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Abstract

Sequential labeling is a task predicting labels

for each token in a sequence, such as Named

Entity Recognition (NER). NER tasks aim to

extract entities and predict their labels given

a text, which is important in information ex-

traction. Although previous works have shown

great progress in improving NER performance,

uncertainty estimation on NER (UE-NER) is

still underexplored but essential. This work

focuses on UE-NER, which aims to estimate

uncertainty scores for the NER predictions. Pre-

vious uncertainty estimation models often over-

look two unique characteristics of NER: the

connection between entities (i.e., one entity

embedding is learned based on the other ones)

and wrong span cases in the entity extraction

subtask. Therefore, we propose a Sequential

Labeling Posterior Network (SLPN) to esti-

mate uncertainty scores for the extracted en-

tities, considering uncertainty transmitted from

other tokens. Moreover, we have defined an

evaluation strategy to address the specificity of

wrong-span cases. Our SLPN has achieved

significant improvements on three datasets,

such as a 5.54-point improvement in AUPR

on the MIT-Restaurant dataset. Our code

is available at https://github.com/

he159ok/UncSeqLabeling_SLPN.

1 Introduction

Named entity recognition (NER) is a popular task

in the information extraction domain (Lample et al.,

2016), which involves two steps, detecting entity

spans and predicting the entity labels. In many

information extraction scenarios, there are signifi-

cant consequences for relying on inaccurate NER

predictions. For example, extracting an inaccurate

time can lead to erroneous policy analysis, or mis-

classifying a person’s name for a time can result

in a privacy breach. Therefore, it is crucial to de-

termine whether we can trust the NER predictions

or not. As a result, our goal is to enhance Uncer-

tainty Estimation in NER (UE-NER), which aims

to quantify prediction confidence in NER tasks.

The NER task differs from general classification

(e.g., text classification (Minaee et al., 2021) in two

key ways, making previous uncertainty estimation

models suboptimal for UE-NER.

First, the predicted entity labels in the NER task

are directly dependent on the token embeddings,

and uncertainty transmission between token em-

beddings is unique in NER. Concretely, given an

example text ªBarack Obama was born in Hon-

olulu, Hawaii,º the entity label ªpersonº applies

to ªBarack Obama.º The embedding of the token

ªObamaº is obtained by accumulating its own em-

bedding and embeddings from other tokens in Re-

current Neural Network (Medsker and Jain, 2001)

and transformer (Vaswani et al., 2017). Conse-

quently, if a token embedding has higher uncer-

tainty, the other token embedding will have more

transmitted uncertainty from the token. Since to-

ken embeddings directly affect token labels and

further affect entity labels, high uncertainty in a

token embedding will result in a predicted entity

label with high uncertainty. Therefore, in the con-

text of UE-NER, a token uncertainty in UE-NER

consists the individual token uncertainty and the

uncertainty transmitted from other tokens.

However, the current uncertainty estimation

methods ignore the uncertainty transmission be-

tween tokens. Especially, current uncertainty es-

timation methods can be classified into two main

categories: parameter-distribution-based methods,

such as Bayesian Neural Networks (BNN)(Osawa

et al., 2019; Maddox et al., 2019), which learns a

distribution over the model parameters; and sample-

distribution-based methods, which calculate uncer-

tainty scores based on the distribution of training

samples (Charpentier et al., 2020; He et al., 2020;

Park et al., 2018). These methods primarily focus

on image or text classification, where correlations

between different images or texts are weak or lim-
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The Samsung GalaxyS21 was featured in CES 2022.

Organization Product
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The Samsung GalaxyS21 was featured in CES 2022.
Organization

Apple Inc. was founded in April 1976.

Organization Date

Apple Inc. was founded in April 1976.
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Event

Event
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Figure 1: In this example, though the tokens ªSamsungº and ªInc.º both have the same uncertainty score of 0.4, the

context in the right case exhibits higher uncertainty. This suggests that ªInc.º should be considered more uncertain

than ªSamsung.º Therefore, we propose transmitting the predicted uncertainty from other tokens to a given token.

ited. Consequently, they overlook the uncertainty

transmission inherent in sequential labeling. Since

sequential labeling plays a pivotal role in Natural

Language Processing (NLP), with NER as a repre-

sentative example, it is imperative for us to address

UE-NER by considering uncertainty transmission,

shown as Figure 1.

The second characteristic of NER tasks is that

they involve an additional step, entity extraction,

besides entity classification. In contrast to previ-

ous text classification tasks (Minaee et al., 2021),

which focus solely on sample classification, NER

tasks require the additional task of extracting entity

spans, such as locating ªBarack Obama.º How-

ever, entity span extraction may predict entities

with wrong span (WS), such as predicting ªObama

wasº as an entity. These WS entities lack ground

truth entity labels and evaluating uncertainty es-

timation requires ground truth labels, thus these

entities cannot be used for evaluating uncertainty

estimation. Therefore, we require an innovative

approach to evaluate a UE-NER model that takes

into account these WS entities.

To address the first issue, we propose a Sequen-

tial Labeling Posterior Network (SLPN) for trans-

mitting uncertainty. This network is built upon an

evidential neural network framework (Charpentier

et al., 2020) with a novel design to transmit uncer-

tainty from other tokens. For the second issue, we

categorize the ground truth entities and predicted

entities into three groups: unique entities in the

ground truth, unique entities in the prediction, and

shared entities between the ground truth and pre-

diction. We, then, treat WS entity detection as

a separate subtask, in addition to out-of-domain

(OOD) detection, which is a common task used to

evaluate uncertainty estimation (Zhao et al., 2020).

The WS and OOD detections use different combi-

nations of the three-group entities. Furthermore,

we evaluate the performance of a UE-NER model

by computing a weighted sum of WS entity detec-

tion and OOD detection performance, providing a

comprehensive assessment of the UE-NER model.

Our contributions are as follows.

• Since each token embedding is influenced by

other tokens within a given text, and token

embedding directly affects the uncertainty of

predicted entity labels, we propose a novel

method to transmit uncertainty between to-

kens using a revised self-attention. To the best

of our knowledge, we are the first to consider

uncertainty transmission in UE-NER.

• Because of the existence of WS entities in the

NER task, we have found that traditional eval-

uation methods for uncertainty estimation are

inapplicable in UE-NER. Therefore, we pro-

pose a novel uncertainty estimation evaluation

to evaluate both OOD and WS detection tasks.

2 Related Work

Named Entity Recognition. Named Entity Recog-

nition (NER) is a task focused on extracting and

classifying entities within text. It serves as a promi-

nent example of sequential labeling, where each

token in a sequence is assigned a label. Various

techniques have been employed for NER, including

Recursive Neural Networks (e.g., LSTM (Hammer-

ton, 2003)), pretrained transformer models (e.g.,

BERT (Devlin et al., 2018)). In some cases, Condi-

tional Random Fields (CRF) are incorporated into

token encoders, such as LSTM+CRF (Lample et al.,

2016), to enhance performance.

Further, recent experiments have explored the

use of Large Language Models (LLMs) for NER.

An LLM-based approach treats NER as a genera-

tive task, with each turn generating one category

of entities (Wang et al., 2023b). However, it is no-
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ticeable that Wang et al. (2023b) found that GPT3-

based NER solutions (Floridi and Chiriatti, 2020)

did not outperform pretrained transformer based

method. Since both pretrained transformer-based

methods and LLMs are built on transformer ar-

chitectures (Vaswani et al., 2017) and pretrained

transformer-based methods take NER as sequen-

tial generation rather than sequential labeling, as

well as perform better than GPT-3 on the NER task,

our research focuses on UE-NER using pretrained-

transformer-based methods.

Uncertainty estimation on natural language pro-

cessing. Generally, for the usage of uncertainty esti-

mation on training data, the uncertainty score helps

with sample selection in active learning (Wang

et al., 2021). For usage on the testing data, un-

certainty estimation mainly serves two tasks: OOD

detection (Hart et al., 2023), where the testing

samples include OOD samples, and the task aims

to identify these OOD samples; and misclassi-

fied result detection: where testing samples are

in-domain (Zhang et al., 2019; He et al., 2020; Hu

and Khan, 2021). Our work specifically focuses on

OOD detection in the testing samples.

In the NER domain, Nguyen et al. (2021); Chang

et al. (2020); Liu et al. (2022) estimated uncer-

tainty scores on unlabeled training data for active

learning. Vazhentsev et al. (2022) were the first to

apply uncertainty estimation to address misclassi-

fication in NER testing data using techniques like

dropout (Gal and Ghahramani, 2016) and determin-

istic uncertainty estimation methods (e.g., Gaussian

process (Liu et al., 2020)). Additionally, on the

testing samples, Zhang et al. (2023) were the first

to apply uncertainty estimation to detect OOD in-

stances in NER testing data. Compared to Zhang

et al. (2023), who assigned different weights to dif-

ferent tokens, our work focuses on the transmission

of uncertainty from other tokens to a specific token.

3 UE-NER Task Setting

Before we introduce UE-NER, we first introduce

NER tasks, which is a representative sequential

labeling task. Given a text X = [x1,x2, ...,xn]
with n tokens, where xi ∈ R

h×1 is an embedding

of a token, NER task aims at learning a NER model

predicting their token labels. Then, the entities are

extracted by the token labels based on the BIOES

mechanism (Chiu and Nichols, 2016) (e.g., ªBrackº

with B-PER label, and ªObamaº with I-PER label).

Moreover, the extracted entities are classified by

merging the entity tokens. For example, ªBrack

Obamaº is categorized as a Person because these

two tokens are categorized as the beginning and

intermediate of the person label.

For the UE-NER task, we aim to learn a UE-

NER model Φ to predict the confidence of each

predicted token label. We apply Φ for OOD de-

tection, which is a common task to evaluate uncer-

tainty estimation (Zhao et al., 2020). Concretely,

the training data and validation data for Φ are the

in-domain (ID) text without OOD entities. The test-

ing data of Φ includes both ID text and OOD text,

where OOD text has both ID and OOD entities. A

better Φ should detect more OOD entities in the

testing set and have better NER performance.

4 Preliminary: Posterior Network

The parameter-distribution-based uncertainty esti-

mation method is usually implemented via ensem-

ble sampling (Gal and Ghahramani, 2016) and thus

requires multiple forward passes to estimate un-

certainty, which is time-consuming. In contrast,

Evidential Deep Learning (EDL) (Sensoy et al.,

2018) is a representative sample-distribution-based

uncertainty estimation method and is implemented

via a deterministic model, thus requiring only one

forward pass to estimate uncertainty. Due to its

efficiency, we choose EDL.

In EDL, considering the classification task and

given the input vector X, the class prediction

y ∈ [c] for an input sample follows a categorical

distribution with c classes.The categorical distri-

bution naturally follows a Dirichlet distribution,

i.e.

y ∼ Cat(p), p ∼ Dir(α) (1)

The expected class probability p̄ is calculated as

below,

α0 =
c∑

k=1

αk, p̄ =
α

α0
(2)

where Dir(α) is an approximation of the poste-

rior distribution of class probabilities, conditioned

on the input feature vector. The concentrate param-

eters α = [α1, α2, ..., αc] can be interpreted as the

evidence for the given example belonging to the

corresponding class (Jsang, 2018). The evidence is

the count of pseudo support from training samples.

As a representative model of EDL, Posterior Net-

work (PN) (Charpentier et al., 2020) is originally

designed for image classification and involves two

main steps. First, a feature encoder maps the raw
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features into a low-dimensional latent space. Sec-

ond, a normalizing flow such as Radial (Rezende

and Mohamed, 2015) is used to estimate class-wise

density on the latent space, which is proportional to

the class-wise evidence. Essentially, a greater den-

sity for a particular class implies stronger evidence

belonging to this class for the given example.

PN is trained with the sum of two loss LUCE and

LER for N training samples as below,

LUCE =
1

N

N∑

i=1

Epi∼Dir(pi|αi)[CE(pi, yi)] (3)

LER = −
1

N

N∑

i=1

H(Dir(pi|αi)) (4)

where the Uncertainty Cross Entropy (UCE) loss

LUCE encourages high evidence for the ground-

truth category and entropy regularization LER en-

courages a smooth Dirichlet distribution.

5 Model

We choose PN as it does not require OOD data

during training. In contrast, Prior Network (Ma-

linin and Gales, 2018), another representative EDL

method, necessitates OOD data in training. Fur-

thermore, even if OOD data is available, it may not

cover all possible OOD scenarios. Thus, we opt for

uncertainty transmission based on PN.

5.1 Our Token-Level Posterior Network

The PN, originally for image classification, is ap-

plied to NER for the first time to our knowledge.

To better apply PN in NER, we first analyze the dif-

ference between tokens and samples (e.g., images).

Concretely, tokens can be selected from specific

sets, allowing for the calculation of token-level cat-

egorical distributions. In contrast, for samples, the

vast and continuous potential space of unique sam-

ples makes it impractical to compute categorical

distributions for every possible sample.

To apply PN into UE-NER and consider the

above difference, we propose token-level PN,

where we propose to calculate a unique categor-

ical distribution for each token, rather than com-

puting a single shared categorical distribution for

all samples. This is because each token exhibits

distinct semantic characteristics (e.g., ªParisº is

more likely to represent a location than ªAugustº),

and thus needs individual categorical distributions.

Concretely, a categorical distribution Cat(pi) of

i-th token in a text is the total occurrence of i-th

token in each of c classes given a training set. For

example, the token ªAppleº in the training data has

200 and 800 occurrences for the organization and

food classes respectively, then ªAppleº has categor-

ical distribution as [0, ..., 0.2, .., 0.8, 0...] ∈ R
c.

Then, since the classification is usually taken as

a multinomial distribution, we can represent the

classification as a posterior distribution as below,

P(pi|yi) ∝ P(yi|pi)× P(pi) (5)

we represent its prior distribution by a Dirichlet

distribution P(pi) = Dir(βprior), where βprior is

the parameter of the prior Dirichlet distribution. In

practice, we set βprior = 1 for a flat equiprobable

prior when the model brings no initial evidence.

Due to the conjugate prior property, the posterior

distribution can also be represented by a Dirich-

let distribution: P(pi|yi) = Dir(βprior + β
post
i ).

The β
post
i is taken as the evidence count for i-th

token. To learn β
post
i , PN firstly projects i-th token

embedding xi to a low-dimensional latent vector

zi = f(xi). Then, PN learns a normalized prob-

ability density P(zi|k; θ) per class on this latent

space. PN then counts the evidence for k-th class

at zi as below:

β
post

i,(k) = N × P(zi|k; θ)× P(ki) (6)

where P(ki) is the probablity that i-th token be-

longs to k-th class, extracted from Cat(pi). And

β
post
i ∈ R

c = [βpost

i,(1), β
post

i,(2), ..., β
post

i,(c) ]. The β
post
i

can be understood as the evidence distribution for

i-th tokens. For a text with l tokens, we can con-

catenate all l tokens’ evidence distribution vector

βpost and have βpost,t ∈ R
l×c.

Difference to original posterior network. Com-

pared to the original sample-level posterior net-

work (Charpentier et al., 2020), which operates

at the sample level, our token-level PN differs in

two key ways: (1) We use a token-level categorical

distribution instead of a sample-level categorical

distribution shared among all samples. (2) We con-

catenate the βpost values for each of the l tokens

to create a new matrix βpost,t ∈ R
l×c to facilitate

uncertainty transmission in Sec. 5.2, a step not re-

quired in the original PN.

5.2 Our SLPN

Though the token-level PN counts the evidence

given a token, it ignores the relation between to-

kens. Shown as Fig. 1, imagine that Token A comes

from Text A, and Token B comes from Text B.
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Figure 2: (a) A diagram of our SLPN model illustrates how we achieve uncertainty transmission through a revised

self-attention mechanism applied to all tokens. Specifically, the SLPN model begins by generating a text embedding

matrix X with l rows, corresponding to a text containing l tokens. Next, an MLP model projects X into a latent

embedding matrix Z also with l rows. This Z matrix is used to compute βpost,t ∈ R
l×c through a normalizing flow

(NF) operation. Each row of βpost,t represents the evidence count from the token’s self-view, directly influencing

the uncertainty of each token’s prediction. In contrast to previous research, our approach includes the transmission

of uncertainty from all tokens within the text to obtain the transmitted uncertainty βtrans,t. Finally, we combine

the sum of βpost,t and βtrans,t to generate the semantic matrix p̄agg ∈ R
l×c, representing the semantics of the l

tokens. (b) Revised self-attention mechanism.

Token A and Token B have the same predicted

uncertainty in terms of token label when only con-

sidering the token itself. If the other tokens in Text

A have more uncertainty than other tokens in Text

B, then in this case, Token A should be more un-

certain than Token B due to the impact of other

tokens. Thus, we propose a Sequential Labeling

Posterior Network (SLPN), which takes the uncer-

tainty impact transmitted from other tokens into

consideration.

Concretely, shown as Figure 2(a), a token embed-

ding has accumulated all other token embeddings

by the Bidirectional RNN (Huang et al., 2015) or

transformer (Vaswani et al., 2017). As a result, to-

ken uncertainty should comprise two components:

uncertainty originating from the token itself and un-

certainty transmitted from other tokens. Since the

uncertainty in EDL depends on the evidence count

vector β ∈ R
c, we can represent the aggregated

uncertainty β
agg
i ∈ R

c for i-th token as below,

βi
agg = β

post
i + βtrans

i (7)

where β
post
i is the uncertainty coming from the

token itself and βtrans
i ∈ R

c is the transmitted

uncertainty from all tokens to i-th token in the text.

The calculation of β
post
i is described in Sec. 5.1.

Calculation of impact transmission weight

βtrans
i . Since βtrans

i accumulates all the impact

from all tokens in a text, we calculate βtrans
i in

a way motivated by self-attention (Vaswani et al.,

2017). Concretely, we have three projector matri-

ces WQ ∈ R
c×p, WK ∈ R

c×p and WV ∈ R
c×c to

get the query Q ∈ R
l×p, key K ∈ R

l×p and value

V ∈ R
l×c as below,

Q = βpost,tWQ,K = βpost,tWK

V = softplus(βpost,tWV )
(8)

where p is a pre-set dimension. Different from

self-attention, we keep the shape of the V the

same as βpost,t, because the βpost,t has the evi-

dence distribution and we want to avoid multiple

projections that might lose the evidence distribu-

tion. Besides, we apply the softplus activation

function (Sun et al., 2020) to make sure the value

of V is always greater than 0. We require evi-

dence greater than 0 because EDL is an evidence

acquisition process where each training sample

adds support to learn higher order evidence dis-

tribution, and thus evidence can only be increased

and not decreased (Amini et al., 2020; Wang et al.,

2023a). Then, we get the transmitted uncertainty

βtrans,t ∈ R
l×c as below,

βtrans,t = softmax(
QKT

γ
)V (9)

where γ is the hyperparameter to rescale the

weight to avoid gradient explosion. More explana-

tion is given in Sec. A.1.1.

Training Loss. Once we have obtained βagg using

Eq. 7, we train our SLPN model via below loss.

L =
1

N

N∑

i=1

E
p
agg
i ∼Dir(pagg

i |αagg
i )[CE(pagg

i ,yi)]

− λ
1

N

N∑

i=1

H(Dir(pagg
i |αagg

i ))

(10)
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where α
agg
i = β

agg
i + βprior and the expected

aggregated class probability of the i-th token calcu-

lated based on β
agg
j is below,

p̄
agg
i =

β
agg
i + βprior

∑c
k=1(β

agg

i,(k) + β
prior
k )

(11)

where βprior ∈ R
c is the vector with all default

values as 1. As a result, the first item in Eq. 10

is the UCE loss in the token level like Eq. 3, and

the second item in Eq. 10 is a regularization en-

couraging a smooth Dirichlet distribution for each

token.

6 Experiments

6.1 Experimental Setup

6.1.1 Dataset Setup

Dataset. We apply three public datasets: (1) MIT-

Restaurant (MIT-Res) dataset is in the restaurant

domain with a total of 9181 texts with 8 semantic

classes, excluding the ªOº class. (2) Movie-Simple

(Mov-Sim) dataset is in the movie domain with a

total of 12,218 texts with 12 semantic classes, ex-

cluding the ªOº class. (3) Movie-Complex (Mov-

Com) dataset is also in the movie domain with a

total of 9769 texts with 12 semantic classes, ex-

cluding the ªOº class. These three datasets are

provided in a common NER framework, Flair (Ak-

bik et al., 2019). The criteria of the dataset choice

are detailed in Sec. A.2.1.

OOD entity construction & data split. Our OOD

entities are constructed using the leave-out method.

Specifically, given an NER dataset with different

kinds of entity labels, we count the number of en-

tities for each label. Subsequently, we select and

leave out m labels with the lowest entity counts.

This choice is made to ensure that there is a suf-

ficient amount of data available for training and

validation purposes. After applying the leave-out

method, we represent the remaining labels as Sin,

which includes c labels, and the corresponding text

sets as Din. Similarly, we represent the labels that

were left out as Sout, which contains m OOD la-

bels, and the corresponding text sets as Dout. All

text samples in Din are labeled only with entities

from Sin and do not include any labels from Sout.

Conversely, all text samples in Dout must contain

at least one label from Sout.

We use 80% of the samples from Din for training

and 10% for validation. Our testing set comprises

the remaining 10% of the samples from Din and

all samples from Dout.

6.1.2 Evaluation on OOD Detection

Our uncertainty estimation is evaluated via OOD

detection at the entity level (e.g., ªNew Yorkº is an

entity with the label ªLOCº). The reason for using

entity-level evaluation is detailed in Sec. A.2.2.

Wrong-span (WS) entities. However, OOD detec-

tion evaluation in the NER task faces challenges

related to wrong-span (WS) entities. Unlike tra-

ditional image or text sample-level classification,

NER tasks require the prediction of entity spans

first. An entity may span one or several tokens.

There are the following three cases related to OOD

detection: (1) the predicted OOD entity exactly

matches a true OOD entity; (2) the predicted OOD

entity partially matches a true OOD entity on some

tokens; (3) the predicted OOD entity does not

match a true OOD entity on any tokens. We denote

the second and third cases as ªWSº.

Three kinds of entities. Then, because these WS

entities do not have ground truth ID/OOD labels,

these WS entities are inapplicable for OOD detec-

tion evaluation. Besides, we are also interested in

whether our UE-NER model can handle WS entity

prediction as well. As a result, we aim to evaluate

our UE-NER model Φ by both OOD detection and

WS entity predictions. Because the entities appli-

cable for evaluating WS entity prediction might be

inapplicable for evaluating OOD detection, we di-

vide the ground truth entities and predicted entities

into three parts: (1) Unique predicted entities êp,

which do not exist in the ground truth and thus are

the WS entities; (2) Unique ground-truth entities

êg, which are the entities that do not appear in the

predicted entities; (3) Shared entities es, which are

the predicted entities matching the ground truth.

Then, all predicted entities, including shared en-

tities, are represented as ep = es + êp. Original

ground-truth entities (without ªWSº labels) are de-

noted as eog = es + êg, and new ground-truth

entities (including ªWSº labels) are represented as

eng = es + êg + êp.

Entities applied to OOD or WS detection. For

NER OOD detection, the ground-truth labels in

OOD detection should be binary, ªIDº and ªOODº

labels, while NER ground-truth labels have three:

ªIDº, ªOODº and ªWSº labels. As a result, we

divide NER OOD detection into two subset for the

evaluation. One subset has entities (eog = es + êg)

with ªIDº and ªOODº for evaluating NER OOD

detection, the other subset has eng = es + êg + êp

entities for evaluating WS detection. For OOD
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Table 1: The table lists the applied entities for OOD and WS tasks. Recall that original ground-truth entities are

eog = es + êg (used for OOD detection subtask), new ground-truth entities are eng = es + êg + êp (used for WS

detection subtask). The values in the brackets are the possible ground truth label values.

e
s

ê
g

ê
p

Ground-truth entity labels ID or OOD ID or OOD WS

OOD detection subtask usage use (0 or 1) use (0 or 1) do not use (N/A)
WS detection subtask usage use (0) use(0) use (1)

Table 2: Uncertainty estimation results MSood+ws on both OOD & WS tasks, the formula of MSood+ws is

described in Eq. 12. The bold font annotates the best performance among a subregion. This bold font aligns with

methodologies employed in similar studies on uncertainty estimation, including those detailed in Table 14 of Stadler

et al. (2021) and Table 2 of Zhao et al. (2020).

Data Model
weighted AUROC on both OOD & WS task weighted AUPR on both OOD & WS task

F1
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En.

Mov-Sim

Dropout - - 68.66 71.09 72.11 - - 27.98 34.06 31.28 83.94

PN 79.34 54.41 66.56 79.34 65.14 40.88 16.90 30.27 40.88 27.72 82.43

E-NER 77.58 59.05 76.82 77.58 77.61 36.40 20.44 35.72 36.40 36.05 70.63

SLPN(w/o softplus) 60.12 39.66 45.35 60.12 37.33 28.72 16.57 23.47 28.72 19.36 66.95

Ours(SLPN) 78.37 54.22 64.40 78.37 62.20 47.23 16.93 30.43 47.23 26.21 83.37

MIT-Res

Dropout - - 61.10 65.86 63.34 - - 36.66 47.90 41.15 74.60

PN 69.77 66.62 61.99 69.77 67.03 46.56 39.33 38.71 46.56 42.03 74.37

E-NER 67.74 67.29 65.62 67.74 67.30 41.62 40.58 39.91 41.62 40.58 69.08

SLPN(w/o softplus) 50.78 50.05 52.48 50.78 49.92 32.97 31.62 33.43 32.97 32.37 62.16

Ours(SLPN) 70.01 49.14 57.17 70.01 53.02 49.91 32.08 35.23 49.91 34.85 74.65

Mov-Com

Dropout - - 55.82 56.44 56.13 - - 17.01 18.68 17.40 72.51

PN 72.65 68.07 71.08 72.65 69.43 28.88 22.93 27.47 28.88 25.99 70.13

E-NER 77.93 73.77 77.68 77.93 75.55 34.32 25.34 29.48 34.32 27.99 67.21

SLPN(w/o softplus) 60.77 54.44 57.91 60.77 55.56 25.18 20.93 24.32 25.18 22.71 66.05

Ours(SLPN) 81.31 48.52 71.18 81.31 57.11 38.47 17.50 25.53 38.47 20.70 70.97

Table 3: Size statistics on the three cases in three

datasets.

Data Model eng es êp êg

Mov-Sim

Dropout 4412 3055 488 869

PN 4475 2974 551 950

E-NER 4847 2665 923 1259

SLPN (w/o softplus) 4991 2654 1067 1270

Ours (SLPN) 4426 3060 502 864

MIT-Res

Dropout 7217 3793 1043 2381

PN 7187 3667 1013 2507

E-NER 7297 3456 1123 2718

SLPN (w/o softplus) 7904 3646 1730 2528

Ours (SLPN) 7237 3872 1063 2302

Mov-Com

Dropout 5551 3039 1019 1493

PN 5772 3004 1240 1528

E-NER 5689 2722 1157 1810

SLPN (w/o softplus) 6043 2985 1511 1547

Ours (SLPN) 5746 3045 1214 1487

detection task, we take ªOODº labels as 1 and ªIDº

labels as 0. For WS detection, we take ªWSº labels

as 1, ªIDº and ªOODº labels as 0. We list the

applied entities of these two cases in Tab. 1.

6.1.3 Experimental Settings

Baselines. Because UE-NER is underexplored,

we use three baselines in our experiments: (1)

Dropout (Gal and Ghahramani, 2016), which is

an ensemble-based method to approximate BNN.

It needs to run multiple times for the uncertainty

estimation while our SLPN can get the estimated

uncertainty by only running once. (2) PN (Char-

pentier et al., 2020), which has been revised into

token-level PN for UE-NER task, introduced in

Sec. 5.1. (3) E-NER (Zhang et al., 2023) learns im-

portance weights via evidence distribution and adds

a regularization for increasing learned uncertainty

of the wrong prediction.

Ablation Settings. Besides PN, we design SLPN

(w/o softplus) for the ablation study. The SLPN

(w/o softplus) removes the softplus in Eq. 8.

Uncertainty Metrics. We measure uncertainty

estimation performance using five types of uncer-

tainty. Specifically, Dissonance (Dis.) and vacuity

(Va.) uncertainties are concepts proposed in the

domain of evidential theory (Sensoy et al., 2018).

(1) Dissonance uncertainty refers to conflicting evi-

dence, where the evidence for a particular class is

similar to the evidence for other classes. (2) Vacu-

ity uncertainty indicates a lack of evidence, where

the evidence for all classes is of very small mag-

nitude (Lei et al., 2022). Besides, aleatoric (Al.)

and epistemic uncertainty (Ep.) are proposed from

the probabilistic view. (3) Aleatoric uncertainty

arises from the inherent stochastic variability in

the data generation process, such as noisy sensor

data (Dong et al., 2022a). (4) Epistemic uncertainty

stems from our limited knowledge about the data

distribution, like OOD data. Moreover, we also

consider (5) uncertainty calculated by entropy. We

select the best-performing metric for each method

from the five available uncertainty metrics. These
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five types of uncertainty are all measured via AU-

ROC and AUPR (Hu and Khan, 2021; Zhao et al.,

2020; Malinin and Gales, 2018; Hendrycks and

Gimpel, 2016; Dong et al., 2022b; Yu et al., 2023).

More details about the five uncertainty metrics are

in Sec. A.2.3.

For Tables 2, 4, and 5, we annotate the best

performance within a subregion in bold font. This

practice aligns with methodologies employed in

similar studies on uncertainty estimation, including

those detailed in Table 14 of Stadler et al. (2021)

and Table 2 of Zhao et al. (2020).

Performance combined OOD and WS detection

performance. Because we have OOD detection

and WS detection tasks on NER uncertainty esti-

mation, we propose to merge the results of the two

tasks. This will enable us to determine which UE-

NER model is better. As a result, we merge them

by weighting the OOD detection results and WS

detection results based on the size ratio between es

and êp, as shown below.

MSood+ws =
es

es + êp
MSood +

êp

es + êp
MSws

(12)

Where MSood+ws represents the metric score

weighted by the respective OOD task metric score

MSood and the WS task metric score MSws.

6.2 Experimental Results

Our SLPN performs better than the baselines

in weighted metric performance, which indi-

cates that transmitted uncertainty from other

tokens benefits the model performance. Table 2

shows that our SLPN outperforms the baselines

in weighted metric performance, except for AU-

ROC on Movie-Simple. Specifically, our SLPN

surpasses the baselines in both AUROC and AUPR

on the MIT-Restaurant dataset. For instance, our

SLPN improves AUPR by 2.01 points compared

to dropout and 3.25 points compared to PN. On

the Movie-Simple dataset, the AUPR also indicates

that our SLPN performs better than other methods,

with an improvement of 6.35 points compared to

PN. Although the AUROC on Movie-Simple does

not exceed the baselines, the difference from PN

is less than 1 point. Plus, on the Movie-Complex

dataset, our work also surpasses the baselines, such

as a 3.38 points improvement over the E-NER in

AUROC. Taken together, these results demonstrate

that the transmitted uncertainty from other tokens

applied in SLPN benefits the model’s performance.

The entity size distribution of our SLPN is sim-

ilar to that of the baselines, except E-NER. Ta-

ble 3 shows that the entity distributions for the

three types of entities are similar among dropout,

PN, and our SLPN. The relatively greater number

of unique predicted entities êp and the lower num-

ber of unique ground truth entities êg compared to

dropout suggests that our SLPN primarily improves

OOD detection rather than WS detection. Conse-

quently, future research can focus on enhancing

WS detection or both of these detection tasks.

Additionally, we observe that E-NER has rel-

atively fewer shared entities es. We speculate

that this could be due to E-NER not demonstrat-

ing as powerful NER classification performance as

dropout, PN, and our SLPN in these three datasets.

Our SLPN performs better than the baselines in

OOD detection performance. Table 4 shows that

E-NER performs better than our SLPN in Movie-

Simple and MIT-Restaurant datsets, the E-NER sac-

rifices the NER classification performance. Among

Dropout, PN and our SLPN, which have the similar

high classification performance, our method per-

forms better in OOD detection performance. For

example, on the MIT-Restaurant dataset, our SLPN

improves AUROC by 1.63 points compared to PN

and 10.87 points compared to Dropout. However,

on the Movie-Simple dataset, our SLPN has a dif-

ference of less than 1 point compared to PN, but

our AUPR surpasses PN by 7.06 points.

Our SLPN performs unsatisfactorily compared

to the baselines in WS detection performance.

Although our SLPN performs very well in OOD

detection, its performance in WS detection in Ta-

ble 5 is unsatisfactory. However, the sizes of WS

entities (êp) are very similar among dropout, PN,

and our SLPN on both datasets. For example, the

sizes of êp are 1043, 1013, and 1063 for dropout,

PN, and our SLPN, respectively. This means our

SLPN performs unsatisfactorily in WS detection.

Our SLPN performs close or even better than

the dropout in terms of the NER task perfor-

mance. From Table 5, our NER performance

closely matches dropout, differing by less than 1

point in F1 scores on the Movie-Simple dataset.

Notably, dropout is an ensemble-based approach

known for enhancing model performance. Despite

this, our SLPN achieves comparable or superior

NER F1 scores, demonstrating its ability to en-

hance UE-NER performance while preserving the

original NER model’s effectiveness.

The activation function softplus is important to
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Table 4: Uncertainty estimation results on OOD task. The usage of bold font is the same as Table 2.

Data Model
AUROC on OOD task AUPR on OOD task

F1
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En.

Mov-Sim

Dropout - - 69.55 69.67 72.64 - - 29.61 34.71 32.62 83.94

PN 81.73 53.41 65.60 81.73 63.73 43.25 17.47 30.20 43.25 26.94 82.43

E-NER 84.20 60.47 84.10 84.20 84.02 41.44 19.92 39.97 41.44 39.95 70.63

SLPN(w/o softplus) 55.37 31.44 36.33 55.37 26.81 23.33 12.96 15.99 23.33 12.63 66.95

Ours(SLPN) 81.29 53.59 64.10 81.29 61.27 50.31 17.56 30.77 50.31 25.57 83.37

MIT-Res

Dropout - - 58.01 64.26 61.08 - - 39.97 54.36 45.52 74.60

PN 73.50 69.44 60.98 73.50 70.03 53.39 45.16 43.07 53.39 47.88 74.37

E-NER 76.67 75.76 74.53 76.67 75.76 51.27 49.79 49.11 51.27 49.79 69.08

SLPN(w/o softplus) 44.30 43.92 46.22 44.30 41.69 32.66 33.74 33.78 32.66 31.41 62.16

Ours(SLPN) 75.13 45.76 54.85 75.13 50.96 58.93 35.63 38.73 58.93 38.62 74.65

Mov-Com

Dropout - - 50.38 50.75 50.74 - - 12.33 14.27 12.52 72.51

PN 75.81 68.86 72.43 75.81 70.59 25.47 18.85 23.92 25.47 21.65 70.13

E-NER 86.43 79.90 85.41 86.43 82.65 39.83 26.54 32.57 39.83 30.52 67.21

SLPN(w/o softplus) 59.59 50.07 53.81 59.59 50.47 18.71 12.60 16.90 18.71 13.94 66.05

Ours(SLPN) 87.39 44.28 71.63 87.39 55.35 39.85 12.47 21.41 39.85 15.24 70.97

Table 5: Uncertainty estimation results on WS task. The usage of bold font is the same as Table 2.

Data Model
AUROC on WS task AUPR on WS task

F1
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En.

Mov-Sim

Dropout - - 63.12 79.96 68.82 - - 17.81 30.02 22.86 83.94

PN 66.43 59.83 71.76 66.43 72.74 28.11 13.82 30.66 28.11 31.91 82.43

E-NER 58.47 54.96 55.81 58.47 59.11 21.83 21.95 23.44 21.83 24.80 70.63

SLPN(w/o softplus) 71.92 60.10 67.79 71.92 63.51 42.11 25.55 42.07 42.11 36.11 66.95

Ours(SLPN) 60.60 58.09 66.26 60.60 67.87 28.43 13.07 28.34 28.43 30.11 83.37

MIT-Res

Dropout - - 72.32 71.70 71.54 - - 24.61 24.39 25.28 74.60

PN 56.25 56.40 65.63 56.25 56.18 21.84 18.24 22.93 21.84 20.87 74.37

E-NER 40.25 41.21 38.21 40.25 41.27 11.94 12.22 11.61 11.94 12.24 69.08

SLPN(w/o softplus) 64.43 62.97 65.66 64.43 67.27 33.62 27.16 32.68 33.62 34.39 62.16

Ours(SLPN) 51.34 61.44 65.61 51.34 60.52 17.04 19.16 22.46 17.04 21.10 74.65

Mov-Com

Dropout - - 72.06 73.41 72.20 - - 30.96 31.82 31.97 72.51

PN 64.98 66.17 67.82 64.98 66.63 37.13 32.81 36.07 37.13 36.50 70.13

E-NER 57.92 59.35 59.48 57.92 58.86 21.37 22.51 22.21 21.37 22.03 67.21

SLPN(w/o softplus) 63.10 63.07 66.00 63.10 65.63 37.96 37.39 38.97 37.96 40.03 66.05

Ours(SLPN) 66.05 59.16 70.04 66.05 61.52 35.00 30.12 35.88 35.00 34.41 70.97

make the model performs in a stable way. When

we remove the softplus operation (SLPN w/o soft-

plus) and compare it with SLPN, we observe a sig-

nificant performance decrease in both UE-NER and

NER tasks. Table 2 indicates that NER F1 scores

drop by over 10 points in both datasets, while UE-

NER AUROC and AUPR scores decrease by more

than 15 points. Thus, it is crucial to design the soft-

plus operation in Eq. 8 to ensure βtrans
i remains

positive.

7 Conclusion

Incorrect NER predictions incur significant penal-

ties. We primarily focus on UE-NER, which differs

from prior uncertainty estimation methods that fo-

cus on sample-level labeling. UE-NER centers on

token-level sequential labeling, addressing the over-

looked transmitted uncertainty from contextual to-

kens. We introduce SLPN to calculate uncertainty

from both the token itself and contextual tokens,

enhancing OOD detection in NER. Additionally,

for OOD detection in NER, WS entities are not

applicable. Thus, we divide the entities into two

distinct subsetsÐone for OOD detection and the

other for WS detection. Our experiments validate

SLPN’s effectiveness and the importance of con-

sidering uncertainty propagation in UE-NER.

8 Ethical Considerations

This study pioneers uncertainty estimation in se-

quential labeling, specifically in the context of

Named Entity Recognition (NER). Additionally,

we have innovatively proposed to account for un-

certainty transmission, which is ignored in sample-

level classification.

Our research exclusively employs datasets that

are publicly available, ensuring transparency and

accessibility. Our usage of Flair and related

datasets obey their MIT licenses.

9 Limitations

This paper introduces SLPN for uncertainty esti-

mation in sequential labeling. However, SLPN ex-

hibits two main limitations: First, it is based on the

Posterior Network, and we plan to assess its gener-

alization capabilities across other models. Second,

our implementation of SLPN does not treat sequen-

tial labeling as a generative task, which would be

meaningful to explore, especially in considering

uncertainty propagation in generative tasks.
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A Appendix

A.1 Model

A.1.1 Explanation of Softplus

Since evidential learning is an evidence acquisition

process, which means that every token in a train-

ing text contributes to learning an evidence matrix

(βtrans,t) (Wang et al., 2023a; Sensoy et al., 2018;

Amini et al., 2020), we expect that βtrans,t has all

elements (e.g., all tokens’ evidence in the respec-

tive class) greater than 0. Therefore, we expect

every element of the evidential matrix (βtrans,t) to

be greater than 0.

Based on Eq 9, we understand that βtrans,t con-

sists of two parts: the softmax part and V . If we

expect βtrans,t to be greater than 0, the only poten-

tial negative case might be from V . Consequently,

we anticipate that V is greater than 0. Therefore,

we choose the Softplus function, which is defined

as follows:

Softplus(x) = log(1 + ex). (13)

Considering the formula of Softplus, it is always

greater than 0. In addition to ensuring V is greater

than 0 in Eq 8, we opt for Softplus as it helps

prevent gradient explosion and gradient vanishing

issues due to its smooth transition between the pos-

itive and negative parts of the input.

A.2 Experiments

A.2.1 Criteria of Dataset Choice

We select the dataset based on two criteria: firstly,

the dataset should contribute to reproducibility, and

secondly, the dataset should not have an F1 score

higher than 90%. We prioritize high reproducibility

because we aim for our work to be replicable by

others. We do not anticipate achieving an F1 score

higher than 90%, as this would suggest that the

dataset has already been thoroughly studied or that

the model’s uncertainty for that dataset is relatively

low.

To meet the reproducibility criterion, we utilize

the dataset provided by the Flair framework (Ak-

bik et al., 2019). In adherence to the second cri-

terion, we exclude CONLL_03 dataset from con-

sideration due to its 94% F1 score in NER task.

From the datasets listed in Flair framework (Akbik

et al., 2019), we randomly select two domains: the

restaurant domain and the movie domain. For the

restaurant domain, we opt for the MIT-Restaurant

dataset. In the movie domain, Flair offers both a

simple movie dataset and a complex movie dataset.

We are interested in investigating whether there

exists a tradeoff between uncertainty scores and

F1 scores in UE-NER. Consequently, we select

the simple-movie dataset and the complex-movie

dataset, which exhibit higher and lower NER per-

formance, as measured by the F1 score, in UE-

NER, respectively. As for the tradeoff, after ex-

cluding the impact of different domains, we do not

observe a significant tradeoff between the quality

of uncertainty estimation (measured by AUROC)

and NER task performance (measured by F1 score)

when comparing the same method’s AUROC and

F1 between Mov-Sim and Mov-Com.

A.2.2 Reason of Entity-Level Evaluation

We choose entity-level evaluation instead of token

level because it has more practical applications and

is more commonly used in other NER works than

token-level evaluation (e.g., ªNewº is a token with

a label ªb-LOC,º and ªYorkº is a token with a label

ªe-LOCº). Classifying ªNewº correctly and ªYorkº

incorrectly cannot lead to our desired correct entity.

A.2.3 Metrics

Below, we introduce the formulas used for the five

metrics. Given a prediction from an EDL model,

i.e., α, we have the total evidence α0 =
∑c

k=1 αk

(as in Eq.2) where c is the number of classes. The

expected class probability is p̄ = α

α0
.

From the evidential view, we have dissonance

and vacuity uncertainty for EDL-based models.

The dissonance uncertainty in EDL is calculated

via Eq. 5 in Zhao et al. (2020).

udiss =
c∑

k=1

bk
∑

j ̸=k bjBal(bj , bk)∑
j ̸=k bj

(14)

with bk = αk−1
α0

and Bal(bj , bk) = 1 −
|bj−bk|
bj+bk

.

It measures the uncertainty due to the conflicting

evidence. The vacuity uncertainty in EDL is related

to α0 in Eq.2, which represents the total evidence,

uvac =
c

α0
(15)

From a probabilistic view, we have aleatoric un-

certainty and epistemic uncertainty. The aleatoric

uncertainty is calculated based on the projected or

expected class probabilities,

ualea =
1

maxk p̄k
(16)
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The epistemic uncertainty is calculated based on

total evidence in EDL-based models,

uepis =
1

α0
(17)

Because our vacuity uncertainty and epistemic un-

certainty calculation are based on α0 and are simi-

lar, they have the same sample rank regarding un-

certainty score.

For dropout models, where the aleatoric and epis-

temic uncertainty are calculated from a probabilis-

tic view, please refer to He et al. (2024); Mukhoti

et al. (2023).

We also report the entropy as the uncertainty

score, which is calculated with the expected cate-

gorical distribution.

uentropy = H(p̄) (18)
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