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Abstract—Data provenance, or data lineage, describes the life
cycle of data. In scientific workflows on HPC systems, scientists
often seek diverse provenance (e.g., origins of data products, usage
patterns of datasets). Unfortunately, existing provenance solutions
cannot address the challenges due to their incompatible prove-
nance models and/or system implementations. In this paper, we
analyze four representative scientific workflows in collaboration
with the domain scientists to identify concrete provenance needs.
Based on the first-hand analysis, we propose a provenance frame-
work called PROV-IO T, which includes an I/O-centric provenance
model for describing scientific data and the associated I/O opera-
tions and environments precisely. Moreover, we build a prototype
of PROV-IO™ to enable end-to-end provenance support on real
HPC systems with little manual effort. The PROV-IO* framework
can support both containerized and non-containerized workflows
on different HPC platforms with flexibility in selecting various
classes of provenance. Our experiments with realistic workflows
show that PROV-IOt can address the provenance needs of the
domain scientists effectively with reasonable performance (e.g., less
than 3.5% tracking overhead for most experiments). Moreover,
PROV-IO* outperforms a state-of-the-art system (i.e., ProvLake)
in our experiments.

Index Terms—Data provenance, HPC I/O libraries, high
performance computing (HPC), scientific data management,
workflows.

I. INTRODUCTION

A. Motivation

ATA-DRIVEN scientific discovery has been well ac-
knowledged as a new fourth paradigm of scientific inno-
vation [1]. The shift toward the data-driven paradigm imposes
new challenges in data findability, accessibility, interoperability,
reusability (i.e., FAIR principles [2], [3]) and trustworthiness [4],
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all of which demand innovative solutions for modeling and
capturing provenance, i.e., the lineage of data life cycle.

As an example, Fig. 1 shows a simplified scientific workflow
which analyzes geophysical sensing data on high performance
computing (HPC) systems (i.e., DASSA [5]). The workflow
takes geophysical data as input, which are often stored in differ-
ent file formats (e.g., “.tdms”, “.h5”). It then converts non-HDF5
files into a uniform HDFS5 format (i.e., “.h5”"). Depending on the
analysis goals, the workflow further applies a set of analysis pro-
grams (e.g., “Decimate”, “X-Correlation-Stacking”) to process
the files, the results of which are stored as data products in HDF5
format.

Based on our survey, the domain scientists using DASSA need
the fine-grained origin of the data products (i.e., backward data
lineage). For example, User A applies the “Decimate” program
with a number of HDFS files as input and generates a set of data
products. Another User B may query the origin of the datasets in
the final data products to understand which datasets in the input
files contributed to which portions of the final data products, or
who initiated the “Decimate” application to generate the data
products and when. Such provenance information is important
for ensuring the reproducibility, explainability, and security of
the DASSA data. Nevertheless, the DASSA workflow involves
multiple programs accessing multiple files using different I/O
interfaces and operations (e.g., HDF5 and POSIX), which makes
tracking and deriving the data provenance non-trivial. Moreover,
as we will elaborate in Section III, there are other diverse needs
of provenance for different scientific workflows and data (e.g.,
I/O statistics, configuration lineage). Such diversity, complex-
ity, as well as the stringent performance requirement in HPC
environments call for a practical solution beyond the state of
the art.

B. Limitations of State-of-The-Art Tools

Unfortunately, to the best of our knowledge, existing prove-
nance tools cannot address the grand challenge above suffi-
ciently due to a number of limitations:

First, while the importance of provenance has been well rec-
ognized across communities in general (e.g., databases [6], [7],
[8], [9], [10], operating systems (OS) [11], [12], eScience [13],
[14], [15], [16], [17]), there is a lack of concrete understanding
of the exact provenance needs of domain scientists, largely due
to the variety of data and metadata that could be generated
from HPC systems. As a result, existing solutions are often too
coarse-grained (e.g., whole file tracking without understanding
HPC data formats [11]) to help domain scientists effectively,
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Fig. 1. DASSA workflow. Solid arrows stand for write operation and dashed
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or too specific for one use case (e.g., Machine Learning [18]) to
support general needs.

Second, in terms of provenance modeling, we find that ex-
isting fundamental standards (e.g., W3C PROV [19]) are not
directly applicable to describing the characteristics of scientific
data provenance precisely. Scientists often seek a variety of
information from scientific workflows on HPC systems, includ-
ing the origins of data products, the configurations used for
deriving results, the usage patterns of datasets, and so on, which
cannot be described effectively using any existing provenance
models. Additional HPC workflow terms are required to improve
the capability of existing provenance solutions for describing
scientific data.

Third, in terms of usability, existing approaches often require
the users to identify the critical code sites in the workflow
software (e.g., loop structure [20]) and manually insert API
calls to track the desired information accordingly. Moreover,
they often rely on many external packages to work properly,
which make it difficult to deploy and use them on different
HPC platforms. The labor-intensive and error-prone approaches,
together with the portability and compatibility issues, hinder
the wide adoption of provenance products and diminishes the
potential benefits.

Note that the limitations highlighted above are correlated.
For example, the lack of understanding of provenance needs
and the ambiguity of the provenance model are contributing
to each other, which fundamentally limits the usability of
existing solutions in terms of granularity, expressibility, etc.,
which in turn makes clarifying the ambiguity and real needs
difficult.

C. Key Insights & Contributions

We tackle the grand challenge of provenance support for
scientific data on HPC systems in this paper.

First, we observe that for a provenance framework to be
practical and useful, inputs from the end users (i.e., domain
scientists) is essential. Therefore, we collaborate with domain
scientists to analyze four representative scientific workflows in
depth.

In doing so, we identify the unique characteristics of the work-
flows studied (e.g., I/O interfaces, data formats, access patterns)
as well as the specific needs for scientific data provenance (e.g.,
lineage at file, dataset, or attribute granularity).

Second, we observe that I/O operations are critically impor-
tant in affecting the state of data that form the lineage needed
by the domain scientists.

Therefore, different from existing solutions [20], [21], [22],
we introduce an I/O-centric provenance model dedicated for the
HPC environments. The model is derived from the W3C PROV

standard [19] with a variety of concrete sub-classes, which can
describe both the data and the associated I/O operations and
execution environments precisely with extensibility. Moreover,
it enables us to decouple the data provenance from specific exe-
cutions of a workflow and support the integration of provenance
from multiple runs naturally, which is important as workflows
may evolve over time.

Third, based on the fine-grained provenance model, we find
that the rich I/O middleware already used by the scientists
provide an ideal vehicle for capturing the desired provenance
transparently. Therefore, we create a configurable and extensible
library and integrate it with existing I/O code paths (e.g., HDF5
I/0 and POSIX syscalls) to capture necessary information with-
out requiring the scientists to modify the source code of their
workflows.

Moreover, to further improve the usability, we persist the
captured provenance as standard RDF triples [23] and enable
provenance query and visualization.

Forth, through the communication with domain scientists in
the industry, we notice the increasing importance of supporting
containerization [24]. By wrapping the HPC workflows together
with their dependencies in containers, the containerization
techniques can effectively reduce the burden of software
maintenance and thus enable more desired features including
reproducibility, reusability, interoperability, etc. Therefore, a
provenance framework should be generic enough to handle
provenance in both containerized and non-containerized
scenarios.

Based on the key ideas above, we build a framework called
PROV-10™, which can provide end-to-end provenance support
for domain scientists with little manual effort across HPC
platforms. We deploy PROV-IO* on representative supercom-
puters and evaluate it with realistic workflows. Our experi-
ments show that PROV-IO™ incurs reasonable performance
overhead and outperforms a state-of-the-art provenance pro-
totype (i.e., IBM ProvLake [20]) for the use cases evaluated.
More importantly, through the query and visualization support,
PROV-IO™ can address the provenance needs of the scientists
effectively.

In summary, we have made the following contributions:

¢ Identifying concrete provenance needs of domain scientists

based on four representative scientific workflows;

e Designing a comprehensive PROV-IO™ model to describe

the provenance of scientific data precisely and extensibly;

e Building a practical prototype of PROV-IOT which

can support different HPC workflows with little hu-
man efforts in both containerized and non-containerized
scenarios;

® Measuring the PROV-IO™ prototype in HPC environments

and demonstrating the efficiency and effectiveness;

e Releasing PROV-IO™ as an open-source tool to facilitate

follow-up research on provenance in general.

D. Experimental Methodology & Artifact Availability

Experiments were performed on three state-of-the art plat-
forms, including LBNL Cori Supercomputer [25], Samsung
SAIT Supercomputer (S-SuperCom) [26], and Google Cloud
Platform (GCP) [27]. First, in terms of non-containerized sce-
nario, we applied PROV-IO™ to three scientific workflows (i.e.,
DASSA [5], Top Reco [28], and an I/O-intensive application
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Fig.2. 'W3C Provenance Model [31].

based on H5bench [29]) on the Cori supercomputer. Second,
in terms of containerized scenario, we applied PROV-IOT to
analyze one deep learning workflow (i.e., Megatron-LM [30])
on S-SuperCom. As will be discussed in Section III, these use
cases cover diverse characteristics (e.g., various languages, file
formats, I/0 interfaces, metadata) and provenance needs (e.g.,
file/dataset/attribute lineage, metadata versioning, I/O statistics).

We varied the critical parameters of the workflows to measure
the run-time performance and storage requirements under a wide
range of scenarios. Third, we examined container’s impact on
provenance tracking with Megatron-LM [30] on the Google
Cloud Platform where we can schedule both containerized and
non-containerized workflows and perform a fair comparision.
In addition, we compared PROV-IO™ with ProvLake [20] using
the Python-based Top Reco workflow as ProvLake only supports
Python at the time of this writing. The PROV-IO™ prototype is
open-source at https://github.com/hpc-io/prov-io.

II. BACKGROUND

A. W3C Provenance Standard

The PROV family of specifications, published by the World
Wide Web Consortium (W3C), is a set of provenance standard to
promote provenance publication on the Web with interoperabil-
ity across diverse provenance management systems [31]. One
key specification is PROV-DM, an extensible relational model
which describes provenance information with a graph represen-
tation. As shown in Fig. 2, a W3C provenance graph abstracts
information into classes of Entity, Activity and Agent. PROV-DM
also defines Relation among the three classes. Another criti-
cal specification is PROV-O which describes the mapping of
PROV-DM classes to RDF triples. In PROV-O, Entity, Activity
and Agent are mapped to subjects and objects, while Relation is
mapped to predicates. We inherit these key notions from W3C
PROV standard in the PROV-IOT design.

B. HPC I/O Libraries

I/Olibraries (e.g., ADIOS [32], HDF5 [33], and NetCDF [34])
play an essential role in scientific computations. Many work-
flows leverage the library I/O to manipulate data files. For
example, HDFS5 (i.e., Hierarchical Data Format version 5) is one
of the the most wildly used I/O libraries for scientific data [35].
It is developed to be a parallel data management middleware to
bridge the gap between HPC applications and the complicated,
low-level details of underlying file systems, and has grown to a
popular data format and management system.
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Fig.3. Top Reco workflow. Solid arrows stand for write operation and dashed
arrows stand for read operation.

{ Training Graph i  EdgelNode |

: Training Graph © __ ' -
M i e el
""""""""""" A L <

:TrainingGraph '_ Sample | ___..---"7T - Top Candidates
v [tfrecord] | [.ini] [.csv]

In this work, we integrate our solution with the HDF5 library
besides the classic POSIX I/O operations. This is based on the
observation that HDF5 has evolved with a Virtual Object Layer
(VOL) which can intercepts object-level API operations to func-
tional plugins, called VOL Connectors [36]. VOL connectors
allow third-party developers to add desired storage functionali-
ties, which can be loaded dynamically at runtime. We leverage
such extensibility for tracking the provenance of HDF5 1/0 data.

III. CASE STUDIES

In this section, we discuss four real-world use cases to mo-
tivate the I/O-centric provenance further. For each case, we
describe its semantics and characteristics, the provenance need
of the domain scientists, and the associated challenges.

A. Top Reco - Lineage of Configurations

Workflow Description: Top Reco [28] is a Machine Learning
(ML) workflow in high-energy physics data analysis, which
uses Graph Neural Network (GNN) models for top quark recon-
struction. Top quarks are the elementary particles with the most
mass that may decay quickly and are not detectable directly due
to their mass. By representing particles and their relationships
as graphs, the GNN-based workflow can help reconstruct top
quarks more accurately and efficiently, which is important for
physics discoveries.

In Fig. 3, we show the key steps of the Top Reco workflow.
First, the workflow takes two types of files as input, including the
“root” file for input event and the “.ini” file for configuration.
Second, it generates “.tfrecord” files which stores the training
dataset and test dataset based on the input events. Third, it trains
a GNN model with the training dataset and tests the model with
the test dataset by accessing the “.tfrecord” files. Fourth, a range
of scores of edge and nodes are generated as the output of the
model. Finally, a reconstructor component runs a simulation
of reconstructing the top quarks based on highest scores. As
summarized in Table I, the Top Reco workflow uses the POSIX
I/O interface, and involves multiple programs accessing multiple
files.

Provenance Need: In the Top Reco case, the domain scientists
are interested in the impact of GNN configurations on the
model performance. Specifically, they would like to know which
combination of model hyperparameters and dataset preselec-
tions result in the best training accuracy. In other words, they
would like to have fine-grained version control of the metadata
(e.g., hyperparameters, preselections) as well as the correlation
between the metadata and the result to ensure the explainability
and reproducibility.

Challenges: Essentially, the Top Reco case requires automatic
version control management on the machine learning model.
However, a typical version control system (e.g., Git) cannot
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TABLE I
FOUR REAL USE CASES WITH DIFFERENT CHARACTERISTICS AND PROVENANCE NEEDS

Use Case Description 1/0 Interface Provenance Need
Top Reco training GNN models for top quark reconstruction; multi-program, multi-file; POSIX metadata version control & mapping
DASSA parallel processing of acoustic sensing data; multi-program, multi-file; HDF5 & POSIX | backward lineage of data products
H5bench simulat'm% t?/pical 1/0 patterns of HDF5 app; multi-program, single-file; HDF5 1/0 statistics & bottleneck
Megatron-LM parallel transformer model for NLP; multi-program, multi-file; POSIX Checkpoint-configuration consistency

meet the requirements because it cannot automatically track
the model performance and maps the performance to the model
configuration. In practice, the scientists may need to execute the
workflow for multiple times with different configurations, and
each execution may take multiple hours or more. Due to lack
of provenance support, the scientists have to manually make
a new copy of configuration when they start a new run, and
record the corresponding result later. Such common practice
is time-consuming and not scalable. In other words, a new
provenance framework is urgently needed.

B. DASSA - Lineage of Data Products

Workflow Description: As mentioned in Section I-A,
DASSA [5] is a parallel storage and analysis framework for
distributed acoustic sensing (DAS). It uses a hybrid (i.e., MPI
and OpenMP) data analysis execution engine to support efficient
and automated parallel processing of geophysical data in HPC
environments, which has been applied for accelerating a variety
of scientific computations including earthquake detection, envi-
ronmental characterization, and so on. The overall workflow is
described in Fig. 1.

Provenance Need: As discussed in Section I-A, the domain
scientists need the backward data lineage to understand the
origin of the data products and to ensure the data reproducibility,
explainability, and security, among others.

Challenges: The DASSA workflow may involve multiple
different programs, file formats, I/O interfaces, and end users,
which is representative for large-scale scientific workflows in
HPC environments. Moreover, both the file level and the sub-file
level (e.g., inner hierarchies of the HDF5 format) information
is needed. To the best of our knowledge, none of the existing
provenance models or systems can handle the complexity to
meet the comprehensive needs.

C. H5bench - Data Usage and I/O Performance

Workflow Description: HSbench [29] is a parallel I/O bench-
mark suite for HDF5 [37] that is representative of various
large-scale workflows. It includes a default set of read and write
workloads with typical I/O patterns in HDFS5 applications on
HPC systems, which enables creating synthetic workflows to
simulate diverse HDF5 I/O operations in HPC environments.
The benchmark also contains ‘overwrite’ and ‘append’ opera-
tions that allow modifying data or metadata of existing files and
appending new data, respectively.

We collect an H5bench-based workflow which contains a
combination of ‘write’, ‘overwrite’, append’ and ‘read’ work-
loads operating on HDFS files via MPI. This workflow simu-
lates the typical scenarios where a single file may be accessed
concurrently by HPC applications and multiple versions of a
dataset may be generated accordingly. As shown in Table I, the
H5bench-based workflow mainly uses the HDF5 1/O interface,
and involves multiple programs accessing a single file.

Valid Data
[txt
Text

 ”| Generation

Fig. 4. Megatron-LM Workflow. Solid arrows stand for write operation and
dashed arrows stand for read operation.

Provenance Need: Understanding frequently accessed data
in large datasets leads to optimizing I/O performance by im-
proved data placement and layout. Scientists typically use the
H5bench-based workflow to collect I/O statistics and identify
potential bottlenecks on HPC systems. While I/O profiling tools,
such as Darshan [38] and Recorder [39] collect coarse-grained
statistics of I/O performance, there are no tools to extract data
access information and the cost of those operations. Fine-grained
information such as the total number of each type of HDF5 I/O
operations incurred during the workflow, the accumulated time
cost for each type of operations, the distribution of operations
and time overhead, the HDF5 APIs invoked at a specific time
point, etc. would be critically important for understanding the
system behavior and fine-tuning the performance.

Challenges: The H5bench use case involves handling HDF5
datasets concurrently and measuring diverse fine-grained met-
rics at the HDFS APIlevel, which requires deep understanding of
the semantics and internals of HDF5. Since existing solutions
are largely incompatible with HDF5, they are fundamentally
inapplicable for this important category of use cases.

D. Megatron-LM - Checkpoint Consistency

Workflow Description: Megatron-LM is a powerful trans-
former [40] (i.e., a type of deep learning models) developed
by NVIDIA [30], [41]. Megatron-LM supports training large
transformer language models at scale, which is achieved by pro-
viding efficient, model-parallel (tensor, sequence, and pipeline),
and multi-node pre-training of transformer-based models (e.g.,
GPT [42], BERT [43], and T5 [44]) using mixed precision.
Megatron-LM scales the transformer training by supporting
data parallelism and model parallelism further. Specifically,
the data parallelism is achieved by splitting the input dataset
across specified devices (e.g., GPUs); on the other hand, the
model parallelism is implemented by splitting the execution of
a single transformer module over multiple GPUs working on
the same dataset. Both data parallelism and model parallelism
features can be optionally configured in the workflow, and they
are both enabled in this study for completeness. Fig. 4 shows
a simplified overview of the Megatron-LM workflow. First, a
training corpus (““.json”) is preprocessed by the data processing
module, which generates a binary file (“.bin”") and an index file
(“.idx”). The preprocessed data become the input of the pre-
training transformer models. A trained model (i.e., checkpoint)
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will be generated at the end of pretraining, and it can be used
in the follow-up evaluation or text generation. Users may also
skip the pretraining step if they already have a trained model
available.

Provenance Need: In the Megatron-LM workflow, the con-
sistency between pretraining models’s checkpoint and the cor-
responding configuration is important. The checkpoint mainly
records the metadata of the previous pretraining process, such
as micro/global batch size and state of optimizer/scheduler,
which are dependent on the configuration parameters. Blindly
modifying configuration parameters in the next pretraining could
easily result in various types of errors (e.g., network errors,
test code errors). Moreover, many configuration parameters
are tightly correlated with each other, changing configuration
parameters without preserving the correlation may also lead
to failures. In addition, adjusting pretraining hyperparameters
incautiously may affect the model quality negatively (e.g., result
in overfitting). Therefore, in the Megatron-LM use case, the
domain scientists want to track the checkpoint and configuration
provenance to ensure the checkpoint-configuration consistency.

Challenges: The challenge for the Megatron-LM workflow is
two-fold. First of all, the workflow involves hundreds of config-
uration entries and checkpointed statuses which are difficult to
track or reason by human.

Due to the lack of tool support, the domain scientists cannot
manage checkpoints generated by multiple training processes
conveniently and identify a qualified checkpoint and the associ-
ated configurations consistent with new training processes.

Moreover, with the growing popularity of container tech-
nologies [45], [46], HPC systems have started to be integrated
with container-based job runtime tools [24]. In such HPC
systems, large-scaled parallel pretraining models are executed
in a containerized environment, which largely avoids tedious
efforts in resolving installation or runtime dependencies (e.g,
PyTorch [47] and nccl [48]). Besides the challenge of the
Megatron-LM workflow itself, the domain scientists using the
workflow would like to execute the workflow in a containerized
HPC environment. Since a container is an isolated environment
by design where application cannot directly interactive with
the host system, how to containerized Megatron-LM and track
provenance information of the containerized workflow at scale
on HPC systems is another major challenge in this use case.

Note that both Megatron-LM and Top Reco (Section
IITI-A) belong to deep learning provenance use cases. However,
Megatron-LM has two major differences compared to Top Reco.
First, in Megatron-LM, the provenance need is checkpoint-
configuration consistency, while Top Reco’s provenance need is
configuration version control. Second, Top Reco is a traditional
single thread workflow, while Megatron-LM is a containerized
parallel workflow, which introduces more challenges in terms
of both provenance tracking and provenance storage.

E. Summary

By analyzing the four cases in depth and consulting with
the domain scientists, we find that there is a big gap between
the provenance needs and existing solutions. The variety of the
workflow characteristics (e.g., different I/O interfaces and file
formats) as well as the diversity of scientists’ needs motivates
us to design a comprehensive provenance framework to address
the challenge, which we elaborate in the following sections.

IV. PROV-IO™" DESIGN

In this section, we introduce the design of PROV-IO*. We
focus on the provenance model (Section IV-A) and its system
architecture (Section IV-B), which are two fundamental pillars
of PROV-IO*. We defer additional implementation details to
the next section (Section V).

A. PROV-1I0" Model

Fig. 5(a) shows an overview of the PROV-IO™ model, which
is derived based on the W3C standard (Section II-A) as well
as the characteristics of typical workflows and the provenance
needs of domain scientists (Section III).

Inspired by the W3C specification, we classify information
into four PROV-IO™ super-classes: Entity (yellow boxes in
Fig. 5(a), Activity (purple), Agent (orange) and Extensible Class
(green). Moreover, we introduce a variety of concrete sub-
classes to enrich the model, which can capture the data with
different granularity as well as the associated I/O operations
and execution environments for deriving the data. New Relation
terms among the sub-classes are also introduced (text on arrows).
Note that our goal is to design a model suitable for our HPC use
cases instead of strictly following existing standards, and we do
not claim our model is strictly compatible with existing models
due to our new additions. We leave the full compatibility as
future work. We summarize the definitions of the sub-classes
in Table II and highlight the main concepts added to each
super-class/relation as follows:

1) Entity: This PROV-IOT super-class includes seven spe-
cific Data Object sub-classes/types (i.e., Directory, File, Group,
Dataset, Attribute, Datatype, Link). Together, these sub-classes
cover common I/O structures and file formats. For example,
Attribute is a combined sub-class that can map to both the
HDFS5 attributes and the extended attributes of an inode in a
POSIX-compliant Ext4 file system [49].

2) Activity: This super-class includes six specific /O API
sub-classes /types (i.e., Create, Open, Read, Write, Fsync, Re-
name). These sub-classes cover a wide range of commonly
used I/O operations in HPC environments. For example, Read
can map to HDF5 read-family operations (e.g., “H5Gread”,
“H5Dread”, “H5Aread”, “HS5Tread”) and POSIX system call
“read” and its variants. Note that these operations are applicable
to other I/O libraries too (e.g., NetCDF [34]).

3) Agent: This super-class includes a set of sub-classes rep-
resenting the operator of a series of activities, such as Thread,
User, Rank, and Program. This fine-grained representation
is necessary because HPC applications are typically multi-
threaded and are executed in parallel (e.g., a group of MPI
processes with different ranks running on a cluter of nodes).

4) Extensible Class: This super-class contains a hierarchi-
cal collection of properties pertained by entities, activities and
agents. It is designed to be extensible because valuable infor-
mation is often workflow-specific. In the prototype, we define
four generic sub-classes (i.e., Checkpoint, Type, Configuration,
Metrics) to cover a variety of valuable information that cannot
be described precisely in the native W3C (e.g., hyperparameters
of ML models, checkpoints of Al model training).

5) Relation: PROV-IOT Relation describes the diverse
relations among classes. We inherit the basic W3C provenance
relations between entity & entity (prov:wasDerivedFrom),
entity & agent (prov:wasAttributedTo), activity & agent
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Fig. 5. PROV-IOT Model Overview. (a) The PROV-IOT model classifies information into four super-classes: Entity (yellow boxes), Activity (purple boxes),
Agent (orange boxes) and Extensible Class (green boxes). The new concepts introduced by PROV-IO are highlighted with blue color. (b) A Provenance Snippet
based on PROV-IO™.
TABLE II
DESCRIPTION OF PROV-IO™ MODEL
Super- Sub-class Description
class
<<Data Object>> Directory  Stands for directories (inode) in file system.
< <Data Object>> File Stands for individual file (inode) in file system.
<<Data Object>> Group Stands for HDF5 group. Groups contain datasets, attributes and other HDF5 structures.
Entity <<Data Object>> Dataset Stands for HDF5 dataset. Dataset contains scientific data.
<<Data Object>> Attribute A combined class with semantic of both file system and HDEF5. It maps to both HDF5
attribute and inode extended attribute.
<<Data Object>> Datatype  Stands for HDF5 datatype. To be noticed HDF5 datatype is different to “xsd:datatype”.
<<Data Object>> Link Stands for hard/soft links in file system. HDF5 also has a link structure but we don’t
consider it in this work.
<<I/O API>> Create Stands for create operation in HDF5, including “H5Gcreate” (create group), “H5Dcreate”
(create dataset), “H5Acreate” (create attribute) and “H5Tcreate” (create datatype).
<<I/O API>> Open Open operation in HDF5, including “H5Gopen” (open group), “H5Dopen” (open dataset),
“H5Aopen” (open attribute) and “H5Topen” (open datatype). Also stands for POSIX
syscall “open”.
<<I/O API>> Read Read operation in HDF5, including “H5Gread” (read group), “H5Dread” (read dataset),
“H5Aread” (read attribute) and “H5Tread” (read datatype). Also stands for POSIX syscall
“read” and its variants.

Activity | <<I/O API>> Write Write operation in HDF5, including “H5Gwrite” (write group), “H5Dwrite” (write
dataset), “H5Awrite” (write attribute) and “H5Twrite” (write datatype). Also stands for
POSIX syscall “write” and its variants.

<<1/0O API>> Fsync Flush operation in both HDF5 and POSIX syscall interface, including H5Flush and POSIX
syscall “fsync” and its variants.

<<I/O API>> Rename POSIX syscall “rename” and its variants.

User Stands for an individual user.

Agent Thread Thread/Process info. in multi-threaded programs with concurrent I/O (e.g.,, MPI,
OpenMP, PThreads).

Program A program instance. One program may have multiple running instances on different MPI
ranks. If a program is single-threaded, the program is directly “actedOnBehalfOf” a user.

Domain The research domain of a program/workflow. Currently it includes ML/AI, Acoustic
Sensing, and Synthetic.

Configuration Program/model /workflow configurations. E.g., the GNN hyperparameter and data pre-
selection in the Top Reco workflow.

Eylc;;zgmble Metrics Evaluation metrics of the workflow. In H5bench workflow, to analyze performance
bottleneck, I/O API duration is a primary metric. In Top Reco and other ML workflows,
model accuracy is a common metrics to be tracked. Yet PROV-IO* doesn’t include other
ML metrics (e.g., precision, recall, F-score, etc) in our basic version of PROV-IO*.

Checkpoint Program/model/workflow checkpoints. E.g., the pretraining checkpoint of Megatron-LM.

(prov:AssociatedWith), agent & agent (prov:actedOnBehalfOf).
Moreover, we introduce new relations between en-
tity & activity to precisely describe the relations
between various I/O APl and Data Object sub-
classes (e.g., provio:wasCreatedBy, provio:wasReadBy,
provio:wasWrittenBy, provio:wasModifiedBy). PROV-IO*

also defines new relations between original classes (i.e., Agent,
Activity) and Extensible class (e.g., provio:wasFromDomain,
provio:hadConfig).

To make the description more concrete, we show an example
snippet of provenance captured by PROV-IO™ in Fig. 5(b),
which contains eight records pertained by different subjects.
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(b) Mode #2: Provenance for Containerized Workflow.

Architecture of PROV-IOT Framework. There are two usage modes: (a) Mode #1 provides provenance support for non-containerized workflows; (b)

Mode #2 supports containerized workflows. The framework includes five major components in total: the PROV-IO* model (yellow), a provenance tracking engine
(blue modules), a provenance store (green), a user engine (red), and a containerizer engine (purple).

Each subject can be a sub-class of an Agent (e.g., “Bob”,
“vpicio_uni_h5-al.exe”), an Activity (e.g., “H5Dcreate2-b1”),
or an Entity (e.g., “/Timestep_0/x"). Each record is a series of
triples starting with a unique subject, where the triples describe
provenance information of a subject. Note that the record length
may vary depending on the provenance information associated
with the subject. Given this snippet, we can derive complex
provenance information (e.g., dataset *“/Timestep_0/x" was cre-
ated by I/O API “H5Dcreate2-b1” associated with program
“vpicio_un_h5.exe—al”, which was started by user “Bob”).

B. PROV-IO™ Architecture

Fig. 6 shows the architecture of the PROV-IO™ framework,
which supports two usage modes: Mode #1 (Fig. 6(a)) provides
provenance support for traditional non-containerized workflows
on HPC systems; Mode #2 (Fig. 6(b)) supports container-
ized workflows. There are five components in total, including:
(1) the PROV-IO™ model (yellow) to specify the provenance
information Section IV-A; (2) a provenance tracking engine
(blue modules) which captures I/O operations from multiple I/O
interfaces; (3) a provenance store (green) which persists captured
provenance into RDF triples; (4) a user engine (red) for users to
query and visualize provenance; (5) a containerizer engine (pur-
ple) to support other components in containerized environments.
Among the five components, the PROV-IO™ model (yellow)
has been discussed in details in Section IV-A. We introduce
the other three common components used in both modes (i.e.,
provenance tracking, provenance store, and user engine) one by
one in Section IV-B1, and then discuss the containerizer engine
for supporting containerized workflows in Section IV-B2.

1) Mode #1: Support for Classic Workflows: To provide
provenance support for the classic, non-containerized workflows
(i.e., Mode #1), PROV-IO™ leverages three major components
based on its provenance model (Section IV-A) as follows:

Provenance Tracking: As shown in Fig. 6(a), a scientific
workflow is typically started on compute nodes. The workflow
may consist of several parallel applications with multiple threads
running concurrently. During the workflow execution, all I/O op-
erations (e.g., POSIX and HDF5) are monitored by PROV-IO™
for provenance collection.

Specifically, the Provenance Tracking component contains
two thin modules (i.e., PROV-IO" Lib Connector and PROV-
107 Syscall Wrapper) for monitoring the library I/O and POSIX
I/0O operations respectively. In case of the HDF5 library, the
PROV-IO™ Lib Connector (we use the alias LibConnector in
the remainder of the article) monitors the I/O requests within the
HDFS5 Virtual Object Layer (VOL). In case of POSIX, the I/O
syscalls are monitored through the PROV-IO™ Syscall Wrapper
which is configurable via environmental variables. In both cases,
PROV-IO™ let the native I/O requests pass through and invoke
the core PROV-10™ Library for collecting the provenance de-
fined by the PROV-IO™ model without changing the original I/O
semantics.

Note that both the library I/O and POSIX I/O operations
can be tracked in a transparent and non-intrusive way from the
workflow’s perspective, which is important for usability.

In addition, to achieve extensibility, we provide a set of PROV-
10™ APIs which enables users to convey user/workflow-specific
semantics and requirements to PROV-IO™ (i.e., Extensible Class
in PROV-IOt model). Similar to ProvLake [20], users can
instrument their workflows with PROV-IO™ APIs as needed
(e.g., tracking a specific hyperparameter of a ML workflow).
By providing such flexibility, additional provenance needs can
be satisfied by PROV-IO™ conveniently.

Provenance Store: The Provenance Store component main-
tains the provenance information as RDF graphs durably on
the underlying parallel file system to enable future queries.
We choose an RDF triplestore instead of a traditional SQL
database for two main reasons: (1) W3C PROV-DM already
has a well-defined ontology (i.e., PROV-O [19]) to map the
model to RDF, so using RDF makes PROV-IO* compatible with
other W3C-compliant solutions; (2) To answer path queries in
provenance use cases, SQL queries with repeated self-joins are
necessary to compute the transitive closure, which often leads
to worse performance when the provenance grows [50].

More specifically, the Provenance Store component provides
an interface for the PROV-IO™" Library to manipulate prove-
nance records and maintain provenance graphs efficiently, which
includes creating a new provenance RDF graph in memory, load-
ing an existing graph, inserting new records to an existing graph,
etc. To minimize the performance impact on the workflow, the
in-memory provenance graph is serialized to the Provenance
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Store asynchronously. And depending on the need of the user,
the serialization operation may be triggered either periodically
or by the end of the workflow.

PROV-10" User Engine: The provenance information could
be enormous due to the complexity of scientific workflows. To
avoid distraction and help users derive insights, the PROV-IO™
User Engine component allows users to enable/disable individ-
ual sub-classes defined in the PROV-IO* model, which also
enables flexible tradeoffs between completeness and overhead.

Moreover, the engine provides a query interface to allow the
user to issue queries on the provenance generated by PROV-IOT.
Moreover, it includes a visualization module to visualize the
provenance (sub)graphs requested by the user. Note that both the
query and the visualization need to follow the PROV-IO* model,
which enforces a uniform way to represent the rich provenance
information.

Note that in the preliminary version of the prototype [51],
the user engine only provides a basic query interface to users.
As a result, users have to issue query primitives one by one to
achieve a complicated provenance query. In the current proto-
type, PROV-IO™ is further equipped with a set of high-level
integrated query APIs for answering typical provenance needs,
which can simplify the query complexity and improve the usabil-
ity for end users further. For example, in the DASSA use case, to
track the backward lineage of an output file, an user only needs to
provide the name of the file and the level of predecessor through
the integrated query APIs, which will retrieve the provenance
information conveniently.

2) Mode #2: Support for Containerized Workflows: To pro-
vide provenance support for containerized workflows, PROV-
107 includes an additional component called containerizer be-
sides the components discussed above.

The containerizer engine provides two main functionalities.
First, it assembles the target workflows (including their de-
pendencies) as well as the PROV-IO" common modules (Sec-
tion IV-B1) into container images to be executed on container
platforms. For example, on an HPC system using Singular-
ity/Apptainer [24] (we call it HPC container for short in the
rest of the article), the containerizer engine first creates the
Docker [45] image for the workflow and then converts the that
image into an HPC container image for execution on compute
nodes.

Second, the containerizer engine establishes the mapping
between the directory namespace within the container and the
namespace outside the container on the HPC storage nodes,
and re-directs the relevant provenance I/O activities to the
provenance store for persistency, as shown in the “Directory
Mapping Layer” and the purple dash lines in Fig. 6(b). In
this way, PROV-IO™ can support containerized workflows on
HPC systems automatically with little additional efforts. More
implementation details will be discussed in the next section.

V. PROV-IOT IMPLEMENTATION

In this section, we discuss additional implementation details
of the major components in the PROV-IO* framework.

Provenance Tracking: To support HDF5 1/0O, we imple-
ment the LibConnector in C language and integrate it with
the native HDF5 VOL-provenance connector (we use the alias
H5Connector in the remainder of the article), which follows a
homomorphic design in which each HDF5 native I/O API has a
counterpart API [36]. Upon each invocation of an HDF5 native

API, the counterpart API adds the corresponding virtual data
objectto alinked list. LibConnector leverages the linked list with
locking support to achieve concurrency control on I/O operations
on the same data object. To collect provenance, the PROV-IO™
Library APIs are invoked. We collect Agent information at
the initialization stage of the native H5Connector. Entity and
Activity classes are tracked at each homomorphic API during
the workflow runtime.

Similarly, to support POSIX I/O, we use GOTCHA [52] to
build a C wrapper layer for POSIX syscall and invokes the
PROV-IO™ Library internally. Additionally, the current PROV-
10" APIs support invoking the PROV-IO™ Library from work-
flows written in multiple languages including Python, C/C++,
and Java.

Moreover, to support large-scale ML/AI workflows, we fur-
ther instrument PyTorch [47], one of the most popular machine
learning framework, with the PROV-IO™ library. This enables
PROV-10™ to provide more transparency in supporting ML/AI
workflows by capturing specific provenance information needed
by this category of workflows (e.g., checkpointing information).

Provenance Store: The Provenance Store is implemented
based on Redland 1ibrdf [53] to serve as the durable backend
of the PROV-IO™ Library. We choose Redland because based
on our experiences, many other existing RDF solutions are not
directly usable in our HPC environments due to compatibility
issues in dependent packages and/or operating system (OS)
kernels [54], [55], [56], [57], [58].

We utilize Redland’s in-memory graph representation and its
support for serializing in-memory graph to multiple on-disk
RDF formats (e.g., Turtle [59], ntriples [60], etc.). Redland
librdf also supports the integration of multiple databases as
the storage backend (e.g., BerkeleyDB, MySQL, SQLite). In the
current prototype, we store provenance information in the Turtle
format directly for simplicity.

To avoid potential data races when serializing from multiple
processes to the Provenance Store, PROV-IOT maintains an in-
memory sub-graph for each process and lets the process serialize
its own sub-graph to a unique RDF file on disk. The sub-graph
files are then parsed and merged into a complete provenance
graph. Since every node in the graph has a globally unique ID
(GUID), merging the sub-graphs does not cause unnecessary
duplication. Note that this strategy also helps performance be-
cause no extra inter-process communication or synchronization
is needed during workflow execution, and the merging can be
performed after workflow execution. The offline merging takes
between 5 minutes to 1 h based on the number of MPI ranks and
amount of information tracked in the workflow. We consider
online graph merging as a future work.

PROV-IO™ User Engine: The user engine supports query-
ing RDF triples with SPARQL, which is a semantic
query language to retrieve and manipulate data stored
in RDF [61]. We use Python scripts as the SPARQL
endpoint. A Python interface is provided for users to
invoke compound SPARQL query statements with a simple
Python function given necessary parameters (e.g., a user can
call query function get_predecessor (data_object,
predecessor_level) to retrieve the predecessor of a data
object at a specific level). Note that depending on different use
case scenarios, the query can vary a lot, as will be demonstrated
in Section VI-G. Note that PROV-IO" provides highly inte-
grated query APIs for scientists to conveniently retrieve prove-
nance based on their needs. For instance, in DASSA workflow,
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to query the backward data lineage, the scientists only need to
specify the output data object and the level of its predecessor
(i.e., how many steps back) to the query API, and the user
engine will return the target information if applicable. Similarly,
highly integrated and customized query APIs are developed for
remaining workflows based on their provenance use cases. In
the current prototype, we utilize Graphviz [62] for RDF graph
visualization.

Containerizer Engine: The Containerizer Engine is imple-
mented as a set of scripts to enable the provenance support
in the containerized environment conveniently. For example,
to support containrized Megatron-LM workflow on the HPC
container platform, the Containerizer Engine first creates a
Docker image by using the NGC’s PyTorch 21.07 as the parent
image. Besides the Megatron-LM workflow itself, the image
also contains the PROV-IO™ library and related dependencies.
After the Docker image is created, it is further converted to
a HPC container image in order to run it in the containerized
HPC environment. Moreover, the directory namespace in the
container image is mapped to the PROV-IO™ provenance store
on the storage nodes for for data persistence.

Also, since HPC container provides three running modes
(i.e., “run”, “exec” and “shell”) for different execution scenarios
(e.g., interactive jobs and batch jobs), the Containerizer Engine
includes different sets of scripts to support different modes.
For example, to support running containerized workflows in the
batch mode with the IBM Spectrum LSF [63] job scheduler,
the Containerizer Engine includes scripts to ensure that the
configuration parameters of the PROV-IO™ supported containers
are consistent with the LSF batch scripts.

VI. EVALUATION

In this section, we evaluate the prototype of the PROV-IO™
framework in representative HPC environments.

First of all, we introduce the experimental methodology and
HPC platforms for non-containerized and containerized work-
flows, respectively (Section VI-A). Next, we evaluate PROV-
10" with three non-containerized workflows (i.e., Top Reco,
DASSA and H5Bench) from two perspectives including the
tracking performance (Section VI-B) and the storage require-
ment (Section VI-C). Similarly, we evaluate PROV-IO™ with one
containerized workflow (i.e., Megatron-LM) and measure both
the tracking performance and the storage requirement (Section
VI-D). Moreover, we analyze the impact of containerization on
provenance tracking by comparing the tracking overhead in two
versions (i.e., with and without containerization) of Megatron-
LM (Section VI-E).

In addition, we compare PROV-IO™" with a state-of-the-art
provenance prototype (i.e., ProvLake [20]) (Section VI-F), and
evaluate the query effectiveness of PRVO-IO™ for all workflows
from the end user’s perspective (Section VI-G).

Overall, our experimental results shows that PROV-IO™ can
support both non-containerized and containerized workflows
effectively. Its tracking overhead is less than 3.5% in more than
95% of our experiments, and it outperforms ProvLake in terms
of both tracking and storage overhead.

A. Experimental Methodology

Non-Containerized Workflows: We have evaluated the PROV-
10" framework for non-containerized workflows on a state-
of-the-art supercomputer named Cori, which is a Cray XC40

TABLE III
MAJOR EXPERIMENTAL PLATFORMS

Cori SAIT SuperCom
Processor Intel Xeon Phi AMD EPYC
Cores 622,336 204,160
0os Cray Linux Redhat 8
PFS Lustre Lustre
Scheduler Slurm LSF
Container Runtime | - Singularity / Apptainer

supercomputer deployed at the National Energy Research Sci-
entific Computing Center (NERSC) with a peak performance of
about 30 petaflops. As shown in Table III, Cori uses the Slurm
job scheduler and do not use container runtime by default. We
conduct experiments on Cori using 64 Intel Xeon “Haswell”
processor nodes and up to 4096 cores, unless otherwise speci-
fied. The storage backend is a Lustre parallel file system (PFS)
with stripe count of 128 and stripe size of 16 MB.

We apply PROV-IOT to three representative non-
containerized workflows including Top Reco [28], DASSA [5],
and an HS5bench-based workflow [29]. As mentioned in
Section III, the three use cases exhibit diverse characteristics
(e.g., various file formats, I/O interfaces, metadata) and
provenance needs (e.g., file/dataset/attribute lineage, 1/O
statistics, metadata versioning). We summarize the information
tracked by PROV-IO™ in the experiments to meet the provenance
needs in Table IV and elaborate them in detail in the following
subsections.

Containerized Workflow: Besides experimenting with the
classic workflows, we have evaluated the PROV-IO™ framework
for one containerized workflow on a supercomputer deployed at
Samsung Advanced Institute of Technology (SAIT), which is an
HPE Apollo 6500 Gen10 Plus System. For simplicity, we call
the system SuperCom in the rest of the paper. Similar to Cori,
SuperCom uses Lustre as the parallel file system. Different from
Cori, SuperCom’s job management is based on a combination
of IBM LSF scheduler and Singularity/Apptainer, which is
a container runtime designed for HPC environments [24]. A
detailed comparison between the two platforms (i.e., Cori and
SuperCom) is summarized in Table III.

We apply PROV-IO™ to the representative deep learning
workflow Megatron-LM [30], which exhibits unique character-
istics and provenance needs as discussed in Section III-D and
summarized in Table IV. We containerize the workflow through
the PROV-IO containerizer engine and leverage eight NVIDIA
A100 GPUs on SAIT SuperCom to accelerate the training. For
clarity, we present the evaluation results on SAIT SuperCom in
Section VI-D.

Containerization Impact Analysis: In addition to experiment-
ing on Cori and SuperCom, we have used GCP to study the
impact of containerization on provenance tracking. We use
GCP because Cori and SuperCom are customized for sup-
porting LBNL’s and Samsung’s missions respectively, and we
cannot modify their runtime environment (e.g., adding or re-
moving HPC container) conveniently. By leveraging GCP, we
can build the necessary system environments for running both
non-containerized and containerized workflows and conduct a
fair comparison on the same infrastructure.

More specifically, we use the GCP Deep Learning virtual
machines (VMs) with 32 vCPUs, 120 GB DRAM, and 4
NVIDIA T4 GPUs for the comparison experiments. And we
apply PROV-1IOT in two different modes for provenance tracking
on two versions of Megatron-LM (i.e., non-containerized and
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TABLE IV
PROVENANCE NEEDS AND THE INFORMATION TRACKED BY PROV-IOT FOR THREE WORKFLOWS

Workflow Provenance Need Information Tracked Komadu? ProvLake? PROV-IOT?
(TI‘,’}F,’thon) Reco metadata ver. control & mapping  hyperparameter, preselection, training accuracy No Yes Yes

file lineage program, I/O AP], file
DASSA dataset lineage program, I/O API, dataset No No Yes
(C++) attribute lineage program, I/O API, attr

scenario-1 1/0 AP1
H5bench scenario-2 1/0 API, duration No No Yes
© scenario-3 user, thread, program, file
Megatron-LM ckpt-config consistency checkpoint info, loss, model configuration No Yes Yes
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Fig. 7.
three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read).

containerized) respectively. We discuss the comparison results
in Section VI-E.

B. Performance of Provenance Tracking

In case of Top Reco, the scientists need the mapping between
configurations and the training performance. Therefore, PROV-
I0™ tracks three domain-specific items (e.g., model hyperpa-
rameters, dataset preselections, and training accuracy) based on
the extensible class defined in the PROV-IO™ model. To track the
mapping between workflow configuration and training accuracy,
we instrument the workflow’s training loop with PROV-IO™
APIs and record the training accuracy at the end of each epoch,
and add the training accuracy to the provenance graph as a
property of configurations. In addition, we vary the number of
training epochs to see how the performance scales. Note that
Top Reco is a single process workflow.

Fig. 7(a) shows the performance for Top Reco. The y-axis is
the normalized completion time (starting with 0.998), while the
z-axis is the number of training epoch (roughly equivalent to
training time). Since the workflow completion time may vary
from a few seconds to a few hours based on the number of train-
ing epochs, to make overhead results more comparable across
different experiments in the same figure, we use normalized
completion time to reflect the performance trend in all tracking
overhead discussion throughout the evaluation section. The grey

16
Number of MPI Ranks

(e) H5bench: write+append+read

Performance of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c)—(e) H5bench-based workflow under

bars are the baseline without provenance, and the green bars
show the performance with PROV-IO™ enabled. We can see
that the tracking overhead is negligible overall with a maximum
of 0.02%. The overhead with a shorter training time is relatively
high, which is mostly caused by the latency of Redland. As the
number of training epoch increases, the overhead of PROV-IO™
decreases almost linearly because PROV-IO™ tracks a constant
amount of information.

In case of DASSA, the scientists need the backward lineage
of data products in different granularity. As shown in the second
column of Table IV, PROV-IO™ tracks the information of user,
program, file, dataset, or attribute for different lineage needs
based on the PROV-IOT model (Section IV-A). We follow
a similar configuration as the domain scientists’ by using 32
compute nodes and up to 2048 input files (1.35 TB in total).

Fig. 7(b) shows the tracking performance for DASSA. The
z-axis means the number of input files; the y-axis on the left
and right sides show the normalized completion time and the
raw completion time (in second), respectively. The grey bars
represent the normalized baseline without PROV-IO™, and the
red, green and blue bars represent the normalized completion
time under three usage scenarios (i.e., “File Lineage”, “Dataset
Lineage” and “Attribute Lineage”) where different provenance
granularity are enabled (e.g., for “File Lineage” we enable
“program”, “I/O API” and “file” tracking). The solid grey line
means the average baseline completion time (in second) without
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provenance tracking, while the dashed blue line represents the
worst case raw completion time with PROV-IO" under all
scenarios.

We can see the max overhead occurred when tracking the
attribute lineage of the entire 2048 files, which is about 11%.
This is because DASSA heavily relies on HDF5 attributes. To
access an attribute, the program first needs to open the file and the
dataset containing it, which incurs more I/O operations to track.
But overall, PROV-IO™ incurs reasonable overhead in DASSA
(from 1.8% to 11%). This is expected because DASSA does not
require heavy I/O API tracking. In other words, PROV-IO™ is
efficient for tracking the backward lineage in file, dataset, and
attribute granularity.

In the H5bench based workflow, the scientists need the
data usage and I/O statistics in general. We consider three
different usage scenarios with different needs. As summa-
rized in Table 1V, scenario-1 tracks the total number of 1/0O
APIs; scenario-2 tracks both the I/O API count and their
duration for bottleneck analysis; scenario-3 tracks the users
and threads that modify the file. Moreover, for each scenario,
we consider three different I/O patterns including: write+read
(“w+r” for short), write+overwrite+read (“w+o+r” for short),
and write+append+read (“w+a+r” for short). In (c) and (d), we
run the workflow with 128 to 4096 MPI processes. In (e), since
the append operations from a large amount of MPI processes
can easily overwhelm the memory buffer for appending and
lead to out-of-memory (OOM) errors, we reduce the number
of MPI processes (2 to 64). Also, based on the observation that
the computation time of many HPC applications may vary from
dozens to thousands of seconds per I/O operation, we introduce
a relatively modest computation time of 25 seconds per step in
the experiments.

Fig. 7(c), (d), (e) show the tracking performance under three
different I/O patterns (i.e., “w+r”, “w+o+r”, “w+a+r”). The
x-axis stands for the number of MPI ranks. The left y-axis is
the normalized completion time and the right y-axis is the raw
completion time in second. The grey bars represent the baseline
while the three types of colored bars stand for the performance
of different provenance usage scenarios mentioned in Table IV
(red for “scenario 17, green for “scenario 2”, blue for “scenario
3”). The grey solid line is the average baseline completion time,
while the blue dash line is the worst-case raw completion time
with PROV-IO™ enabled.

Overall, we find that PROV-IO" incurs reasonable amount
of overhead (i.e., ranging from 0.5% to 4%) even under heavy
I/0 operations (3.9 TB data with 4096 MPI ranks). In partic-
ular, the PROV-IO™ overhead under the “w+a+r /O pattern
(Fig. 7(c)) is minimal (around 0.5%). This is because the HDF5
I/O operation under this pattern takes more computation time
than under the other two patterns to determine the append offset
and memory range, which makes the PROV-IO™ overhead more
negligible. Also, by comparing scenario-1 and scenario-2, we
find that tracking the I/O API duration introduce little additional
overhead. This is reasonable because the timing information can
be piggybacked with the I/O API tracking which dominates the
overall tracking time.

C. Storage Requirements

The storage requirement of PROV-IO™ is directly related to
the amount and the class of information tracked. Specifically,
the storage overhead may increase in two ways: (1) the size of

a single provenance record may increase (e.g., adding timing
information will increase size of an I/O API record); (2) the
total number of records in a provenance file may increase (e.g.,
tracking thread information will create a number of thread
records). We summarize the storage performance of PROV-IO™
for the three workflows in Fig. 8.

Fig. 8(a) shows the Top Reco case. The z-axis represents
the number of epochs and the y-axis is the provenance size
(KB). We can see that the provenance size is negligible. This is
because PROV-IO™ allows users to specify the target provenance
precisely without incurring unnecessary overhead. It also scales
linearly since the number of new nodes added to provenance
graph is the same as the increment in training epochs.

Fig. 8(b) shows the DASSA case. The x-axis is the number of
input files while the y-axis represents the provenance size (MB).
Lines in three different colors represent File Lineage, Dataset
Lineage and Attribute Lineage, respectively. We can see that the
storage requirement varies from 40 MBs (with 128 input files)
to about 800 MBs (with 2048 files) with linear scalability (note
that the z-axis increases by a multiple of 2). Although DASSA
heavily relies on attributes, the storage overhead in the three
usage scenarios is similar. This is because I/O API is still the
dominant part in all scenarios. Even though the number of file
and dataset is far less than attribute in DASSA input data, when
compared to number of APIs involved in the workflow, their
contribution to storage overhead is insignificant.

Fig. 8(c), (d), (e) shows the H5bench-based workflow with
three different I/O patterns. The x-axis represents number of
MPI ranks and the y-axis stands for provenance size in MBs.
Note that x-axis also increases by a multiple of 2. Lines in
three different colors represents three different provenance usage
scenarios (Table IV). We can see the provenance size varies from
a few KBs to 168 MBs. Among the three I/O patterns, “w+o+r”
has the highest storage overhead under usage scenario 2. This
is because the pattern includes one more I/O application (i.e.,
overwrite) than “w+r” and has much more MPI processes con-
tributing to provenance graph than “w+a+1”. Moreover, scenario
2 also has the largest amount of tracked information (I/O API and
their duration). Note that the storage overhead in this workflow
also scales linearly.

In summary, because of the flexibility of the fine-grained
PROV-IO™ model, PROV-IO™’s storage overhead is reasonable
for all the use cases evaluated.

D. Experiments With Containerized Workflow

In this section, we introduce our experiments with a container-
ized workflow (i.e., Megatron-LM [30]) on the S-SuperCom.

Megatron-LM supports multiple pretraining models (Section
III-D), and we configure Megatron-LM to use GPT-2 as the
pretraining model in this set of experiments based on the need of
the domain scientists. The training dataset is WikiText103 [64]
which is provided by the Megatron-LM authors [30]. We enable
both model parallelism and data parallelism (Section III-D) in
the workflow for experiments.

As mentioned in Section III-D, the major provenance need in
the Megatron-LM use case is to ensure the consistency between
the checkpoint and the workflow configurations. Therefore, we
track detailed checkpoint information pertaining to a pretraining
process (e.g., the path of the checkpoint file) as well as a
variety of relevant configuration parameters (e.g., the number
of GPUs, the batch size). The configuration information is
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Fig. 9. Performance of PROV-IOT on Megatron-LM with checkpoint path,
training loss and configuration tracked.

tracked once at the beginning of workflow execution as the in-
formation remains invariant throughout the workflow execution,
while the checkpoint information is tracked transparently by
instrumenting PyTorch at the end of the workflow execution. In
addition, we record the GPT-2 training loss at the end of each
training iteration. We change the number of training iterations in
the experiments to measure how the tracking performance and
storage requirement scales. We report the measurement results
as follows.

Fig. 9(a) shows the provenance tracking performance. The
y-axis is the normalized workflow completion time, and the
z-axis is the number of training iteration. We use the grey bar
to represent the baseline without provenance tracking, and the
blue bar stands for workflow completion time with provenance
enabled. For each experiment, we repeat it five times and cal-
culate the average (mean) performance value to eliminate slight
outliers caused by cross-zone network fluctuations. The result
shows that the maximum tracking overhead is about 0.6% when
the training iteration is set to 50. When the number of iteration
increases, PROV-IO™’s tracking overhead tends to be negligible,

which implies that PROV-IO™ is scalable in terms of tracking
performance.

Fig. 9(b) shows the storage requirement of tracking Megatron-
LM with PROV-IOT. The y-axis is the provenance size (KB),
and the z-axis is the number of training iteration. The result
shows that, to track the checkpoint-configuration consistency
information, the provenance size is negligible in general (e.g.,
less than 15 KB in all experiments). The size of the provenance
information scales almost linearly as the number of training
iterations increases, mainly because the training loss is recorded
at the end of each training iteration.

In summary, to track the necessary provenance for maintain-
ing the checkpoint-configuration consistency in containerized
Megatron-LM, PROV-IO™ introduces small tracking and negli-
gible storage consumption.

E. Impact of Containerziation on Provenance Tracking

In this section, we analyze the impact of containerization on
PROV-IO™’s provenance collection. As mentioned in Section
VI-A, we leverage the GCP platform for the comparison experi-
ments because we can setup different runtime environments for
both containerized and non-containarized workflows on GCP.
We apply PROV-IO™ in two different modes for tracking two
versions of Megatron-LM (i.e., non-containerized and container-
ized) on GCP respectively.

To validate the impact of containerization, we execute the
non-containerized version of Megatron-LM workflow and the
containerized version separately on different GCP VMs. This is
to ensure that there is no interference between the executions
of the two versions. The provenance information tracked is the
same as described in Section VI-D. We reduce the scale of the
workflow to meet the VM’s resource constraints (e.g., vVCPUs
and memory).
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TABLE V
BASIC CHARACTERISTICS OF THREE FRAMEWORKS
Komadu ProvLake PROV-IO™
Base model =~ PROV-DM PROV-DM PROV-DM
Language Java Python C/C++,Python,Java
Transparency No No Hybrid

The performance of PROV-IO™ on non-containerized
Megatron-LM and containerized Megatron-LM are shown in
Fig. 10(a) and (b), respectively. In both cases, the y-axis is the
normalized workflow completion time, and the z-axis is the
number of training iteration. By comparing Fig. 10(a) and (b), we
can see that in both cases PROV-IO™ incurs little overhead, espe-
cially when the number of iterations is large. This suggests that
containerization has little impact on PROV-IOT, and both modes
of PROV-IO™ can support provenance tracking efficiently.

In conclusion, our experiments on three different platforms
(i.e., Coriin Section VI-B, SuperCom in Section VI-D, and GCP
Section VI-E) shows that PROV-IO™’s provenance tracking
performance has little dependence on the platforms, and the
overhead is consistently low across different execution plat-
forms.

E. Comparison With Other Frameworks

In this section, we compare PROV-IO to state-of-the-art
provenance systems. Table V shows the basic characteristics
of Komadu [65], ProvLake [20], and PROV-IO". We can see
that all three frameworks are derived from the base PROV-DM
model, which makes the comparison fair. On the other hand,
Komadu only supports Java programs and ProvLake only sup-
ports Python, which makes them incompatible with many C/C++
based scientific workflows (e.g., DASSA and H5bench). Note
that PROV-IO™’s C/C++ interface is designed for integration
with major HPC I/O libraries. Once the I/O library is integrated
with PROV-IO™ (e.g., HDFS5), the provenance support is mostly
transparent to the workflow users, i.e., users can control the rich
provenance features through a configuration file without man-
ually modifying their source code with APIs. Neither Komadu
nor ProvLake support such capability or transparency.

Since ProvLake has outperformed Komadu based on a pre-
vious study [17], we focus on the comparison with ProvLake.
Because ProvLake does not support C/C++ workflows, we can-
not apply it to DASSA and H5bench. Therefore, we compare
the two provenance tools using Python-based Top Reco in the
rest of this section.

Different from PROV-IO* which is I/O-centric, ProvLake is
‘process-oriented’. Specifically, ProvLake creates records based

on the execution steps of a workflow, and the provenance data
are maintained as attribute or property of individual steps. On
the contrary, PROV-IO™ is not limited to the execution steps of
the workflow. For example, it can track a task in the workflow,
an I/0O operation invoked by a task, a data object involved in the
I/O operation, etc., all of which are further correlated via the
relations defined by the PROV-IO™" model (Section IV-A). Such
flexibility and richness is not available in ProvLake.

To make the comparison with ProvLake fair, we use the same
instrument points in the Top Reco workflow for both tools.
Specifically, we instrument Top Reco at its GNN training loop
and track the training accuracy at the end of each epoch to corre-
sponding provenance records. Since the workflow configuration
is never changed during the entire workflow, we only add it to
ProvLake’s record once at the beginning of the workflow. In
addition, to be representative, we track three different numbers
of configurations (i.e., 20, 40, and 80).

Fig. 11(a), (b), (c) compares the provenance tracking perfor-
mance of the two systems where y-axis is normalized completion
time. Fig. 11(d), (e), (f) shows the storage overhead where y-axis
is size in KB. In all figures z-axis is the number of configurations.
In Fig. 11(a), (b), (c), grey bars stand for the baseline without
provenance tracking, green bars show the normalized perfor-
mance with PROV-IO™, and red bars show the performance with
ProvLake. In Fig. 11(d), (e), (f), green lines stand for PROV-IO™
provenance file size and red lines stand for ProvLake provenance
file size.

As shown in Fig. 11(a), (b), (c), both frameworks incur
negligible tracking overhead (e.g., less than 0.025%) and the
PROV-IO™ overhead is even lower than ProvLake for most
cases. Similarly, as shown in Fig. 11(d), (e), (f), PROV-IO™
always incurs less storage overhead, regardless of the number
of configuration fields tracked. The disparity in provenance
models between PROV-IO™ and ProvLake is primarily respon-
sible for the result. PROV-IOT forms a provenance graph for
data concepts in the workflow, whereas ProvLake concentrates
on the workflow. In this scenario, ProvLake gathers additional
information for each training cycle, which is unnecessary for
workflow metadata version control.

G. Query Effectiveness

As mentioned in Section V, PROV-IO™ supports provenance
query with visualization. Table VI summarizes the queries used
to answer the diverse provenance needs of the three workflow
cases. We can see that the provenance can be queried effectively
and efficiently using a few simple SPARQL statements in gen-
eral. Since the number of queries involved is small, the query
time overhead is negligible in our experiments. We discuss each
case in more details below.

In DASSA, to get the backward lineage of a data product,
we can start with the program which generated the data product
and look for its input data. The same procedure can be repeated
as needed. For example, DASSA may convert “WestSac.tdms”
into “WestSac.h5” with program “tdms2h5”, and then use “deci-
mate” to process “WestSac.h5” into data product “decimate.h5”.
To get the backward lineage of “decimate.h5”, in the query, we
first retrieve with keywords “decimate.h5 prov:wasAttributedTo
Iprogram” to locate program ‘“decimate”. Next, in the same
query, we add statement “?file wasAttributedTo ?program” to
retrieve that program’s input file “WestSac.h5” which is the first
level predecessor of “decimate.h5”. We can further expand the
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Fig. 11.  Performance comparison between PROV-IOT and ProvLake.
TABLE VI
EXAMPLE QUERIES
Workflow Provenance Need Query Statement (SPARQL) # of Statements in Query
1: data_object_a prov:wasAttributedTo ?program. 3*N
DASSA file/ dataset/attribute lineage 2: ?data_object prov:wasAttributedTo ?program; (where N is backward
B provio:wasReadBy ?IO_APIL. propagation steps)
scenario-1 4:?10_APl a provio: i0APL 1
scenario-2 5: 2I0_API a provio:ioAPI; 2
H5bench 6: provio:elapsed ?duration.
7: file_a prov:wasAttributedTo ?program.
scenario-3 8: ?program prov:actedOnBehalfOf ?thread. 3
9: ?thread prov:actedOnBehalfOf ?user.
Top Reco metadata version control & mapping | 10: ?configuration ns1:Version ?version; 2
11: provio:hasAccuracy ?accuracy.
Megatron-LM ckpt-config consistency 12: ?batch_size nsl:hasValue 256; 2
13: prov:influenced ?checkpoint_path

The diverse provenance needs can be satisfied by a few simple queries effectively.

prov:wasAttributedTo

:wasAnn butedTo Y
y N\
( provio:program
prov:wasAttributedTo
Predecessor

rdfitype

2nd Level
Predecessor

provio:file

1st Level
decimate rdfitype

rdfitype

decimate.hS prov:wasAttributedTo

Fig. 12.  Example of DASSA data lineage by PROV-IO™. The graph follows
the PROV-IO" model; the data lineage is highlighted in blue.

query by adding similar statements to locate “decimate.h5’s
earlier predecessors (e.g., “WestSac.tdms”).

As summarized in Table VI, for each backward step, we only
need three query statements. Fig. 12 shows the visualization of
this example, which follows the PROV-IO™ provenance model
(Section IV-A) and highlights the queried data lineage in blue.
Other types of lineages (e.g., dataset and attribute) can be queried
and visualized in the same way.
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Fig. 13.  Example of Megatron-LM query by PROV-IO™ . The graph follows
the PROV-IO" model; the query path is highlighted in blue.

Similarly, in HSbench, we have three types of provenance
needs (i.e., the scenarios described in Section VI-B) which can
be answered using 1, 2, 3 SPARQL statements respectively. In
Top Reco, the metadata versioning and mapping information
can be queried in 2 statements. Note that the provenance needs
are diverse across the real use cases, but the number of queries
needed is consistently small. This elegant result suggests that
PROVI-IOT is effective for scientific data on HPC systems.

In case of Megatron-LM, users want to identify the checkpoint
which is consistent with the configuration for the follow-up
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training process. Fig. 13 shows a scenario where there are two
different batch sizes used during the previous pretraining (i.e.,
“Batch_Size_A” is 128, and “Batch_Size_B” is 256), and there
are three checkpoints generated based on the two batch sizes (i.e.,
“Checkpoint_1", “Checkpoint_2”, “Checkpoint_3""). Assume
the user wants to continue a GPT pretraining process which
has a batch size of 256 with one of the existing checkpoints (i.e.,
“Checkpoint_3"), s/he can query the provenance with as few
as 2 lines of SPARQL statements, as shown in the last row of
Table VI. Moreover, the user can also add advanced conditions
to the query to filter out the feasible checkpoint with the best
quality (e.g., a checkpoint with certain training loss).

VII. DISCUSSION

The design of the PROV-IO™ tool is driven by the needs of
the domain scientists using four scientific workflows. Given the
diversity of science, it is likely that the prototype cannot directly
address the unique provenance queries of all scientists. We plan
to collaborate with more domain scientists to identify addi-
tional needs and refine PROV-IO™ accordingly. For example, re-
searchers from INRIA [66] are interested in porting PROV-IO™
on their edge devices with limited hardware resource. Similarly,
HPE [67] researchers are interested in integrating PROV-IO™
to their provenance solutions. We are in communication with
the researchers to extend the real-world impact of PROV-IO™
further.

Similarly, while the current prototype supports POSIX and
HDFS5 1/O transparently and is extensible by design, there are
other popular I/O systems in HPC (e.g., ADIOS [32]) which we
have not integrated yet. We leave the integration with other I/O
libraries as future work.

In addition, there are other important aspects of provenance
(e.g., security [68]) which cannot be ignored in practice. We
hope that our efforts and the resulting open-source tool can
facilitate follow-up research in the communities and help address
the grand challenge of provenance support for scientific data in
general.

VIII. RELATED WORK

Database Provenance: Historically, provenance has been
well studied in databases to understand the causal relationship
between materialized views and table updates [6], [69]. The
concept has also been extended to other usages [8], [70]. In
general, database provenance may leverage the well-defined
relational model and the relatively strict transformations to
capture precise provenance within the system [71], which is not
applicable for general software. On the other hand, some query
optimizations (e.g., provenance reduction [72]) could potentially
be applied to PROV-IO™T. Therefore, PROV-IO* and these tools
are complementary.

OS-Level Provenance: Great efforts have also been made to
capture provenance at the operating system (OS) level [11],
[12], [50]. For example, PASS [11], [12] intercepts system calls
via custom kernel modules for inferring data dependencies.
Similarly to these efforts, PROV-IO™" recognizes the impor-
tance of I/O syscalls. But different from PASS, PROV-IO™ is
non-intrusive to the OS kernel. Moreover, PROV-IO™" leverages
the unique characteristics of HPC workflows and systems to
meet the needs of domain scientists, while PASS is largely
inapplicable in this context. More specifically, we elaborate on
five key differences as follows:

(1) Provenance Model: PROV-IO" follows the W3C spec-
ifications to represent rich provenance information in a rela-
tional model (Section IV-A). In contrast, PASS follows the
conventional logging mechanism without a general relational
model, which limits its capability of capturing and describing
complex provenance. For example, PASS has to establish the
dependencies among events via a kernel-level logger (i.e., ‘Ob-
server’ [12]) which cannot interpret the semantics or relations
of HPC I/O library events. Consequently, PASS can only answer
relatively limited queries (e.g., ancestor of a node [12]) instead
of the rich lineage defined in W3C.

(2) System Architecture: PROV-IOT is a user-level solution
designed for the HPC environment (Section IV-B). In contrast,
PASS heavily relies on customized kernel modules to achieve its
core functionalities. This kernel-based architecture makes PASS
incompatible with modern HPC systems. For example, neither
the PASTA file system (in PASS [11]) nor the Lasagna file system
(in PASSv2 [12]) is compatible with the Lustre PFS dominant in
HPC. In other words, translating the core functionalities of PASS
to HPC systems would require substantial efforts (if possible
at all), and the implications on performance and scalability is
unclear.

(3) Granularity: PROV-IO" can handle fine-grained 1/O
provenance which is critical for understanding HPC workflows
(e.g., the lineage of an attribute of an HDFS5 file), while PASS
collects relatively coarse-grained events (e.g., access to an entire
file). Container-based approaches for fine-grained provenance
collection have also been proposed [73], [74], which we consider
as a orthogonal approach to PROV-I0™.

(4) Tracking APIs: By embedding in popular HPC I/O li-
braries, PROV-IO™ does not require modifying the source code
to track I/O provenance. In contrast, to use PASS, users must
consider how to apply six low-level calls (e.g., pass_read,
pass_mkobj [12]) to the target applications.

(5) Storage & Query: Based on the well-defined model,
PROV-IO™ stores provenance as RDF triples backed by the
parallel file system. In contrast, PASS relies on its own local file
system to generate provenance as local logs. The storage repre-
sentation directly affects the user query capability. For example,
PROV-IO™ supports querying RDF triples via SPARQL [61],
while PASS only supports a special Path Query Language which
is much less popular today.

In summary, while PROV-IO™" is partially inspired by the
seminal PASS designed more than a decade ago, the two works
are different due to the different goals and contexts. Therefore,
we view PASS and PROV-IO™ as complementary.

Workflow & Application Provenance: Provenance models or
systems for workflows and/or applications have also been ex-
plored [18], [20], [21], [75]. For example, Karma [21] describes
a model with a hierarchy of ‘workflow-service-application-
data’. However, the model is designed for the cloud environ-
ment and cannot cover diverse HPC needs (e.g., HDF5 at-
tributes, MPI ranks). PROV-ML [18] is a series of well-defined
specifications for machine learning workflows. Different from
PROV-ML, PROV-IO™ is designed for general HPC workflows.
IBM ProvLake [20] is a lineage data management system ca-
pable of capturing data provenance across programs. Unlike
PROV-IO™, ProvLake always require users to modify the source
code using its special APIs, which severely limits its usage and
scalability for complicated HPC workflows. Similar to PROV-
10T, there are a few provenance capturing tools using DBMS
to store queriable provenance data, but they do not follow any
widely used provenance models [76], [77], [78].
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Other Usage of Provenance: Provenance has been applied to
other venues. For example, MOLLY uses lineage-driven fault
injection to expose bugs in fault-tolerant protocols [79]. There
have been a multitude of domain-specific or application-specific
provenance and ontology management implementations. How-
ever, they do not capture the I/O access information that PROV-
I0™ manages. We believe the comprehensive provenance infor-
mation enabled by PROV-IO™ can also be leveraged to stimulate
several data quality and storage optimizations, which we leave
as future work.

Non-Provenance 1I/0 Tools & Analysis: In addition, great
efforts have been made to manage workflows [80], [81] and/or
leverage 1/0O events for reliability [38], [39], [82], [83], [84],
[85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95],
[96], [97], [98], [99], [100], [101], [102], [103]. While they
are effective for their original goals, they are insufficient to
address provenance needs in general due to a number of reasons:
(1) no relational model to support managing rich provenance
(e.g., various relations in [31]); (2) agnostic to the fine-grained
semantics in HPC I/O libraries (e.g., HDFS attributes); (3)
little portability across different I/O libraries or environments;
(4) no programmable interface to specify customized prove-
nance needs.

IX. CONCLUSION & FUTURE WORK

We have introduced a provenance tool called PROV-IO™ for
scientific data on HPC systems. Experiments with representative
HPC workflows show that PROV-IO™ can address diverse prove-
nance needs with reasonable overhead. In the future, we will ad-
dress the limitations mentioned in Section VII. Moreover, in the
Top Reco case studied in this paper, the domain scientists would
like to identify the best configurations across multiple runs of
the workflow. In other words, there is a need of provenance
across multiple executions of the same workflow. Similar cross-
workflow provenance may be needed when multiple different
workflows cooperate to process shared datasets, which requires
additional modeling and interface to bridge the semantic gap
between workflows. We would like to investigate such complex
multi-workflow scenario as well. In addition, we observe that
diagnosing the correctness and performance anomalies in HPC
systems is increasingly challenging due to the complexity (e.g.,
a single SSD failure may cause the “blast radius” problem
due to system dependencies [88], [100]), and we will apply
PROV-IO™ to address such open challenges. Overall, we be-
lieve that PROV-IO™ represents a promising direction toward
ensuring the rigorousness and trustworthiness of scientific data
management.
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