering (4.20) and rearranging the term involving K
 and
u∗


 , we see that

λ1(
) =
⎛
⎜⎝ (a − uf)K1(rI )

K0(rI )
− ufv+(uf)2

(u∗

)

′(rI )
u∗


(rI )
− K ′


(rI )
K
(rI )

⎞
⎟⎠ − ∫∞

−∞ v2vd (1 − bvvd) v′
vdds∫∞

−∞ v′2
vdds

.

(4.29)

Defining w∗

 (r) = r

|
|
(u∗


)
′(r)

u∗

(r)

, and using (4.15), we have that w = w∗

 (r) satisfies the

equation

wr = |
|
r

(
1 − w2

)
+ r

|
| (1 + f+(r)) , (4.30)

where

f+(r) = v+(r)2(m + u+(r)v+(r)2)

m − u+(r)(2v+(r) − 3bv+(r)2)
. (4.31)

Appending an equation for r and rescaling the spatial coordinate, we have the equiv-
alent autonomous system

w′ =
(
1 − w2

)
+ r2


2
(1 + f+(r))
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r ′ = r

|
| , (4.32)

which, for large |
| � 1, admits two invariant manifolds which are defined up to
r = 0, given by w±(r; 
) = ±1 + O(|
|−1). The manifold w = 1 is attracting while
w = −1 is repelling. For large |
|, in order for u∗


(r) to be bounded as r → 0, the
solution w∗


 (r) must lie on the manifold w+(r; 
), and hence w∗

 (r) ∼ 1 for large |
|.

Therefore,
(u∗


)
′(r)

u∗

(r)

∼ |
|
r as |
| → ∞. A similar argument (or using the asymptotic

expressions in Olver et al. 2021, §10.41) shows that
K ′


(r)
K
(r)

∼ −|
|
r . Finally, returning

to (4.29), we have that

λ1(
) =
(

(a − uf)K1(rI )

K0(rI )
− ufv+(uf)2rI

2|
|
) − ∫∞

−∞ v2vd (1 − bvvd) v′
vdds∫∞

−∞ v′2
vdds

∼
(

(a − uf)K1(rI )

K0(rI )

) − ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds

> 0

for |
| � 1 sufficiently large (butO(1) with respect to δ), so that spots of radius rI =
O(1) are always unstable. In particular, the spots we have constructed in Sect. 3 are
unstable to (suitably) largewave numbers 
. However, for sufficiently small spots (rI =
o(1) with respect to δ), the above argument is no longer valid, and it is not possible to
rule out stable spots; see Sect. 5 for some solutions obtained numerically. However,
the regime rI = o(1) lies outside the scope of the existence analysis in Sect. 3.

Next, we note that if 
 = 
̄δ−1/2 for some 0 < 
̄ = O(1), a similar analysis as
in Sect. 4.2 results in the solvability condition

λ1 = − 
̄2

r2I
+
(

(a − uf)

K0(rI )
K1(rI )

) − ∫∞
−∞ v2vd (1 − bvvd) v′

vdds∫∞
−∞ v′2

vdds
(4.33)

(in place of (4.20)) so that spots are always unstable to wavenumbers of the form

 = 
̄δ−1/2 where 
̄ is small butO(1). For larger wavenumbers, the first term in (4.33)
dominates so that λ1(
) < 0. Thus, a switch from unstable to stable wavenumbers
occurs at some critical 
 = 
̄δ−1/2.

Finally, if 
 = 
̄
δ
for some 0 < 
̄ = O(1), to construct a bounded solution of (4.3),

to leading order we must have u ≡ 0, and the fast equation in (4.3) reduces to

λv + 
̄2

r2I
v = vss − mv + uf

(
2vvd − 3bv2vd

)
v, (4.34)

which is just the Sturm–Liouville problem (4.4), but with λ shifted by 
̄2

r2I
. The prob-

lem (4.4) has an eigenvalue at 0 due to translation invariance of the front vvd, while
any other eigenvalues are bounded away from the imaginary axis. Hence, we have that
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any eigenvalues of (4.34) lie in the region

{
λ ∈ C : Reλ ≤ − 
̄2

r2I

}
. Thus, there are no

further instabilities of λ(
) for |
| = O(1/δ) or larger.

5 Numerical Simulations and Discussion

The results of Sect. 4 demonstrate that the spot and gap solutions of Theorems 1.2–
1.3 are unstable with respect to sufficiently large wave numbers |
| � 1 for spots
of radius 0 < rI = O(1) with respect to δ. We further showed in Sect. 4.3 that
spots are unstable to smaller wave numbers in the limit of large radius rI � 1. The
radius can be controlled by choosing parameters closer/further from the hypersurface
in (a, b,m) parameter space given by the relation (2.18), which simultaneously rep-
resents the existence condition for stationary fronts, and the boundary between the
existence regions for the spots and gaps. Taking parameters closer to this threshold
results in spots/gaps of larger radius, which are therefore better approximated by the
corresponding nearby stationary front, with the leading order expression for λ1(
)

approximated by the asymptotic relation (4.27).
In Fig. 8, we demonstrate this for particular parameter values m = 0.5, b = 1,

and values of a nearby a ≈ 2.6369 which is the value of a satisfying (2.18) for
(m, b) = (0.5, 1), thus representing the location of the stationary front from Sect. 2.3
in the limit δ → 0. Figure8 depicts a radial profile of a spot solution of radius rI ≈ 5.66
(the value of rI is approximated by the location of the inflection point of the v-profile
of the solution), as well as the corresponding eigenvalues λ(
) for −12 ≤ 
 ≤ 12.
We see good agreement when comparing with the curve obtained by numerically
continuing the critical eigenvalue (2.20) under the rescaled wavenumber 
 → 
/rI ,
for a (slowly) traveling front found for the same parameter values. (The front has a
wave speed close to zero, as we are near the parameter values corresponding to the
singular stationary front fromSect. 2.3.) Figure8 shows similar agreement for the same
computations performed for a radial gap solution of radius rI ≈ 5.85. We also point
out that these spectral computations show agreement with the analysis in Sect. 4.4, in
that the spots/gaps are unstable for a range of ‘large’ wave numbers (note here that
1/

√
δ ≈ 4.47), and that λ(
) becomes negative for sufficiently large |
|.

A natural question concerns the nature of these linear instabilities in the nonlinear
dynamics of the spots/gaps. In the large radius limit, we expect such solutions to
inherit the sideband instability of the nearby stationary front; in Carter et al. (2022), it
was demonstrated that this sideband instability can lead to the appearance of finger-
like patterns along the front interface, which can in turn lead to labyrinthine patterns
which expand spatially into the homogeneous states. By performing direct numerical
simulations using the unstable spot and gap solutions from Fig. 8 as initial data, we
see a similar instability manifest along the (circular) interface; see Fig. 9 for snapshots
of these simulations. We leave a more detailed study of the appearance of such finger-
like patterns, and the relation to the corresponding instabilities in the stationary front
interface to future work.

While the spots and gaps of Theorems 1.2–1.3 are unstable for radii rI = O(1) (or
larger) with respect to δ, the relation (4.27) is no longer valid when rI is not large,
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Fig. 8 Stationary radial profiles obtained in (1.3) for b = 1.0,m = 0.5, δ = 0.05 corresponding to a spot
solution (top panels, a = 2.625) and a gap solution (bottom panels, a = 2.665). The left panels depict the
corresponding radial profiles (u, v)(r) (u-profile in blue, v-profile in green), while the right panels depict
the corresponding critical eigenvalues (blue dots) λ(
) for −12 ≤ 
 ≤ 12. Also plotted (red) is the critical
eigenvalue curve for a (slowly) traveling front found for the same parameter values: for a = 2.625 (top), the
corresponding front has speed c = 0.012, while for a = 2.665 (bottom), the front has speed c = −0.013.
The radial profiles were obtained by solving the stationary Eq. (1.3) using Matlab’s fsolve routine, where
finite differences were employed for the spatial discretization with Neumann boundary conditions. The
eigenvalues λ(
) were obtained by linearizing (1.1) about the radial profile and using Matlab’s eigs routine
(Color figure online)

and the analysis in Sect. 4.2 is not valid if rI = o(1) as δ → 0. Hence it may be
possible to find smaller spots or gaps which are stable. Figure10 depicts spot and
gap solutions of smaller radii (but nearby in parameter space to those in Fig. 8), for
which we see that λ1(
) is no longer well approximated by (4.27). We see in this
case that λ(
) is negative aside from the double zero eigenvalue λ(±1) = 0 due to
translation invariance. Figure11 shows a continuation of the eigenvalues λ1(
), 
 =
0, 1, 2, 3, 4, 5 for decreasing rI for these spot and gap solutions, where we observe
that each eigenvalue eventually stabilizes as rI decreases. Additionally, as described
in Sect. 3.5, we are similarly able to find (seemingly) stable radially symmetric ring
and target patterns (see Fig. 10), which could be obtained in a similar manner to the
spots/gaps of Theorems 1.2–1.3 by constructing solutionswith several sharp interfaces
at distinct radii ri .
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Fig. 9 (Upper panels) Snapshots of direct numerical simulation of a spot solution for a = 2.625, b =
1.0,m = 0.5, δ = 0.05, with initial data given by the solution in Fig. 8 (top left panel). The spot develops
finger-type patterns along the interface which spread throughout the domain. (Lower panels) Snapshots of
direct numerical simulation of gap solution for a = 2.665, b = 1.0,m = 0.5, δ = 0.05, with initial data
given by the solution in Fig. 8 (bottom left panel), which develops similar finger-type patterns. Simula-
tions were performed in Matlab using finite differences for spatial discretization with periodic boundary
conditions, and Matlab’s ode15s routine for time integration

Obtaining the stability of spots of smaller radii rigorously appears to be a challeng-
ing problem, and we leave this to future work; in particular our existence analysis does
not immediately extend to this regime. Additionally, unlike prior works which consid-
ered the stability of radially symmetric solutions using singular perturbation methods
(Van Heijster and Sandstede 2011, 2014) in a 3-component FitzHugh–Nagumo sys-
tem, the solutions of the linearized Eq. (4.15) do not have explicit representations in
terms of special functions, which makes it difficult to determine λ1(
) for smaller
values of rI . This is related to the challenges which arise in the existence analysis
in Sect. 3 due to the nonlinear reduced flow on the slow manifold M+

δ .
Another natural line of further research concerns investigating whether the present

insights obtained on specific model (1.1) can be lifted to the general setting of the
2-component singularly perturbed reaction diffusion systems considered in the com-
panion paper (Carter et al. 2022). In that paper, we study the (in)stability of planar
fronts with respect to longitudinal perturbations, as we did for (1.1) in Sect. 2, and
derive two general, and relatively simple, criteria on the emergence of the sideband
instabilitymechanism (that typically leads to finger-like patterns). The present analysis
indicates that the same mechanism may drive the (in)stability of large spots and gaps
in the general setting of Carter et al. (2022), although one should not underestimate
the technicalities involved in establishing the counterparts of Theorems 1.2 and 1.3
for the general model. It is less clear from the combination of the present insights and
those of Carter et al. (2022), under which conditions spots and gaps with a radius rI of
O(1) will be unstable (as is the case for (1.1)). The nature of the analysis in Sect. 4.4
suggests that it is possible to derive a general (in)stability result for spots and gaps
with radius rI = O(1) against perturbations with |
| � 1. This suggests that also in
the general setting, spots and gaps with radius rI ‘sufficiently small’ are potentially
the ‘most stable’ (radially symmetric) localized patterns. Thus, the issue of the exis-
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Fig. 10 Radially symmetric solutions obtained for the parameter values b = 1.0,m = 0.5, δ = 0.05 for
different values of a. From top to bottom: spot (a = 2.55), gap (= 2.765), ring (a = 2.538), and target
pattern (a = 2.78). The various solutions survive in direct numerical simulations suggesting they are indeed
stable. For each row, the left panel depicts the planar profile obtained by direct numerical simulation in (1.1)
usingfinite differences for spatial discretizationwith periodic boundary conditions. Themiddle panel depicts
a radial profile obtained by solving (1.3) using finite differences and Neumann boundary conditions, and
the right panel depicts the critical eigenvalue λ(
) for −12 ≤ 
 ≤ 12, obtained by linearizing (1.1) about
the radial profile and using Matlab’s eigs routine

tence and stability of spots and gaps of sufficiently small radius is a central question
and resolving that question may explain the abundance of ‘spikes’ in the literature on
localized patterns in singularly perturbed reaction–diffusion systems—see Chen and
Ward (2011), Kolokolnikov et al. (2009), Wei and Winter (2013) and the references
therein and Remark 1.1. These spikes have a fully homoclinic nature, in the sense that
they are not close to a concatenation of almost heteroclinic orbits: away from the slow
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Fig. 11 Shown is a numerical continuation of the eigenvalues λ1(
) for 
 = 0, 1, 2, 3, 4, 5 for a spot
solution (left) and gap solution (right) as a function of the interface radius rI . The curves were obtained by
continuing the unstable spot and gap solutions from Fig. 8 to the stable spot and gap solutions of Fig. 10
by adjusting the parameter a for fixed (b,m, δ). The interface location rI was computed at each step by
approximating the inflection point of the vegetation profile of the corresponding solution. From the figure,
we see that the unstable eigenvalues λ1(
), 
 = 2, 3, 4, 5 eventually stabilize as rI decreases

Fig. 12 (Left) Spot pattern solution obtained for a = 2.55, b = 1.0,m = 0.5, δ = 0.05. (Right) Gap
pattern solution obtained for a = 2.765, b = 1.0,m = 0.5, δ = 0.05

manifoldM0
δ they only follow the fast (spatial) dynamics, they do not follow the slow

flow on a second slow manifoldM+
δ —as is the case for the patterns constructed here

(with rI = O(1)). Thus, by studying spot and gap patterns with radius rI decreasing
from being O(1) to asymptotically small, one needs to zoom in on the subtle process
through which a localized pattern detaches fromM+

δ during its jump away from and
back toM0

δ—see also Kok et al. (2022).
Lastly, we briefly describe the appearance of far-from-onset spot patterns in (1.1).

While the analysis of Theorems 1.2–1.3 only applies to the construction of a single spot
or gap solution, we anticipate that one could construct periodic spot or gap patterns
by tiling the plane with well-separated copies of the primary spot or gap solution.
See Fig. 12 for results of direct numerical simulations in (1.1) which result in the
appearance of spatially periodic spot and gap lattice patterns. While the construction
of such patterns is beyond the scope of this work, we note that a spatial dynamics
approach, such as that described in Scheel (2003) could be used to construct such large
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amplitude spot patterns. However, the question of stability of the resulting patterns is
likely very challenging.
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