
Baldur: Bayesian Hierarchical Modeling for Label-
Free Proteomics with Gamma Regressing Mean-
Variance Trends

Authors

Philip Berg, and George Popescu

Correspondence Graphical Abstract

pb1015@msstate.edu;
popescu@igbb.msstate.edu

In Brief
We propose a Bayesian

hierarchical decision model to

test for differences in means

between conditions for proteins,

peptides, and posttranslation

modifications in label-free

proteomics analysis. We

introduce a novel Bayesian

regression model to characterize

local mean-variance trends in the

data to estimate measurement

uncertainty and hyperparameters

for the decision model. Our

modeling framework vastly

improves precision over limma-

trend and t test in several spike-

in benchmark datasets by

achieving a high true positive

detection rate while greatly

reducing the false positives.

Highlights

• We propose a Bayesian Hierarchical Model for label-free proteomics data analysis.

• Mean-variance dependencies are described with a new latent gamma mixture regression.

• We evaluate Baldur performance on six label-free proteomics benchmark datasets.

• Our Bayesian method has a much higher precision than limma-trend on all datasets.

• Baldus is available as an R package through CRAN.
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Baldur: Bayesian Hierarchical Modeling for
Label-Free Proteomics with Gamma Regressing
Mean-Variance Trends

Philip Berg1,2,* and George Popescu1,2,*

Label-free proteomics is a fast-growing methodology to

infer abundances in mass spectrometry proteomics.

Extensive research has focused on spectral quantification

and peptide identification. However, research toward

modeling and understanding quantitative proteomics data

is scarce. Here we propose a Bayesian hierarchical deci-

sion model (Baldur) to test for differences in means be-

tween conditions for proteins, peptides, and post-

translational modifications. We developed a Bayesian

regression model to characterize local mean-variance

trends in data, to estimate measurement uncertainty and

hyperparameters for the decision model. A key contribu-

tion is the development of a new gamma regression model

that describes the mean-variance dependency as a

mixture of a common and a latent trend—allowing for

localized trend estimates. We then evaluate the perfor-

mance of Baldur, limma-trend, and t test on six bench-

mark datasets: five total proteomics and one post-

translational modification dataset. We find that Baldur

drastically improves the decision in noisier post-trans-

lational modification data over limma-trend and t test. In

addition, we see significant improvements using Baldur

over the other methods in the total proteomics datasets.

Finally, we analyzed Baldur’s performance when

increasing the number of replicates and found that the

method always increases precision with sample size,

while showing robust control of the false positive rate. We

conclude that our model vastly improves over popular

data analysis methods (limma-trend and t test) in several

spike-in datasets by achieving a high true positive detec-

tion rate, while greatly reducing the false-positive rate.

Label-free proteomics is a fast-growingmethodology to infer

abundances in mass spectrometry proteomics (1–3). While a

common issue in label-free proteomics data is missing values

(outside of the scope of this paper), it also tends to produce

noisier data than labeling-based methods (4). Extensive

research has focused on spectral quantification (2, 5–10) and

peptide identification (9–11). However, research toward

modeling and understanding the end product of quantitative

proteomics data and how to utilize dataset level information in

statistical testing for differences in means is scarce. Mainly

ANOVAor t testmethods are applied for this analysis (9, 11–14),

but some work toward using mixed effect-, regression-models,

and Stouffer’s method, have been developed for total prote-

omics analysis (15–18). Still, none of them can deal with generic

datasets (DSs), for example, peptidomics, phosphoproteo-

mics, etc. Therefore, our focus here is on the statistical analysis

of differences in mean abundances of peptides (or proteins,

post-translational modifications, etc.) between different con-

ditions (WT/mutant, control/treatment, time series, etc.). To this

end, we present a Bayesian decision method (Baldur) that uses

gamma regression (GR) to estimate hyperparameters accord-

ing to the mean-variance (M-V) trend and the uncertainty of

individual measurements. In particular, we propose a new

method for modeling the variance component using a gamma

distribution. In addition, wedevelop an improvedGRmodel that

describes theM-V dependency as amixture of a common and a

latent trend—allowing for localized estimates of the M-V trend.

This is then used for inference of measurements' uncertainty

and hyperparameters for the variance prior. We then evaluate

the performance of Baldur, t-test, and limma-trend on five total

proteomics DSs and one post-translational modification (PTM)

DS. Importantly, we find that Baldur drastically improves the

decision in PTM data (19) over limma-trend and t test. Likewise,

we see significant improvements using Baldur over the other

methods at small spike-in quantities in one of the total prote-

omics DSs (14). Further, we show that Baldur improves the

performance on the remaining five total proteomicsDSs (19–22)

over all other models by reducing the number of false positives.

Lastly, we performed empirical power analysis to analyze the

methods’ precision when increasing the number of replicates.

We found that the Baldur methods always gain power with

sample size, while showing robust control of the false positive.

On theother hand, limma-trend and t test increase in powerwith

increased sample size but at the expense of reduced false

positive (FP) control leading to decreased precision.
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In conclusion, we have developed novel ways of modeling

the M-V dependency and a new Bayesian statistical decision

method for proteomics. Our Bayesian model is particularly

robust for noisy data and shows improved performance over

the state-of-the-art decision methods (3, 19, 20) while our

novel M-V modeling improves the statistical decision.

EXPERIMENTAL PROCEDURES

Datasets

We used six previously published (14, 19–22) label-free spike-in

benchmark DSs to evaluate model behavior and performance. Two of

the benchmark DSs published in (19) were produced by label-free

quantification, one on total proteomics with the Universal Proteomics

Standard Set 1 (UPS1) spiked in at 1:2:4 times concentration in a

Chlamydomonas background, and the other is a PTM DS using a

reversibly oxidized cysteine enrichment protocol with Saccharomyces

cerevisiae spiked in at 1:2 concentrations to a Chlamydomonas back-

ground (see original paper for details).We refer to theseDSs asUPS-DS

and Yeast-DS, respectively. The UPS-DS has four replicates per spike-

in (condition), and Yeast-DS has three. In addition, we used the data

published by Ramus et al. (14) that has UPS1 spiked in at nine different

concentrations to a yeast background with three replicates in each

condition and is also a label-freequantificationDS.Wealso investigated

three previously published data-independent acquisition DSs (20–22).

The first DS published by Fröhlich et al. (20; called Human-DS from here

on) had Escherichia coli proteome spiked-in at 6:12:25 concentrations

to a background of a heterogeneous human tumor population. Bruderer

et al. (21) had a stable human cell line (HEK-293 cells) as a background

and a complex design of UPS2 spike-in at three different master mixes

producing eight different conditions each with three replicates. Finally,

Navarro et al. (22) had a background of human (cervix carcinoma; HeLa)

cells with E. coli and yeast (S. cerevisiae bayanus strain LALVIN EC-

1118) spike-in with ratios 4:1 and 2:1, respectively. Table 1 summa-

rizes the properties of these DSs.

Data Preprocessing

For the Yeast-, UPS-, Ramus-, Navarro-, and Bruderer-DS,

normalization was done by calculating the scale factors described in

(23), and dividing each sample accordingly. That is, let yij be the

measurement of the i:th peptide in the j:th sample. The normalization

constant sj for the j:th sample is then given by Equation 1

sj =median
i:yij∈R∀j

yij

(∏m
j=1yij)1

m

(1)

The normalized data yNij was then given by Equation 2.

yNij =
yij

sj
(2)

Here, sj was calculated using rows without missing values, and

after normalization, data was log2-transformed. Lastly, Yeast-,

UPS-, Ramus-, Navarro-, and Bruderer-DS were imputed using

missForest (24). For the Navarro-DS (22), the data was first pro-

cessed with the MSstats (25) functions SpectronauttoMS-

statsFormat, dataProcess with the flag normalization set to

FALSE, followed by quantification and exponentiation (2yij for

measurement yij) after which above procedure was followed. For

the Human-DS, columns corresponding to conditions with no

spike-in were discarded, then rows with missing values were

filtered out before normalization, to follow the arguments pre-

sented in the original study (20). For the empirical power analysis,

the columns were subset from the normalized data.

Model Inference

For inference of the latent gamma mixture regression (LGMR)

model, we set κ = 0.001. Then, we used RStan’s (26) No-U-Turn

Sampler using five chains each with 500 warm-up draws, 2000

post warm-up samples (iter set to 2500), adapt_delta set to 0.9 for

everything except the empirical power analysis. For the empirical

power analysis, we ran 20 chains with 500 warm-ups draws and

2000 post warm-up samples. For the calculation of the normalized

root-mean-square error (NRMSE), Equation 15 was calculated dur-

ing the sampling substituting ŝ i with μi. The sample means of the

posterior were then used as point estimators and presented in

Table 2. Inference of the posterior distribution for the data and de-

cision model was done with RStan’s No-U-Turn Sampler using four

chains each drawing 1000 burn-ins and 1000 samples per peptide.

The parameters for the GR were estimated using R’s (27, version

4.2.0; https://www.r-project.org/) function glm (28), and the shape

parameter was estimated using the R package stats’s summary.glm

function. For integrating D (Equation 10), we used the normal cu-

mulative distribution function as implemented in R’s pnorm function

using the sample mean and sample SD from the posterior draws.

Running Limma and t Test

For running limma-trend, we first ran lmFit, contrast.fit, and then

eBayes was ran with Robust and trend set to TRUE. The p-values

were then extracted with topTable with adjust.method set to ”fdr” and

number set to Inf. For t test, we used R’s t.test function with var.eq-

ual = TRUE, and then ran p.adjust with method set to ”fdr” on the p-

values (within each comparisons).

Performance Metrics

For performance, all decisions were calculated over the closed set

[−0.1, 1] so the ROC curves always start at the origin. True positive

rate (TPR) was calculated according to Equation 3, false-positive rate

(FPR) according to Equation 4, precision according to Equation 5, and

Mathew’s correlation coefficient (MCC) according to Equation 6.

TPR= TP

TP + FN
(3)

FPR= FP

FP + TN
(4)

TABLE 1

Properties of the datasets investigated here

Dataset TP FP Total Conditions Replicates

Yeast 448 1787 2235 2 3

UPS 392 10,207 10,599 3 4

Ramus 292 4654 4946 9 3

Human 404 2902 3306 3 23

Bruderer 12 3773 3785 8 3

Navarro 3444 3145 6589 2 3

TP (true positives) is the number of spike-in examples, TN (true

negatives) the size of the background, Total is the sum of the two,

Conditions is the number of different spike-in concentrations, and

replicates is the number of Replicates per condition.

Bayesian Data Analysis for Label-Free Proteomics

2 Mol Cell Proteomics (2023) 22(12) 100658



Precision= TP

TP + FP
(5)

TP=True Positive TN = True Negative

FP=False Positive FN = False Negative

MCC= TP TN−FP FN̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

√ (6)

Empirical Time Complexity Analysis

For the evaluation of model time complexity, we used the

microbenchmark package in R. For the data and decision model, we

used the empirical Bayes (EB) prior, and the GR model was used to

infer model uncertainties and hyperparameters before starting the

evaluation. For the LGMR model, we used five chains and five parallel

workers for each run using 500 warm-ups and 2000 posterior sam-

ples. Both evaluations were performed ten times for each DS.

RESULTS

Bayesian Data and Decision Model

Here, we describe a Bayesian hierarchical model (Baldur) to

analyze differences in peptide (or protein, PTM, etc., but for

simplicity, we will use peptide from here on) abundances. This

model will be applied to each peptide independently, and as

such, we will describe it from the perspective of one single

peptide. We assume the peptide’s data to be normally

distributed with C different conditions (control/treatment, time

points, etc.) each with nc measurements. Then, we assume

that the measurements within the c:th condition have a

common mean μc. We model each peptide’s data with a

common SD σ (unique to each peptide) and a measurement-

specific uncertainty, ui for the i:th observation, as a multipli-

cative factor that describes its change of variance from σ.

Hence, the uncertainty is a correction for the unobserved

measurement-specific variance around the mean. Further, we

assume that all measurements and means in each condition

are independent and therefore have zero covariance. We then

model the means with a group-level effect (29) and assume it

is proportional to σ. We use the expanded noncentered

parameterization which has been shown to increase sampling

convergence and efficiency, and allows for increased model

flexibility (29–35). This allows the model to adjust the posterior

variance of each μc, while still being constrained on σ and to

shift the mean proportionally to σ. Finally, σ is assumed to be a

gamma random variable with shape and rate parameteriza-

tion, with hyperparameters estimated from the M-V trend. The

data model is summarized in Equation 7.

Y ∼ N (Xμ, σu), μ ∼ N (μ0 + ησ, σ)
σ ∼ Γ(α, β), η ∼ N (0, 1) (7)

Here, Y is a column vector of N observations, μ is a column vector

of the C means, X is an N-by-C design matrix, σ2 is the common

variance, u is a column vector of the uncertainties, and η is a

column vector (of length C) for group-level effects.

Baldur has two prior choices for μ0, one EB prior, and one

weakly informative (WI) prior. The EB prior assumes a normal

prior on μ0 similar to the normal–normal compound model in

(36, 37). The EB prior assumes that the mean of μ0 is the

sample mean with the variation set as twice the common

variance normalized by the number of measurements

(Equation 8). Here, y is a column vector of the sample means in

the C conditions, and nR is a column vector of the scaling

constants in the C conditions. The WI prior uses a normal

distribution with a large variance (Equation 9).

μ0 ∼N (y, σnR), nR = [ ̅̅̅
2

√̅̅̅̅̅
n1

√ ,

̅̅̅
2

√̅̅̅̅̅
n2

√ ,…,

̅̅̅
2

√̅̅̅̅̅̅
nC

√ ]T (8)

μ0 ∼ N (0, 10) (9)

Next, we model our decision statistic D for comparisons of

interest as a normal distribution with mean equal to a contrast of

interest and variance equal to the common variance (σ2;

Equation 10) normalized by the contrast weighted sample size, ξ.

D∼N (μTK, σξ), ξm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑C
i=1

|kim|
ni

√√√
(10)

where K is a C by M contrast matrix (with M contrasts;

Equation 11) of interest with the constraint that each column’s

TABLE 2

Table of inferred regression parameters and normalized root mean squared error for LGMR model

Dataset α γ0 γ0L γŷ γŷL NRMSE

Yeast 2.245 7.482 −1.191 0.874 0.427 0.664

UPS 7.372 6.816 −2.138 0.729 0.451 0.455

Ramus 7.766 7.284 −1.655 0.297 0.547 0.439

Human 17.651 7.171 −1.215 0.25 0.007 0.388

Bruderer 5.215 6.405 −2.596 0.501 0.031 0.692

Navarro 2.916 7.156 −1.759 1.385 0.02 0.693

Numbers represents posterior means.

Abbreviation: NRMSE, normalized root-mean-square error.
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positive values sum to one and negative terms sum to minus

one.

K=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k11 k12 … k1M
k21 k22 … k2M
⋮ ⋮ ⋮ ⋮

kC1 kC2 … kCM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

∑C
i=1

kim = 0 & ∑C
i=1

|kim| = 2 ∀m ∈ [1, 2,…,M]

This allows for pairwise and nonpairwise comparisons, for

example, comparing the mean in one condition against the

mean of two others.

Finally, we estimate the probability of error by integrating

the tails of D. Let Φ be the cumulative distribution function of

the standard normal distribution, μD the mean(s) of the pos-

terior(s) of D, τD the reciprocal of the posterior SDs (square

root of the precision). Further, let the null hypothesis be that

the difference in means is equal to μh0 . Then the probability of

error(s) is then defined according to Equation 12.

P(error) = 2Φ(−⃒⃒μD−μh0 ⃒⃒⊙ τD) (12)

where ⊙ is the Hadamard product.

Modeling the Mean-Variance Trend

Here, we will describe EB methods for estimating the

hyperparameters of σ. Let s = (si) ∈ Rp
+ be a column vector of

the sample SDs, and y = (yi) ∈ Rp of the sample means in the

p peptides of a DS of interest. Here, we use the sample SD

since the data model (Equation 7) assumes that each mea-

surement has a unique variance.

Gamma Regression for the Mean-Variance Trend

The first inference model uses a GR for estimating model

hyperparameters. Let s be gamma-distributed and parame-

terized as described in Equation 13 (i.e., a GR with log-link

function).

s∼Γ(α̂, β̂) β̂= α̂

eγ̂0+γ̂yy
(13)

where Γ(., .) is the gamma distribution with shape, rate parame-

terization, and γ̂ i s are the inferred regression parameters. We

define the uncertainty for some measurement yij as the expected

SD (Equation 14).

uij =E[si ⃒⃒γ̂0, γ̂y , yij]= eγ̂0+γ̂yyij (14)

Supplemental Fig. S1 shows the fitted GRs to the DSs

investigated here (see the DSs section in Experimental

Procedures for details). We found that the regression model

describes the UPS-DS trend well. But, for the other DSs (in

particular for the Human-DS), we observe that a single GR

model cannot capture the M-V distributions well. From

Table 3, we see that the slopes and intercepts have similar

values, except for the Human- and Bruderer-DS with smaller

intercepts (both) or slope (Human-DS). In addition, the shape

parameter is slightly larger for the Human-DS than the other

five. We then calculated the NRMSE (38) to determine the

goodness-of-fit.

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
p∑p

i=1(si−ŝ i)
2

Var(s)

√√√
(15)

where ŝ i is the predicted SD of the i:th peptide, and Var(.)
is the variance. We found that all DSs generated a similar

error with the GR model but the Navarro-DS NRMSE was

slightly lower.

Latent Gamma Mixture Regression

To further increase the precision of the M-V trend modeling

for each peptide, we propose a LGMR model. We assume that

each peptide’s variance is a mixture of a common and a latent

trend—allowing for localized estimates of the M-V trend pa-

rameters. The model starts with the same formulation as for

the GR model (Equations 13 and 16) but with a half-Cauchy as

a weak prior on α (Equation 17; 29).

s∼Γ(α, β), β = α

μ
(16)

α ∼ Half−Cauchy(25) (17)

We then assume that the mean of s is a mixture of the

two trends with one intercept and one slope each, and

the i:th peptide has θi ∈ [0, 1] of the latent trend

(Equation 18).

μ= exp (γ0−γyf(y)) + κ exp (θ⊙ (γ0L−γyLf(y)))
f(x) = x−μy

σy

(18)

TABLE 3

Table of inferred regression parameters and normalized root mean

squared error for GR model

Dataset α γ̂0 γ̂y NRMSE

Yeast 1.337 1.352 −0.233 0.818

UPS 1.855 0.982 −0.267 0.819

Ramus 1.895 2.719 −0.193 0.837

Human 3.011 0.041 −0.033 0.996

Bruderer 1.635 0.259 −0.151 0.97

Navarro 1.154 1.246 −0.334 0.738

Abbreviation: NRMSE, normalized root-mean-square error.
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where κ is some small constant (here we will use 0.001) that

defines the smallest possible contribution of the latent trend

and f gives the standardized sample means (with μy and σy
being the mean and sd of y, respectively). We then choose a

uniform distribution as an uninformative prior on θi
(Equation 19).

θi ∼ U(0, 1) (19)

We set the slope to always be negative by limiting the slope

coefficients to positive values (γy ,γyL ∈ [0,∞]; Equation 18). To

this end, we used a half-normal prior on the slope coefficients.

We then set priors on the intercepts. For the common

intercept we used a standard normal distribution. For the

latent intercept, we set a right-skewed prior using a skewed-

normal distribution and setting the α parameter to a large

positive value. In addition, we set a large variance by putting a

large ω parameter to make the prior weaker. Finally, the

location parameter small positive for the latent intercept to

force it larger and accommodate for the shrinkage by κ.

γ0 ∼ N (0, 1) (22)

As for the GR model, we define the uncertainty for some

observation yij as its expected sd (Equation 24).

uij =E[si ⃒⃒θi , γ0, γ0L, γy , γyL, yij]
= exp (γ0−γyf(yij))+ κ exp (θi(γ0L−γyLf(yij)) (24)

The inferred regression parameters of the LGMR model for

the DSs investigated here are shown in Table 2, and the model

is visualized in Figure 1. We found that all DSs had unique

regression patterns that resemble their corresponding M-V

trend (Supplemental Fig. S1). From Table 2, we found that

Ramus-DS and UPS-DS had similar α values, while the Yeast

and Navarro-DS values were smaller, Bruderer-DS in between

the four, and Human-DS was significantly larger; similar to the

GR model. We found that the Human-DS had the best fit,

followed by the Ramus-, UPS-, Yeast-, Navarro-, and

Bruderer-DS. Finally, compared to the GR model, we found

that the LGMR model gave a better fit across all DSs (Tables 2

and 3). Taken together, we have developed a new Bayesian

regression model using a latent mixture that can describe well

the local M-V trend of the DSs investigated here.

Algorithmic Description

The procedure for implementing the Bayesian decision is

described in algorithm 1. The user needs to input their data, a

designmatrix, a contrastmatrix, a choiceof regressionmodel to

use, LGMR or GR, and finally a choice of mean prior, EB or WI.

Baldur then fits the regression model and uses it to infer un-

certainties as well as hyperparameters on σ. It then runs the

decision model on each peptide separately and produce a

summary statistic of the fit (this allows for a highly efficient

parallel computation setup). In particular, Baldur returns the

mean, median, a 95% credibile interval, the R-hat, and the

efficient sample size for parameters of interest.

Performance Evaluation

For the performance evaluation, with the exception of the

Bruderer-DS, we evaluated DSs on a per-comparison basis;

due to the very few true positives (TPs) in the Bruderer-DS

(Table 1), we analyzed it over all the ( 8
2
) possible compari-

sons at the same time. In addition, due to the complex mixes

of the TPs in the Bruderer-DS, there are no generic ways to

define the fold change of the TPs in the different comparisons.

Receiver Operator Characteristics

To evaluate the performance of the models presented here,

we generated receiver operator characteristic (ROC) curves of

the six benchmark DSs. We evaluated the following methods:

Baldur with both priors and regression models, limma-trend,

and t test since they are generally used in recent studies (3,

14, 19, 20, 39–42). For limma-trend and t test, we applied false

discovery rate correction using the method described in (43).

Algorithm 1 description of Baldur

Input

y Input data

X Design Matrix

C Contrast Matrix

Reg Which regression model to use.

MP Which means prior to use for the data model

Output

yout Posterior estimates

(s, y) ← CALCULATEMEAN-STANDARDEVIATION(y)

if Reg=LGMR then

GamReg ← FITLGMR(s, y)

else

GamReg ← FITGR(s, y)

end if

u ← PREDICTGAMMAREGRESSION(GamReg, y)

(α̂, β̂) ← PREDICTGAMMAREGRESSION(GamReg, y)

for i ∈ {1, 2,…,p} do
Posterior ← SAMPLE(MP, yi , yi , (α̂, β̂ i), ui )
Estimatesi ← SUMMARIZEPOSTERIOR(Posterior[σ,μ,D])

end for
yout ← Estimates

Bayesian Data Analysis for Label-Free Proteomics
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For the Yeast-DS (Fig. 2A), we observed an increased per-

formance using Baldur. In particular, all Baldur-based models

improved on limma-trend and t test perfomance. In addition,

the LGMR model for parameter inference slightly improved on

the GR model, and the WI prior for the mean had a marginally

better performance than the EB prior.

For the UPS-DS, we show the ROC curves for both

pairwise and nonpairwise comparisons (Supplemental

Fig. S2A). While all methods generally performed well on

the pairwise comparisons, Baldur with the LGMR model has

a notably better performance in all comparisons, Baldur with

the GR model is second, followed by limma-trend and t

test. In addition, we found that Baldur-based models had a

similar area under the ROC curve (auROC) across all pair-

wise comparisons, while limma-trend and t test had a larger

spread in performance for the different comparisons. In

addition to pairwise comparisons, we also studied non-

pairwise design for the UPS-DS to evaluate the perfor-

mance of the statistical decision at small and intermediate

average log fold changes of the spike-in peptides. We

found that, all methods showed similar performance for the

larger fold changes, but for the very small fold change of

fmol50 versus fmol25 and fmol100 (i.e., the fold change of

TPs are 0.8) we found that LGMR-Baldur methods out-

performed GR-Baldur which had a slightly better or equal

performance to limma-trend. In addition, the EB prior

showed slightly better performance than the WI prior.

For the Human-DS (Supplemental Fig. S2B), we found that

all methods had similar performance across all comparisons

except one (1:12 versus 1:6), where LGMR models had slightly

better performance.

For the Ramus-DS (Fig. 3), we identify a wide range in

performance for different comparisons ranging from easy

(e.g., 5 versus 50) to hard (e.g., 0.125 versus 0.5). Still, we

found that both GR and LGMR Baldur models can improve

performance significantly, when the spike-in quantities are in

low concentrations and involve smaller fold changes between

conditions. In particular, we see performance improvements

for comparisons where the spike-in concentration is lower

than 12.5 fmol. Conversely, we find comparable performance

for all methods when the fold changes are substantial or when

the spike-in concentrations are ample. Still, it is evident that

Baldur with the LGRM model performs highest in all 36

comparisons, while GR-based inference is second.

For the Bruderer-DS (Supplemental Fig. S3), we found that

the LGMR model drastically outperformed all other models—

increasing the auROC by almost 10% over limma-trend and t

test, and 5% over the GR models. In particular, we observed

that the LGMR models attain a higher TPR much faster at

lower FPRs than the other models.

For the Navarro-DS (Fig. 2B), we see that Baldur methods

tend to gain TPR at a faster rate than t test and limma-trend. In

particular, LGMR inference tends to max out the TPR at an

FPR of about 0.1, while GR attains the same TPR around 0.5

FPR, and t test at around 0.8 FPR. This indicates the LGMR

inference returns TPR at a much lower FPR cost for this DS,

followed by GR models, limma-trend and lastly t test.

Summarizing, Baldur has drastic performance improvement

in noisier conditions of proteomics measurements, with the

LGMR as the best-performing alternative and GR second. On

the other hand, for less noisy (easier) DSs (or comparisons;

e.g., large fold change), Baldur is marginally better than limma-

FIG. 1. The mean-variance trend with the locally estimated gamma regression. M-V trends in Yeast-, UPS, Ramus-, Human, Bruderer-,

and Navarro-DS (A–F, respectively), with the x-axis showing the sample mean, and the y-axis showing the sample SD. Each line indicates the M-

V trend of a corresponding peptide, and the color indicates the derivative at the peptide’s mean.
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trend or t test, as these methods already have large auROC

and therefore have little room for improvement. In addition, we

observed that the LGMR model consistently improves Bal-

dur’s performance over GR model inference. Finally, we

observed that Baldur has dependable performance across all

DSs investigated here, while limma-trend and t test can show

considerable variation in performance between comparisons.

Decision Patterns

While ROC curves can produce a summary statistic over a

classifier’s support—it is inadequate for a deeper under-

standing of specific statistical thresholds typically used in the

significance analysis of proteomics data. Thus, we investi-

gated MCC (44, 45) as a point estimate of statistical decisions

over a range of significance levels. The motivation for using

MCC is that all DSs (except Navarro-DS) are heavily unbal-

anced between TPs and true negatives (Table 1), and MCC

has, arguably (46, 47), good properties for unbalanced data.

For Yeast-DS (supplemental Fig. S4), we found that LGMR

does performed slightly better than GR and the EB is better

paired with LGRM-based inference, while WI works better with

GR-based parameter estimation. In addition, we found that

Baldur methods always have a larger MCC than limma-trend

and t test. Finally, we found that the Baldur methods make an

optimal decision around 1 to 5%, while limma-trend and t test

peak very close to 0 and subsequently decay with the signif-

icance level.

Similarly to the ROC curves, the Ramus-DS showed a wide

range of performance for the MCC (Supplemental Fig. S5) be-

tween different comparisons. Still, Baldur using GR and LGRM

inference tended to produce better-performing decisions that

generally decay slower with the significance level than limma-

trend and t test that often peak at very small significance

levels. Importantly, while some ROC curves (Fig. 3) suggested

similar performance, the MCC showed substantial differences

at typical significance levels. In particular, we see that Baldur-

based models showed better performance when compared to

limma-trend and t test in the 5 versus 50 comparisons; all

methods showed good ROC performance, while limma-trend

and t test have significantly decreased MCC. Finally, we see

that the Bayesian decision tends to have robust performance,

while t test and limma-trend have unexpected drops in perfor-

mance, in particular at lower significance levels.

For the UPS-DS (Supplemental Fig. S6), we again found

that Baldur-based decisions tend to outperform limma-trend

and t test. In all pairwise comparisons, we find that the LGRM

model tends to produce the best decisions. In particular, we

find that the WI prior slightly increases performance at the

comparison fmol25 versus fmol100 that has the larger fold

change. We find that while the GR method is slightly worse

than limma-trend for the fmol50 versus fmol100 and fmol25

versus fmol50 comparisons it shows better performance in

the fmol25 versus fmol100 comparison. For the nonpairwise

contrasts, we found that the LGMR and GR models per-

formed better at typical significance levels. For the most

FIG. 2. Receiver operator characteristic curves for the Yeast-DS and Navarro-DS. The Yeast-DS ROC is shown in A and the Navarro-DS

ROC in B. The different colors indicate the evaluated models: LGMR-Baldur is the Baldur method with the LGMR model to estimate σ priors and

uncertainty, GR-Baldur uses the GR model to estimate σ priors and uncertainties, EB and WI indicates the empirical Bayes prior or the weakly

informative prior on the mean, limma-trend as described in Experimental Procedures, and t test is used with pooled variance. The x-axis shows

the false-positive rate, and the y-axis shows the true-positive rate. The colored numbers on the bottom of the plots show the area under the

curve with colors corresponding to the different models.
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challenging contrast (fmol50 versus fmol25 and fmol100), we

find a significant drop in Baldur performance, while limma-

trend does not produce any decision until a large signifi-

cance level (greater than 0.19).

For the Human-DS (Supplemental Fig. S7), we observed that

LGMR improves the decision over limma-trend and t test in all

three comparisons, while the GR model has better performance

in two comparisons. Surprisingly, Baldur performs considerably

better at the largest fold change, where limma-trend and t test

rapidly drop in performance. In addition, we observe that both

priors behave (almost) identically in all three comparisons, likely

due to the large number of replicates in this DS.

In the Bruderer-DS (Supplemental Fig. S8), we found that,

contrary to the ROC curve (Supplemental Fig. S3), the prior

choice had the largest impact on the performance. In partic-

ular, the WI prior tend to outperform the other methods,

FIG. 3. Receiver operator characteristic curves for the comparisons in the Ramus-DS. Facet titles indicate what comparison is being

evaluated together with the fmol spike-in concentration of the UPS1 of the two conditions. Color, axis, numbers, and decision as described in

Figure 2.

Bayesian Data Analysis for Label-Free Proteomics

8 Mol Cell Proteomics (2023) 22(12) 100658



followed by the LGMR model. Within prior choices, the LGMR

model tends to produce the best performance. Surprisingly, t

test tends to strongly outperform limma-trend, which rapidly

decays with significance level while t test peaks around 1%.

As for the Bruderer-DS, in the Navarro-DS (Supplemental

Fig. S9), we found that the prior choice had the biggest

impact on Baldur’s performance. In particular, the EB prior

outperformed the other methods followed by GR-WI, limma-

trend, t test, and LGMR-WI. This could be due to the trend in

this DS having surprisingly flat variance for a large range of

means (approx. 5–8; Supplemental Fig. S1F). The GR model

does not capture this which could lead to inaccurate un-

certainty inference, while the LGMR does (Fig. 1F). Still, in

contrast to the other methods, both LGRM models increase

in MCC over the entire range of significance levels investi-

gated here.

In conclusion, from the MCC evaluation, we found that

Baldur tends to make more balanced decisions around tradi-

tional significance levels. In addition, we found that Baldur

retains a more balanced decision over a wide range of de-

cisions compared to limma-trend and t test and is particularly

good in comparisons where all models have their lowest

performance (i.e., has the best worst-case performance;

except LGMR-WI in the Navarro-DS). Finally, we found that

both EB and WI generally perform similarly from a balanced

decision perspective. Still, the LGRM model generally shows

the highest performance across all DSs and comparisons in-

dependent of prior choice.

Next, we analyzed the TPR, the FPR, and precision as a

function of the significance level. For the Yeast-DS (Fig. 4), we

see an improvement, foremost in controlling the FPR, while

still being competitive in TPR. While all models produce large

FPR, Baldur shows robust control at small significance levels

and slowly increases in FPR. On the other hand, limma-trend

and t test rapidly pick up FPs at lower significance levels. In

particular, we observe that LGMR model controls the FPR well

for both priors, while the GR inference with the EB prior tends

to produce the largest TPR and FPR of the Baldur methods.

Importantly, the control of the FPR leads to increased preci-

sion of the Baldur methods, all improving over limma-trend

and t test.

For theRamus-DS (Supplemental Figs. S10andS11),weagain

observed that Baldur models tend to control the FPR to a much

higher degree, while having similar or even better TPR. In partic-

ular, we observed that the LGMR-EB setup vastly outperforms

limma-trend in reducing FPR, while attaining marginal improve-

ment in TPR. We observe that the improvements in Baldur

methods come from better control of the FPR rather than an in-

crease in TPR. In addition, Baldur controls the FPR robustly in all

comparisons, while limma-trend and t test have fluctuating FPR.

Next, we investigated the performance of the pairwise

statistical decisions in the UPS-DS (Supplemental Fig. S12)

which had the second highest imbalance of the DSs inves-

tigated here (Table 1). We found that the LMGR had the best

performance in terms of TPR, FPR control, and precision in

all three comparisons. While the GR model had lower TPR, its

FPR control still produced the second-best precision in all

comparisons. For the nonpairwise contrasts (Supplemental

Fig. S13), we observed a similar pattern in performance

where LGMR had the best performance, GR had a lower TPR

while still maintaining among the best precisions; similarly,

limma-trend produced a significantly higher FPR. The third

comparison at low spike-in log fold change (−0.32; fold

FIG. 4. Performance metrics of the Yeast-DS plotted against the

significance level (α). y-axis shows the metric value (as indicated by

facet titles), x-axis shows the significance level, and colors as

described in Figure 2.
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change 0.8) all methods had very low TPR. Limma-trend

made no decision until a large significance level of roughly

0.18, while LGMR-EB managed to produce the largest TPR

among all methods.

For the Human-DS (Supplemental Fig. S14), we saw that

Baldur methods have outstanding precision over limma-trend

and t test due to the strong FPR control in this DS. Further, all

models can get a high TPR, except for GR in 1:12 versus 1:6.

Still, we observed that, in the worst-case scenario, Baldur-

based models make an improved decision by better control-

ling the FPR. Since these DSs have large TN, this translates to

increased precision for all Baldur methods over limma-trend,

with the WI prior slightly outperforming the EB.

In the Bruderer-DS (Supplemental Fig. S15), we found that

limma-trend tends to rapidly amass FPs compared to the

other methods. Limma-trend and LGMR-EB acquire TPR

fastest and at similar rates, followed by LGMR-WI and t test,

while the GR based inference tends to accumulate TPR at a

slower rate. Still, the GR models and LGMR-WI tends to have

the best precision, followed LGMR-EB and t test, though, both

t test and limma-trend drop surprisingly fast in precision with

significance level.

Finally, for the Navarro-DS (Supplemental Fig. S16), we

again see that limma-trend—followed closely by t test—ac-

cumulates FPR faster than the Baldur models, where the GR-

EB has the highest FPR rate. Similarly, the GR-EB and LGMR-

EB has the highest TPR among the Baldur models and is

slightly lower than limma-trend and slightly higher than t test.

In addition, we found that the WI prior lowers TPR more than

the other methods but still tends to have high precision

together with the LGMR-EB. Finally, we observe that GR-EB

has the lowest precision among the Baldur methods and

limma-trend as well as t test have even lower precision.

Concludingly, we observed that investigating performance

metrics as a function of significance level can elucidate

model-specific behavior. In particular, Baldur’s methods

tend to control the FPR much better than t test and limma-

trend while generally having comparable TPR. This led to

the best precision in all DS and comparisons for Baldur.

Concurrently, we found that this led to an improvement in a

balanced decision as measured by the MCC, indicating that

Baldur’s methods tend to make more balanced decisions.

This becomes obvious when examining the distribution of

FP and TP at the 5% significance level for all six DSs (Fig. 5

and Supplemental Figs. S17–S21), where Baldur based

methods tend to have similar TP but far lower FP. The

exemption is for a few comparisons in the Ramus-DS and in

the UPS-DS, where the LGMR method picks up more TPs

and fewer FPs.

Empirical Power Analysis

As a final analysis, we investigated the performance of the

methods presented here as a function of replicates. The large

number of replicates in the Human-DS (Table 1) allowed us to

analyze how the number of replicates affects the statistical

decision. To this end, we varied the number of replicates

from 3 to 21 within each condition by producing 24 randomly

selected combinations for each replicate size. We then

investigated the TP and FP at a 5% significance level for

each replication size and combination. For the first compar-

ison, we found that all methods except t test could identify

most TPs at three replicates, and all methods could identify

all TPs at six replicates (Fig. 6). Surprisingly, as the number of

replicates increased, both t test and limma-trend increased in

the number of FPs. On the other hand, Baldur methods

remained steadily at the same number of FPs for the entire

range of replicates; this held true for all three comparisons in

the DS. For the second comparison, we again observed that t

test and limma-trend increased in FPs as the number of

replicates increased but flatten around 18 to 21 replicates. In

addition, we see that GR with both priors have subpar TP

detection compared to the others that identified nearly all

TPs around 18 replicates. Finally, we observed that in the

third comparison, LGMR and limma-trend could identify

more TPs than other methods at three replicates. At nine

replicates, we found that all methods identified most of the

TPs and that there was no change in FPs as replicates

increased. Taken together, Baldur’s decision benefits from

increasing the number of replicates. On the other hand,

increasing the number of replicates can reduce the perfor-

mance of t test and limma-trend by reducing control of the

FPR.

FIG. 5. Number of false positives and true positives of at 5%

significance level for Bruderer-DS. The y-axis shows the different

models, and x-axis shows number of false positives (red color) or true

positives (blue color).
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DISCUSSION

While increasing TPR is a driver for proteomics discovery,

controlling the FPR is critical for precise high-throughput

functional analysis of proteomes and reactomes and enables

a better downstream systems biology analysis. In addition,

increased FPR control will be directly associated with

improved reproducibility of a study. Here, we demonstrate

that Baldur with the LGMR model has the best performance

across all comparisons in all six DSs investigated independent

of them, exhibiting a mixture of distributions or not (Fig. 1 and

Supplemental Fig. S1).

We compared two different priors for the mean of each

condition, a WI (Equation 9) and a data-driven EB (Equation 8).

In general, we found comparable performance, but the WI prior

tends to produce smaller TPR while having higher precision. On

the other hand, the EB prior tends to produce higher TPR but

with lower precision. Compared to t test and limma-trend, the

EB prior has a comparable TPR but reduced FPR, while the WI

has lower TPR but even smaller FPR. As such, if the analyst is

interested in a well-annotated list of peptides with a high con-

fidence of being TPs they should use the WI prior; if the interest

is in maximizing the number of TPs at the expense of more FPs,

they should use the EB prior. Further, we find that the inference

of uncertanties and hyperparameters for Baldur with the LGMR

model developed here outperforms GR in all comparisons,

making it the de facto method of choice. Likely, this is due to

the improved M-V trend modeling of the LGMR model being

able to infer it locally for each peptide in the DSs. Importantly,

the LGMR model estimation time scales linearly with the

number of rows in the data (Supplemental Fig. S22A), while the

data and decision models running time decreases exponentially

with the number of parallel workers (Supplemental Fig. S22B)

and all DS investigated here converged to similar times from 1

to 8 min with a large number of threads. For a modern laptop

using ten parallel workers the typical time would be around 3 to

30 min depending on the number of peptides, conditions and

comparisons in the DS. In particular, we find that the LGMR

model is only impacted by the number of peptides while the

data and decision model is mainly impacted by the number of

conditions and comparisons, while being unaffected by the

number of replicates (Table 1 and supplemental Fig. S22A).

In the six DSs investigated here (Supplemental Fig. S1), we

found that the LGMR model (Equations 17–23) described the

M-V trends well (Fig. 1 and Table 2). Still, while the LGMR

model performed well on all DSs analyzed in this study, there

is no guarantee that it will fit any input DS produced by the

vast number of spectral quantification methods. Importantly,

using Baldur with a GR model still tends to outperform t test

and limma-trend and pose as a valid option for the LGRM at a

lower computational cost.

FIG. 6. Baldur increases in power with increasing number of replicates without the expense of increased false positives in the Human-

DS. Bars show the average number of false or true positives (indicated by facet titles) at a 5% significance level of n = 24 independent runs with

each run having a unique subset of replicates. Error bars shows the mean ± SEM, 24 replicates are all replicates in the data and therefore a point

estimate. x-axis indicates the number of replicates used. Colors as described in Figure 2.
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Lastly, we believe that Baldur’s robust control of false

alarms will be highly effective for analyzing PTM and pepti-

domics DSs susceptible to have larger sample variations.

Here, we observed this in Yeast-DS (PTM DS), Ramus-DS for

small spike-in concentrations, and in the Bruderer total pro-

teomics DS, where Baldur’s FP control was superior

compared to t test and limma-trend.
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