
Revisiting Erasure Codes: A Configuration Perspective
Runzhou Han† Chao Shi† Tabassum Mahmud† Zeren Yang4 Vladislav Esaulov‡ Lipeng Wan‡

Yong Chen§ Jim Wayda§ Matthew Wolf § Mai Zheng†
†Iowa State University 4University of Wisconsin-Madison ‡Georgia State University §Samsung

ABSTRACT
Erasure coding (EC) plays a crucial role in the fault toler-
ance of modern distributed storage systems (DSS). Inspired
by recent research on storage con�guration, we study the
con�guration sensitivity of EC in real DSS in this paper. We
systematically inject faults to trigger EC recovery under var-
ious con�gurations, and measure the impact on recovery
time and storage overhead quantitatively. Our results show
that con�gurations may a�ect the EC recovery time signif-
icantly (e.g., up to 426%). More interestingly, theoretically
superior codes may perform worse in DSS under certain
con�gurations. Also, there is a system checking period be-
fore EC recovery that accounts for 41% to 58% of the overall
system recovery time, which has been largely ignored in
previous studies. Finally, in terms of storage overhead, EC
may introduce 32.3% to 72.0% more write ampli�cation (WA)
than the theoretical expectation, and we derive a formula
to help estimate WA more precisely. Our work suggests the
importance of considering the context of real DSS for EC
research, and we hope the methodology and �ndings can
contribute to a �rmer footing for EC optimization in practice.

1 INTRODUCTION
Erasure coding (EC) is an essential fault-tolerance mech-
anism widely used in modern distributed storage sys-
tems (DSS) including Ceph [7], HDFS [47], Colossus [9],
DAOS [10], and many others[16, 23, 51, 57]. Compared to
traditional replication, EC can achieve the same level of fault
tolerance with less storage overhead, trading o� encoding
and decoding computations for space e�ciency. Such an ad-
vantage becomes critically important as the volume of data
and the scale of storage systems keeps increasing rapidly.

Due to the prime importance, great e�orts have been made
to improve erasure codes. For example, a variety of regener-
ating codes (RGC) [31, 41, 44, 46, 54] and locally repairable

This work is licensed under a Creative Commons Attribution International 
4.0 License.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0630-1/24/07.
https://doi.org/10.1145/3655038.3665951

codes (LRC) [17, 22, 23, 27, 30, 52] have been proposed to re-
duce the network and/or storage I/O cost, making them (theo-
retically) superior to the classic Reed-Solomon (RS) code [45].
Complementary to these e�orts, we focus on the con-

�guration sensitivity of existing erasure codes in practical
DSS in this paper. Recent research show that con�gurations
may a�ect the performance and/or reliability of various sys-
tems signi�cantly [5, 8, 37]. For example, sub-optimal con-
�gurations may lead to data corruptions on local storage
systems [13, 37], while carefully tuned con�gurations may
improve the performance by 9X [5]. This raises the concern
on how we should optimize EC in highly-con�gurable DSS
in practice.
As one step toward addressing the challenge, we build

a framework to support analyzing the impact of various
con�gurations on EC-based DSS thoroughly. We decouple
the storage devices from a target DSS via a remote storage
protocol [40] to enable �exible control of device states, and
orchestrate a set of activities (e.g., system con�guration, fault
injection, workload execution, logging) to trigger EC opera-
tions and measure the behaviors systematically.

We apply our methodology to investigate two popular era-
sure codes, Reed-Solomon (RS) and Clay, in the widely used
Ceph distributed storage system. Our study covers a wide
range of EC-related con�gurations, such as various caching
schemes of DSS backend, concurrency and locality of failures,
placement group numbers, stripe units, and EC parameters.
To the best of our knowledge, many of these factors have not
been adequately addressed in previous studies. Through this
invetigation, we aim to address several research questions,
such as: What con�gurations might a�ect EC recovery time,
and to what extent? Is EC recovery time consistently the
primary bottleneck? Furthermore, apart from recovery time,
do these con�gurations impact storage overhead or write
ampli�cation?
Our experimental results show that con�gurations can

substantially impact EC recovery time, with variations rang-
ing from 101% to 426%. Interestingly, despite Clay codes
being generally perceived as more e�cient than RS codes,
they may perform worse than RS codes under certain con-
�gurations. Additionally, we observed that once a failure is
detected by the DSS, there is consistently a system checking
period before EC recovery, which may constitute 41% to 58%

93

https://doi.org/10.1145/3655038.3665951
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665951&domain=pdf&date_stamp=2024-07-08


HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Runzhou Han et al.

of the overall system recovery time, depending on the work-
load con�guration. In essence, EC recovery may not always
be the primary bottleneck of the overall DSS recovery cycle.
In terms of storage overhead, our investigation reveals

that EC may introduce 32.3% to 72.0% more write ampli�-
cation (WA) than what is theoretically expected (i.e., =: for
RS(n,k)). To facilitate the understanding, we have derived a
formula based on our experiments to more accurately esti-
mate the actual WA. In summary, our results underscore the
signi�cance of contextualizing real DSS environments when
designing and assessing erasure codes. We anticipate that
our methodology and discoveries will inspire subsequent
con�guration-aware optimizations for erasure codes and
EC-based DSS systems at large.

The rest of the paper is organized as follows: §2 introduces
the background; §3 describes the study methodology; §4
shows experimental results; §5 discusses related work; §6
concludes the paper with future work.

Table 1: Main Con�gurations of Ceph EC Pool

Con�g. Parameters Options
Ceph storage backend BlueStore, FileStore
BlueStore cache meta_ratio, kv_ratio, autotune, etc.
Ceph interface RADOS, RGW, RBD, CephFS
Num. of PGs in pool customized, autoscale
EC plugin Jerasure, ISA, Clay, LRC, SHEC
EC technique reed_sol_van, cauchy_orig, etc.
EC failure domain device (OSD), host, rack, etc.
EC device class HDD, SSD
EC parameter k, m (equal to n-k), d, stripe_unit, etc.

2 BACKGROUND
2.1 Erasure Coding
Erasure coding achieves fault tolerance via encoded redun-
dancy. For example, given an RS code RS(n,k) with two pa-
rameters n and k where k<n, it splits a data object into k
blocks (called data chunks/blocks), and generates n-k (or<)
blocks (called parity chunks/blocks) by encoding the orig-
inal k blocks. By distributing the n blocks to di�erent fail-
ure domains, any n-k block failures can be tolerated and
be re-constructed from the k surviving chunks (i.e., decod-
ing or repair) with the storage overhead of =

: (i.e., theo-
retical ampli�cation factor). Besides the classic RS code,
many other erasure codes have been proposed with di�erent
tradeo�s in terms of storage e�ciency, repair bandwidth,
etc [1, 11, 22, 23, 30, 41, 45, 54]. Nevertheless, how to mea-
sure their e�ectiveness in practical systems thoroughly is
still an open challenge [41].

Controller

Fault Injector

Device/Node Failure

Virtual Disk

Data Server
DataNode

NVMe-oF

Virtual Disk

Data Server
DataNode

Worker

NVMe-oF

MetadataNode

Worker

Logger
EC Manager

Coordinator

Log 
Collection

1

2 2

3

3 Logger 3 Logger

ClientNode
Workload

Figure 1: ECFault Overview

2.2 Distributed Storage Systems
Distributed storage systems are designed to manage data at
scale [7, 9, 10, 16, 23, 47, 51, 57]. They typically consist of
a set of nodes with di�erent functionalities (e.g., metadata
service, object storage). We use Ceph, one of the most widely
used DSS, as a concrete example to introduce the architecture
and relevant con�gurations that may a�ect erasure coding.
A basic Ceph cluster consists of one monitor/manager

node (MON/MGR) and multiple OSD hosts (each may host
multiple OSD devices). Objects in the storage system reside in
a logical concept named pool. For better object management,
objects in a Ceph pool are further divided into placement
groups (PGs). PGs reside on one or more OSD devices and can
be overlapped on OSDs. Ceph supports multiple EC plugins,
including RS codes (via Jerasure [34] or ISA [33] libraries),
Clay codes, etc. Each object in Ceph is divided into k data
chunks and encoded into n-k parity chunks for EC. Table 1
summarizes the main con�gurations related to an erasure-
coded pool in Ceph. We focus on an important subset as a
starting point based on our domain knowledge, including (1)
caching (e.g., meta_ratio of BlueStore) and object distribu-
tion (e.g., number of PGs) which may a�ect the system I/O
path, (2) EC parameters (i.e., = and :) and basic encoding size
(i.e., stripe_unit) which can a�ect EC behaviors directly
(e.g., Clay’s subpacketization may be sensitive to EC chunk
size [43]), (3) failure modes which are crucial for triggering
EC recovery operations (more details in §4).

3 METHODOLOGY
Unfortunately, none of the existing tools can meet our needs
due to limitations in compatibility, dependencies, etc (See §5
for more discussion). Therefore, we design and implement
a framework called ECFault to support a systematic study.
As shown in Figure 1, given a typical DSS with three types
of nodes (i.e., DataNode, MetadataNode, and ClientNode),
ECFault can be integrated with the target DSS via threemajor
components (i.e., Controller, Worker, Logger):
• Controller. This component controls the overall con�g-
uration and execution of EC experiments on the target
DSS. It consists of three sub-modules: (a) EC Manager

94



Revisiting Erasure Codes: A Configuration Perspective HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

manages all EC-related con�gurations in an experimental
pro�le. For example, in case of Ceph experiments, the pro-
�le speci�es a variety of parameters including EC plugins
(e.g., Jerasure), EC parameters (e.g., : and =), basic encod-
ing unit size (stripe_unit), and other relevant system
features that may a�ect EC operations such as number
of placement groups in pool (pg_num). (b) Fault Injector
sends fault injection requests to DataNodes in a white-box
way to explore EC operations systematically and properly.
That is, the fault never goes beyond the guaranteed fault
tolerance capacity (i.e., not exceeding =�: failures within
the de�ned failure domain) based on the pro�le de�ned in
EC Manager. (c) Coordinator orchestrates all the activities
in the target DSS including workloads execution, fault
injection, and log collection.

• Worker. This component works on individual nodes of
the target DSS for two purposes: (a) Virtual disk provision-
ing to the DSS storage service through a remote storage
protocol to enable easy control of storage states; and (b)
DSS manipulation, which receives and applies a variety
of faults speci�ed by the Global Controller to trigger the
EC operations in the target DSS under desired workloads
and con�gurations.

• Logger. This component collects various logs (e.g., I/O
events and statistics, DSS failure logs, EC recovery logs)
throughout the experiment cycle to facilitate �ne-grained
measurements and in-depth analysis of potential anom-
alies and bottlenecks.

Next, we elaborate on a few key implementation details:

3.1 Virtual Disk Provisioning via NVMe-oF
EC operations are closely related to the durable states of stor-
age devices in DSS. Managing the device states e�ciently is
essential for evaluating erasure codes in DSS. To this end,
we decouple the storage server nodes from the underlying
storage devices by provisioning virtual storage devices to
the target DSS through remote storage protocols [40]. Specif-
ically, we leverage nvmetcli to create a set of virtual NVMe
disks on each DataNode, and connect them to the DataNode
operating system as local devices through NVMe-oF [40]. We
provision virtual NVMe subsystems because modern DSS
are increasingly optimized for NVMe SSDs for high perfor-
mance. Therefore, NVMe-oF based disk provisioning enables
ECFault to keep up with the technology trend of NVMe-
optimized storage systems. Compared to using physical disks,
hosting virtual disks makes the control and management of
device states more �exible and e�cient.
3.2 EC-aware Fault Injection
With the auto-provisioned disks and system information,
Coordinator manipulates the DSS states based on EC con-
�gurations. Speci�cally, it sends fault injection requests to

Workers to emulate the failure modes reported in the litera-
ture [15, 25], and thus trigger diverse EC recovery operations
for measurement. The current prototype provides two fault
levels: node and device. In terms of node failure, Fault Injector
will send requests to Workers to shutdown speci�ed physical
or virtual machines. To emulate device failures, Fault Injector
sends requests to Workers to remove the NVMe subsystems
of speci�ed virtual disks via nvmetcli. Moreover, the fault
injection is topology-aware. For example, concurrent device
failures can be either co-located on the same storage node or
distributed on di�erent nodes, enabling us to explore erasure
coding recovery under di�erent failure patterns.

3.3 System Log Collection
On each DSS server, ECFault collects both general I/O infor-
mation (via iostat [24]) and DSS-speci�c logs. To reduce the
network tra�c of log collection, the Loggers parse the raw
log �les on individual nodes locally �rst, classify log entries
based on keywords (e.g., decoding, failure, recovery, etc.),
and only send the most relevant ones to the Coordinator for
global sorting and merging. The log messaging between the
Coordinator and Loggers is implemented via Kafka [28].

4 CASE STUDY: CEPH
We apply our methodology (§3) to analyze Ceph, a repre-
sentative DSS supporting EC plugins. We focus on three
research questions below:
• Q1: What con�gurations can a�ect EC recovery time? To
what extent? (§4.2)

• Q2: Is EC recovery time always the bottleneck? (§4.3)
• Q3:What is the impact on write ampli�cation? (§4.4)

4.1 Experimental Methodology
We built a Ceph (v17.2.6 Quincy) cluster on AWS EC2 [3]
for experiments, which included 31 virtual machine (VM)
instances of type m5.xlarge with 25GB network bandwidth.
Ubuntu 20.04 LTS (Linux-5.15.0-1039-aws kernel) was in-
stalled on each VM. One VM served as the MON/MGR host
while the rest were OSD hosts. Each OSD host was attached
with two 100GB General Purpose SSD (NVMe) volumes (6TB
in total). ECFault was co-located with the Ceph cluster as
shown in Figure 1. We studied two classic erasure codes
including Reed-Solomon (RS) and Clay. Unless otherwise
speci�ed, we set EC to RS(12,9) and Clay(12,9,11), applied a
workload of 10,000*64MB object writes (comparable to previ-
ous work [41, 54]), and measured the average recovery time
of three runs.

4.2 Impact on EC Recovery Time
In this section, we �rst discuss the impact of three con�gura-
tions (i.e., Backend Cache, Placement Group, and Stripe Unit)

95



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Runzhou Han et al.

(a) Backend Cache (b) Placement Group (c) Stripe Unit (d) Failure Mode

Figure 2: Impact of Con�gurations on EC Recovery Time.

under a single OSD host failure, and then present the impact
of di�erent failure modes.
Backend Cache. Ceph’s BlueStore backend supports three
types of cache (i.e., KV store, metadata, and data), each of
which can be con�gured with a ratio (total 100%). Table 2
summarizes the three con�gurations (i.e., C1, C2, and C3)
for this set of experiments.

Table 2: Three Caching Con�gurations.

ID Caching Scheme KV-ratio Metadata-ratio Data-ratio
C1 kv-optimized 70% 20% 10%
C2 data-optimized 20% 20% 60%
C3 autotune (init value) 45% 45% 10%

As shown in Figure 2a, RS(12,9) con�gured with autotune
generates the best performance (i.e., lowest recovery time),
which veri�es that the cache resizing algorithm of BlueStore
is e�ective. Meanwhile, Clay(12,9,11) with kv-optimized
leads to the worst performance (i.e., 11%more time to recover
compared to RS with autotune).
Placement Group. The number of placement groups (i.e.,
pg_num) is a critical con�guration as it can a�ect the ob-
ject distribution (and thus I/O performance) directly. We set
pg_num to three values (i.e., 1, 16, 256) respectively. As shown
in Figure 2b, Clay(12,9,11) with pg_num=1 has the worst per-
formance (i.e., 135% compared to RS with pg_num=256). We
also observe that a larger pg_num leads to a faster recovery
for both codes, which is likely because objects are distributed
more evenly among OSDs with a larger pg_num.
Stripe Unit. This con�guration (i.e., stripe_unit) a�ects
the size of the basic encoding/decoding unit of erasure
codes. We set stripe_unit to three values (i.e., 4KB, 4MB,
64MB) with pg_num=256 in this experiment. As shown in
Figure 2c, both codes are highly sensitive to stripe_unit.
For example, RS with stripe_unit=64MB is 3.29 times
slower than RS with stripe_unit=4KB. Moreover, Clay
with stripe_unit=4KB can be 4.26 times slower than the
best case. This is mainly because the subpacketization of

Clay code can incur high overhead when the stripe unit
is small. Note that both codes show relatively high recov-
ery time when stripe_unit=64MB. This is because a larger
stripe_unit can lead to more undersized chunks, which
will be zero-padded to stripe_unit and generate additional
I/O tra�c for encoding/decoding (more details in §4.4).

Failure Mode. In this experiment, we set the failure domain
to OSD and add one more SSD to each OSD host (i.e., three
OSDs in total on each host) to enable more concurrent failure
modes. As shown on the x-axis of Figure 2d, we compare
four scenarios (i.e., two/three concurrent OSD failures on
the same or di�erent hosts). All other con�gurations are the
same (e.g., pg_num=256). We can see that both codes require
more time to recover when the number of concurrent failures
increases, which is expected. More interestingly, the locality
of three OSD failures may a�ect the relative performance
of RS and Clay: when they occur at the same host, Clay
may recover faster than RS; but when they occur at di�erent
hosts, RS may be faster. While it is known that the main
advantage of Clay over RS (e.g., reduction of repair network
tra�c) may decrease when the failure count increases [54],
we are surprised to see that the bene�t may disappear with
only three concurrent failures (on di�erent hosts), which
suggests the importance of considering the failure locality
when measuring EC.

SUMMARY. Overall, we observe that con�gurations may
a�ect the EC recovery time by up to 426%.Moreover, di�erent
from the general beliefs [54], Clay is not necessarily better
than the classic RS, depending on the con�gurations.

4.3 Breakdown Analysis of Recovery
Figure 3 shows a �ne-grained timeline of one entire system
recovery cycle, which covers the period from when an OSD
failure is detected (‘0’) to when the recovery �nished (‘1128s’).
We divide the system recovery period into two parts: (1)
System Checking Period, which involves massive heartbeats
between MGR and other hosts, checking OSD resources,
calculating surviving chunks, among others; (2) EC Recovery

96



Revisiting Erasure Codes: A Configuration Perspective HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

Figure 3: Timeline of System Recovery

Period, which involves the actual EC I/O operations and CPU
utilization for decoding and recovery. The System Checking
Period accounts for 53.7% of the overall system recovery time.
Moreover, we �nd that the percentage is dependent on the
workload size. We adjust the workload size to be the same
as previous work [41, 54] and observe that 41% to 58% of
the overall recovery time is for checking. This implies that
optimizing the EC recovery period, which has been the focus
of most existing e�orts, might not be enough in practice.

4.4 Impact on Write Ampli�cation
In this section, we discuss the impact of EC parameters (n,
k) and stripe_unit on write ampli�cation (WA), which is
an undesirable phenomenon that can a�ect storage capacity,
device lifetime, system performance, etc. negatively [29, 39].
WA can occur at di�erent layers of the storage stack, and we
focus on measuring the actual WA at the OSD level below.

Table 3: Write ampli�cation of RS codes.

ID Code(=,:) =
: Actual WA Factor Di�. %

J1 RS(12,9) 1.33 1.76 +32.3%
J2 RS(15,12) 1.25 2.15 +72.0%

Table 3 shows the WA of two RS codes with di�erent (n,k)
but the same level of fault tolerance (i.e., 3 concurrent fail-
ures) and other con�gurations. We calculated the theoretical
WA of each code (i.e., =: ), and measured the actual storage
usage at the OSD level. We de�ne the Actual WA Factor as
the actual storage usage divided by the write size of the
workload. We can see that the Actual WA Factor is always
larger than =

: (e.g., 72.0% more in case RS(15,12)), which is
mainly because: (1) zero-padding on undersized data chunks;
and (2) additional metadata for EC (e.g., mapping among
EC chunks). This result suggests that =

: , which has been
widely used for calculating EC storage overhead, may not
be accurate enough to re�ect the actual write ampli�cation.
Note that the gap between the theoretical WA and the

actual WA may change signi�cantly depending on (n,k) (e.g.,
from 32.3% to 72.0%), which suggests the importance of
considering EC parameters when estimating WA in prac-
tice. Moreover, based on our understanding of EC related

con�gurations in Ceph, an object in an erasure coded pool
will be �rst divided into : data chunks of size (>1 942C/: ,
where (>1 942C is the object size. If a chunk is undersized,
it will be padded to stripe_unit. On the other hand, if a
chunk is oversized, it will be further divided into (>1 942C/(: ⇤
(D=8C ) (where (D=8C is stripe_unit) encoding units, and
each unit will be padded to stripe_unit. In other words,
stripe_unit is another important con�guration that can
a�ect WA in practice. Based on such division-and-padding
policy, we derive a formula to describe the average storage
consumption for a EC chunk (2⌘D=: as follows:

(2⌘D=: = (D=8C ⇤ d
(>1 942C
: ⇤ (D=8C

e

This formula captures the fact that due to the division-and-
padding policy, there is always a gap between theoretical and
practical WA on each EC chunk, even without considering
the extra metadata overhead. The actual WA can be further
estimated as follows:

AF0 =
= ⇤ (2⌘D=: + (<4C0

(>1 942C
where (<4C0 stands for the metadata size of the code stripe

for the object. Note that due to the complexity of DSS meta-
data, the value of (<4C0 may not be readily available. But
the rest of the formula can still be calculated based on the
object size (>1 942C , EC parameter (=,:), and stripe_unit
((D=8C ), which can serve as a more accurate lower bound
of WA for the EC pool compared to =

: . We have validated
the e�ectiveness of the formula for WA estimation through
a set of experiments with a variety of object size, EC pa-
rameter (=,:), and stripe_unit, and we leave the further
re�nement and theoretical proof as future work.

5 RELATEDWORKS
Erasure Coding. Various erasure codes have been proposed
with di�erent tradeo�s [27, 41, 42, 44, 46, 54], but unfortu-
nately they are mostly evaluated with limited real-world
con�gurations. In terms of EC measurement, OpenEC [32]
provides a uni�ed framework for integrating EC solutions
into DSS, which is complementary to our e�ort.
Reliability of Distributed Storage Systems. Great e�orts
have been made to improve DSS reliability (e.g., [2, 4, 14, 18,
20, 26, 35, 36, 38, 50, 58–61]). Two most relevant projects are
CORDS [14] and PFault [4], which used FUSE and iSCSI to
inject faults to DSS respectively. While excellent for their
original goals, they are largely incompatible with modern
NVMe based DSS. For example, the FUSE-based CORDS can-
not support the customized storage backends of DSS (e.g.,
BlueStore in Ceph). Moreover, they are agnostic to the vari-
ous con�gurations that can a�ect erasure coding. In addition,

97



HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Runzhou Han et al.

Amazon commercializes a Fault Injection Simulator (FIS) [12],
which di�ers from our method in multiple ways: (1) it relies
on running utility programs [49] inside the target system
to simulate faults, which can change the DSS and a�ect the
�delity; (2) lacks of �ned-grained EC con�guration support
and orchestration; (3) relies on other AWS services (e.g., EC2,
CloudWatch). Therefore, we view them as complementary.

I/O Pro�ling Tools. Many tools have been proposed for
measuring I/O performance [6, 19, 21, 48, 53, 55, 56]. For ex-
ample, Darshan [48] is a valuable tool for characterizing I/O
behavior and performance analysis in HPC systems. How-
ever, these tools cannot be used for our purpose directly
due to a number of limitations including no fault injection
capability to trigger EC recovery operations, unaware of EC
related con�gurations, incompatible with customized stor-
age backends, etc. On the other hand, they can potentially
be integrated with our methodology to help collect more I/O
metrics.

6 DISCUSSION AND FUTUREWORK
Inspired by recent research on system con�gurations, we
studied the impact of various con�gurations on EC-based
DSS and demonstrated the gaps between theory and prac-
tice. Our work suggests many opportunities for follow-up
research. For example, we only studied a subset of con�g-
urations on a single DSS, which can be extended to cover
more con�gurations and DSS to generate more comprehen-
sive insights. Also, the quantitative analysis on con�gura-
tion sensitivity could potentially help create more intelligent
mechanisms for tuning EC-based DSS automatically. Addi-
tionally, we hope to develop ECFault into an open-source
artifact to facilitate optimizing EC-based DSS in general.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their invaluable
feedback. This work was supported in part by National Sci-
ence Foundation (NSF) under grands CNS-1855565 and CNS-
1943204, and a Global Research Outreach (GRO) Award (2022)
from Samsung Advanced Institute of Technology (SAIT) and
Samsung Research America (SRA). Any opinions, �ndings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily re�ect
the views of the sponsors.

REFERENCES
[1] 2012. NCCloud: Applying Network Coding for the Storage Repair

in a Cloud-of-Clouds. In 10th USENIX Conference on File and Storage
Technologies (FAST).

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albargh-
outhi, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2018. Protocol-Aware Recovery for Consensus-Based

Storage. In 16th USENIX Conference on File and Storage Technologies
(FAST).

[3] AWS-EC2. https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2.
[4] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya

Eswarappa, Yan Mu, and Yong Chen. 2018. PFault: A general frame-
work for analyzing the reliability of high-performance parallel �le
systems. In Proceedings of the 2018 International Conference on Super-
computing (ICS).

[5] Zhen Cao, Geo� Kuenning, and Erez Zadok. 2020. Carver: Finding
Important Parameters for Storage System Tuning. In 18th USENIX
Conference on File and Storage Technologies (FAST 20).

[6] Benjamin Carver, Runzhou Han, Jingyuan Zhang, Mai Zheng, and
Yue Cheng. 2024. _FS: A Scalable and Elastic Distributed File System
Metadata Service using Serverless Functions. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4.

[7] Ceph. https://ceph.com/en/. (accessed April 3, 2024).
[8] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and

Tianyin Xu. 2020. Understanding and discovering software con�gura-
tion dependencies in cloud and datacenter systems. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering.

[9] Colossus. https://cloud.google.com/blog/products/storage-data-
transfer/a-peek-behind-colossus-googles-�le-system.

[10] DAOS. https://ethereum.org/en/dao/.
[11] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J.

Wainwright, and Kannan Ramchandran. 2010. Network Coding for
Distributed Storage Systems. IEEE Transactions on Information Theory
56, 9 (2010), 4539–4551. https://doi.org/10.1109/TIT.2010.2054295

[12] AWS FIS. https://aws.amazon.com/�s/. (accessed April, 2024).
[13] Windows 10 2004/20H2: Microsoft �xes chkdsk issue in update

KB4592438. https://borncity.com/win/2020/12/21/windows-10-2004-
20h2-microsoft-�xes-chkdsk-issue-in-update-kb4592438/.

[14] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Redundancy Does
Not Imply Fault Tolerance: Analysis of Distributed Storage Reactions
to Single Errors and Corruptions. In 15th USENIX Conference on File
and Storage Technologies (FAST 17). 149–166. https://www.usenix.org/
conference/fast17/technical-sessions/presentation/ganesan

[15] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The
Google File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP).

[16] GlusterFS. https://www.gluster.org.
[17] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey

Yekhanin. 2012. On the Locality of Codeword Symbols. IEEE Transac-
tions on Information Theory 58, 11 (2012), 6925–6934. https://doi.org/
10.1109/TIT.2012.2208937

[18] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI:
A Framework for Cloud Recovery Testing. In 8th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
11). https://www.usenix.org/conference/nsdi11/fate-and-destini-
framework-cloud-recovery-testing

[19] Runzhou Han, Suren Byna, Houjun Tang, Bin Dong, and Mai Zheng.
2022. PROV-IO: An I/O-Centric Provenance Framework for Scien-
ti�c Data on HPC Systems. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing.

[20] Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao, Di Zhang,
Dong Dai, Yong Chen, and Jonathan Cook. 2022. A Study of Failure
Recovery and Logging of High-Performance Parallel File Systems.
ACM Transactions on Storage (TOS) (2022).

98

https://doi.org/10.1109/TIT.2010.2054295
https://www.usenix.org/conference/fast17/technical-sessions/presentation/ganesan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/ganesan
https://doi.org/10.1109/TIT.2012.2208937
https://doi.org/10.1109/TIT.2012.2208937
https://www.usenix.org/conference/nsdi11/fate-and-destini-framework-cloud-recovery-testing
https://www.usenix.org/conference/nsdi11/fate-and-destini-framework-cloud-recovery-testing


Revisiting Erasure Codes: A Configuration Perspective HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

[21] Runzhou Han, Mai Zheng, Suren Byna, Houjun Tang, Bin Dong, Dong
Dai, Yong Chen, Dongkyun Kim, Joseph Hassoun, and David Thors-
ley. 2024. PROV-IO++: A Cross-Platform Provenance Framework for
Scienti�c Data on HPC Systems. IEEE Transactions on Parallel and
Distributed Systems (2024).

[22] ChengHuang,Minghua Chen, and Jin Li. 2007. Pyramid Codes: Flexible
Schemes to Trade Space for Access E�ciency in Reliable Data Storage
Systems. In Sixth IEEE International Symposium on Network Computing
and Applications (NCA 2007). 79–86. https://doi.org/10.1109/NCA.2007.
37

[23] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Coding in
Windows Azure Storage. In Proceedings of the 2012 USENIX Conference
on Annual Technical Conference. 2.

[24] iostat. https://linux.die.net/man/1/iostat.
[25] Shehbaz Ja�er, Stathis Maneas, Andy Hwang, and Bianca Schroeder.

2019. Evaluating File System Reliability on Solid State Drives. In 2019
USENIX Annual Technical Conference (USENIX ATC’19).

[26] Jepsen. https://jepsen.io.
[27] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant.

2023. Practical Design Considerations for Wide Locally Recoverable
Codes (LRCs). In 21st USENIX Conference on File and Storage Tech-
nologies (FAST 23). 1–16. https://www.usenix.org/conference/fast23/
presentation/kadekodi

[28] Apache Kafka. https://kafka.apache.org.
[29] Sungjoon Koh, Jie Zhang, Miryeong Kwon, Jungyeon Yoon, David

Donofrio, Nam Sung Kim, and Myoungsoo Jung. 2019. Exploring
Fault-Tolerant Erasure Codes for Scalable All-Flash Array Clusters.
IEEE Transactions on Parallel and Distributed Systems 30, 6 (2019), 1312–
1330. https://doi.org/10.1109/TPDS.2018.2884722

[30] Oleg Kolosov, Gala Yadgar, Matan Liram, Itzhak Tamo, and Alexan-
der Barg. 2018. On Fault Tolerance, Locality, and Optimality in Lo-
cally Repairable Codes. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 865–877. https://www.usenix.org/conference/atc18/
presentation/kolosov

[31] Xiaolu Li, Keyun Cheng, Kaicheng Tang, Patrick P. C. Lee, Yuchong
Hu, Dan Feng, Jie Li, and Ting-Yi Wu. 2023. ParaRC: Embracing Sub-
Packetization for Repair Parallelization in MSR-Coded Storage. In 21st
USENIX Conference on File and Storage Technologies (FAST 23). 17–32.
https://www.usenix.org/conference/fast23/presentation/li-xiaolu

[32] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong Hu. 2019. OpenEC:
Toward Uni�ed and Con�gurable Erasure Coding Management in
Distributed Storage Systems. In 17th USENIX Conference on File and
Storage Technologies (FAST 19). 331–344. https://www.usenix.org/
conference/fast19/presentation/li

[33] Intel Intelligent Storage Acceleration Library.
https://www.intel.com/content/www/us/en/developer/tools/isa-
l/overview.html. (accessed April, 2024).

[34] Jerasure: Erasure Coding Library. https://jerasure.org. (accessed April,
2024).

[35] Yifei Liu, Manish Adkar, Gerard Holzmann, Geo� Kuenning, Pei Liu,
Scott A. Smolka, Wei Su, and Erez Zadok. 2024. Metis: File System
Model Checking via Versatile Input and State Exploration. In 22nd
USENIX Conference on File and Storage Technologies (FAST 24).

[36] Yifei Liu, Gautam Ahuja, Geo� Kuenning, Scott Smolka, and Erez
Zadok. 2023. Input and Output Coverage Needed in File System Testing.
In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems.

[37] Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love,
Ryan Bumann, and Mai Zheng. 2023. ConfD: Analyzing Con�gura-
tion Dependencies of File Systems for Fun and Pro�t. In 21st USENIX
Conference on File and Storage Technologies (FAST 23).

[38] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.
2020. A Study of SSD Reliability in Large Scale Enterprise Storage De-
ployments. In 18th USENIX Conference on File and Storage Technologies
(FAST 20).

[39] Jayashree Mohan, Rohan Kadekodi, and Vijay Chidambaram. 2017. An-
alyzing IO Ampli�cation in Linux File Systems. ArXiv abs/1707.08514
(2017). https://api.semanticscholar.org/CorpusID:10285032

[40] NVMe-oF. https://nvmexpress.org/developers/nvme-of-speci�cation/.
[41] Lluis Pamies-Juarez, Filip Blagojević, Robert Mateescu, Cyril

Gyuot, Eyal En Gad, and Zvonimir Bandić. 2016. Opening the
Chrysalis: On the Real Repair Performance of MSR Codes. In 14th
USENIX Conference on File and Storage Technologies (FAST 16). 81–
94. https://www.usenix.org/conference/fast16/technical-sessions/
presentation/pamies-juarez

[42] James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu,
and Zooko Wilcox-O’Hearn. 2009. A Performance Evaluation and
Examination of Open-Source Erasure Coding Libraries for Stor-
age. In 7th USENIX Conference on File and Storage Technologies
(FAST 09). https://www.usenix.org/conference/fast-09/performance-
evaluation-and-examination-open-source-erasure-coding-libraries

[43] Clay Code Plugin. https://docs.ceph.com/en/quincy/rados/operations/
erasure-code-clay/.

[44] K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah,
and Kannan Ramchandran. 2015. Having Your Cake and Eating It
Too: Jointly Optimal Erasure Codes for I/O, Storage and Network-
Bandwidth. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST’15). 81–94.

[45] Irving S. Reed and Gustave Solomon. 1960. Polynomial Codes Over
Certain Finite Fields. Journal of The Society for Industrial and Applied
Mathematics 8 (1960), 300–304.

[46] Nihar B. Shah, K. V. Rashmi, P. Vijay Kumar, and Kannan Ramchandran.
2012. Interference Alignment in Regenerating Codes for Distributed
Storage: Necessity and Code Constructions. IEEE Transactions on
Information Theory 58, 4 (2012), 2134–2158. https://doi.org/10.1109/
TIT.2011.2178588

[47] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
et al. 2010. The Hadoop Distributed File System. In Proceedings of 26th
IEEE Symposium on Massive Storage Systems and Technologies (MSST).

[48] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K. Lock-
wood, and Nicholas J. Wright. 2016. Modular HPC I/O Characterization
with Darshan. In 2016 5th Workshop on Extreme-Scale Programming
Tools.

[49] stress-ng. https://wiki.ubuntu.com/Kernel/Reference/stress-ng.
[50] Wei Su, Yifei Liu, Gomathi Ganesan, Gerard Holzmann, Scott Smolka,

Erez Zadok, and Geo� Kuenning. 2021. Model-Checking Support for
File System Development. In Proceedings of the 13th ACM Workshop
on Hot Topics in Storage and File Systems.

[51] OpenStack Swift. https://wiki.openstack.org/wiki/Swift.
[52] Itzhak Tamo and Alexander Barg. 2014. A Family of Optimal Locally

Recoverable Codes. IEEE Transactions on Information Theory 60, 8
(2014), 4661–4676. https://doi.org/10.1109/TIT.2014.2321280

[53] A. Uselton, M. Howison, N. J. Wright, D. Skinner, N. Keen, J. Shalf,
K. L. Karavanic, and L. Oliker. 2010. Parallel I/O Performance: From
Events to Ensembles. In Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on. IEEE, 1–11.

[54] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini,
Elita Lobo, Birenjith Sasidharan, P. Vijay Kumar, Alexandar Barg, Min
Ye, Srinivasan Narayanamurthy, Syed Hussain, and Siddhartha Nandi.
2018. Clay Codes: Moulding MDS Codes to Yield an MSR Code. In 16th
USENIX Conference on File and Storage Technologies (FAST 18). 139–154.
https://www.usenix.org/conference/fast18/presentation/vajha

99

https://doi.org/10.1109/NCA.2007.37
https://doi.org/10.1109/NCA.2007.37
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://www.usenix.org/conference/fast23/presentation/kadekodi
https://doi.org/10.1109/TPDS.2018.2884722
https://www.usenix.org/conference/atc18/presentation/kolosov
https://www.usenix.org/conference/atc18/presentation/kolosov
https://www.usenix.org/conference/fast23/presentation/li-xiaolu
https://www.usenix.org/conference/fast19/presentation/li
https://www.usenix.org/conference/fast19/presentation/li
https://api.semanticscholar.org/CorpusID:10285032
https://www.usenix.org/conference/fast16/technical-sessions/presentation/pamies-juarez
https://www.usenix.org/conference/fast16/technical-sessions/presentation/pamies-juarez
https://www.usenix.org/conference/fast-09/performance-evaluation-and-examination-open-source-erasure-coding-libraries
https://www.usenix.org/conference/fast-09/performance-evaluation-and-examination-open-source-erasure-coding-libraries
https://doi.org/10.1109/TIT.2011.2178588
https://doi.org/10.1109/TIT.2011.2178588
https://doi.org/10.1109/TIT.2014.2321280
https://www.usenix.org/conference/fast18/presentation/vajha


HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Runzhou Han et al.

[55] Je�rey Vetter and Carsten Chambreau. 2004. mpiP: Lightweight, Scal-
able MPI Pro�ling. http://mpip.sourceforge.net.

[56] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. 2009. Scalable I/O
Tracing and Analysis. In Proceedings of the 4th Annual Workshop on
Petascale Data Storage. ACM, 26–31.

[57] WekaIO. https://www.weka.io.
[58] Erci Xu, Mai Zheng, Feng Qin, Jiesheng Wu, and Yikang Xu. 2018.

Understanding SSD Reliability in Large-Scale Cloud Systems. In Pro-
ceedings of the 3rd ACM/IEEE Joint International Workshop on Parallel
Data Storage and Data Intensive Scalable Computing Systems (PDSW-
DISCS) at ACM/IEEE Supercomputing (SC).

[59] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019.
Lessons and Actions: What We Learned from 10K SSD-Related Storage

System Failures. In Procedings of USENIX Annual Technical Conference
(ATC).

[60] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple
Testing Can Prevent Most Critical Failures: An Analysis of Produc-
tion Failures in Distributed Data-Intensive Systems. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). 249–265.

[61] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. 2021. SentiLog:
Anomaly Detecting on Parallel File Systems via Log-based Sentiment
Analysis. In Proceedings of the 13th ACM Workshop on Hot Topics in
Storage and File Systems (HotStorage).

100

http://mpip.sourceforge.net

	Abstract
	1 Introduction
	2 Background
	2.1 Erasure Coding
	2.2 Distributed Storage Systems

	3 Methodology
	3.1 Virtual Disk Provisioning via NVMe-oF
	3.2 EC-aware Fault Injection
	3.3 System Log Collection

	4 Case Study: Ceph
	4.1 Experimental Methodology
	4.2 Impact on EC Recovery Time
	4.3 Breakdown Analysis of Recovery
	4.4 Impact on Write Amplification

	5 Related Works
	6 Discussion and Future Work
	References

