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ABSTRACT 19 

Developing mechanistic non-animal testing methods based on the adverse outcome pathway 20 

(AOP) framework must incorporate molecular and cellular key events associated with target 21 

toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid 22 

model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for 23 

hepatotoxicity modeling and profiled them against PubChem for existing in vitro toxicity data. Of 24 

the 2,560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a 25 

high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. 26 

Then, machine learning was applied to develop quantitative structure-activity relationship (QSAR) 27 

models with 2,536 compounds tested in the MMP assay for screening new compounds. The MMP 28 

assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set 29 

compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by 30 

including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set 31 

compounds in human HepG2 hepatoma cells and reliably predicted these compounds for 32 

hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines 33 

public HTS data, computational modeling, and experimental testing to predict chemical 34 

hepatotoxicity. 35 
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Hepatotoxicity, often referred to as drug-induced liver injury (DILI), is a leading cause of acute 41 

liver failure in the United States and Europe (Chalasani et al., 2008; Germani et al., 2012; Lee, 42 

1993, 2013; Weiler et al., 2020) and the primary reason for drug attrition during development 43 

(Björnsson, 2016; David & Hamilton, 2010; McNaughton et al., 2014). The idiosyncratic 44 

metabolic nature of DILI continues to prompt the cessation of clinical trials and even the recalls 45 

of drugs post-marketing (M. Chen et al., 2011). Given the severity and potential for DILI to hinder 46 

drug development, risk assessments are essential to mitigate potential life-threatening adverse 47 

reactions to drugs, environmental agents, and other xenobiotics (Senior, 2014). As the 48 

pathogenesis of DILI is one of the most complex toxicity phenomena, there are currently no 49 

applicable alternative models available for its assessment. DILI involves numerous cellular and 50 

biochemical processes, and many compounds that induce hepatotoxicity have poorly understood 51 

mechanisms. Given the concern for hepatotoxicity across diverse areas of toxicology, 52 

comprehensive assessments are imperative. 53 

High-throughput screening (HTS) facilitates the assessment of a vast array of compounds for their 54 

specific biological activity. The United States Environmental Protection Agency’s (US EPA) 55 

Toxicity Forecaster (ToxCast) comprises chemical screening data from HTS approaches. It plays 56 

a vital role in the Toxicology in the 21st Century (Tox21) program developed by the EPA, Food 57 

and Drug Administration (FDA), and National Center of Advancing Translational Sciences 58 

(NCATS) (Dix et al., 2007; Judson et al., 2010). While ToxCast HTS assays have significantly 59 

advanced our ability to assess chemical toxicities (Fox et al., 2012; Knight et al., 2009), no 60 

individual assay can replace in vivo testing for hepatotoxicity (Ekins, 2014). 61 

Regulatory agencies and pharmaceutical companies have prioritized developing and implementing 62 

non-animal testing methodologies, such as computational approaches and HTS, that can minimize 63 
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the use of animal testing (Höfer et al., 2004; Krebs et al., 2019; Stucki et al., 2022). Depending 64 

solely on synthesizing and testing new compounds to gather experimental HTS data can still be 65 

expensive and time-consuming, especially when multiple assays are necessary to evaluate many 66 

new compounds. Computational modeling, such as quantitative structure-activity relationship 67 

(QSAR) models, can effectively and efficiently predict the biological activities of many new 68 

compounds across simple toxicity mechanisms such as skin sensitization (Cronin & Basketter, 69 

1994), skin and eye irritation or corrosion (Patlewicz et al., 2003), and protein binding (Dimitrov 70 

et al., 2016; Gutsell & Russell, 2013; Sedykh et al., 2013). However, QSAR models have 71 

encountered challenges predicting complex toxicity endpoints, such as hepatotoxicity (Ekins, 72 

2014). Based on our previous studies, integrating computational approaches and HTS assays for 73 

modeling complicated toxicity endpoints (e.g., estrogen receptor agonists, in vivo acute toxicity) 74 

holds promise for modeling hepatotoxicity (Jia et al., 2022; Kim et al., 2016; Ciallella et al., 2021b; 75 

Russo et al., 2019; H. Zhu et al., 2014). 76 

In recent years, the adverse outcome pathway (AOP) framework has gained much attention as a 77 

strategy for conducting risk assessment (Ankley et al., 2010; Hartung, 2009; Krewski et al., 2009; 78 

Perkins et al., 2019; Tollefsen et al., 2014; Vinken, 2013). The Organization for Economic 79 

Cooperation and Development (OECD) established AOP guidelines that structure the progression 80 

of chemical toxicity occurrence from initial chemical exposure (i.e., the molecular initiating event 81 

(MIE)) to the following key events (KEs) and the manifestation of an adverse outcome (AO) (Allen 82 

et al., 2014; OECD, 2017). Alongside this, the AOP-Wiki (https://aopwiki.org/) has emerged as 83 

the central platform for sharing AOP knowledge, encompassing both OECD-endorsed AOPs and 84 

those contributed by the scientific community. This platform features established AOPs and those 85 

under development for hepatotoxicity (Arnesdotter et al., 2021, 2022; Gijbels & Vinken, 2017). 86 

https://aopwiki.org/
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However, none of the current AOPs include the decrease in MMP as the KE linked from the MIE 87 

associated with hepatotoxicophores, leading to liver injury (AO). Our previous research employed 88 

a single assay (i.e., the antioxidant response element (ARE) assay to probe oxidative stress) and 89 

structural alerts (i.e., hepatotoxicophores) for hepatotoxicity modeling (Jia et al., 2022). However, 90 

the dataset’s predictivity and coverage were limited to compounds that showed active results in 91 

this assay. Consequently, a substantial portion of the predicted compounds yielded inconclusive 92 

results. While oxidative stress is a recognized biomarker for mitochondrial toxicity, a deeper 93 

mechanistic understanding of mitochondrial roles in chemical-induced hepatotoxicity requires 94 

additional in vivo investigations. Mitochondrial stress in hepatotoxicity disrupts liver cell 95 

mitochondrial function, reducing mitochondrial membrane potential (MMP), impairing energy 96 

production, initiating cell death pathways, and causing liver damage (Ramachandran et al., 2018). 97 

The HTS MMP assay, extensively used in previous studies to identify mitochondrial toxicants, has 98 

not been applied to link this toxicity mechanism with hepatotoxicity or to predict potential 99 

hepatotoxicants (Huang et al., 2016; Seal et al., 2022; R. Zhang et al., 2023). Therefore, 100 

incorporating another essential assay that reflects mitochondrial activity linked to the oxidative 101 

stress pathway and supplementing our modeling framework with additional data can significantly 102 

improve the accuracy and interpretability of hepatotoxicity predictions.  103 

This study established an enhanced computational toxicity modeling workflow based on an AOP 104 

framework by creating a correlation between chemical structures, low-cost toxicity assays, and 105 

human hepatotoxicity by prioritizing and modeling the MMP assay from profiling a hepatotoxicity 106 

dataset (outlined in Figure 1). We developed machine learning models to predict the activity of 107 

new compounds when experimental MMP assay data were unavailable. By combining structural 108 

alerts with assay testing and prediction results, the hepatotoxicity of new compounds can be 109 
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predicted by revealing their toxicity mechanisms. Collectively, the hybrid, mechanism-driven 110 

model elucidates a pathway from initial off-site events to eventual organism-level toxicity. 111 

2. Methods 112 

2.1. Hybrid modeling for human hepatotoxicity 113 

The framework presented in Figure 1 describes the proposed hybrid modeling approach outlined 114 

in this study. The hepatotoxicity reference dataset served as the foundation for identifying 115 

structural alerts and profiling relevant bioassays, with the MMP assay selected for QSAR 116 

modeling. The QSAR modeling process, visually represented in purple, and structural alerts, 117 

shown in red, were integrated to create the hybrid model indicated by a combination of red and 118 

purple. The hybrid model was subsequently validated for its ability to predict human 119 

hepatotoxicity through experimental testing, as shown in red and green. 120 

2.2. Profiling PubChem assays for hepatotoxicity data collection 121 

The reference dataset used for modeling primarily contained the drug-induced liver injury rank 122 

(DILIrank) dataset, which the US FDA has extensively curated (M. Chen et al., 2016). The 123 

DILIrank dataset comprised 1,036 FDA-approved drugs classified into four groups based on their 124 

level of DILI concern: “most,” “less,” “no,” and “ambiguous.” The “ambiguous-DILI concern” 125 

group with 254 compounds was excluded from modeling due to the lack of conclusive causal 126 

evidence. The remaining compounds were categorized into hepatotoxic and non-hepatotoxic 127 

classifications. Specifically, 470 compounds from the “most-” and “less-DILI concern” classes 128 

were classified as hepatotoxic. The 312 compounds from the “no-DILI concern” group were 129 

classified as non-hepatotoxic. The chemical structures of the 782 compounds underwent curation 130 

and standardization using the CASE Ultra v1.8.0.0 DataKurator tool. This process involved the 131 

removal of duplicate structures, inorganic compounds, and mixtures. 132 



 7 

After curating and standardizing the DILIrank dataset, 678 compounds were identified, comprising 133 

432 hepatotoxic and 246 non-hepatotoxic compounds, causing an unbalanced distribution for the 134 

final hepatotoxicity reference set. To address the unequal distribution of toxic and non-toxic 135 

compounds in the dataset, an additional 191 non-hepatotoxic compounds were collected from 136 

previous studies (M. Chen et al., 2011; Ekins et al., 2010; Fourches et al., 2010; Kim et al., 2016; 137 

Liew et al., 2011; Liu et al., 2015; Mulliner et al., 2016). The final balanced hepatotoxicity 138 

reference set comprised 869 unique compounds, with 432 known hepatotoxicants that afflict 139 

humans with DILI (Jia et al., 2022), including anti-cancer, anti-retroviral, and cardiac drugs (M. 140 

Chen et al., 2016), along with 437 non-hepatotoxicants (Table S1, Supplementary Excel file). 141 

We generated a bioprofile for the compounds in the hepatotoxicity reference set using in vitro 142 

bioassay hit calls. Our automated profiling tool extracted information from in vitro assays on 143 

PubChem for these 869 compounds. The Python code used for profiling is openly accessible on 144 

our GitHub repository at https://github.com/zhu-research-group/HTSProfiling/ (Russo & Zhu, 145 

2022). The bioprofile categorizes the activity of compound-bioassay pairs as ‘active’ (1), ‘inactive’ 146 

(-1), ‘inconclusive’ (0), ‘unspecified’ (0), or ‘untested’ (0) (Y. Wang et al., 2009). We eliminated 147 

assays with fewer than five active responses and a total of 100 responses (combining active and 148 

inactive) within the profile. The remaining assays were then ranked based on their correlation with 149 

hepatotoxic compounds. 150 

2.3. QSAR model development 151 

The issue of missing data hinders the ability to discern relationships between compound-bioassay 152 

pairs. Traditional imputation methods, like random sampling, can be inadequate and potentially 153 

problematic. Therefore, we used QSAR modeling for a more accurate imputation of biological 154 

data that was congruent with previous computational toxicology studies (Russo et al., 2019; Zhao 155 

https://github.com/zhu-research-group/HTSProfiling/
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et al., 2020). First, the curated dataset, which excluded inconclusive results, was balanced using a 156 

one-sided undersampling method. This method involved randomly removing inactive compounds 157 

to equalize the number of active and inactive compounds in the dataset for training the models 158 

(Zakharov et al., 2014). 159 

Five distinct machine learning algorithms were then employed to create QSAR models for the 160 

selected PubChem assay to fill data gaps for new compounds. These algorithms consisted of 161 

AdaBoost decision tree (ADA), Bernoulli Naïve Bayes (BNB), k-nearest neighbors (kNN), random 162 

forest (RF), and support vector machines (SVM). The QSAR modeling process used a publicly 163 

available workflow (Ciallella, Chung, et al., 2022) implemented with Python v3.9.4 and scikit-164 

learn v0.24.1 (http://scikit-learn.org/) (Pedregosa et al., 2011). The ADA algorithm assigns sample 165 

weights in the training set and trains subsequent trees while increasing the weights of misclassified 166 

instances (Freund & Schapire, 1997; Hastie et al., 2009). It repeats this process until it achieves 167 

the desired accuracy and combines the trees to predict instances. The BNB algorithm, commonly 168 

employed in classification tasks, assumes feature independence and uses Bayes’ theorem to predict 169 

the chemical activity of a target compound (Manning et al., 2009). The kNN algorithm predicts 170 

the chemical activity of the target compound by identifying the k nearest compounds in a training 171 

set, where the number k is a parameter that determines the size of the neighborhood used for 172 

prediction (Cover & Hart, 1967). It then assigns the compound to the most common activity among 173 

these neighbors. The RF algorithm constructs decision tree ensembles with varying training data 174 

subsets and input features. Then, it aggregates the predictions to improve accuracy and reduce 175 

overfitting (Breiman, 2001). The SVM algorithm analyzes the active and inactive training set 176 

compounds to find the best way to form a plane that separates two classes of compounds based on 177 

their features (Vapnik, 2000). 178 

http://scikit-learn.org/
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Four types of chemical descriptors were generated for all compounds in Python v3.9.4 using the 179 

RDKit package v2021.03.1 (http://www.rdkit.org/): Molecular ACCess System (MACCS), 180 

extended-connectivity fingerprints (ECFPs), functional-class fingerprint (FCFPs), and RDKit. 181 

MACCS keys, ECFPs, and FCFPs are types of binary vector-based chemical fingerprints. 182 

Specifically, the MACCS keys were represented as 166-bit vectors identifying two-dimensional 183 

substructures within molecules (Leach & Gillet, 2007), while both the ECFPs and FCFPs were 184 

represented as 1,024-bit binary vectors (Rogers & Hahn, 2010). ECFPs capture atom properties 185 

within a substructure of a molecule, and FCFPs characterize general functional groups of the atoms 186 

(Rogers & Hahn, 2010). All ECFPs and FCFPs were calculated using a bond radius of 3 (Russo et 187 

al., 2018). A total of 208 RDKit molecular descriptors were calculated using the RDKit package, 188 

including information about the compounds' compositions and topological states (e.g., molecular 189 

weight and polar surface area). Individual QSAR models were developed using a combination of 190 

a chemical descriptor type and a machine learning algorithm. To mitigate the potential bias in 191 

individual model predictions, consensus models were developed by averaging individual models’ 192 

prediction outcomes (Chung et al., 2023; Ciallella et al., 2021a; Golbraikh et al., 2017; Jia et al., 193 

2021, 2022; W. Wang et al., 2015). 194 

A five-fold cross-validation procedure was applied to evaluate the models’ performance (Tropsha 195 

et al., 2003). During this procedure, the assay dataset was randomly split into five subsets, each 196 

comprising an equal number of compounds. One subset (20% of the total training set compounds) 197 

was used for predictions. The remaining four subsets (80% of the total training set compounds) 198 

were combined as a training set to develop the QSAR models. This procedure was completed after 199 

five iterations, once each compound was used for prediction once in a test set. The statistical 200 

metrics for each iteration were calculated and averaged to estimate the overall performance. Our 201 

http://www.rdkit.org/
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previous publication provided details about the QSAR modeling workflow and the modeling 202 

algorithms (Ciallella, Chung, et al., 2022), which we successfully applied in previous studies 203 

(Chung et al., 2023; Ciallella et al., 2021b; Jia et al., 2022; Russo et al., 2018). The Python code 204 

for the QSAR modeling workflow is publicly accessible from https://github.com/zhu-research-205 

group/auto_qsar/. 206 

2.3.1. External QSAR model evaluation 207 

We obtained another dataset (AID 1347389) from PubChem, which includes 346 natural product 208 

compounds that underwent HTS MMP testing. These compounds were sourced from the NCATS-209 

Canvass Library. After removing compounds that overlapped with the balanced QSAR model 210 

training set (AID 720635) and standardizing the chemical structures, the dataset comprised 51 211 

active and 209 inactive compounds, totaling 260 unique compounds. This dataset was used as an 212 

external test set to evaluate the generated QSAR models. 213 

We implemented a Principal Component Analysis (PCA) using 206 MOE two-dimensional 214 

descriptors within the Molecular Operating Environment (MOE) software v2020.09 to visualize 215 

the chemical space of the balanced training set and external test set. We selected the top three most 216 

important principal components to explain the total variance and to represent the large and diverse 217 

chemical space. 218 

2.4. Experimental validation 219 

2.4.1. Cell culture  220 

Human hepatocellular carcinoma HepG2 cells were obtained from American Type Culture 221 

Collection (Manassas, VA) and cultured in Dulbecco’s modified Eagle medium (ThermoFisher 222 

Scientific, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals, 223 

Norcross, GA) and 1% penicillin-streptomycin.  224 

https://github.com/zhu-research-group/auto_qsar/
https://github.com/zhu-research-group/auto_qsar/
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2.4.2. Cell viability assays  225 

HepG2 cells (8x103/well) were seeded in 96-well plates overnight and then treated with the tested 226 

compounds (0-100 µM) in culture media containing 1% FBS for 24 hours. Cell viability was 227 

determined using propidium iodide (PI) staining. Briefly, cells were stained with PI (1 µg/ml, 228 

Sigma) and Hoechst 33342 (2 µM, Nexcelom Bioscience, Lawrence, MA). The fluorescence from 229 

PI staining (nonviable cells) was acquired using a Cytation 5 Cell Imaging Reader (Agilent 230 

Technologies Inc., Wilmington, DE) fitted with PI (PI staining) and DAPI filter cubes (Hoechst 231 

33342). The percentage of nonviable cells was calculated and normalized to the total number of 232 

cells stained with the Hoechst 33342 dye. Typically, five to seven concentrations spanning 1 to 3 233 

logarithmic units were tested. Concentration-dependent data for each chemical and the thresholds 234 

at which greater than 10% of cells were stained PI-positive are included in Table S3, 235 

Supplementary Excel file. DMSO (20%) was used as a positive control and typically achieved 236 

more than 90% of cells being PI-positive stained at 24 hours. 237 

2.4.3. Mitochondrial membrane potential (MMP) assay  238 

MitoTracker Red probes (ThermoFisher Scientific, Carlsbad, CA), containing a thiol-reactive 239 

chloromethyl moiety, were used to label mitochondria and determine the MMP. Briefly, HepG2 240 

cells (8x103/well) were seeded in 96-well plates overnight and treated with tested compounds (0-241 

100 µM) in culture media containing 1% FBS for 24 hours. Following treatment, cells were 242 

incubated with MitoTracker Red probes (20 nM) and Hoechst 33342 (2 µM) for 45 minutes. The 243 

fluorescence of MitoTracker Red staining was acquired using a Cytation 5 Cell Imaging Reader 244 

fitted with Texas Red (MitoTracker Red staining) and DAPI filter cubes (Hoechst 33342). The 245 

percentage of MitoTracker-stained cells was calculated and normalized to the total number of cells 246 

stained with Hoechst 33342 dye. Five non-toxic concentrations (where dead cells were <10% of 247 
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the control) of each chemical, determined from the PI analysis, were selected for further 248 

investigation in the MMP assay. Concentration-dependent data for each chemical and the 249 

thresholds at which there was a 25% loss of MitoTracker Red fluorescence intensity are included 250 

in Table S3, Supplementary Excel file. Sorafenib (5-25 µM) was used as a positive control and 251 

typically achieved over a 50% loss of MitoTracker Red fluorescence at 24 hours. 252 

2.5. Statistical parameters for assessing in vitro-in vivo correlations 253 

Sensitivity, specificity, correct classification rate (CCR), positive predictive value (PPV), and 254 

accuracy (ACC) were used to evaluate the QSAR model performance and the correlations between 255 

the in vitro assay response and the known human hepatotoxicity endpoint. Sensitivity is the ability 256 

to predict active compounds correctly (Equation 1). Specificity is the ability to predict inactive 257 

compounds correctly (Equation 2). The CCR is the average of sensitivity and specificity, 258 

representing the overall balanced accuracy of the predictions (Equation 3). The PPV is the 259 

proportion of correctly classified active predictions (Equation 4). Accuracy (ACC) is the 260 

proportion of correctly predicted compounds (Equation 5). True positives (TP) were correctly 261 

identified as human hepatotoxicants, and true negatives (TN) were correctly identified as non-262 

hepatotoxic compounds. False positives (FP) mistakenly indicated hepatotoxicity, and false 263 

negatives (FN) mistakenly indicated the absence of hepatoxicity for the predicted compounds. 264 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)  (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁))⁄  (1) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁) (𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁) +  𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃))⁄  (2) 

𝐶𝐶𝑅 = (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 2⁄  (3) 

𝑃𝑃𝑉 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (4) 
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𝐴𝐶𝐶 =  (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  (5) 

 265 

2.6. Characterizing chemical structural alerts  266 

CASE Ultra software v.1.9.0 (MultiCASE Inc., Beachwood, OH) was employed to identify 267 

chemical substructures statistically associated with hepatotoxicants. The training set compounds 268 

were randomly selected from the reference set and the test set compounds constituted the 269 

remainder. Hepatotoxicity classifications were determined based on the potential structural alerts 270 

of training set compounds. To establish standardized criteria, we considered structural alerts with 271 

a PPV greater than 0.68 that appeared in at least five compounds (Jia et al., 2022). Using these 272 

identified structural alerts, we predicted the toxicity of the compounds in the test set. We then used 273 

the results to refine the mechanistic hepatotoxicity model further. 274 

3. Results 275 

3.1. Overview of the hepatotoxicity reference dataset  276 

The hepatotoxicity reference set defines the applicability domain within the chemical space and 277 

influences the model development process. To assess the structural diversity of our reference set, 278 

we employed the Tanimoto similarity metric based on MACCS fingerprints (Bajusz et al., 2015). 279 

This metric, which measures chemical similarity on a scale from 0 (i.e., no similarity) to 1 (i.e., 280 

identical compounds), analyzes molecular fingerprints for each compound to all other compounds 281 

in the reference set. Compounds were identified as structurally distinct if their Tanimoto 282 

coefficient, indicating similarity with their nearest neighbor compound in the reference set, was 283 

less than 0.7 (L. Zhang et al., 2013). The resulting average similarity score of 0.32 suggests 284 

moderate similarity among compounds in the reference set. Therefore, our hepatotoxicity reference 285 

set demonstrated significant structural diversity (Figure S1, Supplementary Word file). 286 
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3.2. Profiling and assay filtering 287 

The in vitro toxicity data for compounds in the reference set were extracted from PubChem using 288 

an automatic profiling tool (Russo & Zhu, 2022). The resulting bioprofile encompassed 2,560 289 

assays with at least five active compound-bioassay pairs (Figure 2). This initial bioprofile used for 290 

the following mechanistically related bioassay selections contained 36,593 active testing results 291 

and 146,011 inactive results for the 869 compounds (Figure 2). The imbalanced active/inactive 292 

ratio reflected the nature of high-throughput bioassay data in toxicity testing (i.e., predominately 293 

comprising inactive rather than active results) (Ciallella & Zhu, 2019; H. Zhu et al., 2014; H. Zhu, 294 

2020).  295 

We conducted a selective filtering process to identify which assays to consider in our hybrid 296 

modeling process. Irrelevant bioassays and bioassays that provided insufficient data on 297 

hepatotoxicity were filtered out. This filtering process also involved analyzing correlations 298 

between in vitro assay responses and in vivo hepatotoxicity. We focused on HTS assays that met 299 

the following criteria: the assay must have at least 100 responses (active or inactive), a PPV above 300 

0.65, and a minimum of 25 correctly predicted hepatotoxic drugs (i.e., true positives). This 301 

filtration resulted in 73 assays. Further selection excluded nuclear receptors and cytochrome P450 302 

(CYP) enzymes because their generalized mechanisms are not specific to toxicity, which narrowed 303 

the bioprofile to 10 assays (Table 1). Most assays represented events in pathways relevant to 304 

toxicity (i.e., mitochondrial and cell-death pathways) and were considered for mechanistic 305 

modeling. Fisher’s exact test was conducted to assess the correlation of these assays with in vivo 306 

hepatotoxicity. This test procedure evaluated the likelihood of the observed responses against the 307 

expected proportion of known in vivo hepatotoxic drugs. Five in vitro assays showed a statistically 308 

significant relationship to human hepatotoxicity (p < 0.05) (Table 1). 309 
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Oxidative stress, a complex biological process, promotes inflammation and fibrosis and has been 310 

implicated in several disease processes within organ systems such as the heart, kidney, and liver 311 

(Daenen et al., 2019; Stocker & Keaney, 2004; X. Wang & Michaelis, 2010; R. Zhu et al., 2012). 312 

Several studies connect mitochondrial oxidative stress to hepatotoxicity (Jaeschke et al., 2012; 313 

Mansouri et al., 2018; Pessayre et al., 1999). Notably, associations were reported among 314 

idiosyncratic DILI, mitochondrial dysfunction, and hepatocyte apoptosis (Boelsterli & Lee, 2014; 315 

Boelsterli & Lim, 2007; K. Wang, 2014). For example, mitochondrial dysfunction can lead to 316 

apoptosis through uncoupling of oxidative phosphorylation (Wittig et al., 2006), inhibition of 317 

respiratory chain complexes (i.e., complex I/III) (R. Guo et al., 2018; Kühlbrandt, 2015), excess 318 

cellular calcium ions (Matuz-Mares et al., 2022; Vogel et al., 2006), and activation of c-Jun N-319 

terminal kinases (Chambers & LoGrasso, 2011; Labbe et al., 2008; Win et al., 2018). Additionally, 320 

several studies have explored the impact of the antioxidant response element (ARE) signaling 321 

pathway on oxidative stress and showed a high association with hepatotoxicity through 322 

computational and experimental research (Jia et al., 2022; Kim et al., 2016). Given these findings, 323 

we selected the assay for chemical disruptors of the MMP (PubChem Assay Identifier (AID) 324 

720635) as the key event for hepatotoxicity model development in this study. 325 

The selection of the MMP assay for toxicity modeling is supported by its role as the AOP-Wiki’s 326 

KE 1170, which comprises several AOPs. Among them, AOP328, modeling excessive reactive 327 

oxygen species (ROS) generation, is directly linked to mitochondrial dysfunction and has been 328 

incorporated as a KE of this toxicity pathway, leading to mortality. Comparably, AOP387 models 329 

the deposition of ionizing energy leading to population decline through mitochondrial dysfunction. 330 

Although these two AOPs are not explicitly labeled as causes of liver toxicity, they collectively 331 

highlight the significance of decreased MMP in various toxicity pathways, leading to population-332 
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level toxicity. Therefore, our findings offer a promising new direction for constructing 333 

hepatotoxicity pathways through the loss of MMP, providing detailed insights into the toxicity 334 

phenomenon in organisms. 335 

3.3. Data preprocessing  336 

When modeling with HTS bioassay data, missing data points are common, as illustrated in Figure 337 

2 (Ciallella & Zhu, 2019; H. Zhu, 2020; H. Zhu et al., 2014). QSAR approaches have been used 338 

and proven effective in predicting bioassay outcomes to resolve this issue (Chung et al., 2023; 339 

Ciallella et al., 2021b). The MMP assay contained results for 229 of the 869 compounds in the 340 

reference set (coverage = 26.4%). With 640 compounds lacking experimental MMP results, we 341 

developed QSAR models to fill these data gaps.  342 

The MMP assay dataset from PubChem initially comprised 5,106 compounds. After curation and 343 

standardization, this was refined to 4,794 unique compounds, of which 1,268 were active and 3,526 344 

were inactive. In this method, all 1,268 active compounds were retained, and 2,258 of the 3,526 345 

inactive compounds were randomly removed. The balanced dataset containing 2,536 compounds 346 

was used to train the QSAR models. 347 

The top three principal components, accounting for 53.28% of the total variance, were plotted to 348 

form the three-dimensional chemical space for the balanced training dataset (n = 2,536) and the 349 

external test set (n = 260). This visualization revealed a broad and diverse chemical space covered 350 

by these two datasets (Figure S2, Supplementary Word file). However, some outliers from both 351 

datasets were observable. 352 

3.4. QSAR modeling and validation results of the MMP assay 353 

We explored various methods to balance the training dataset and conducted an initial pilot study 354 

to compare QSAR modeling outcomes using balanced and imbalanced datasets (Zakharov et al., 355 
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2014). The results showed no significant difference in overall model performance, as measured by 356 

CCR and PPV, though specificity increased by 13% at the expense of a 17% decrease in sensitivity. 357 

Given our aim to have the resulting models reliably predict activity/toxicity, using a balanced 358 

dataset was expected to enhance our success rate while likely preserving the original chemical 359 

diversity (Zakharov et al., 2014). 360 

We developed 20 classification models by combining five machine learning algorithms (ADA, 361 

BNB, kNN, RF, SVM) with four chemical descriptor types (MACCS, ECFP6, FCFP6, rdkit). 362 

However, we observed poor predictions of active compounds with some algorithm-descriptor 363 

combinations (Bender, 2011; Zheng & Tropsha, 2000). We omitted three models that yielded 364 

subpar cross-validation sensitivities below 0.7: BNB-rdkit (sensitivity = 0.46), kNN-ECFP6 365 

(sensitivity = 0.53), and kNN-FCFP6 (sensitivity = 0.58). The 17 remaining QSAR models were 366 

combined into a consensus model to enhance the overall performance and prediction reliability.  367 

Figure 3 displays the performance metrics of the individual and consensus QSAR models through 368 

five-fold cross-validation and external predictions. After cross-validation, the individual models 369 

achieved consistently good performance, sensitivity, specificity, and CCR, ranging between 0.73-370 

0.86, 0.71-0.84, and 0.73-0.85, respectively. The consensus model, which was created by 371 

averaging the predictive values from each of the 17 models, demonstrated superior performance 372 

compared to one model alone (Figure 3a). The consensus model showed the best performance for 373 

the five-fold cross-validation, achieving a CCR value of 0.84, indicating it is the most suitable for 374 

predicting new compounds. 375 

When evaluating an external test set, each model predicted actives with a sensitivity ranging from 376 

0.65 to 0.96 (Figure 3b). The CCR varied between 0.56 and 0.74, and the specificity ranged from 377 

0.22 to 0.71. The model's lower performance on external validation, compared to cross-validation, 378 
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can be partially explained by the disparity in the active-to-inactive compound ratios. The training 379 

set had a balanced distribution, whereas the external validation set had an active ratio of 1:4.1. 380 

This imbalance indicates that an insufficient range of inactive compounds in the training data can 381 

compromise the model. Compared to HTS bioassay data in toxicity testing, which typically has a 382 

1:7 active-to-inactive ratio, downsampling the inactive compounds underscores the predictions of 383 

active compounds since active compounds are more critical for mechanistic modeling (Ciallella, 384 

Russo, et al., 2022; H. Zhu, 2020). 385 

In some studies, excluding test chemicals that show low similarity to the training set chemicals 386 

could improve the model predictivity (Netzeva et al., 2005; Sahigara et al., 2012). We defined an 387 

applicability domain for the QSAR models by calculating a consensus value, the average 388 

probability across all 17 models for each compound, both during cross-validation and on the 389 

external test set (Sahigara et al., 2012; Tong et al., 2005). Compounds with a consensus value 390 

above 0.6 were classified as active, those below 0.4 as inactive, and those between 0.4 and 0.6 391 

were excluded. However, defining an applicability domain did not show any advantages in 392 

improving the performance of the current model in this study. 393 

Additionally, the natural compounds and their derivatives have distinct chemical structures and 394 

properties that differentiate them from most drugs, which can attenuate the predictivity of the 395 

models. For example, natural product compounds often have larger molecular sizes, reduced 396 

hydrophobicity, and fewer aromatic rings than fully synthetic drugs (Stratton et al., 2015). 397 

Moreover, the CCR of 0.67 of the consensus predictions aligned closely with the best individual 398 

models. The predictions for the natural products, though not as sensitive as those for drug 399 

molecules, were still suitable for external predictions when bolstered by consensus predictions.  400 

3.5. Structural alerts for hepatotoxicity 401 



 19 

Identifying structural alerts can reveal potential chemical features associated with hepatotoxicity. 402 

These specific substructures of the toxicants can trigger toxicity pathways, such as the oxidative 403 

stress pathway, by exhibiting specific initial structural or physicochemical properties. Therefore, 404 

these structural alerts can represent the MIEs, such as off-target bindings, that induce a toxic 405 

cellular response (Allen et al., 2014). 406 

Previously, we developed a predictive hepatotoxicity model with the antioxidant response element 407 

(ARE) assay and structural alerts associated with liver injury (Jia et al., 2022). Here, we used the 408 

same strategy to identify structure alerts responsible for potential hepatotoxicity but with a larger 409 

hepatotoxicity dataset. The reference set was expanded with 12 additional compounds from the 410 

prior study, forming a hepatotoxicity set with 881 compounds. To focus on the predictivity of toxic 411 

compounds, we included a higher proportion of active, potentially toxic compounds in the test set. 412 

Therefore, the hepatotoxicity set had a training set of 702 compounds (≈80%) and a test set of 179 413 

compounds (≈20%). The CASE-Ultra software was used to identify substructures statistically 414 

correlated with hepatotoxicity from toxic compounds in the training set. The analysis identified 37 415 

potential structural alerts (Table S2, Supplementary Word file). Each alert was present in at least 416 

five compounds and exhibited a PPV > 0.68. When predicting the test set compounds using 417 

structural alerts, the results showed suitable identification of potential hepatotoxic compounds 418 

(sensitivity = 0.75 and PPV = 0.94). 419 

Structural alerts such as aniline/anilide (alert 22/24), triazole (alert 22), nitronium ion (alert 6), and 420 

imidazole derivatives (alert 31) induce ROS production in liver cells, causing oxidative stress 421 

(Table S2, Supplementary Word file). Oxidative stress can lead to rapid depolarization of the inner 422 

MMP. For example, triazole impairs the function of complexes I/III in the electron transport chain, 423 

increasing mitochondrial ROS production and causing apoptosis (Haegler et al., 2017). Nitric 424 
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oxide derivatives trigger apoptosis through nitrosative stress-mediated mitochondrial membrane 425 

depolarization via ROS generation (Langer et al., 2008). Imidazole derivatives exhibit cytotoxicity 426 

indicative of mitochondrial toxicity (Haegler et al., 2017), and aniline induces oxidative stress in 427 

hepatocytes (Y. Wang et al., 2016). 428 

3.6. Hybrid mechanistic hepatotoxicity model and experimental in vitro validation 429 

Our AOP-based hybrid model can predict hepatotoxicity by combining structural alerts and the 430 

MMP assay results, providing a mechanistic understanding of hepatotoxic outcomes (Figure 1). 431 

Compounds with structural alerts and active MMP assay results were labeled “hepatotoxic.” Those 432 

lacking structural alerts and showing inactive MMP assay results were labeled “non-hepatotoxic.” 433 

Compounds with structural alerts but inactive MMP assay results suggested triggering of other 434 

hepatotoxicity pathways. Compounds without structural alerts but with active MMP assay results 435 

indicated missing structural alerts (i.e., hepatotoxicants with unique structures in the training set) 436 

and the possibility of limited in vivo bioavailability for these toxicants. For these reasons, 437 

compounds falling into these two categories (i.e., conflicting between structure alerts and MMP 438 

assay results) were labeled “inconclusive.” 439 

Our hybrid mechanistic model exhibited an enhanced correlation with hepatotoxicity compared to 440 

using only the MMP assay results (Figure 4). The model's sensitivity, specificity, and CCR 441 

improved for the training set from 0.40 to 0.68, 0.74 to 0.92, and 0.57 to 0.83, respectively. The 442 

sensitivity of the test set significantly increased from 0.5 to 0.71. However, because it had a higher 443 

proportion of active compounds, the specificity slightly decreased from 0.62 to 0.5. Overall, CCR 444 

moderately increased from 0.56 to 0.6. These data indicate that the loss of MMP is a critical 445 

mechanism of hepatotoxicity. 446 
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To validate the predictions of our model and demonstrate the value of incorporating low-cost 447 

experimental testing like HTS assays into computational studies, we experimentally tested a set of 448 

37 drugs, comprising 32 known hepatotoxic and five non-toxic compounds, in vitro using a 449 

functionally equivalent MMP assay. These drugs were selected from a test set with established 450 

hepatotoxicity outcomes but had not been previously evaluated using the MMP assay. As 451 

illustrated in Figure 5, relying only on QSAR model predictions can effectively predict 452 

hepatotoxicity, achieving a sensitivity of 100% and indicating that our model can identify potential 453 

hepatotoxic compounds without experimental testing. However, as indicated in Figure 3, the model 454 

predictions showed an emphasis on active compounds and a moderate ability to predict non-toxic 455 

compounds (specificity = 0.5). 456 

When the experimental MMP assay results replaced QSAR predictions in our hybrid model, the 457 

predictions were more balanced, with a sensitivity of 0.83 and a specificity of 0.75. A total of 15 458 

hepatotoxic compounds and three non-hepatotoxic compounds were accurately identified. There 459 

were only four misclassified compounds: tamoxifen (PubChem Compound Identifier (CID) 460 

2733526), fenofibrate (CID 3339), and desvenlafaxine (CID 125017), which were false negatives, 461 

and panobinostat (CID 6918837), which was the only false positive. The remaining 15 compounds 462 

were inconclusive due to discrepancies between structural alerts and the MMP assay testing 463 

results. For example, progesterone (CID 5994) and pazopanib (CID 10113978) were inconclusive 464 

because they were inactive in vitro but contained structural alerts. Our experimental results showed 465 

that these two compounds significantly increased the number of dead cells in the PI assay at higher 466 

concentrations, indicating direct cytotoxic effects or other modes of action not detected by the 467 

MMP assay (Table S3, Supplemental Excel File). Most inconclusive compounds may indicate 468 

hepatotoxicity through different mechanisms.  469 
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The false positive result for panobinostat conceivably occurs because extensive metabolism by 470 

CYP3A4 compromises its bioavailability (Van Veggel et al., 2018). HepG2 cells express lower 471 

levels of CYP3A4 compared to primary human hepatocytes, potentially leading to an incomplete 472 

assessment of panobinostat’s metabolic transformation (Wilkening et al., 2003). Additionally, the 473 

high protein binding rate (74 - 83%) suggests that panobinostat may exhibit different effects in 474 

HepG2 cells than in vivo due to its restricted bioavailability (Van Veggel et al., 2018). A future 475 

study could improve the current model by incorporating a metabolism factor. This addition may 476 

address the issue of the three false negatives, likely due to toxicity mechanisms not currently 477 

captured by the model. For example, tamoxifen is metabolized by CYP enzymes into N-oxide, α-478 

hydroxy, and 4-hydroxy forms that interact with protein and DNA, potentially leading to 479 

hepatocarcinogenetic effects (Fan & Bolton, 2001; Park et al., 2005). Similarly, fenofibrate may 480 

cause hepatotoxicity from an immune response to its altered metabolites or protein conjugates in 481 

the liver rather than from direct chemical reactivity or mitochondrial interference (Ahmad et al., 482 

2017). 483 

Desvenlafaxine is primarily eliminated through the urine, unchanged, as a glucuronide metabolite 484 

or as an oxidative metabolite, N,O-didesmethylvenlafaxine (DeMaio et al., 2011). The 485 

glucuronidation of desvenlafaxine, catalyzed by uridine 5’-diphospho-glucuronosyltransferase 486 

(UGT) enzyme isoforms such as UGT1A1, 1A3, 2B4, 2B15, and 2B17, can be influenced by 487 

genetic polymorphisms, which may play a toxicological role in idiosyncratic DILI (DeMaio et al., 488 

2011; Kutsuno et al., 2014; Miners et al., 2002). Moreover, no structural alerts were identified for 489 

these three compounds, indicating the diverse chemical structures of hepatotoxicants and the need 490 

to enlarge the current training set further. 491 

4. Discussion 492 
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In this study, we used an automatic data mining approach to reveal an HTS assay representing a 493 

potential toxicity mechanism underlying DILI. The loss of MMP was identified as a potential KE 494 

in hepatotoxicity, suggesting the possibility of developing new pathways for understanding 495 

hepatotoxicity. For example, our findings can associate MMP reduction with lower cell viability, 496 

inferring a possible connection to irreversible cell damage and activation of cell death processes 497 

(e.g., apoptosis and necrosis) (Sun et al., 2005). However, this requires further refinement of 498 

hepatotoxicity data during the data mining and modeling processes and additional toxicity assay 499 

data for target compounds in future studies. Nevertheless, mitochondrial dysfunction is widely 500 

recognized as a key mechanism in DILI (Mihajlovic & Vinken, 2022), and its value in predicting 501 

DILI was confirmed in this study. Our study demonstrates that computational methods combined 502 

with publicly available HTS datasets offer a cost-effective approach to exploring hepatotoxicity 503 

pathways, particularly for developing new AOPs targeting specific toxicity mechanisms. The 504 

model developed in this study will be scalable, allowing for the integration of additional 505 

hepatotoxicity pathways as more public data on other hepatotoxicity mechanisms becomes 506 

available. 507 

The QSAR model predictions allowed for the initial assessments of potentially toxic compounds 508 

and demonstrated high sensitivity. HTS assays typically contain more inactive compounds than 509 

active compounds, and machine learning models tend to favor the majority class (Magana-Mora 510 

& Bajic, 2017). An imbalanced training set would likely predict more compounds as inactive, 511 

necessitating extensive experimental testing to correct the QSAR model predictions. Therefore, 512 

we used a balanced dataset to enhance the prediction of active/toxic compounds and help elucidate 513 

potential pathways of hepatotoxicity. Additionally, this approach demonstrates the importance of 514 

incorporating low-cost testing as a post-requisite to validate toxic predictions. 515 
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Although not improving the prediction accuracy, integrating experimental MMP assay testing 516 

results to replace QSAR predictions renders the hybrid model more suitable for toxicity 517 

evaluations, including regulatory assessments. This approach ensures a balanced prediction 518 

capability for both hepatotoxic and non-toxic compounds, evidenced by its sensitivity, specificity, 519 

and CCR, each denoted by values 0.83, 0.75, and 0.79, respectively. A key advantage of the hybrid 520 

model, which incorporated experimental MMP assay data, is its ability to predict toxicity and 521 

accurately determine the underlying mechanisms involved. For instance, compounds diclofenac 522 

(CID 3033) and sertraline (CID 68617) were previously implicated in inducing oxidative stress, 523 

corroborated by our model predictions (Boelsterli, 2003; Li et al., 2012). 524 

Our study aimed to predict chemical hepatotoxicity using a hybrid AOP framework, focusing on 525 

a prevalent mechanism potentially leading to hepatotoxicity. Integrating additional relevant assays, 526 

such as the ARE assay results, enables a deeper understanding of the toxicity mechanisms of 527 

oxidative stressors and can potentially lead to better predictions (Begriche et al., 2011; Tang et al., 528 

2014). We previously obtained ARE testing results for 14 of our 37 experimental validation 529 

compounds (Jia et al., 2022). By integrating two key events (i.e., MMP and ARE) into the hybrid 530 

model, we predicted a compound as hepatotoxic if one of these two assays showed active results 531 

and the compound had an identified structural alert. Predicted non-toxicants had inactive results 532 

in both assays, and no structural alerts were identified. The remaining were inconclusive. This 533 

multi-assay hybrid model included an additional effective and cost-efficient experimental testing 534 

procedure, strengthening the predictions by increasing prediction accuracy to 79% with only one 535 

misclassified compound. As mentioned above, the misclassification of panobinostat in both the 536 

MMP and ARE assay results may be attributed to the inability of HepG2 cells to fully recapitulate 537 

hepatic metabolism. 538 
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With both assays strongly related to oxidative stress mechanisms, the multi-assay hybrid model 539 

better reflected the nature of toxicity pathways and significantly enhanced confidence in predicting 540 

hepatotoxicity potential. For example, crizotinib (CID 11626560) impacts oxidative responses by 541 

activating the ARE/Nrf2 pathway and decreasing mitochondrial function in the human hepatocyte 542 

cell line (L. Guo et al., 2021), potentially leading to hepatotoxicity. Similarly, diclofenac (CID 543 

3033) was reported to activate the ARE/Nrf2 pathway, affecting mitochondrial function and 544 

promoting ROS generation (Herpers et al., 2016). 545 

Sorafenib (CID 216239), a drug used to treat kidney, liver, and thyroid cancers, provides a 546 

compelling example of our model’s predictive ability. This drug demonstrates hepatotoxicity 547 

through mitochondrial oxidative stress, which underpins its anti-cancer action. Sorafenib was 548 

shown to increase oxidative stress levels by reducing glutathione levels, a double-edged sword that 549 

both aids in cancer cell destruction and elevates the risk of liver injury (Duval et al., 2019). The 550 

case of fatal hepatotoxicity and renal failure reported by Fairfax et al. further underscored the 551 

intricate relationship between its therapeutic and side effects (Fairfax et al., 2012). The 552 

significance of the structural alerts in sorafenib is especially revealing insights into its anti-cancer 553 

and hepatotoxic effects. The drug possesses structural alerts 2, 21, and 24, as shown in Figure 5. 554 

Among them, alert 24 indicates a cyclohexyl urea structure that may be crucial for anti-tumor 555 

effectiveness and selectivity, as the diaryl urea structure and cyclohexyl moiety are vital to 556 

inhibiting multiple kinases, a sought-after mechanism in cancer therapy (F. Chen et al., 2019; 557 

Lowinger et al., 2002; Lu et al., 2015). However, the same structural feature may contribute to its 558 

hepatotoxic potential, exhibiting a dual functionality that is both beneficial and risky. Therefore, 559 

explaining these structural alerts is essential in evaluating a balance between the therapeutic 560 

efficacy and potential hepatotoxicity of drug molecules. 561 
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Beyond structural alerts, prospective chemical information can be used to improve the current 562 

model. For instance, compounds like ionophores can undermine mitochondrial membrane integrity 563 

and contribute to hepatotoxicity through severe mitochondrial uncoupling of oxidative 564 

phosphorylation (Song & Villeneuve, 2021). Classical uncouplers for ionophoric activity, 565 

characterized by their salicylate and benzimidazole structures, impair mitochondrial function by 566 

dissipating the proton gradient (Battaglia et al., 2005; Kessler et al., 1976; Terada, 1990) and can 567 

precipitate the collapse of MMP (Fiskum et al., 2000). Some chemicals in the hepatotoxicity set, 568 

such as mebendazole (CID 4030) (with a benzimidazole structure), salsalate (CID 5161) 569 

(containing two salicylate molecules), and clofibrate (CID 2796) (an aromatic monocarboxylic 570 

acid), may function as ionophore uncouplers. Future studies would benefit from considering 571 

uncoupling activity when expanding the training data (i.e., the hepatotoxicity reference set) to 572 

include more compounds. Additionally, the hepatotoxicity reference set, primarily sourced from 573 

the DILIrank dataset, does not include specific phenotypic information (e.g., acute liver failure, 574 

cirrhosis) but can be updated as new data become available. 575 

Additionally, the induction of oxidative stress and impaired mitochondrial function do not always 576 

go hand in hand, as seen with boceprevir (CID 10324367) (Baines, 2010; Chu et al., 2021). 577 

Boceprevir may trigger hepatotoxicity through the oxidative stress pathway indicated by activation 578 

of NRF2/ARE signaling. Refining the hepatotoxicity profile with the ARE model for such 579 

compounds, our hybrid modeling approach integrates relevant assays into a novel multi-assay 580 

hybrid AOP model. This approach marks a meaningful advancement beyond traditional 581 

computational methods that can predict chemical hepatotoxicity across diverse mechanisms. To 582 

further explore the additional hepatotoxicity mechanisms, we examined the bioprofile of 20 583 

hepatotoxic compounds inactive in the MMP assay. The analysis revealed active responses in the 584 
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assays belonging to other hepatotoxicity pathways. These postulated hepatotoxicity mechanisms 585 

include inhibition of CYP isoenzymes (AID 678712, AID 678713, AID 678715, AID 678716, and 586 

AID 678717) (Feng & He, 2013; Xuan et al., 2016), histone lysine methyltransferase G9a 587 

inhibition (AID 504332) (Y. Zhang et al., 2020), D2 dopamine receptor antagonism (AID 485344) 588 

(Abdel-Salam et al., 2013; Todorović Vukotić et al., 2021), metabolic stability in liver 589 

microsomes, as evidenced by GSH adduct formation (AID 678721) (Srivastava et al., 2010). These 590 

mechanisms may explain why some toxic compounds do not induce the oxidative stress pathways 591 

and warrant further investigation. Future research will explore expanding potential AOP 592 

frameworks to assess toxicities in other systems, such as developmental and reproductive systems, 593 

to predict potential toxicants through mechanistically understanding chemical/drug-induced 594 

toxicity pathways leading to hazardous effects. 595 

5. Conclusions 596 

Our study integrated machine learning and other modeling techniques to simulate the AOP 597 

framework, specifically for hepatotoxicity modeling and prediction. This novel modeling 598 

workflow commences with analyzing fundamental chemical structures, progressing to low-level 599 

and cost-effective in vitro testing, and ultimately extrapolating to human hepatotoxicity prediction. 600 

The developed hybrid model can predict potential toxicants that cause liver injury through 601 

oxidative stress. Incorporating low-cost experimental testing into the predictive process improves 602 

the model’s performance. Moreover, including an additional assay targeting a similar but distinct 603 

toxicity mechanism further improves the predictive strength of the model. This study introduced a 604 

novel hybrid modeling approach designed to efficiently extract data from dynamic, unstructured 605 

public resources and use curated data, facilitating the modeling of complex toxicity endpoints. The 606 

model elucidates toxicity mechanisms, making it well-suited for regulatory risk assessments and 607 
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prioritizing hazardous chemicals for experimental testing. Moreover, this AOP modeling 608 

framework holds promise for adaptation into non-animal models, reducing animal usage in toxicity 609 

testing. Overall, our findings represent a significant advancement in traditional toxicity evaluation, 610 

advocating for a paradigm shift towards computational and alternative risk assessment methods in 611 

the era of big data. 612 
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Table 1. Selected bioassays and their correlation with in vivo hepatotoxicity 

PubChem 

Assay ID 

Description CCR PPV Specificity Sensitivity p value 

*1346979 Caspase-3/7 induction in 

CHO-K1 cells by small 

molecules, qHTS cell 

viability counter screen 

0.54 0.73 0.95 0.14 0.0005 

*1347034 Caspase-3/7 induction in 

HepG2 cells by small 

molecules, qHTS assay: 

Summary 

0.52 0.78 0.98 0.067 0.013 

*720635 qHTS assay for small 

molecule disruptors of the 

mitochondrial membrane 

potential 

0.53 0.67 0.95 0.11 0.014 

*1224896 qHTS assay to identify small 

molecule agonists of H2AX: 

Summary 

0.52 0.78 0.98 0.058 0.014 

*1346981 Caspase-3/7 induction in 

HepG2 cells by small 

molecules, qHTS cell 

viability counter screen 

0.52 0.72 0.97 0.072 0.022 

1224874 qHTS RealTime-Glo MT 

Cell Viability Assay in 

HEK293 cells - 40 hour 

0.53 0.67 0.94 0.12 0.065 

720552 qHTS assay for small 

molecule agonists of the p53 

signaling pathway: Summary 

0.53 0.70 0.96 0.09 0.074 

1224868 qHTS RealTime-Glo MT 

Cell Viability Assay in 

HEK293 cells - 32 hour 

0.53 0.67 0.95 0.11 0.081 

651631 qHTS assay for small 

molecule agonists of the p53 

signaling pathway 

0.52 0.69 0.97 0.08 0.15 

651633 qHTS assay for small 

molecule agonists of the p53 

signaling pathway - cell 

viability 

0.52 0.67 0.96 0.08 0.23 

*statistically relevant relationships to hepatotoxicity using Fisher’s exact test (p < 0.05) 

qHTS: quantitative high-throughput screening  
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Figures 

 

Figure 1. Overview of a hybrid modeling approach for human hepatotoxicity. Different colors 

represent the components that constitute the main framework of the hybrid model. Created with 

BioRender.com. 
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Figure 2. Bioprofile of 869 hepatotoxicity reference set compounds, including US Food and 

Drug Administration (FDA)-approved drugs. Active results are red squares, inactive results as 

blue squares, and inconclusive or untested results as gray squares.  
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Figure 3. Performance of all resulting models. (A) cross-validation of 2536 training set compounds 

in AID 720635; (B) external validation of 260 unknown natural products.  
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Figure 4. Comparative performance of hepatotoxicity predictions leveraging structural alerts and 

MMP assay results: predictions for (A) the 702 training set compounds and (B) 179 test set 

compounds shown as sensitivity, specificity, and CCR. The MMP results comprise MMP 

experimental outcomes and QSAR predictions.  
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Figure 5. Hepatotoxicity predictions for 37 drug molecules using structure alerts and 

predictive/experimental outcomes of the mitochondrial MMP and oxidative stress ARE assays. 

 

 


