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Highlights

e We propose a Bayesian Hierarchical Model for label-free proteomics data analysis.

¢ Mean-variance dependencies are described with a new latent gamma mixture regression.
e We evaluate Baldur performance on six label-free proteomics benchmark datasets.

e Qur Bayesian method has a much higher precision than limma-trend on all datasets.

e Baldus is available as an R package through CRAN.
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Baldur: Bayesian Hierarchical Modeling for
Label-Free Proteomics with Gamma Regressing

Mean-Variance Trends

Philip Berg'* © and George Popescu'*"

Label-free proteomics is a fast-growing methodology to
infer abundances in mass spectrometry proteomics.
Extensive research has focused on spectral quantification
and peptide identification. However, research toward
modeling and understanding quantitative proteomics data
is scarce. Here we propose a Bayesian hierarchical deci-
sion model (Baldur) to test for differences in means be-
tween conditions for proteins, peptides, and post-
translational modifications. We developed a Bayesian
regression model to characterize local mean-variance
trends in data, to estimate measurement uncertainty and
hyperparameters for the decision model. A key contribu-
tion is the development of a new gamma regression model
that describes the mean-variance dependency as a
mixture of a common and a latent trend—allowing for
localized trend estimates. We then evaluate the perfor-
mance of Baldur, limma-trend, and t test on six bench-
mark datasets: five total proteomics and one post-
translational modification dataset. We find that Baldur
drastically improves the decision in noisier post-trans-
lational modification data over limma-trend and t test. In
addition, we see significant improvements using Baldur
over the other methods in the total proteomics datasets.
Finally, we analyzed Baldur’'s performance when
increasing the number of replicates and found that the
method always increases precision with sample size,
while showing robust control of the false positive rate. We
conclude that our model vastly improves over popular
data analysis methods (limma-trend and t test) in several
spike-in datasets by achieving a high true positive detec-
tion rate, while greatly reducing the false-positive rate.

Label-free proteomics is a fast-growing methodology to infer
abundances in mass spectrometry proteomics (1-3). While a
common issue in label-free proteomics data is missing values
(outside of the scope of this paper), it also tends to produce
noisier data than labeling-based methods (4). Extensive
research has focused on spectral quantification (2, 5-10) and
peptide identification (9-11). However, research toward
modeling and understanding the end product of quantitative

proteomics data and how to utilize dataset level information in
statistical testing for differences in means is scarce. Mainly
ANOVA or t test methods are applied for this analysis (9, 11-14),
but some work toward using mixed effect-, regression-models,
and Stouffer’s method, have been developed for total prote-
omics analysis (15-18). Still, none of them can deal with generic
datasets (DSs), for example, peptidomics, phosphoproteo-
mics, etc. Therefore, our focus here is on the statistical analysis
of differences in mean abundances of peptides (or proteins,
post-translational modifications, etc.) between different con-
ditions (WT/mutant, control/treatment, time series, etc.). To this
end, we present a Bayesian decision method (Baldur) that uses
gamma regression (GR) to estimate hyperparameters accord-
ing to the mean-variance (M-V) trend and the uncertainty of
individual measurements. In particular, we propose a new
method for modeling the variance component using a gamma
distribution. In addition, we develop an improved GR model that
describes the M-V dependency as a mixture of acommon and a
latent trend—allowing for localized estimates of the M-V trend.
This is then used for inference of measurements' uncertainty
and hyperparameters for the variance prior. We then evaluate
the performance of Baldur, t-test, and limma-trend on five total
proteomics DSs and one post-translational modification (PTM)
DS. Importantly, we find that Baldur drastically improves the
decision in PTM data (19) over limma-trend and t test. Likewise,
we see significant improvements using Baldur over the other
methods at small spike-in quantities in one of the total prote-
omics DSs (14). Further, we show that Baldur improves the
performance on the remaining five total proteomics DSs (19-22)
over all other models by reducing the number of false positives.
Lastly, we performed empirical power analysis to analyze the
methods’ precision when increasing the number of replicates.
We found that the Baldur methods always gain power with
sample size, while showing robust control of the false positive.
Onthe other hand, limma-trend and t test increase in power with
increased sample size but at the expense of reduced false
positive (FP) control leading to decreased precision.
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In conclusion, we have developed novel ways of modeling
the M-V dependency and a new Bayesian statistical decision
method for proteomics. Our Bayesian model is particularly
robust for noisy data and shows improved performance over
the state-of-the-art decision methods (3, 19, 20) while our
novel M-V modeling improves the statistical decision.

EXPERIMENTAL PROCEDURES
Datasets

We used six previously published (14, 19-22) label-free spike-in
benchmark DSs to evaluate model behavior and performance. Two of
the benchmark DSs published in (19) were produced by label-free
quantification, one on total proteomics with the Universal Proteomics
Standard Set 1 (UPS1) spiked in at 1:2:4 times concentration in a
Chlamydomonas background, and the other is a PTM DS using a
reversibly oxidized cysteine enrichment protocol with Saccharomyces
cerevisiae spiked in at 1:2 concentrations to a Chlamydomonas back-
ground (see original paper for details). We refer to these DSs as UPS-DS
and Yeast-DS, respectively. The UPS-DS has four replicates per spike-
in (condition), and Yeast-DS has three. In addition, we used the data
published by Ramus et al. (14) that has UPS1 spiked in at nine different
concentrations to a yeast background with three replicates in each
condition and is also a label-free quantification DS. We also investigated
three previously published data-independent acquisition DSs (20-22).
The first DS published by Frohlich et al. (20; called Human-DS from here
on) had Escherichia coli proteome spiked-in at 6:12:25 concentrations
to a background of a heterogeneous human tumor population. Bruderer
et al. (21) had a stable human cell line (HEK-293 cells) as a background
and a complex design of UPS2 spike-in at three different master mixes
producing eight different conditions each with three replicates. Finally,
Navarro et al. (22) had a background of human (cervix carcinoma; Hela)
cells with E. coli and yeast (S. cerevisiae bayanus strain LALVIN EC-
1118) spike-in with ratios 4:1 and 2:1, respectively. Table 1 summa-
rizes the properties of these DSs.

Data Preprocessing

For the Yeast-, UPS-, Ramus-, Navarro-, and Bruderer-DS,
normalization was done by calculating the scale factors described in
(23), and dividing each sample accordingly. That is, let y; be the
measurement of the i:th peptide in the j:th sample. The normalization
constant s; for the j:th sample is then given by Equation 1

sj=median—2" ()
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TaBLE 1
Properties of the datasets investigated here

Dataset TP FP Total Conditions Replicates
Yeast 448 1787 2235 2 3
UPS 392 10,207 10,599 3 4
Ramus 292 4654 4946 9 3
Human 404 2902 3306 3 23
Bruderer 12 3773 3785 8 3
Navarro 3444 3145 6589 2 3

TP (true positives) is the number of spike-in examples, TN (true
negatives) the size of the background, Total is the sum of the two,
Conditions is the number of different spike-in concentrations, and
replicates is the number of Replicates per condition.

The normalized data y{}’ was then given by Equation 2.

N _Yi
Here, s; was calculated using rows without missing values, and
after normalization, data was log,-transformed. Lastly, Yeast-,
UPS-, Ramus-, Navarro-, and Bruderer-DS were imputed using
missForest (24). For the Navarro-DS (22), the data was first pro-
cessed with the MSstats (25) functions SpectronauttoMS-
statsFormat, dataProcess with the flag normalization set to
FALSE, followed by quantification and exponentiation (2¥i for
measurement y;) after which above procedure was followed. For
the Human-DS, columns corresponding to conditions with no
spike-in were discarded, then rows with missing values were
filtered out before normalization, to follow the arguments pre-
sented in the original study (20). For the empirical power analysis,
the columns were subset from the normalized data.

Model Inference

For inference of the latent gamma mixture regression (LGMR)
model, we set x = 0.001. Then, we used RStan’s (26) No-U-Turn
Sampler using five chains each with 500 warm-up draws, 2000
post warm-up samples (iter set to 2500), adapt_delta set to 0.9 for
everything except the empirical power analysis. For the empirical
power analysis, we ran 20 chains with 500 warm-ups draws and
2000 post warm-up samples. For the calculation of the normalized
root-mean-square error (NRMSE), Equation 15 was calculated dur-
ing the sampling substituting S; with y;. The sample means of the
posterior were then used as point estimators and presented in
Table 2. Inference of the posterior distribution for the data and de-
cision model was done with RStan’s No-U-Turn Sampler using four
chains each drawing 1000 burn-ins and 1000 samples per peptide.
The parameters for the GR were estimated using R’s (27, version
4.2.0; https://www.r-project.org/) function glm (28), and the shape
parameter was estimated using the R package stats’s summary.gim
function. For integrating D (Equation 10), we used the normal cu-
mulative distribution function as implemented in R’s pnorm function
using the sample mean and sample SD from the posterior draws.

Running Limma and t Test

For running limma-trend, we first ran ImFit, contrast.fit, and then
eBayes was ran with Robust and trend set to TRUE. The p-values
were then extracted with topTable with adjust.method set to *fdr” and
number set to Inf. For t test, we used R’s t.test function with var.eg-
ual = TRUE, and then ran p.adjust with method set to "fdr” on the p-
values (within each comparisons).

Performance Metrics

For performance, all decisions were calculated over the closed set
[-0.1,1] so the ROC curves always start at the origin. True positive
rate (TPR) was calculated according to Equation 3, false-positive rate
(FPR) according to Equation 4, precision according to Equation 5, and
Mathew’s correlation coefficient (MCC) according to Equation 6.

P

TPR=157FN ®
FP

FPR= FP+ TN @
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TABLE 2
Table of inferred regression parameters and normalized root mean squared error for LGMR model

Dataset o 70 YoL 7y 7oL NRMSE
Yeast 2.245 7.482 -1.191 0.874 0.427 0.664
UPS 7.372 6.816 -2.138 0.729 0.451 0.455
Ramus 7.766 7.284 -1.655 0.297 0.547 0.439
Human 17.651 7171 -1.215 0.25 0.007 0.388
Bruderer 5.215 6.405 -2.596 0.501 0.031 0.692
Navarro 2.916 7.156 -1.759 1.385 0.02 0.693

Numbers represents posterior means.
Abbreviation: NRMSE, normalized root-mean-square error.

TP

Precision = TP+ FP

©)

TP =True Positive TN = True Negative

FP =False Positive FN = False Negative

TP TN-FP FN

MCC =
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

Empirical Time Complexity Analysis

For the evaluation of model time complexity, we used the
microbenchmark package in R. For the data and decision model, we
used the empirical Bayes (EB) prior, and the GR model was used to
infer model uncertainties and hyperparameters before starting the
evaluation. For the LGMR model, we used five chains and five parallel
workers for each run using 500 warm-ups and 2000 posterior sam-
ples. Both evaluations were performed ten times for each DS.

RESULTS
Bayesian Data and Decision Model

Here, we describe a Bayesian hierarchical model (Baldur) to
analyze differences in peptide (or protein, PTM, etc., but for
simplicity, we will use peptide from here on) abundances. This
model will be applied to each peptide independently, and as
such, we will describe it from the perspective of one single
peptide. We assume the peptide’s data to be normally
distributed with C different conditions (control/treatment, time
points, etc.) each with n; measurements. Then, we assume
that the measurements within the c:th condition have a
common mean u.. We model each peptide’s data with a
common SD ¢ (unique to each peptide) and a measurement-
specific uncertainty, u; for the i:ith observation, as a multipli-
cative factor that describes its change of variance from o.
Hence, the uncertainty is a correction for the unobserved
measurement-specific variance around the mean. Further, we
assume that all measurements and means in each condition
are independent and therefore have zero covariance. We then
model the means with a group-level effect (29) and assume it
is proportional to o. We use the expanded noncentered

parameterization which has been shown to increase sampling
convergence and efficiency, and allows for increased model
flexibility (29-35). This allows the model to adjust the posterior
variance of each y., while still being constrained on ¢ and to
shift the mean proportionally to ¢. Finally, ¢ is assumed to be a
gamma random variable with shape and rate parameteriza-
tion, with hyperparameters estimated from the M-V trend. The
data model is summarized in Equation 7.

Y ~ N(Xu, ou),
o~T(a p),

w~ N(ug +n0, 0)
n~N(8,1) )

Here, Y is a column vector of N observations, u is a column vector
of the C means, X is an N-by-C design matrix, 62 is the common
variance, u is a column vector of the uncertainties, and 5 is a
column vector (of length C) for group-level effects.

Baldur has two prior choices for uy, one EB prior, and one
weakly informative (WI) prior. The EB prior assumes a normal
prior on pq similar to the normal-normal compound model in
(36, 37). The EB prior assumes that the mean of p; is the
sample mean with the variation set as twice the common
variance normalized by the number of measurements
(Equation 8). Here, y is a column vector of the sample means in
the C conditions, and ng is a column vector of the scaling
constants in the C conditions. The WI prior uses a normal
distribution with a large variance (Equation 9).

V2 2 2]

”ONN@’UnR)’nRZ[‘\/WW.“"\/% ®)

Ho ~ N (0,10) ©

Next, we model our decision statistic D for comparisons of
interest as a normal distribution with mean equal to a contrast of
interest and variance equal to the common variance (¢°;
Equation 10) normalized by the contrast weighted sample size, €.

T & K|
D~N(u'K, ct), &= 277
i=1

where K is a C by M contrast matrix (with M contrasts;
Equation 11) of interest with the constraint that each column’s

(10)
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positive values sum to one and negative terms sum to minus
one.

ki1 Ki2 Kim
K=|fer fe feu (11)
ket ke kem

Mo

C
kim=0 & Y |km|=2 Vme[1,2,..,M]
i=1

)
-

This allows for pairwise and nonpairwise comparisons, for
example, comparing the mean in one condition against the
mean of two others.

Finally, we estimate the probability of error by integrating
the tails of D. Let ® be the cumulative distribution function of
the standard normal distribution, u;, the mean(s) of the pos-
terior(s) of D, 7, the reciprocal of the posterior SDs (square
root of the precision). Further, let the null hypothesis be that
the difference in means is equal to y,,. Then the probability of
error(s) is then defined according to Equation 12.

P(error) = 2@(—{;10—;4,70 O 1p) (12)

where © is the Hadamard product.

Modeling the Mean-Variance Trend

Here, we will describe EB methods for estimating the
hyperparameters of o. Let s = (s;) € R. be a column vector of
the sample SDs, and y = (y;) € RP of the sample means in the
p peptides of a DS of interest. Here, we use the sample SD
since the data model (Equation 7) assumes that each mea-
surement has a unique variance.

Gamma Regression for the Mean-Variance Trend

The first inference model uses a GR for estimating model
hyperparameters. Let s be gamma-distributed and parame-
terized as described in Equation 13 (i.e., a GR with log-link
function).

a
elot?yy

s~T(@p) B= (13)

where T'(,,.) is the gamma distribution with shape, rate parame-
terization, and 7; s are the inferred regression parameters. We
define the uncertainty for some measurement y; as the expected
SD (Equation 14).

uj = E[s,|70, ?;7’ y/’/‘] = glotiyYi (14)

Supplemental Fig. S1 shows the fitted GRs to the DSs
investigated here (see the DSs section in Experimental
Procedures for details). We found that the regression model

describes the UPS-DS trend well. But, for the other DSs (in
particular for the Human-DS), we observe that a single GR
model cannot capture the M-V distributions well. From
Table 3, we see that the slopes and intercepts have similar
values, except for the Human- and Bruderer-DS with smaller
intercepts (both) or slope (Human-DS). In addition, the shape
parameter is slightly larger for the Human-DS than the other
five. We then calculated the NRMSE (38) to determine the

goodness-of-fit.
1y 22
_ | pZiz1(Si=S)
NRMSE = T Vars)

where §; is the predicted SD of the iith peptide, and Var(.)
is the variance. We found that all DSs generated a similar
error with the GR model but the Navarro-DS NRMSE was
slightly lower.

(15)

Latent Gamma Mixture Regression

To further increase the precision of the M-V trend modeling
for each peptide, we propose a LGMR model. We assume that
each peptide’s variance is a mixture of a common and a latent
trend—allowing for localized estimates of the M-V trend pa-
rameters. The model starts with the same formulation as for
the GR model (Equations 13 and 16) but with a half-Cauchy as
a weak prior on o (Equation 17; 29).

P

s~ F(a’ ﬂ)’ i

(16)

a ~ Half-Cauchy(25) (17)

We then assume that the mean of s is a mixture of the
two trends with one intercept and one slope each, and
the i:th peptide has 6,€[0,1] of the latent trend
(Equation 18).

r=exp (yo-ryf(#) + k exp (0 © (voL—7yf)))

fo) =2 ;ﬂy
Yy

(18)

TaBLE 3
Table of inferred regression parameters and normalized root mean
squared error for GR model

Dataset o 7o 75 NRMSE
Yeast 1.337 1.352 -0.233 0.818
UPS 1.855 0.982 -0.267 0.819
Ramus 1.895 2.719 -0.193 0.837
Human 3.011 0.041 -0.033 0.996
Bruderer 1.635 0.259 -0.151 0.97
Navarro 1.154 1.246 -0.334 0.738

Abbreviation: NRMSE, normalized root-mean-square error.
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where k is some small constant (here we will use 0.001) that
defines the smallest possible contribution of the latent trend
and f gives the standardized sample means (with y; and oy
being the mean and sd of y, respectively). We then choose a
uniform distribution as an uninformative prior on 6
(Equation 19).

0; ~U(0, 1) (19)

We set the slope to always be negative by limiting the slope
coefficients to positive values (yy, vy, € [0, oo]; Equation 18). To
this end, we used a half-normal prior on the slope coefficients.

7y ~ HALENORMAL(1) (20)

¥y ~ HALFNORMAL(1) (21)

We then set priors on the intercepts. For the common
intercept we used a standard normal distribution. For the
latent intercept, we set a right-skewed prior using a skewed-
normal distribution and setting the a parameter to a large
positive value. In addition, we set a large variance by putting a
large o parameter to make the prior weaker. Finally, the
location parameter small positive for the latent intercept to
force it larger and accommodate for the shrinkage by «.

ro ~N(,1) @2

voL ~ SKEWNORMAL(2, 15, 35) (23)

As for the GR model, we define the uncertainty for some
observation y; as its expected sd (Equation 24).

uj= E[Si{gi’ Yo YoL» Yy YyLs yi/]
= exp (70—7yf(YI')) + Kk exp (QI(VOL—Yny(YIj))

The inferred regression parameters of the LGMR model for
the DSs investigated here are shown in Table 2, and the model
is visualized in Figure 1. We found that all DSs had unique
regression patterns that resemble their corresponding M-V
trend (Supplemental Fig. S1). From Table 2, we found that
Ramus-DS and UPS-DS had similar « values, while the Yeast
and Navarro-DS values were smaller, Bruderer-DS in between
the four, and Human-DS was significantly larger; similar to the
GR model. We found that the Human-DS had the best fit,
followed by the Ramus-, UPS-, Yeast-, Navarro-, and
Bruderer-DS. Finally, compared to the GR model, we found
that the LGMR model gave a better fit across all DSs (Tables 2
and 3). Taken together, we have developed a new Bayesian
regression model using a latent mixture that can describe well
the local M-V trend of the DSs investigated here.

(24)

Algorithmic Description

The procedure for implementing the Bayesian decision is
described in algorithm 1. The user needs to input their data, a
design matrix, a contrast matrix, a choice of regression model to
use, LGMR or GR, and finally a choice of mean prior, EB or WI.
Baldur then fits the regression model and uses it to infer un-
certainties as well as hyperparameters on o. It then runs the
decision model on each peptide separately and produce a
summary statistic of the fit (this allows for a highly efficient
parallel computation setup). In particular, Baldur returns the
mean, median, a 95% credibile interval, the R-hat, and the
efficient sample size for parameters of interest.

Performance Evaluation

For the performance evaluation, with the exception of the
Bruderer-DS, we evaluated DSs on a per-comparison basis;
due to the very few true positives (TPs) in the Bruderer-DS
(Table 1), we analyzed it over all the (g
sons at the same time. In addition, due to the complex mixes
of the TPs in the Bruderer-DS, there are no generic ways to
define the fold change of the TPs in the different comparisons.

) possible compari-

Receiver Operator Characteristics

To evaluate the performance of the models presented here,
we generated receiver operator characteristic (ROC) curves of
the six benchmark DSs. We evaluated the following methods:
Baldur with both priors and regression models, limma-trend,
and t test since they are generally used in recent studies (3,
14,19, 20, 39-42). For limma-trend and t test, we applied false
discovery rate correction using the method described in (43).

Algorithm 1 description of Baldur

Input

y Input data

X Design Matrix

c Contrast Matrix

Reg Which regression model to use.

MP Which means prior to use for the data model
Output

y°Ut Posterior estimates
(s,¥) « CaLcULATEMEAN-STANDARDEVIATION(y)
if Reg=LGMR then
GamReg « FITLGMR(s, y)
else
GamReg « FiTGR(, )
end if
u « PrepicTGAMMAREGRESSION(GamReg, y)
@p) « PrebictTGammaREGRESsION(GamReg, y)
forie{1,2,...,p} do
Posterior — SampLe(MP, y;, v, (@, B,), u))
Estimates; « SumwarizePosTerior(Posteriors ,, o)
end for
y°U! «— Estimates
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Fic. 1. The mean-variance trend with the locally estimated gamma regression. M-V trends in Yeast-, UPS, Ramus-, Human, Bruderer-,
and Navarro-DS (A-F, respectively), with the x-axis showing the sample mean, and the y-axis showing the sample SD. Each line indicates the M-
V trend of a corresponding peptide, and the color indicates the derivative at the peptide’s mean.

For the Yeast-DS (Fig. 2A), we observed an increased per-
formance using Baldur. In particular, all Baldur-based models
improved on limma-trend and t test perfomance. In addition,
the LGMR model for parameter inference slightly improved on
the GR model, and the WI prior for the mean had a marginally
better performance than the EB prior.

For the UPS-DS, we show the ROC curves for both
pairwise and nonpairwise comparisons (Supplemental
Fig. S2A). While all methods generally performed well on
the pairwise comparisons, Baldur with the LGMR model has
a notably better performance in all comparisons, Baldur with
the GR model is second, followed by limma-trend and t
test. In addition, we found that Baldur-based models had a
similar area under the ROC curve (auROC) across all pair-
wise comparisons, while limma-trend and t test had a larger
spread in performance for the different comparisons. In
addition to pairwise comparisons, we also studied non-
pairwise design for the UPS-DS to evaluate the perfor-
mance of the statistical decision at small and intermediate
average log fold changes of the spike-in peptides. We
found that, all methods showed similar performance for the
larger fold changes, but for the very small fold change of
fmol50 versus fmol25 and fmol100 (i.e., the fold change of
TPs are 0.8) we found that LGMR-Baldur methods out-
performed GR-Baldur which had a slightly better or equal
performance to limma-trend. In addition, the EB prior
showed slightly better performance than the WI prior.

For the Human-DS (Supplemental Fig. S2B), we found that
all methods had similar performance across all comparisons
except one (1:12 versus 1:6), where LGMR models had slightly
better performance.

For the Ramus-DS (Fig. 3), we identify a wide range in
performance for different comparisons ranging from easy
(e.g., 5 versus 50) to hard (e.g., 0.125 versus 0.5). Still, we
found that both GR and LGMR Baldur models can improve
performance significantly, when the spike-in quantities are in
low concentrations and involve smaller fold changes between
conditions. In particular, we see performance improvements
for comparisons where the spike-in concentration is lower
than 12.5 fmol. Conversely, we find comparable performance
for all methods when the fold changes are substantial or when
the spike-in concentrations are ample. Still, it is evident that
Baldur with the LGRM model performs highest in all 36
comparisons, while GR-based inference is second.

For the Bruderer-DS (Supplemental Fig. S3), we found that
the LGMR model drastically outperformed all other models—
increasing the auROC by almost 10% over limma-trend and t
test, and 5% over the GR models. In particular, we observed
that the LGMR models attain a higher TPR much faster at
lower FPRs than the other models.

For the Navarro-DS (Fig. 2B), we see that Baldur methods
tend to gain TPR at a faster rate than t test and limma-trend. In
particular, LGMR inference tends to max out the TPR at an
FPR of about 0.1, while GR attains the same TPR around 0.5
FPR, and t test at around 0.8 FPR. This indicates the LGMR
inference returns TPR at a much lower FPR cost for this DS,
followed by GR models, limma-trend and lastly t test.

Summarizing, Baldur has drastic performance improvement
in noisier conditions of proteomics measurements, with the
LGMR as the best-performing alternative and GR second. On
the other hand, for less noisy (easier) DSs (or comparisons;
e.g., large fold change), Baldur is marginally better than limma-
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trend or t test, as these methods already have large auROC
and therefore have little room for improvement. In addition, we
observed that the LGMR model consistently improves Bal-
dur’'s performance over GR model inference. Finally, we
observed that Baldur has dependable performance across all
DSs investigated here, while limma-trend and t test can show
considerable variation in performance between comparisons.

Decision Patterns

While ROC curves can produce a summary statistic over a
classifier's support—it is inadequate for a deeper under-
standing of specific statistical thresholds typically used in the
significance analysis of proteomics data. Thus, we investi-
gated MCC (44, 45) as a point estimate of statistical decisions
over a range of significance levels. The motivation for using
MCC is that all DSs (except Navarro-DS) are heavily unbal-
anced between TPs and true negatives (Table 1), and MCC
has, arguably (46, 47), good properties for unbalanced data.

For Yeast-DS (supplemental Fig. S4), we found that LGMR
does performed slightly better than GR and the EB is better
paired with LGRM-based inference, while Wl works better with
GR-based parameter estimation. In addition, we found that
Baldur methods always have a larger MCC than limma-trend
and t test. Finally, we found that the Baldur methods make an
optimal decision around 1 to 5%, while limma-trend and ¢ test
peak very close to 0 and subsequently decay with the signif-
icance level.

Similarly to the ROC curves, the Ramus-DS showed a wide
range of performance for the MCC (Supplemental Fig. S5) be-
tween different comparisons. Still, Baldur using GR and LGRM
inference tended to produce better-performing decisions that
generally decay slower with the significance level than limma-
trend and t test that often peak at very small significance
levels. Importantly, while some ROC curves (Fig. 3) suggested
similar performance, the MCC showed substantial differences
at typical significance levels. In particular, we see that Baldur-
based models showed better performance when compared to
limma-trend and t test in the 5 versus 50 comparisons; all
methods showed good ROC performance, while limma-trend
and t test have significantly decreased MCC. Finally, we see
that the Bayesian decision tends to have robust performance,
while t test and limma-trend have unexpected drops in perfor-
mance, in particular at lower significance levels.

For the UPS-DS (Supplemental Fig. S6), we again found
that Baldur-based decisions tend to outperform limma-trend
and t test. In all pairwise comparisons, we find that the LGRM
model tends to produce the best decisions. In particular, we
find that the WI prior slightly increases performance at the
comparison fmol25 versus fmol100 that has the larger fold
change. We find that while the GR method is slightly worse
than limma-trend for the fmol50 versus fmol100 and fmol25
versus fmol50 comparisons it shows better performance in
the fmol25 versus fmol100 comparison. For the nonpairwise
contrasts, we found that the LGMR and GR models per-
formed better at typical significance levels. For the most
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challenging contrast (fmol50 versus fmol25 and fmol100), we
find a significant drop in Baldur performance, while limma-
trend does not produce any decision until a large signifi-
cance level (greater than 0.19).

For the Human-DS (Supplemental Fig. S7), we observed that
LGMR improves the decision over limma-trend and ¢ test in all
three comparisons, while the GR model has better performance
in two comparisons. Surprisingly, Baldur performs considerably

better at the largest fold change, where limma-trend and t test
rapidly drop in performance. In addition, we observe that both
priors behave (almost) identically in all three comparisons, likely
due to the large number of replicates in this DS.

In the Bruderer-DS (Supplemental Fig. S8), we found that,
contrary to the ROC curve (Supplemental Fig. S3), the prior
choice had the largest impact on the performance. In partic-
ular, the WI prior tend to outperform the other methods,
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followed by the LGMR model. Within prior choices, the LGMR
model tends to produce the best performance. Surprisingly, t
test tends to strongly outperform limma-trend, which rapidly
decays with significance level while t test peaks around 1%.

As for the Bruderer-DS, in the Navarro-DS (Supplemental
Fig. S9), we found that the prior choice had the biggest
impact on Baldur’s performance. In particular, the EB prior
outperformed the other methods followed by GR-WI, limma-
trend, t test, and LGMR-WI. This could be due to the trend in
this DS having surprisingly flat variance for a large range of
means (approx. 5-8; Supplemental Fig. S1F). The GR model
does not capture this which could lead to inaccurate un-
certainty inference, while the LGMR does (Fig. 1F). Still, in
contrast to the other methods, both LGRM models increase
in MCC over the entire range of significance levels investi-
gated here.

In conclusion, from the MCC evaluation, we found that
Baldur tends to make more balanced decisions around tradi-
tional significance levels. In addition, we found that Baldur
retains a more balanced decision over a wide range of de-
cisions compared to limma-trend and t test and is particularly
good in comparisons where all models have their lowest
performance (i.e., has the best worst-case performance;
except LGMR-WI in the Navarro-DS). Finally, we found that
both EB and WI generally perform similarly from a balanced
decision perspective. Still, the LGRM model generally shows
the highest performance across all DSs and comparisons in-
dependent of prior choice.

Next, we analyzed the TPR, the FPR, and precision as a
function of the significance level. For the Yeast-DS (Fig. 4), we
see an improvement, foremost in controlling the FPR, while
still being competitive in TPR. While all models produce large
FPR, Baldur shows robust control at small significance levels
and slowly increases in FPR. On the other hand, limma-trend
and t test rapidly pick up FPs at lower significance levels. In
particular, we observe that LGMR model controls the FPR well
for both priors, while the GR inference with the EB prior tends
to produce the largest TPR and FPR of the Baldur methods.
Importantly, the control of the FPR leads to increased preci-
sion of the Baldur methods, all improving over limma-trend
and t test.

Forthe Ramus-DS (Supplemental Figs. S10and S11), we again
observed that Baldur models tend to control the FPR to a much
higher degree, while having similar or even better TPR. In partic-
ular, we observed that the LGMR-EB setup vastly outperforms
limma-trend in reducing FPR, while attaining marginal improve-
ment in TPR. We observe that the improvements in Baldur
methods come from better control of the FPR rather than an in-
crease in TPR. In addition, Baldur controls the FPR robustly in all
comparisons, while limma-trend and t test have fluctuating FPR.

Next, we investigated the performance of the pairwise
statistical decisions in the UPS-DS (Supplemental Fig. S12)
which had the second highest imbalance of the DSs inves-
tigated here (Table 1). We found that the LMGR had the best

l
o
(2]
(0]
.]
[e]
.
'é’.
(0]
]
Q
T
c
iel —
2] ]
5]
o
o
2 =
x 3
o
2 g
.g 2
o g
) T
i2]
®©
(1
-
[0) ||
S _
=
Method
GR-Baldur EB
0.81 GR-Baldur WI
= | GMR-Baldur EB
= | GMR-Baldur WI
0.6 Limma-Trend -
= {-test =
[0]
o
[z
(o)
e |
04 :
0.01 0.05 0.1 0.15 0.2
o

Fic. 4. Performance metrics of the Yeast-DS plotted against the
significance level (a). y-axis shows the metric value (as indicated by
facet titles), x-axis shows the significance level, and colors as
described in Figure 2.

performance in terms of TPR, FPR control, and precision in
all three comparisons. While the GR model had lower TPR, its
FPR control still produced the second-best precision in all
comparisons. For the nonpairwise contrasts (Supplemental
Fig. S13), we observed a similar pattern in performance
where LGMR had the best performance, GR had a lower TPR
while still maintaining among the best precisions; similarly,
limma-trend produced a significantly higher FPR. The third
comparison at low spike-in log fold change (-0.32; fold
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change 0.8) all methods had very low TPR. Limma-trend
made no decision until a large significance level of roughly
0.18, while LGMR-EB managed to produce the largest TPR
among all methods.

For the Human-DS (Supplemental Fig. S14), we saw that
Baldur methods have outstanding precision over limma-trend
and t test due to the strong FPR control in this DS. Further, all
models can get a high TPR, except for GR in 1:12 versus 1:6.
Still, we observed that, in the worst-case scenario, Baldur-
based models make an improved decision by better control-
ling the FPR. Since these DSs have large TN, this translates to
increased precision for all Baldur methods over limma-trend,
with the WI prior slightly outperforming the EB.

In the Bruderer-DS (Supplemental Fig. S15), we found that
limma-trend tends to rapidly amass FPs compared to the
other methods. Limma-trend and LGMR-EB acquire TPR
fastest and at similar rates, followed by LGMR-WI and t test,
while the GR based inference tends to accumulate TPR at a
slower rate. Still, the GR models and LGMR-WI tends to have
the best precision, followed LGMR-EB and t test, though, both
t test and limma-trend drop surprisingly fast in precision with
significance level.

Finally, for the Navarro-DS (Supplemental Fig. S16), we
again see that limma-trend—followed closely by t test—ac-
cumulates FPR faster than the Baldur models, where the GR-
EB has the highest FPR rate. Similarly, the GR-EB and LGMR-
EB has the highest TPR among the Baldur models and is
slightly lower than limma-trend and slightly higher than t test.
In addition, we found that the WI prior lowers TPR more than
the other methods but still tends to have high precision
together with the LGMR-EB. Finally, we observe that GR-EB
has the lowest precision among the Baldur methods and
limma-trend as well as t test have even lower precision.

Concludingly, we observed that investigating performance
metrics as a function of significance level can elucidate
model-specific behavior. In particular, Baldur's methods
tend to control the FPR much better than t test and limma-
trend while generally having comparable TPR. This led to
the best precision in all DS and comparisons for Baldur.
Concurrently, we found that this led to an improvement in a
balanced decision as measured by the MCC, indicating that
Baldur’s methods tend to make more balanced decisions.
This becomes obvious when examining the distribution of
FP and TP at the 5% significance level for all six DSs (Fig. 5
and Supplemental Figs. S17-S21), where Baldur based
methods tend to have similar TP but far lower FP. The
exemption is for a few comparisons in the Ramus-DS and in
the UPS-DS, where the LGMR method picks up more TPs
and fewer FPs.

Empirical Power Analysis

As a final analysis, we investigated the performance of the
methods presented here as a function of replicates. The large
number of replicates in the Human-DS (Table 1) allowed us to

analyze how the number of replicates affects the statistical
decision. To this end, we varied the number of replicates
from 3 to 21 within each condition by producing 24 randomly
selected combinations for each replicate size. We then
investigated the TP and FP at a 5% significance level for
each replication size and combination. For the first compar-
ison, we found that all methods except t test could identify
most TPs at three replicates, and all methods could identify
all TPs at six replicates (Fig. 6). Surprisingly, as the number of
replicates increased, both t test and limma-trend increased in
the number of FPs. On the other hand, Baldur methods
remained steadily at the same number of FPs for the entire
range of replicates; this held true for all three comparisons in
the DS. For the second comparison, we again observed that ¢
test and limma-trend increased in FPs as the number of
replicates increased but flatten around 18 to 21 replicates. In
addition, we see that GR with both priors have subpar TP
detection compared to the others that identified nearly all
TPs around 18 replicates. Finally, we observed that in the
third comparison, LGMR and limma-trend could identify
more TPs than other methods at three replicates. At nine
replicates, we found that all methods identified most of the
TPs and that there was no change in FPs as replicates
increased. Taken together, Baldur’s decision benefits from
increasing the number of replicates. On the other hand,
increasing the number of replicates can reduce the perfor-
mance of t test and limma-trend by reducing control of the
FPR.

536 Category
LGMR-Baldur WI

245 . FP

339 . ™

LGMR-Baldur EB

GR-Baldur EB

Method

GR-Baldur Wi

Limma-Trend

t-test

0 1000 2000 3000 4000 5000 6000 7000
Count

Fic. 5. Number of false positives and true positives of at 5%
significance level for Bruderer-DS. The y-axis shows the different
models, and x-axis shows number of false positives (red color) or true
positives (blue color).
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DISCUSSION

While increasing TPR is a driver for proteomics discovery,
controlling the FPR is critical for precise high-throughput
functional analysis of proteomes and reactomes and enables
a better downstream systems biology analysis. In addition,
increased FPR control will be directly associated with
improved reproducibility of a study. Here, we demonstrate
that Baldur with the LGMR model has the best performance
across all comparisons in all six DSs investigated independent
of them, exhibiting a mixture of distributions or not (Fig. 1 and
Supplemental Fig. S1).

We compared two different priors for the mean of each
condition, a WI (Equation 9) and a data-driven EB (Equation 8).
In general, we found comparable performance, but the WI prior
tends to produce smaller TPR while having higher precision. On
the other hand, the EB prior tends to produce higher TPR but
with lower precision. Compared to t test and limma-trend, the
EB prior has a comparable TPR but reduced FPR, while the WI
has lower TPR but even smaller FPR. As such, if the analyst is
interested in a well-annotated list of peptides with a high con-
fidence of being TPs they should use the WI prior; if the interest
is in maximizing the number of TPs at the expense of more FPs,
they should use the EB prior. Further, we find that the inference
of uncertanties and hyperparameters for Baldur with the LGMR
model developed here outperforms GR in all comparisons,

making it the de facto method of choice. Likely, this is due to
the improved M-V trend modeling of the LGMR model being
able to infer it locally for each peptide in the DSs. Importantly,
the LGMR model estimation time scales linearly with the
number of rows in the data (Supplemental Fig. S22A), while the
data and decision models running time decreases exponentially
with the number of parallel workers (Supplemental Fig. S22B)
and all DS investigated here converged to similar times from 1
to 8 min with a large number of threads. For a modern laptop
using ten parallel workers the typical time would be around 3 to
30 min depending on the number of peptides, conditions and
comparisons in the DS. In particular, we find that the LGMR
model is only impacted by the number of peptides while the
data and decision model is mainly impacted by the number of
conditions and comparisons, while being unaffected by the
number of replicates (Table 1 and supplemental Fig. S22A).

In the six DSs investigated here (Supplemental Fig. S1), we
found that the LGMR model (Equations 17-23) described the
M-V trends well (Fig. 1 and Table 2). Still, while the LGMR
model performed well on all DSs analyzed in this study, there
is no guarantee that it will fit any input DS produced by the
vast number of spectral quantification methods. Importantly,
using Baldur with a GR model still tends to outperform t test
and limma-trend and pose as a valid option for the LGRM at a
lower computational cost.
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Lastly, we believe that Baldur's robust control of false
alarms will be highly effective for analyzing PTM and pepti-
domics DSs susceptible to have larger sample variations.
Here, we observed this in Yeast-DS (PTM DS), Ramus-DS for
small spike-in concentrations, and in the Bruderer total pro-
teomics DS, where Baldur's FP control was superior
compared to t test and limma-trend.
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