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Abstract—Intent mining is critical for controlling the spread
of false information across online social networks (OSNs). To this
end, we develop deep reinforcement learning (DRL) agents guided
by a delayed reward based on intent prediction using a classifier
of long short-term memory (LSTM). Additionally, we incorporate
an uncertainty-aware function that leverages subjective opinions
derived from Subjective Logic (SL). Through evaluation using an
annotated fake news tweet dataset, our results demonstrate that
our intent classification framework surpasses competing methods
in terms of intent accuracy. Our intent mining solutions using
DRL algorithms can support effective and efficient intervention
strategies for fake news spreading on OSNs.

Index Terms—Intent mining, fake news, deep reinforcement
learning, Long Short-Term Memory, online social network

I. INTRODUCTION

Fake news in online social media platforms has become a
pressing concern in today’s information age. Misinformation
spreads rapidly, leading to significant social, political, and
economic implications. Understanding the dynamics behind
the propagation of fake news is crucial for devising effective
strategies to mitigate its adverse effects. While it is commonly
assumed that users share fake news with malicious intent,
recent social science studies [1] have shed light on the unin-
tentional behaviors associated with fake news sharing. Users
may unknowingly disseminate false information due to a lack
of judgment capabilities or even with good intentions, such
as entertaining friends or altruistically helping others (e.g.,
raising funds for a noble cause). These findings challenge
the prevailing notion that all fake news propagators act out
of malice, urging us to explore the intent behind the spread
of fake news more comprehensively. We can tailor our mit-
igation efforts based on users’ various intents and enhance
the effectiveness. Thus, we propose an intent classification
framework by deep reinforcement learning (DRL). By an-
alyzing the textual content of verified fake news, we can
extract embedding features and structure representations and
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optimize those representations from texts, which have been
extensively studied for various text classification tasks [10].
However, existing DRL models for text classification suffer
from a limitation in local response capabilities. These models
typically assign equal weight to all steps of the Markov
decision process, relying solely on the final state of the text
encoding process to determine future or delayed rewards [4].
To address this limitation, we propose modifying existing DRL
models with an uncertainty-aware immediate reward.

Our work aims to enhance the local response of DRL mod-
els by introducing a belief model called Subjective Logic [5].
This belief model estimates multidimensional uncertainty
based on intent predictions at each local encoding step. By
incorporating this uncertainty-aware local reward, we enable
DRL agents to trust delayed rewards while considering local
responses, thereby improving the overall performance of intent
prediction. In general, this approach enables us to effectively
analyze the intents associated with fake news propagation.

II. INTENT PREDICTION FRAMEWORK DESIGN
A. Intent Classes and Data Annotations

From online social network (OSN) users’ major intents of
spreading fake news, by several social science studies [1, 6, 7],
we identify several intent classes behind the spread of fake
news on OSNs. These include “Information Sharing”, where
users unintentionally share fake news due to a lack of fact-
checking or knowledge. “Socialization” involves sharing news
for self-promotion and expanding social connections. The
intent of “Political Campaign” focuses on creating false per-
ceptions and manipulating public opinions using fake news.
“Emotion Venting” refers to the propagation of fake news trig-
gered by users’ emotional states. Lastly, “Rumor Propagation”
involves the dissemination of fake news linked to uncertain
rumors. By understanding these intent classes, we gain insights
into users’ motivations and can develop targeted strategies to
mitigate the spread of fake news effectively.

To conduct data-centric intent mining, we require datasets
that provide both fake news and intent class labels. As such,

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2024 at 08:05:31 UTC from IEEE Xplore. Restrictions apply.



State
Transition

STM)\hi
i e

2
b6\ B

State
Transition

tstm )
cell

JUBISY JUBIPEIS

+ RelLU
Dense Layer
+ Softmax
+ RelLU
Dense Layer

Dense Layer
Dense Layer
+ Softmax

Actor Network 65 Policy

49d7y 10 9d ss0

3 piemoY pasepA

LSTM .
cell
O1stm

Critic Network

eritic

Intent

>
0 Classes

Fig. 1. A DRL episode to optimize structure representations of an annotated
tweet x for the fine-tuned models in Section II-C (PG and PGB).

we manually annotate an existing fake news dataset [8] with
three annotators, assigning the dominant intent class label (if
two or more) as the golden intent label (denoted as y) to each
news piece (a tweet as x) [2]. We ensure consistent sequence
length by padding all tweets to a fixed length (kK words).

B. LSTM Pre-Training Intent Mining Model

The proposed approach is built upon a pre-trained traditional
LSTM serving as the backbone to obtain state information for
the DRL agents. This LSTM is pre-trained with the known
golden intent labels, minimizing a cross-entropy loss with the
L2 regularization.

C. Intent Classification Fine-Tuning by REINFORCE

Fig. 1 illustrates this fine-tuned DRL intent classifier, where
the LSTM intent classifier serves as the environment with
invariable parameters in a set ;. Our news intent classifi-
cation task benefits from DRL by finding the optimized input
sequence x’ in Fig. 1C. When noisy words are removed, a
higher prediction of golden intent y is expected in the pre-
trained LSTM, as p(y|x’,07) > p(y|x, 0r).

1) DRL Agent: For each LSTM recurrent embedding and
encoding step, as ¢t € [1, k], DRL decides if the current input
word x; is masked for intent prediction. State: An LSTM cell
accepts z; with the previous step’s cell and hidden state vectors
and generates the updated vectors c; and h;. The hidden vector
hy is a state s;. Actor: A two-layer Neural Network () takes
in the state s; and generate an output layer of two neurons
through a softmax activation. A stochastic policy 7(a¢|s, 6) is
a distribution of two actions. Action: One action ‘keep’ allows
T, to stay in the optimized sequence x’; while the other action
‘mask’ reduces the length of x’ by a word. Transition: Given
an action ‘keep’, the next step receives the LSTM outputs
(¢t and h;) and encodes ;41 as s;+1. However, the action
‘mask’ passes the LSTM outputs (¢;—1 and hy_1) from step
t—1 to step t + 1 to encode x;;. Delayed Reward: As
the optimized sequence x’ (k' words) is validated by the pre-
trained LSTM, a delayed reward is generated after step k as a
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Fig. 2. The uncertainty-aware reward function r; R with a local Critic, vacuity
maximization, and an SL opinion in Section II-D (muPG and muPGB).

prediction of the gold class in Fig. 1D. Additionally, a delayed
reward encourages the action ‘mask’ to remove more noises.
Considering A as a weight of masking word reward, the total
delayed reward is formulated as:

R=p(ylx,0r) + ANk —K)/k. (1)
Policy Gradient Loss: This natural language processing
(NLP) classification task has the property of missing imme-
diate reward in each DRL step, resulting in a delayed reward
and on-policy learning by policy gradient (PG). Under PG
methods, the DRL agent’s parameters in 6 in Fig. 1A are
trained by policy ascent, maximizing the future reward R. For
each transition step ¢, the REINFORCE [9] gradients are from
a negative log loss as:

Lpc=—Y R logm(as;,0). )

t
2) Baseline Function: For each tweet, we run five mini-
batch episodes to collect gradients. As a common strategy to
reduce the variances of gradients R logm(a¢|s:,f), we use a
baseline b; as the mean of R by a mini-batch and the loss is:
Lrap ==Y (R—1b)logm(as:,6). €)
t

D. Multidimensional Uncertainty-Aware Reward Function

1) Local Critic Network: A local Critic at each step ¢
in Fig. 2 is from the pre-trained LSTM classifier, sharing
the same input s; as h; with the Actor. Following the PG’s
fundamental on-policy training assumptions, this local Critic
indirectly impacts DRL policy updates (0) by a reward value.

2) Subjective Logic Opinion from the Critic’s Intent Dis-
tribution: Local intent probabilities m(y|s;, 07) derived from
the Critic can be regarded as a multinomial opinion in Sub-
jective Logic (SL) [5]. This conversion leverages a vacuity
maximization [5] due to the zero vacuity assumed from local
intent probabilities 7 (y|s;, ;). Through vacuity maximization,
an SL opinion has uncertainty masses, such as vacuity (uy®c),
generally caused by insufficient evidence for classification, and
dissonance (u$**®), due to supporting evidence of each class.
Dissonance can evaluate the balance of each class, where high
dissonance (close to 1.0) means the belief masses follow a
uniform distribution towards each defined class.

3) Local Certainty Level: Owing to the local Critic and
its transformed SL opinion, we can obtain uncertainty uy =
[y, ud**s] at each DRL local step. The overall uncertainty
level from uy is determined sequentially by comparing vacuity
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TABLE I
MULTI-CLASS INTENT TESTING ACCURACY

Model Accuracy | Length Accuracy by Each Class
LSTM 0.817 16.96 [0.676, 0.934, 0.864, 1.0, 0.667]
PG 0.894 9.7 [0.882, 0.983, 0.818, 0.882, 0.667]
PGB 0911 9.422 [0.926, 0.984, 0.864, 0.824, 0.667]
muPG 0917 9.394 [0.912, 0.984, 0.818, 0.941, 0.750]
muPGB 0.917 9.056 [0.926, 1.0, 0.818, 0.824, 0.75]

and dissonance to a threshold 7 because the dissonance is more
effective in decision-making under high vacuity [3]. There are
three steps to assess a local certainty/uncertainty level r; by:

o If step t’s vacuity is low with «/?¢ < 7, the uncertainty

level from uy is low. The Critic indicates a high certainty
level toward the Actor by 7, = n+ 1 — uf* > 1.0.

o If step t’s vacuity is high and dissonance is low, denoted
by u?® > 5 and ul*** < 5, the level of uy is also low.
Therefore, the Critic indicates a high certainty level of the
state s; by r; = n 4 1 —uf** > 1.0.

o When both are higher than 7, as u{*“ > n and ufiss >n,
the belief masses are uniform of each class by a high u¢. So
it fails a satisfying level of certainty of s;. Then, the Critic
provides low certainty by r; = 1.0 to keep the original
future reward as ;R = R at each local step.

4) Updated Loss: By replacing a uniform delayed reward
R with the uncertainty-aware reward r; R in Egs. (2) and (3),
we have the updated losses of PG and PGB. The new loss for
muPGB, combining the new reward and baseline, is:

Lypure = — Z(HR — by logm(ac|s, 0).  (4)
t

III. PRELIMINARY EXPERIMENTAL RESULTS
A. Experiment Setup

Dataset: We annotate a published Twitter fake news dataset
LIAR 2015 [8] for our proposed intent classes. By annotating
835 fake news tweets, described in Section II-A, the distribu-
tion of each intent class is [0.423,0.275,0.135, 0.086,0.081],
given the orders of intent classes in Section II-A.

Schemes: Comparing to the pre-trained LSTM, we test fine-
tuned DRL classifiers by REINFORCE (PG), adding baseline
(PGB), adding uncertainty (muPG), and both (muPGB).

Metrics: Average total delayed reward, multi-class intent
classification accuracy, and length of optimized words in x’.

B. Intent Classification Accuracy

Table I compares the accuracy and length of fake news
between LSTM and four DRL models. The weight is A = 0.4
in Eq. (1), and the uncertainty threshold is n = 0.3. DRL
models bring higher accuracies than LSTM, but they only
increase the accuracy for intent class 1 ‘Information Sharing’
and class 2 ‘Political Campaign’. PGB shows a larger accuracy
level and masked words over PG. The uncertainty-aware
reward function increases the accuracy from PG’s 89.4% to
muPG’s 91.7% and from PGB’s 91.1% to muPGB’s 91.7%.
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Fig. 3. The average total delayed reward from DRL testing.

C. Total Delayed Reward

Fig. 3 illustrates the total delayed reward from four DRL
models, along with its components: prediction and length
rewards. Our uncertainty-aware reward function achieves a
higher total reward in both muPG and muPGB. The Actor
in testing always chooses the optimal action based on policy
m(a¢|st, 0). By adding a baseline in PGB and an uncertainty-
aware function in muPG and muPGB, we observe fewer words
in the optimized sequence. muPGB shows the least number of
optimized words at 9.056, reducing PG’s 9.7 by 6.6%.

IV. CONCLUSION & FUTURE WORK

From this study, we obtained the key findings: (1) The
uncertainty metrics, vacuity and dissonance from an SL opin-
ion, led to a higher intent accuracy and less noisy words in
DRL models. (2) The gradient variance reduction and local
certainty levels improved the delayed reward in the PG-based
DRL classifiers. Our future work will include more sensitivity
analysis and DRL variants. In addition, we will test the validity
of our proposed reward in more fake news datasets.
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