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ABSTRACT

Developing mechanistic non-animal testing methods based on the adverse outcome pathway
(AOP) framework must incorporate molecular and cellular key events associated with target
toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid
model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for
hepatotoxicity modeling and profiled them against PubChem for existing in vitro toxicity data. Of
the 2,560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a
high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function.
Then, machine learning was applied to develop quantitative structure-activity relationship (QSAR)
models with 2,536 compounds tested in the MMP assay for screening new compounds. The MMP
assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set
compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by
including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set
compounds in human HepG2 hepatoma cells and reliably predicted these compounds for
hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines
public HTS data, computational modeling, and experimental testing to predict chemical

hepatotoxicity.

Keywords
hepatotoxicity; computational modeling; adverse outcome pathway; oxidative stress;

mitochondrial dysfunction
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Hepatotoxicity, often referred to as drug-induced liver injury (DILI), is a leading cause of acute
liver failure in the United States and Europe (Chalasani et al., 2008; Germani et al., 2012; Lee,
1993, 2013; Weiler et al., 2020) and the primary reason for drug attrition during development
(Bjornsson, 2016; David & Hamilton, 2010; McNaughton et al., 2014). The idiosyncratic
metabolic nature of DILI continues to prompt the cessation of clinical trials and even the recalls
of drugs post-marketing (M. Chen et al., 2011). Given the severity and potential for DILI to hinder
drug development, risk assessments are essential to mitigate potential life-threatening adverse
reactions to drugs, environmental agents, and other xenobiotics (Senior, 2014). As the
pathogenesis of DILI is one of the most complex toxicity phenomena, there are currently no
applicable alternative models available for its assessment. DILI involves numerous cellular and
biochemical processes, and many compounds that induce hepatotoxicity have poorly understood
mechanisms. Given the concern for hepatotoxicity across diverse areas of toxicology,
comprehensive assessments are imperative.

High-throughput screening (HTS) facilitates the assessment of a vast array of compounds for their
specific biological activity. The United States Environmental Protection Agency’s (US EPA)
Toxicity Forecaster (ToxCast) comprises chemical screening data from HTS approaches. It plays
a vital role in the Toxicology in the 21* Century (Tox21) program developed by the EPA, Food
and Drug Administration (FDA), and National Center of Advancing Translational Sciences
(NCATS) (Dix et al., 2007; Judson et al., 2010). While ToxCast HTS assays have significantly
advanced our ability to assess chemical toxicities (Fox et al., 2012; Knight et al., 2009), no
individual assay can replace in vivo testing for hepatotoxicity (Ekins, 2014).

Regulatory agencies and pharmaceutical companies have prioritized developing and implementing

non-animal testing methodologies, such as computational approaches and HTS, that can minimize
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the use of animal testing (Hofer et al., 2004; Krebs et al., 2019; Stucki et al., 2022). Depending
solely on synthesizing and testing new compounds to gather experimental HTS data can still be
expensive and time-consuming, especially when multiple assays are necessary to evaluate many
new compounds. Computational modeling, such as quantitative structure-activity relationship
(QSAR) models, can effectively and efficiently predict the biological activities of many new
compounds across simple toxicity mechanisms such as skin sensitization (Cronin & Basketter,
1994), skin and eye irritation or corrosion (Patlewicz et al., 2003), and protein binding (Dimitrov
et al.,, 2016; Gutsell & Russell, 2013; Sedykh et al., 2013). However, QSAR models have
encountered challenges predicting complex toxicity endpoints, such as hepatotoxicity (Ekins,
2014). Based on our previous studies, integrating computational approaches and HTS assays for
modeling complicated toxicity endpoints (e.g., estrogen receptor agonists, in vivo acute toxicity)
holds promise for modeling hepatotoxicity (Jia et al., 2022; Kim et al., 2016; Ciallella et al., 2021b;
Russo et al., 2019; H. Zhu et al., 2014).

In recent years, the adverse outcome pathway (AOP) framework has gained much attention as a
strategy for conducting risk assessment (Ankley et al., 2010; Hartung, 2009; Krewski et al., 2009;
Perkins et al., 2019; Tollefsen et al., 2014; Vinken, 2013). The Organization for Economic
Cooperation and Development (OECD) established AOP guidelines that structure the progression
of chemical toxicity occurrence from initial chemical exposure (i.e., the molecular initiating event
(MIE)) to the following key events (KEs) and the manifestation of an adverse outcome (AO) (Allen

et al., 2014; OECD, 2017). Alongside this, the AOP-Wiki (https://aopwiki.org/) has emerged as

the central platform for sharing AOP knowledge, encompassing both OECD-endorsed AOPs and
those contributed by the scientific community. This platform features established AOPs and those

under development for hepatotoxicity (Arnesdotter et al., 2021, 2022; Gijbels & Vinken, 2017).
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However, none of the current AOPs include the decrease in MMP as the KE linked from the MIE
associated with hepatotoxicophores, leading to liver injury (AO). Our previous research employed
a single assay (i.e., the antioxidant response element (ARE) assay to probe oxidative stress) and
structural alerts (i.e., hepatotoxicophores) for hepatotoxicity modeling (Jia et al., 2022). However,
the dataset’s predictivity and coverage were limited to compounds that showed active results in
this assay. Consequently, a substantial portion of the predicted compounds yielded inconclusive
results. While oxidative stress is a recognized biomarker for mitochondrial toxicity, a deeper
mechanistic understanding of mitochondrial roles in chemical-induced hepatotoxicity requires
additional in vivo investigations. Mitochondrial stress in hepatotoxicity disrupts liver cell
mitochondrial function, reducing mitochondrial membrane potential (MMP), impairing energy
production, initiating cell death pathways, and causing liver damage (Ramachandran et al., 2018).
The HTS MMP assay, extensively used in previous studies to identify mitochondrial toxicants, has
not been applied to link this toxicity mechanism with hepatotoxicity or to predict potential
hepatotoxicants (Huang et al., 2016; Seal et al., 2022; R. Zhang et al., 2023). Therefore,
incorporating another essential assay that reflects mitochondrial activity linked to the oxidative
stress pathway and supplementing our modeling framework with additional data can significantly
improve the accuracy and interpretability of hepatotoxicity predictions.

This study established an enhanced computational toxicity modeling workflow based on an AOP
framework by creating a correlation between chemical structures, low-cost toxicity assays, and
human hepatotoxicity by prioritizing and modeling the MMP assay from profiling a hepatotoxicity
dataset (outlined in Figure 1). We developed machine learning models to predict the activity of
new compounds when experimental MMP assay data were unavailable. By combining structural

alerts with assay testing and prediction results, the hepatotoxicity of new compounds can be
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predicted by revealing their toxicity mechanisms. Collectively, the hybrid, mechanism-driven

model elucidates a pathway from initial off-site events to eventual organism-level toxicity.

2. Methods

2.1. Hybrid modeling for human hepatotoxicity

The framework presented in Figure 1 describes the proposed hybrid modeling approach outlined
in this study. The hepatotoxicity reference dataset served as the foundation for identifying
structural alerts and profiling relevant bioassays, with the MMP assay selected for QSAR
modeling. The QSAR modeling process, visually represented in purple, and structural alerts,
shown in red, were integrated to create the hybrid model indicated by a combination of red and
purple. The hybrid model was subsequently validated for its ability to predict human

hepatotoxicity through experimental testing, as shown in red and green.

2.2. Profiling PubChem assays for hepatotoxicity data collection

The reference dataset used for modeling primarily contained the drug-induced liver injury rank
(DILIrank) dataset, which the US FDA has extensively curated (M. Chen et al., 2016). The
DILIrank dataset comprised 1,036 FDA-approved drugs classified into four groups based on their

99 ¢¢

level of DILI concern: “most,” “less,” “no,” and “ambiguous.” The “ambiguous-DILI concern”
group with 254 compounds was excluded from modeling due to the lack of conclusive causal
evidence. The remaining compounds were categorized into hepatotoxic and non-hepatotoxic
classifications. Specifically, 470 compounds from the “most-" and “less-DILI concern” classes
were classified as hepatotoxic. The 312 compounds from the “no-DILI concern” group were
classified as non-hepatotoxic. The chemical structures of the 782 compounds underwent curation

and standardization using the CASE Ultra v1.8.0.0 DataKurator tool. This process involved the

removal of duplicate structures, inorganic compounds, and mixtures.
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After curating and standardizing the DILIrank dataset, 678 compounds were identified, comprising
432 hepatotoxic and 246 non-hepatotoxic compounds, causing an unbalanced distribution for the
final hepatotoxicity reference set. To address the unequal distribution of toxic and non-toxic
compounds in the dataset, an additional 191 non-hepatotoxic compounds were collected from
previous studies (M. Chen et al., 2011; Ekins et al., 2010; Fourches et al., 2010; Kim et al., 2016;
Liew et al., 2011; Liu et al., 2015; Mulliner et al., 2016). The final balanced hepatotoxicity
reference set comprised 869 unique compounds, with 432 known hepatotoxicants that afflict
humans with DILI (Jia et al., 2022), including anti-cancer, anti-retroviral, and cardiac drugs (M.
Chen et al., 2016), along with 437 non-hepatotoxicants (Table S1, Supplementary Excel file).

We generated a bioprofile for the compounds in the hepatotoxicity reference set using in vitro
bioassay hit calls. Our automated profiling tool extracted information from in vitro assays on
PubChem for these 869 compounds. The Python code used for profiling is openly accessible on

our GitHub repository at https://github.com/zhu-research-group/HTSProfiling/ (Russo & Zhu,

2022). The bioprofile categorizes the activity of compound-bioassay pairs as ‘active’ (1), ‘inactive’
(-1), ‘inconclusive’ (0), ‘unspecified’ (0), or ‘untested’ (0) (Y. Wang et al., 2009). We eliminated
assays with fewer than five active responses and a total of 100 responses (combining active and
inactive) within the profile. The remaining assays were then ranked based on their correlation with

hepatotoxic compounds.

2.3. OSAR model development

The issue of missing data hinders the ability to discern relationships between compound-bioassay
pairs. Traditional imputation methods, like random sampling, can be inadequate and potentially
problematic. Therefore, we used QSAR modeling for a more accurate imputation of biological

data that was congruent with previous computational toxicology studies (Russo et al., 2019; Zhao
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et al., 2020). First, the curated dataset, which excluded inconclusive results, was balanced using a
one-sided undersampling method. This method involved randomly removing inactive compounds
to equalize the number of active and inactive compounds in the dataset for training the models
(Zakharov et al., 2014).

Five distinct machine learning algorithms were then employed to create QSAR models for the
selected PubChem assay to fill data gaps for new compounds. These algorithms consisted of
AdaBoost decision tree (ADA), Bernoulli Naive Bayes (BNB), k-nearest neighbors (kNN), random
forest (RF), and support vector machines (SVM). The QSAR modeling process used a publicly
available workflow (Ciallella, Chung, et al., 2022) implemented with Python v3.9.4 and scikit-

learn v0.24.1 (http://scikit-learn.org/) (Pedregosa et al., 2011). The ADA algorithm assigns sample

weights in the training set and trains subsequent trees while increasing the weights of misclassified
instances (Freund & Schapire, 1997; Hastie et al., 2009). It repeats this process until it achieves
the desired accuracy and combines the trees to predict instances. The BNB algorithm, commonly
employed in classification tasks, assumes feature independence and uses Bayes’ theorem to predict
the chemical activity of a target compound (Manning et al., 2009). The ANN algorithm predicts
the chemical activity of the target compound by identifying the k& nearest compounds in a training
set, where the number k& is a parameter that determines the size of the neighborhood used for
prediction (Cover & Hart, 1967). It then assigns the compound to the most common activity among
these neighbors. The RF algorithm constructs decision tree ensembles with varying training data
subsets and input features. Then, it aggregates the predictions to improve accuracy and reduce
overfitting (Breiman, 2001). The SVM algorithm analyzes the active and inactive training set
compounds to find the best way to form a plane that separates two classes of compounds based on

their features (Vapnik, 2000).
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Four types of chemical descriptors were generated for all compounds in Python v3.9.4 using the

RDKit package v2021.03.1 (http://www.rdkit.org/): Molecular ACCess System (MACCS),

extended-connectivity fingerprints (ECFPs), functional-class fingerprint (FCFPs), and RDKit.
MACCS keys, ECFPs, and FCFPs are types of binary vector-based chemical fingerprints.
Specifically, the MACCS keys were represented as 166-bit vectors identifying two-dimensional
substructures within molecules (Leach & Gillet, 2007), while both the ECFPs and FCFPs were
represented as 1,024-bit binary vectors (Rogers & Hahn, 2010). ECFPs capture atom properties
within a substructure of a molecule, and FCFPs characterize general functional groups of the atoms
(Rogers & Hahn, 2010). All ECFPs and FCFPs were calculated using a bond radius of 3 (Russo et
al., 2018). A total of 208 RDKit molecular descriptors were calculated using the RDKit package,
including information about the compounds' compositions and topological states (e.g., molecular
weight and polar surface area). Individual QSAR models were developed using a combination of
a chemical descriptor type and a machine learning algorithm. To mitigate the potential bias in
individual model predictions, consensus models were developed by averaging individual models’
prediction outcomes (Chung et al., 2023; Ciallella et al., 2021a; Golbraikh et al., 2017; Jia et al.,
2021, 2022; W. Wang et al., 2015).

A five-fold cross-validation procedure was applied to evaluate the models’ performance (Tropsha
et al., 2003). During this procedure, the assay dataset was randomly split into five subsets, each
comprising an equal number of compounds. One subset (20% of the total training set compounds)
was used for predictions. The remaining four subsets (80% of the total training set compounds)
were combined as a training set to develop the QSAR models. This procedure was completed after
five iterations, once each compound was used for prediction once in a test set. The statistical

metrics for each iteration were calculated and averaged to estimate the overall performance. Our
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previous publication provided details about the QSAR modeling workflow and the modeling
algorithms (Ciallella, Chung, et al., 2022), which we successfully applied in previous studies
(Chung et al., 2023; Ciallella et al., 2021b; Jia et al., 2022; Russo et al., 2018). The Python code

for the QSAR modeling workflow is publicly accessible from https://github.com/zhu-research-

group/auto (sar/.

2.3.1. External QSAR model evaluation

We obtained another dataset (AID 1347389) from PubChem, which includes 346 natural product
compounds that underwent HTS MMP testing. These compounds were sourced from the NCATS-
Canvass Library. After removing compounds that overlapped with the balanced QSAR model
training set (AID 720635) and standardizing the chemical structures, the dataset comprised 51
active and 209 inactive compounds, totaling 260 unique compounds. This dataset was used as an
external test set to evaluate the generated QSAR models.

We implemented a Principal Component Analysis (PCA) using 206 MOE two-dimensional
descriptors within the Molecular Operating Environment (MOE) software v2020.09 to visualize
the chemical space of the balanced training set and external test set. We selected the top three most
important principal components to explain the total variance and to represent the large and diverse

chemical space.

2.4. Experimental validation

2.4.1. Cell culture

Human hepatocellular carcinoma HepG2 cells were obtained from American Type Culture
Collection (Manassas, VA) and cultured in Dulbecco’s modified Eagle medium (ThermoFisher
Scientific, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals,

Norcross, GA) and 1% penicillin-streptomycin.

10
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2.4.2. Cell viability assays

HepG2 cells (8x10%/well) were seeded in 96-well plates overnight and then treated with the tested
compounds (0-100 uM) in culture media containing 1% FBS for 24 hours. Cell viability was
determined using propidium iodide (PI) staining. Briefly, cells were stained with PI (1 pg/ml,
Sigma) and Hoechst 33342 (2 uM, Nexcelom Bioscience, Lawrence, MA). The fluorescence from
PI staining (nonviable cells) was acquired using a Cytation 5 Cell Imaging Reader (Agilent
Technologies Inc., Wilmington, DE) fitted with PI (PI staining) and DAPI filter cubes (Hoechst
33342). The percentage of nonviable cells was calculated and normalized to the total number of
cells stained with the Hoechst 33342 dye. Typically, five to seven concentrations spanning 1 to 3
logarithmic units were tested. Concentration-dependent data for each chemical and the thresholds
at which greater than 10% of cells were stained Pl-positive are included in Table S3,
Supplementary Excel file. DMSO (20%) was used as a positive control and typically achieved

more than 90% of cells being PI-positive stained at 24 hours.

2.4.3. Mitochondrial membrane potential (MMP) assay

MitoTracker Red probes (ThermoFisher Scientific, Carlsbad, CA), containing a thiol-reactive
chloromethyl moiety, were used to label mitochondria and determine the MMP. Briefly, HepG2
cells (8x10°/well) were seeded in 96-well plates overnight and treated with tested compounds (0-
100 uM) in culture media containing 1% FBS for 24 hours. Following treatment, cells were
incubated with MitoTracker Red probes (20 nM) and Hoechst 33342 (2 uM) for 45 minutes. The
fluorescence of MitoTracker Red staining was acquired using a Cytation 5 Cell Imaging Reader
fitted with Texas Red (MitoTracker Red staining) and DAPI filter cubes (Hoechst 33342). The
percentage of MitoTracker-stained cells was calculated and normalized to the total number of cells

stained with Hoechst 33342 dye. Five non-toxic concentrations (where dead cells were <10% of
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the control) of each chemical, determined from the PI analysis, were selected for further
investigation in the MMP assay. Concentration-dependent data for each chemical and the
thresholds at which there was a 25% loss of MitoTracker Red fluorescence intensity are included
in Table S3, Supplementary Excel file. Sorafenib (5-25 uM) was used as a positive control and

typically achieved over a 50% loss of MitoTracker Red fluorescence at 24 hours.

2.5. Statistical parameters for assessing in vitro-in vivo correlations

Sensitivity, specificity, correct classification rate (CCR), positive predictive value (PPV), and
accuracy (ACC) were used to evaluate the QSAR model performance and the correlations between
the in vitro assay response and the known human hepatotoxicity endpoint. Sensitivity is the ability
to predict active compounds correctly (Equation 1). Specificity is the ability to predict inactive
compounds correctly (Equation 2). The CCR is the average of sensitivity and specificity,
representing the overall balanced accuracy of the predictions (Equation 3). The PPV is the
proportion of correctly classified active predictions (Equation 4). Accuracy (ACC) is the
proportion of correctly predicted compounds (Equation 5). True positives (TP) were correctly
identified as human hepatotoxicants, and true negatives (TN) were correctly identified as non-
hepatotoxic compounds. False positives (FP) mistakenly indicated hepatotoxicity, and false

negatives (FN) mistakenly indicated the absence of hepatoxicity for the predicted compounds.

sensitivity = true positives (TP)/ (true positives (TP) + false negatives (FN)) (D)
specificity = true negatives (TN)/(true negatives (TN) + false positives (FP)) 2)
CCR = (sensitivity + specificity)/2 3)

PPV =TP/(TP + FP) (4)

12
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ACC = (TP +TN)/(TP + TN + FP + FN) (5)

2.6. Characterizing chemical structural alerts

CASE Ultra software v.1.9.0 (MultiCASE Inc., Beachwood, OH) was employed to identify
chemical substructures statistically associated with hepatotoxicants. The training set compounds
were randomly selected from the reference set and the test set compounds constituted the
remainder. Hepatotoxicity classifications were determined based on the potential structural alerts
of training set compounds. To establish standardized criteria, we considered structural alerts with
a PPV greater than 0.68 that appeared in at least five compounds (Jia et al., 2022). Using these
identified structural alerts, we predicted the toxicity of the compounds in the test set. We then used

the results to refine the mechanistic hepatotoxicity model further.

3. Results

3.1. Overview of the hepatotoxicity reference dataset

The hepatotoxicity reference set defines the applicability domain within the chemical space and
influences the model development process. To assess the structural diversity of our reference set,
we employed the Tanimoto similarity metric based on MACCS fingerprints (Bajusz et al., 2015).
This metric, which measures chemical similarity on a scale from 0 (i.e., no similarity) to 1 (i.e.,
identical compounds), analyzes molecular fingerprints for each compound to all other compounds
in the reference set. Compounds were identified as structurally distinct if their Tanimoto
coefficient, indicating similarity with their nearest neighbor compound in the reference set, was
less than 0.7 (L. Zhang et al., 2013). The resulting average similarity score of 0.32 suggests
moderate similarity among compounds in the reference set. Therefore, our hepatotoxicity reference

set demonstrated significant structural diversity (Figure S1, Supplementary Word file).
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3.2. Profiling and assay filtering

The in vitro toxicity data for compounds in the reference set were extracted from PubChem using
an automatic profiling tool (Russo & Zhu, 2022). The resulting bioprofile encompassed 2,560
assays with at least five active compound-bioassay pairs (Figure 2). This initial bioprofile used for
the following mechanistically related bioassay selections contained 36,593 active testing results
and 146,011 inactive results for the 869 compounds (Figure 2). The imbalanced active/inactive
ratio reflected the nature of high-throughput bioassay data in toxicity testing (i.e., predominately
comprising inactive rather than active results) (Ciallella & Zhu, 2019; H. Zhu et al., 2014; H. Zhu,
2020).

We conducted a selective filtering process to identify which assays to consider in our hybrid
modeling process. Irrelevant bioassays and bioassays that provided insufficient data on
hepatotoxicity were filtered out. This filtering process also involved analyzing correlations
between in vitro assay responses and in vivo hepatotoxicity. We focused on HTS assays that met
the following criteria: the assay must have at least 100 responses (active or inactive), a PPV above
0.65, and a minimum of 25 correctly predicted hepatotoxic drugs (i.e., true positives). This
filtration resulted in 73 assays. Further selection excluded nuclear receptors and cytochrome P450
(CYP) enzymes because their generalized mechanisms are not specific to toxicity, which narrowed
the bioprofile to 10 assays (Table 1). Most assays represented events in pathways relevant to
toxicity (i.e., mitochondrial and cell-death pathways) and were considered for mechanistic
modeling. Fisher’s exact test was conducted to assess the correlation of these assays with in vivo
hepatotoxicity. This test procedure evaluated the likelihood of the observed responses against the
expected proportion of known in vivo hepatotoxic drugs. Five in vitro assays showed a statistically

significant relationship to human hepatotoxicity (p < 0.05) (Table 1).
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Oxidative stress, a complex biological process, promotes inflammation and fibrosis and has been
implicated in several disease processes within organ systems such as the heart, kidney, and liver
(Daenen et al., 2019; Stocker & Keaney, 2004; X. Wang & Michaelis, 2010; R. Zhu et al., 2012).
Several studies connect mitochondrial oxidative stress to hepatotoxicity (Jaeschke et al., 2012;
Mansouri et al., 2018; Pessayre et al., 1999). Notably, associations were reported among
idiosyncratic DILI, mitochondrial dysfunction, and hepatocyte apoptosis (Boelsterli & Lee, 2014;
Boelsterli & Lim, 2007; K. Wang, 2014). For example, mitochondrial dysfunction can lead to
apoptosis through uncoupling of oxidative phosphorylation (Wittig et al., 2006), inhibition of
respiratory chain complexes (i.e., complex I/IIl) (R. Guo et al., 2018; Kiihlbrandt, 2015), excess
cellular calcium ions (Matuz-Mares et al., 2022; Vogel et al., 2006), and activation of c-Jun N-
terminal kinases (Chambers & LoGrasso, 2011; Labbe et al., 2008; Win et al., 2018). Additionally,
several studies have explored the impact of the antioxidant response element (ARE) signaling
pathway on oxidative stress and showed a high association with hepatotoxicity through
computational and experimental research (Jia et al., 2022; Kim et al., 2016). Given these findings,
we selected the assay for chemical disruptors of the MMP (PubChem Assay Identifier (AID)
720635) as the key event for hepatotoxicity model development in this study.

The selection of the MMP assay for toxicity modeling is supported by its role as the AOP-Wiki’s
KE 1170, which comprises several AOPs. Among them, AOP328, modeling excessive reactive
oxygen species (ROS) generation, is directly linked to mitochondrial dysfunction and has been
incorporated as a KE of this toxicity pathway, leading to mortality. Comparably, AOP387 models
the deposition of ionizing energy leading to population decline through mitochondrial dysfunction.
Although these two AOPs are not explicitly labeled as causes of liver toxicity, they collectively

highlight the significance of decreased MMP in various toxicity pathways, leading to population-
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level toxicity. Therefore, our findings offer a promising new direction for constructing
hepatotoxicity pathways through the loss of MMP, providing detailed insights into the toxicity

phenomenon in organisms.

3.3. Data preprocessing

When modeling with HTS bioassay data, missing data points are common, as illustrated in Figure
2 (Ciallella & Zhu, 2019; H. Zhu, 2020; H. Zhu et al., 2014). QSAR approaches have been used
and proven effective in predicting bioassay outcomes to resolve this issue (Chung et al., 2023;
Ciallella et al., 2021b). The MMP assay contained results for 229 of the 869 compounds in the
reference set (coverage = 26.4%). With 640 compounds lacking experimental MMP results, we
developed QSAR models to fill these data gaps.

The MMP assay dataset from PubChem initially comprised 5,106 compounds. After curation and
standardization, this was refined to 4,794 unique compounds, of which 1,268 were active and 3,526
were inactive. In this method, all 1,268 active compounds were retained, and 2,258 of the 3,526
inactive compounds were randomly removed. The balanced dataset containing 2,536 compounds
was used to train the QSAR models.

The top three principal components, accounting for 53.28% of the total variance, were plotted to
form the three-dimensional chemical space for the balanced training dataset (n = 2,536) and the
external test set (n = 260). This visualization revealed a broad and diverse chemical space covered
by these two datasets (Figure S2, Supplementary Word file). However, some outliers from both

datasets were observable.

3.4. OSAR modeling and validation results of the MMP assay

We explored various methods to balance the training dataset and conducted an initial pilot study

to compare QSAR modeling outcomes using balanced and imbalanced datasets (Zakharov et al.,
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2014). The results showed no significant difference in overall model performance, as measured by
CCR and PPV, though specificity increased by 13% at the expense of a 17% decrease in sensitivity.
Given our aim to have the resulting models reliably predict activity/toxicity, using a balanced
dataset was expected to enhance our success rate while likely preserving the original chemical
diversity (Zakharov et al., 2014).

We developed 20 classification models by combining five machine learning algorithms (ADA,
BNB, ANN, RF, SVM) with four chemical descriptor types (MACCS, ECFP6, FCFP6, rdkit).
However, we observed poor predictions of active compounds with some algorithm-descriptor
combinations (Bender, 2011; Zheng & Tropsha, 2000). We omitted three models that yielded
subpar cross-validation sensitivities below 0.7: BNB-rdkit (sensitivity = 0.46), ANN-ECFP6
(sensitivity = 0.53), and ANN-FCFP6 (sensitivity = 0.58). The 17 remaining QSAR models were
combined into a consensus model to enhance the overall performance and prediction reliability.
Figure 3 displays the performance metrics of the individual and consensus QSAR models through
five-fold cross-validation and external predictions. After cross-validation, the individual models
achieved consistently good performance, sensitivity, specificity, and CCR, ranging between 0.73-
0.86, 0.71-0.84, and 0.73-0.85, respectively. The consensus model, which was created by
averaging the predictive values from each of the 17 models, demonstrated superior performance
compared to one model alone (Figure 3a). The consensus model showed the best performance for
the five-fold cross-validation, achieving a CCR value of 0.84, indicating it is the most suitable for
predicting new compounds.

When evaluating an external test set, each model predicted actives with a sensitivity ranging from
0.65 to 0.96 (Figure 3b). The CCR varied between 0.56 and 0.74, and the specificity ranged from

0.22 t0 0.71. The model's lower performance on external validation, compared to cross-validation,
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can be partially explained by the disparity in the active-to-inactive compound ratios. The training
set had a balanced distribution, whereas the external validation set had an active ratio of 1:4.1.
This imbalance indicates that an insufficient range of inactive compounds in the training data can
compromise the model. Compared to HTS bioassay data in toxicity testing, which typically has a
1:7 active-to-inactive ratio, downsampling the inactive compounds underscores the predictions of
active compounds since active compounds are more critical for mechanistic modeling (Ciallella,
Russo, et al., 2022; H. Zhu, 2020).

In some studies, excluding test chemicals that show low similarity to the training set chemicals
could improve the model predictivity (Netzeva et al., 2005; Sahigara et al., 2012). We defined an
applicability domain for the QSAR models by calculating a consensus value, the average
probability across all 17 models for each compound, both during cross-validation and on the
external test set (Sahigara et al., 2012; Tong et al., 2005). Compounds with a consensus value
above 0.6 were classified as active, those below 0.4 as inactive, and those between 0.4 and 0.6
were excluded. However, defining an applicability domain did not show any advantages in
improving the performance of the current model in this study.

Additionally, the natural compounds and their derivatives have distinct chemical structures and
properties that differentiate them from most drugs, which can attenuate the predictivity of the
models. For example, natural product compounds often have larger molecular sizes, reduced
hydrophobicity, and fewer aromatic rings than fully synthetic drugs (Stratton et al., 2015).
Moreover, the CCR of 0.67 of the consensus predictions aligned closely with the best individual
models. The predictions for the natural products, though not as sensitive as those for drug

molecules, were still suitable for external predictions when bolstered by consensus predictions.

3.5. Structural alerts for hepatotoxicity
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Identifying structural alerts can reveal potential chemical features associated with hepatotoxicity.
These specific substructures of the toxicants can trigger toxicity pathways, such as the oxidative
stress pathway, by exhibiting specific initial structural or physicochemical properties. Therefore,
these structural alerts can represent the MIEs, such as off-target bindings, that induce a toxic
cellular response (Allen et al., 2014).

Previously, we developed a predictive hepatotoxicity model with the antioxidant response element
(ARE) assay and structural alerts associated with liver injury (Jia et al., 2022). Here, we used the
same strategy to identify structure alerts responsible for potential hepatotoxicity but with a larger
hepatotoxicity dataset. The reference set was expanded with 12 additional compounds from the
prior study, forming a hepatotoxicity set with 881 compounds. To focus on the predictivity of toxic
compounds, we included a higher proportion of active, potentially toxic compounds in the test set.
Therefore, the hepatotoxicity set had a training set of 702 compounds (=80%) and a test set of 179
compounds (=20%). The CASE-Ultra software was used to identify substructures statistically
correlated with hepatotoxicity from toxic compounds in the training set. The analysis identified 37
potential structural alerts (Table S2, Supplementary Word file). Each alert was present in at least
five compounds and exhibited a PPV > 0.68. When predicting the test set compounds using
structural alerts, the results showed suitable identification of potential hepatotoxic compounds
(sensitivity = 0.75 and PPV = 0.94).

Structural alerts such as aniline/anilide (alert 22/24), triazole (alert 22), nitronium ion (alert 6), and
imidazole derivatives (alert 31) induce ROS production in liver cells, causing oxidative stress
(Table S2, Supplementary Word file). Oxidative stress can lead to rapid depolarization of the inner
MMP. For example, triazole impairs the function of complexes I/III in the electron transport chain,

increasing mitochondrial ROS production and causing apoptosis (Haegler et al., 2017). Nitric
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oxide derivatives trigger apoptosis through nitrosative stress-mediated mitochondrial membrane
depolarization via ROS generation (Langer et al., 2008). Imidazole derivatives exhibit cytotoxicity
indicative of mitochondrial toxicity (Haegler et al., 2017), and aniline induces oxidative stress in

hepatocytes (Y. Wang et al., 2016).

3.6. Hybrid mechanistic hepatotoxicity model and experimental in vitro validation

Our AOP-based hybrid model can predict hepatotoxicity by combining structural alerts and the
MMP assay results, providing a mechanistic understanding of hepatotoxic outcomes (Figure 1).
Compounds with structural alerts and active MMP assay results were labeled “hepatotoxic.” Those
lacking structural alerts and showing inactive MMP assay results were labeled “non-hepatotoxic.”
Compounds with structural alerts but inactive MMP assay results suggested triggering of other
hepatotoxicity pathways. Compounds without structural alerts but with active MMP assay results
indicated missing structural alerts (i.e., hepatotoxicants with unique structures in the training set)
and the possibility of limited in vivo bioavailability for these toxicants. For these reasons,
compounds falling into these two categories (i.e., conflicting between structure alerts and MMP
assay results) were labeled “inconclusive.”

Our hybrid mechanistic model exhibited an enhanced correlation with hepatotoxicity compared to
using only the MMP assay results (Figure 4). The model's sensitivity, specificity, and CCR
improved for the training set from 0.40 to 0.68, 0.74 to 0.92, and 0.57 to 0.83, respectively. The
sensitivity of the test set significantly increased from 0.5 to 0.71. However, because it had a higher
proportion of active compounds, the specificity slightly decreased from 0.62 to 0.5. Overall, CCR
moderately increased from 0.56 to 0.6. These data indicate that the loss of MMP is a critical

mechanism of hepatotoxicity.
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To validate the predictions of our model and demonstrate the value of incorporating low-cost
experimental testing like HTS assays into computational studies, we experimentally tested a set of
37 drugs, comprising 32 known hepatotoxic and five non-toxic compounds, in vitro using a
functionally equivalent MMP assay. These drugs were selected from a test set with established
hepatotoxicity outcomes but had not been previously evaluated using the MMP assay. As
illustrated in Figure 5, relying only on QSAR model predictions can effectively predict
hepatotoxicity, achieving a sensitivity of 100% and indicating that our model can identify potential
hepatotoxic compounds without experimental testing. However, as indicated in Figure 3, the model
predictions showed an emphasis on active compounds and a moderate ability to predict non-toxic
compounds (specificity = 0.5).

When the experimental MMP assay results replaced QSAR predictions in our hybrid model, the
predictions were more balanced, with a sensitivity of 0.83 and a specificity of 0.75. A total of 15
hepatotoxic compounds and three non-hepatotoxic compounds were accurately identified. There
were only four misclassified compounds: tamoxifen (PubChem Compound Identifier (CID)
2733526), fenofibrate (CID 3339), and desvenlafaxine (CID 125017), which were false negatives,
and panobinostat (CID 6918837), which was the only false positive. The remaining 15 compounds
were inconclusive due to discrepancies between structural alerts and the MMP assay testing
results. For example, progesterone (CID 5994) and pazopanib (CID 10113978) were inconclusive
because they were inactive in vitro but contained structural alerts. Our experimental results showed
that these two compounds significantly increased the number of dead cells in the PI assay at higher
concentrations, indicating direct cytotoxic effects or other modes of action not detected by the
MMP assay (Table S3, Supplemental Excel File). Most inconclusive compounds may indicate

hepatotoxicity through different mechanisms.
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The false positive result for panobinostat conceivably occurs because extensive metabolism by
CYP3A4 compromises its bioavailability (Van Veggel et al., 2018). HepG2 cells express lower
levels of CYP3A4 compared to primary human hepatocytes, potentially leading to an incomplete
assessment of panobinostat’s metabolic transformation (Wilkening et al., 2003). Additionally, the
high protein binding rate (74 - 83%) suggests that panobinostat may exhibit different effects in
HepG2 cells than in vivo due to its restricted bioavailability (Van Veggel et al., 2018). A future
study could improve the current model by incorporating a metabolism factor. This addition may
address the issue of the three false negatives, likely due to toxicity mechanisms not currently
captured by the model. For example, tamoxifen is metabolized by CYP enzymes into N-oxide, a-
hydroxy, and 4-hydroxy forms that interact with protein and DNA, potentially leading to
hepatocarcinogenetic effects (Fan & Bolton, 2001; Park et al., 2005). Similarly, fenofibrate may
cause hepatotoxicity from an immune response to its altered metabolites or protein conjugates in
the liver rather than from direct chemical reactivity or mitochondrial interference (Ahmad et al.,
2017).

Desvenlafaxine is primarily eliminated through the urine, unchanged, as a glucuronide metabolite
or as an oxidative metabolite, N,O-didesmethylvenlafaxine (DeMaio et al., 2011). The
glucuronidation of desvenlafaxine, catalyzed by uridine 5’-diphospho-glucuronosyltransferase
(UGT) enzyme isoforms such as UGT1A1, 1A3, 2B4, 2B15, and 2B17, can be influenced by
genetic polymorphisms, which may play a toxicological role in idiosyncratic DILI (DeMaio et al.,
2011; Kutsuno et al., 2014; Miners et al., 2002). Moreover, no structural alerts were identified for
these three compounds, indicating the diverse chemical structures of hepatotoxicants and the need

to enlarge the current training set further.

4. Discussion
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In this study, we used an automatic data mining approach to reveal an HTS assay representing a
potential toxicity mechanism underlying DILI. The loss of MMP was identified as a potential KE
in hepatotoxicity, suggesting the possibility of developing new pathways for understanding
hepatotoxicity. For example, our findings can associate MMP reduction with lower cell viability,
inferring a possible connection to irreversible cell damage and activation of cell death processes
(e.g., apoptosis and necrosis) (Sun et al., 2005). However, this requires further refinement of
hepatotoxicity data during the data mining and modeling processes and additional toxicity assay
data for target compounds in future studies. Nevertheless, mitochondrial dysfunction is widely
recognized as a key mechanism in DILI (Mihajlovic & Vinken, 2022), and its value in predicting
DILI was confirmed in this study. Our study demonstrates that computational methods combined
with publicly available HTS datasets offer a cost-effective approach to exploring hepatotoxicity
pathways, particularly for developing new AOPs targeting specific toxicity mechanisms. The
model developed in this study will be scalable, allowing for the integration of additional
hepatotoxicity pathways as more public data on other hepatotoxicity mechanisms becomes
available.

The QSAR model predictions allowed for the initial assessments of potentially toxic compounds
and demonstrated high sensitivity. HTS assays typically contain more inactive compounds than
active compounds, and machine learning models tend to favor the majority class (Magana-Mora
& Bajic, 2017). An imbalanced training set would likely predict more compounds as inactive,
necessitating extensive experimental testing to correct the QSAR model predictions. Therefore,
we used a balanced dataset to enhance the prediction of active/toxic compounds and help elucidate
potential pathways of hepatotoxicity. Additionally, this approach demonstrates the importance of

incorporating low-cost testing as a post-requisite to validate toxic predictions.
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Although not improving the prediction accuracy, integrating experimental MMP assay testing
results to replace QSAR predictions renders the hybrid model more suitable for toxicity
evaluations, including regulatory assessments. This approach ensures a balanced prediction
capability for both hepatotoxic and non-toxic compounds, evidenced by its sensitivity, specificity,
and CCR, each denoted by values 0.83, 0.75, and 0.79, respectively. A key advantage of the hybrid
model, which incorporated experimental MMP assay data, is its ability to predict toxicity and
accurately determine the underlying mechanisms involved. For instance, compounds diclofenac
(CID 3033) and sertraline (CID 68617) were previously implicated in inducing oxidative stress,
corroborated by our model predictions (Boelsterli, 2003; Li et al., 2012).

Our study aimed to predict chemical hepatotoxicity using a hybrid AOP framework, focusing on
a prevalent mechanism potentially leading to hepatotoxicity. Integrating additional relevant assays,
such as the ARE assay results, enables a deeper understanding of the toxicity mechanisms of
oxidative stressors and can potentially lead to better predictions (Begriche et al., 2011; Tang et al.,
2014). We previously obtained ARE testing results for 14 of our 37 experimental validation
compounds (Jia et al., 2022). By integrating two key events (i.e., MMP and ARE) into the hybrid
model, we predicted a compound as hepatotoxic if one of these two assays showed active results
and the compound had an identified structural alert. Predicted non-toxicants had inactive results
in both assays, and no structural alerts were identified. The remaining were inconclusive. This
multi-assay hybrid model included an additional effective and cost-efficient experimental testing
procedure, strengthening the predictions by increasing prediction accuracy to 79% with only one
misclassified compound. As mentioned above, the misclassification of panobinostat in both the
MMP and ARE assay results may be attributed to the inability of HepG2 cells to fully recapitulate

hepatic metabolism.
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With both assays strongly related to oxidative stress mechanisms, the multi-assay hybrid model
better reflected the nature of toxicity pathways and significantly enhanced confidence in predicting
hepatotoxicity potential. For example, crizotinib (CID 11626560) impacts oxidative responses by
activating the ARE/Nrf2 pathway and decreasing mitochondrial function in the human hepatocyte
cell line (L. Guo et al., 2021), potentially leading to hepatotoxicity. Similarly, diclofenac (CID
3033) was reported to activate the ARE/Nrf2 pathway, affecting mitochondrial function and
promoting ROS generation (Herpers et al., 2016).

Sorafenib (CID 216239), a drug used to treat kidney, liver, and thyroid cancers, provides a
compelling example of our model’s predictive ability. This drug demonstrates hepatotoxicity
through mitochondrial oxidative stress, which underpins its anti-cancer action. Sorafenib was
shown to increase oxidative stress levels by reducing glutathione levels, a double-edged sword that
both aids in cancer cell destruction and elevates the risk of liver injury (Duval et al., 2019). The
case of fatal hepatotoxicity and renal failure reported by Fairfax et al. further underscored the
intricate relationship between its therapeutic and side effects (Fairfax et al., 2012). The
significance of the structural alerts in sorafenib is especially revealing insights into its anti-cancer
and hepatotoxic effects. The drug possesses structural alerts 2, 21, and 24, as shown in Figure 5.
Among them, alert 24 indicates a cyclohexyl urea structure that may be crucial for anti-tumor
effectiveness and selectivity, as the diaryl urea structure and cyclohexyl moiety are vital to
inhibiting multiple kinases, a sought-after mechanism in cancer therapy (F. Chen et al., 2019;
Lowinger et al., 2002; Lu et al., 2015). However, the same structural feature may contribute to its
hepatotoxic potential, exhibiting a dual functionality that is both beneficial and risky. Therefore,
explaining these structural alerts is essential in evaluating a balance between the therapeutic

efficacy and potential hepatotoxicity of drug molecules.
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Beyond structural alerts, prospective chemical information can be used to improve the current
model. For instance, compounds like ionophores can undermine mitochondrial membrane integrity
and contribute to hepatotoxicity through severe mitochondrial uncoupling of oxidative
phosphorylation (Song & Villeneuve, 2021). Classical uncouplers for ionophoric activity,
characterized by their salicylate and benzimidazole structures, impair mitochondrial function by
dissipating the proton gradient (Battaglia et al., 2005; Kessler et al., 1976; Terada, 1990) and can
precipitate the collapse of MMP (Fiskum et al., 2000). Some chemicals in the hepatotoxicity set,
such as mebendazole (CID 4030) (with a benzimidazole structure), salsalate (CID 5161)
(containing two salicylate molecules), and clofibrate (CID 2796) (an aromatic monocarboxylic
acid), may function as ionophore uncouplers. Future studies would benefit from considering
uncoupling activity when expanding the training data (i.e., the hepatotoxicity reference set) to
include more compounds. Additionally, the hepatotoxicity reference set, primarily sourced from
the DILIrank dataset, does not include specific phenotypic information (e.g., acute liver failure,
cirrhosis) but can be updated as new data become available.

Additionally, the induction of oxidative stress and impaired mitochondrial function do not always
go hand in hand, as seen with boceprevir (CID 10324367) (Baines, 2010; Chu et al., 2021).
Boceprevir may trigger hepatotoxicity through the oxidative stress pathway indicated by activation
of NRF2/ARE signaling. Refining the hepatotoxicity profile with the ARE model for such
compounds, our hybrid modeling approach integrates relevant assays into a novel multi-assay
hybrid AOP model. This approach marks a meaningful advancement beyond traditional
computational methods that can predict chemical hepatotoxicity across diverse mechanisms. To
further explore the additional hepatotoxicity mechanisms, we examined the bioprofile of 20

hepatotoxic compounds inactive in the MMP assay. The analysis revealed active responses in the
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assays belonging to other hepatotoxicity pathways. These postulated hepatotoxicity mechanisms
include inhibition of CYP isoenzymes (AID 678712, AID 678713, AID 678715, AID 678716, and
AID 678717) (Feng & He, 2013; Xuan et al., 2016), histone lysine methyltransferase G9a
inhibition (AID 504332) (Y. Zhang et al., 2020), D2 dopamine receptor antagonism (AID 485344)
(Abdel-Salam et al., 2013; Todorovi¢ Vukoti¢ et al., 2021), metabolic stability in liver
microsomes, as evidenced by GSH adduct formation (AID 678721) (Srivastava et al., 2010). These
mechanisms may explain why some toxic compounds do not induce the oxidative stress pathways
and warrant further investigation. Future research will explore expanding potential AOP
frameworks to assess toxicities in other systems, such as developmental and reproductive systems,
to predict potential toxicants through mechanistically understanding chemical/drug-induced

toxicity pathways leading to hazardous effects.

5. Conclusions

Our study integrated machine learning and other modeling techniques to simulate the AOP
framework, specifically for hepatotoxicity modeling and prediction. This novel modeling
workflow commences with analyzing fundamental chemical structures, progressing to low-level
and cost-effective in vitro testing, and ultimately extrapolating to human hepatotoxicity prediction.
The developed hybrid model can predict potential toxicants that cause liver injury through
oxidative stress. Incorporating low-cost experimental testing into the predictive process improves
the model’s performance. Moreover, including an additional assay targeting a similar but distinct
toxicity mechanism further improves the predictive strength of the model. This study introduced a
novel hybrid modeling approach designed to efficiently extract data from dynamic, unstructured
public resources and use curated data, facilitating the modeling of complex toxicity endpoints. The

model elucidates toxicity mechanisms, making it well-suited for regulatory risk assessments and
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prioritizing hazardous chemicals for experimental testing. Moreover, this AOP modeling
framework holds promise for adaptation into non-animal models, reducing animal usage in toxicity
testing. Overall, our findings represent a significant advancement in traditional toxicity evaluation,
advocating for a paradigm shift towards computational and alternative risk assessment methods in

the era of big data.
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Table 1. Selected bioassays and their correlation with in vivo hepatotoxicity

PubChem Description

Assay ID

CCR PPV Specificity Sensitivity p value

*1346979

*1347034

*720635

*1224896

*1346981

1224874

720552

1224868

651631

651633

*statistically relevant relationships to hepatotoxicity using Fisher’s exact test (p < 0.05)

Caspase-3/7 induction in
CHO-K1 cells by small
molecules, gHTS cell
viability counter screen
Caspase-3/7 induction in
HepG2 cells by small
molecules, gHTS assay:
Summary

qHTS assay for small
molecule disruptors of the
mitochondrial membrane
potential

qHTS assay to identify small
molecule agonists of H2AX:
Summary

Caspase-3/7 induction in
HepG2 cells by small
molecules, gHTS cell
viability counter screen
gHTS RealTime-Glo MT
Cell Viability Assay in
HEK293 cells - 40 hour
gqHTS assay for small
molecule agonists of the p53
signaling pathway: Summary
qHTS RealTime-Glo MT
Cell Viability Assay in
HEK293 cells - 32 hour
gqHTS assay for small
molecule agonists of the p53
signaling pathway

qHTS assay for small
molecule agonists of the p53
signaling pathway - cell
viability

0.54

0.52

0.53

0.52

0.52

0.53

0.53

0.53

0.52

0.52

qHTS: quantitative high-throughput screening
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0.73

0.78

0.67

0.78

0.72

0.67

0.70

0.67

0.69

0.67

0.95

0.98

0.95

0.98

0.97

0.94

0.96

0.95

0.97

0.96

0.14

0.067

0.11

0.058

0.072

0.12

0.09

0.11

0.08

0.08

0.0005

0.013

0.014

0.014

0.022

0.065

0.074

0.081

0.15

0.23
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Figure 1. Overview of a hybrid modeling approach for human hepatotoxicity. Different colors
represent the components that constitute the main framework of the hybrid model. Created with

BioRender.com.
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Figure 2. Bioprofile of 869 hepatotoxicity reference set compounds, including US Food and

Drug Administration (FDA)-approved drugs. Active results are red squares, inactive results as

blue squares, and inconclusive or untested results as gray squares.
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Figure 4. Comparative performance of hepatotoxicity predictions leveraging structural alerts and
MMP assay results: predictions for (4) the 702 training set compounds and (B) 179 test set
compounds shown as sensitivity, specificity, and CCR. The MMP results comprise MMP

experimental outcomes and QSAR predictions.
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Figure 5. Hepatotoxicity predictions for 37 drug molecules using structure alerts and
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