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Abstract—Intent mining is critical for controlling the spread
of false information across online social networks (OSNs). To this
end, we develop deep reinforcement learning (DRL) agents guided
by a delayed reward based on intent prediction using a classifier
of long short-term memory (LSTM). Additionally, we incorporate
an uncertainty-aware function that leverages subjective opinions
derived from Subjective Logic (SL). Through evaluation using an
annotated fake news tweet dataset, our results demonstrate that
our intent classification framework surpasses competing methods
in terms of intent accuracy. Our intent mining solutions using
DRL algorithms can support effective and efficient intervention
strategies for fake news spreading on OSNs.

Index Terms—Intent mining, fake news, deep reinforcement
learning, Long Short-Term Memory, online social network

I. INTRODUCTION

Fake news in online social media platforms has become a

pressing concern in today’s information age. Misinformation

spreads rapidly, leading to significant social, political, and

economic implications. Understanding the dynamics behind

the propagation of fake news is crucial for devising effective

strategies to mitigate its adverse effects. While it is commonly

assumed that users share fake news with malicious intent,

recent social science studies [1] have shed light on the unin-

tentional behaviors associated with fake news sharing. Users

may unknowingly disseminate false information due to a lack

of judgment capabilities or even with good intentions, such

as entertaining friends or altruistically helping others (e.g.,

raising funds for a noble cause). These findings challenge

the prevailing notion that all fake news propagators act out

of malice, urging us to explore the intent behind the spread

of fake news more comprehensively. We can tailor our mit-

igation efforts based on users’ various intents and enhance

the effectiveness. Thus, we propose an intent classification

framework by deep reinforcement learning (DRL). By an-

alyzing the textual content of verified fake news, we can

extract embedding features and structure representations and
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optimize those representations from texts, which have been

extensively studied for various text classification tasks [10].

However, existing DRL models for text classification suffer

from a limitation in local response capabilities. These models

typically assign equal weight to all steps of the Markov

decision process, relying solely on the final state of the text

encoding process to determine future or delayed rewards [4].

To address this limitation, we propose modifying existing DRL

models with an uncertainty-aware immediate reward.

Our work aims to enhance the local response of DRL mod-

els by introducing a belief model called Subjective Logic [5].

This belief model estimates multidimensional uncertainty

based on intent predictions at each local encoding step. By

incorporating this uncertainty-aware local reward, we enable

DRL agents to trust delayed rewards while considering local

responses, thereby improving the overall performance of intent

prediction. In general, this approach enables us to effectively

analyze the intents associated with fake news propagation.

II. INTENT PREDICTION FRAMEWORK DESIGN

A. Intent Classes and Data Annotations

From online social network (OSN) users’ major intents of

spreading fake news, by several social science studies [1, 6, 7],

we identify several intent classes behind the spread of fake

news on OSNs. These include “Information Sharing”, where

users unintentionally share fake news due to a lack of fact-

checking or knowledge. “Socialization” involves sharing news

for self-promotion and expanding social connections. The

intent of “Political Campaign” focuses on creating false per-

ceptions and manipulating public opinions using fake news.

“Emotion Venting” refers to the propagation of fake news trig-

gered by users’ emotional states. Lastly, “Rumor Propagation”

involves the dissemination of fake news linked to uncertain

rumors. By understanding these intent classes, we gain insights

into users’ motivations and can develop targeted strategies to

mitigate the spread of fake news effectively.

To conduct data-centric intent mining, we require datasets

that provide both fake news and intent class labels. As such,
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Fig. 1. A DRL episode to optimize structure representations of an annotated
tweet x for the fine-tuned models in Section II-C (PG and PGB).

we manually annotate an existing fake news dataset [8] with

three annotators, assigning the dominant intent class label (if

two or more) as the golden intent label (denoted as y) to each

news piece (a tweet as x) [2]. We ensure consistent sequence

length by padding all tweets to a fixed length (k words).

B. LSTM Pre-Training Intent Mining Model

The proposed approach is built upon a pre-trained traditional

LSTM serving as the backbone to obtain state information for

the DRL agents. This LSTM is pre-trained with the known

golden intent labels, minimizing a cross-entropy loss with the

L2 regularization.

C. Intent Classification Fine-Tuning by REINFORCE

Fig. 1 illustrates this fine-tuned DRL intent classifier, where

the LSTM intent classifier serves as the environment with

invariable parameters in a set θI . Our news intent classifi-

cation task benefits from DRL by finding the optimized input

sequence x
′ in Fig. 1C. When noisy words are removed, a

higher prediction of golden intent y is expected in the pre-

trained LSTM, as p(y|x′, θI) ≥ p(y|x, θI).
1) DRL Agent: For each LSTM recurrent embedding and

encoding step, as t ∈ [1, k], DRL decides if the current input

word xt is masked for intent prediction. State: An LSTM cell

accepts xt with the previous step’s cell and hidden state vectors

and generates the updated vectors ct and ht. The hidden vector

ht is a state st. Actor: A two-layer Neural Network (θ) takes

in the state st and generate an output layer of two neurons

through a softmax activation. A stochastic policy π(at|st, θ) is

a distribution of two actions. Action: One action ‘keep’ allows

xt to stay in the optimized sequence x
′; while the other action

‘mask’ reduces the length of x′ by a word. Transition: Given

an action ‘keep’, the next step receives the LSTM outputs

(ct and ht) and encodes xt+1 as st+1. However, the action

‘mask’ passes the LSTM outputs (ct−1 and ht−1) from step

t − 1 to step t + 1 to encode xt+1. Delayed Reward: As

the optimized sequence x
′ (k′ words) is validated by the pre-

trained LSTM, a delayed reward is generated after step k as a

Fig. 2. The uncertainty-aware reward function rtR with a local Critic, vacuity
maximization, and an SL opinion in Section II-D (muPG and muPGB).

prediction of the gold class in Fig. 1D. Additionally, a delayed

reward encourages the action ‘mask’ to remove more noises.

Considering λ as a weight of masking word reward, the total

delayed reward is formulated as:

R = p(y|x′, θI) + λ(k − k′)/k. (1)

Policy Gradient Loss: This natural language processing

(NLP) classification task has the property of missing imme-

diate reward in each DRL step, resulting in a delayed reward

and on-policy learning by policy gradient (PG). Under PG

methods, the DRL agent’s parameters in θ in Fig. 1A are

trained by policy ascent, maximizing the future reward R. For

each transition step t, the REINFORCE [9] gradients are from

a negative log loss as:

LPG = −
∑

t

R log π(at|st, θ). (2)

2) Baseline Function: For each tweet, we run five mini-

batch episodes to collect gradients. As a common strategy to

reduce the variances of gradients R log π(at|st, θ), we use a

baseline bt as the mean of R by a mini-batch and the loss is:

LPGB = −
∑

t

(R− bt) log π(at|st, θ). (3)

D. Multidimensional Uncertainty-Aware Reward Function

1) Local Critic Network: A local Critic at each step t
in Fig. 2 is from the pre-trained LSTM classifier, sharing

the same input st as ht with the Actor. Following the PG’s

fundamental on-policy training assumptions, this local Critic

indirectly impacts DRL policy updates (θ) by a reward value.

2) Subjective Logic Opinion from the Critic’s Intent Dis-

tribution: Local intent probabilities π(y|st, θI) derived from

the Critic can be regarded as a multinomial opinion in Sub-

jective Logic (SL) [5]. This conversion leverages a vacuity

maximization [5] due to the zero vacuity assumed from local

intent probabilities π(y|st, θI). Through vacuity maximization,

an SL opinion has uncertainty masses, such as vacuity (uvac
t ),

generally caused by insufficient evidence for classification, and

dissonance (udiss
t ), due to supporting evidence of each class.

Dissonance can evaluate the balance of each class, where high

dissonance (close to 1.0) means the belief masses follow a

uniform distribution towards each defined class.

3) Local Certainty Level: Owing to the local Critic and

its transformed SL opinion, we can obtain uncertainty ut =
[uvac

t , udiss
t ] at each DRL local step. The overall uncertainty

level from ut is determined sequentially by comparing vacuity
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TABLE I
MULTI-CLASS INTENT TESTING ACCURACY

Model Accuracy Length Accuracy by Each Class

LSTM 0.817 16.96 [0.676, 0.934, 0.864, 1.0, 0.667]

PG 0.894 9.7 [0.882, 0.983, 0.818, 0.882, 0.667]

PGB 0.911 9.422 [0.926, 0.984, 0.864, 0.824, 0.667]

muPG 0.917 9.394 [0.912, 0.984, 0.818, 0.941, 0.750]

muPGB 0.917 9.056 [0.926, 1.0, 0.818, 0.824, 0.75]

and dissonance to a threshold η because the dissonance is more

effective in decision-making under high vacuity [3]. There are

three steps to assess a local certainty/uncertainty level rt by:

• If step t’s vacuity is low with uvac
t < η, the uncertainty

level from ut is low. The Critic indicates a high certainty

level toward the Actor by rt = η + 1− uvac
t > 1.0.

• If step t’s vacuity is high and dissonance is low, denoted

by uvac
t ≥ η and udiss

t < η, the level of ut is also low.

Therefore, the Critic indicates a high certainty level of the

state st by rt = η + 1− udiss
t > 1.0.

• When both are higher than η, as uvac
t ≥ η and udiss

t ≥ η,

the belief masses are uniform of each class by a high ut. So

it fails a satisfying level of certainty of st. Then, the Critic

provides low certainty by rt = 1.0 to keep the original

future reward as rtR = R at each local step.

4) Updated Loss: By replacing a uniform delayed reward

R with the uncertainty-aware reward rtR in Eqs. (2) and (3),

we have the updated losses of PG and PGB. The new loss for

muPGB, combining the new reward and baseline, is:

LmuPGB = −
∑

t

(rtR− bt) log π(at|st, θ). (4)

III. PRELIMINARY EXPERIMENTAL RESULTS

A. Experiment Setup

Dataset: We annotate a published Twitter fake news dataset

LIAR 2015 [8] for our proposed intent classes. By annotating

835 fake news tweets, described in Section II-A, the distribu-

tion of each intent class is [0.423, 0.275, 0.135, 0.086, 0.081],
given the orders of intent classes in Section II-A.

Schemes: Comparing to the pre-trained LSTM, we test fine-

tuned DRL classifiers by REINFORCE (PG), adding baseline

(PGB), adding uncertainty (muPG), and both (muPGB).

Metrics: Average total delayed reward, multi-class intent

classification accuracy, and length of optimized words in x′.

B. Intent Classification Accuracy

Table I compares the accuracy and length of fake news

between LSTM and four DRL models. The weight is λ = 0.4
in Eq. (1), and the uncertainty threshold is η = 0.3. DRL

models bring higher accuracies than LSTM, but they only

increase the accuracy for intent class 1 ‘Information Sharing’

and class 2 ‘Political Campaign’. PGB shows a larger accuracy

level and masked words over PG. The uncertainty-aware

reward function increases the accuracy from PG’s 89.4% to

muPG’s 91.7% and from PGB’s 91.1% to muPGB’s 91.7%.

Fig. 3. The average total delayed reward from DRL testing.

C. Total Delayed Reward

Fig. 3 illustrates the total delayed reward from four DRL

models, along with its components: prediction and length

rewards. Our uncertainty-aware reward function achieves a

higher total reward in both muPG and muPGB. The Actor

in testing always chooses the optimal action based on policy

π(at|st, θ). By adding a baseline in PGB and an uncertainty-

aware function in muPG and muPGB, we observe fewer words

in the optimized sequence. muPGB shows the least number of

optimized words at 9.056, reducing PG’s 9.7 by 6.6%.

IV. CONCLUSION & FUTURE WORK

From this study, we obtained the key findings: (1) The

uncertainty metrics, vacuity and dissonance from an SL opin-

ion, led to a higher intent accuracy and less noisy words in

DRL models. (2) The gradient variance reduction and local

certainty levels improved the delayed reward in the PG-based

DRL classifiers. Our future work will include more sensitivity

analysis and DRL variants. In addition, we will test the validity

of our proposed reward in more fake news datasets.
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