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Abstract— There are currently two existing methods to com-
pute the fault-tolerant workspace of a redundant robot arm for
a given set of artificial joint limits. However, both of these meth-
ods are very computationally expensive. This article proposes
using a mixture density network to learn the probability that
a rotation angle belongs to the fault-tolerant rotation ranges.
A difference filter is used to remove outlying rotation angles
predicted by the network, and the remaining rotation angles
are grouped together to generate the fault-tolerant workspace.
Because this method is highly computationally efficient, it
can be used alongside a genetic algorithm to compute the
optimal artificial joint limits to maximize the area of the fault-
tolerant workspace for a given robot arm. The predicted fault-
tolerant workspace is compared to the actual fault-tolerant
workspace, which proves the effectiveness of this algorithm. The
computational speed of this proposed algorithm is roughly 390
times faster than the traditional method. Finally, a trajectory
is placed within the fault-tolerant workspace predicted by the
proposed method, and the experimental results show that this
trajectory is tolerant to arbitrary joint failures.

I. INTRODUCTION

Robots are well-suited for replacing human workers in
hazardous, isolated, and remote tasks, such as nuclear waste
cleanup [1], space exploration [2], and disaster relief [3].
Nevertheless, these environments present very challenging
conditions, including extreme temperatures, high radiation
levels, and unstable structures, which can lead to frequent
joint malfunctions. Furthermore, because these environments
are inaccessible to humans for repair purposes, ensuring
the dependability and resilience of robotic systems requires
fault tolerance [4]. One possible approach to achieve fault
tolerance is to use kinematically redundant robots, which
have more degrees of freedom (DOFs) than are required
to accomplish the assigned tasks [S]. However, kinematic
redundancy alone is insufficient to guarantee fault tolerance
[6], so motion planning algorithms with intelligent opti-
mization before and after arbitrary joint failures must be
developed.
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The two most common types of tasks are point-to-point
tasks, such as pick and place tasks, and trajectory-following
tasks, such as arc welding tasks. For point-to-point tasks,
fault tolerance can be simply guaranteed by constraining
the joints moving inside the bounding boxes enclosing the
self-motion manifolds (SMMs) of the target point, which
provides a set of artificial joint limits [7]-[9]. For trajectory-
following tasks, the most efficient way to guarantee fault
tolerance is to locate the end-effector trajectory within the
fault-tolerant workspace, which is the workspace that can
be achieved by the robot both before and after an arbitrary
joint failure for a given set of artificial joint limits [10], [11].
Therefore, the robot will be able to complete the entire end-
effector trajectory after a failure. The concept of the fault-
tolerant workspace is further extended to reliability maps for
probabilistic guarantees of task completion [12].

The key problem with the fault-tolerant workspace is
the difficulty in calculating it for a given set of artificial
joint limits, which is challenging even for simple planar
3R robots. There are two existing methods which solve
this problem. For the first method developed in [13], the
conditions of pre-failure workspace boundaries and post-
failure workspace boundaries are first identified, and then
the final fault-tolerant workspace boundaries are obtained
by taking the intersections of all the curves. Based on this
method, a gradient ascent method is applied to maximize
the failure tolerant workspace area [14]. The second method
of computing the fault-tolerant workspace is discretizing the
half plane whose normal is perpendicular to the rotation axis
of the first joint, and then determining the rotation range of
the first joint to guarantee all of the associated workspace
positions are within the fault-tolerant workspace [15].

It can be seen that the above existing methods are very
computationally expensive. For the first method, it is nu-
merically challenging to compute the intersections of all
potential boundaries. For the other method, the procedure of
identifying the fault-tolerant rotation range of the first joint
needs to be repeated for each sampled cell in the workspace.
In this article, the problems of efficiently computing the fault-
tolerant workspace of a planar 3R robot for an arbitrary set
of artificial joint limits as well as determining the optimal
artificial joint limits to maximize the area of the fault-
tolerant workspace are studied. The main innovations of this
paper are as follows: (1) a new, computationally efficient
method based on mixture density networks is developed to
compute the fault-tolerant workspace of planar 3R robots.
(2) A genetic algorithm is applied to identify the optimal
artificial joint limits that maximize the area of the fault-
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tolerant workspace.

The remainder of this article is organized as follows.
Section II introduces the background on computing the fault-
tolerant workspace by identifying the fault-tolerant rotation
range of the first joint. In Section III, a new method is
proposed to predict fault-tolerant workspace of planar 3R
robots using mixture density networks. In Section IV, a
genetic algorithm is applied to compute the optimal link
lengths and artificial joint limits for maximizing the fault-
tolerant workspace area. The performance of the proposed
methods is validated in Section V. Finally, Section VI
concludes this article.

II. BACKGROUND ON COMPUTING FAULT-TOLERANT
WORKSPACE

For each joint 1, its artificial joint limits A; are defined as
A; = la;, @;], so the pre-failure configuration space is C 4 =
Ay x -+- x A, where n is the number of joints. The pre-
failure workspace W can be computed as Wy = f(C 4),
where f is the forward kinematics function. If joint ¢ expe-
riences a locked-joint failure and becomes fixed at ¢; = 6;,
where 0; € [a;,@;], the artificial joint limits of the remaining
joints are released, so the post-failure configuration space is
given by ‘C(0;) = {q € C|q; = 0;}. Therefore, the post-
failure workspace W, which is defined as the reachable
workspace after joint ¢ is locked at any angle between its
artificial joint limits, is given by W, = [ f(*C(6,)).

a;<0;<a;
Finally, the fault-tolerant workspace W;, which is the set
of reachable workspace locations both before and after an

arbitrary failure, is defined as Wr = (| W, where F
i€EFU0
is a set of the locked joints.

A general method of -calculating the fault-tolerant
workspace for a given set of artificial joint limits is discretiz-
ing a half-plane into equal square grids where the normal of
the half-plane is perpendicular to the rotation axis of the first
joint, as shown in Fig. 1. The fault-tolerant rotation range of
the first joint By lﬁx, BX} is identified for each grid center,
and the positional fault-tolerant workspace can be obtained
by rotating each grid from Bx to By.

The fault-tolerant rotation range for each grid center is

given by .
2.5 =N 2.5,

where [@,BZ} is the rotation range after joint ¢ is locked.

(1)

The pre-failure rotation range [ﬁ o Bo} is determined by

|8y, B0) = [y = 1,3 - 8,], @)

where §; and 6, are the intersection points of the self-motion
manifolds with C'A, which is equivalent to C'4 with the
artificial joint limits on 6, released. The rotation range after
the first joint is locked, i.e., [@1’31}’ can be computed by

18,51] = [0 — Otymarnts = Orpin] . B
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Fig. 1. The fault-tolerant workspace is computed by discretizing a
half- plane into equal square grids where the normal of the half-plane is
perpendicular to the rotation axis of the first joint. The fault-tolerant rotation
range of the first joint is computed for each grid center.

where  [©1,,405 ©1min] denotes the range in ©;

U [@1min, %1mas) that contains A;. Finally, the rota-
#of SMMs

tion range after the other joints are locked, i.e., {ﬁj,ﬁj},
ji={2,3,---,n}, is given by

18,,8;] = [=m.7. )
III. PREDICTING THE FAULT-TOLERANT WORKSPACE

A. Predicting Fault-Tolerant Rotation Ranges

It can be seen that the computation of the fault-tolerant
rotation range [« is very complicated and time consuming.
This is because the critical points along each of the SMMs
belonging to the grid center x must be computed by an
iterative method, and this procedure needs to be repeated for
each grid center. A new method is proposed in this section to
increase the efficiency of the calculation of the fault-tolerant
workspace, which utilizes a supervised learning technique to
learn the relationship between artificial joint limits and the
corresponding fault-tolerant rotation range of joint one for a
given robot.

To predict the fault-tolerant range of joint one, a Gaussian
Mixture Model (GMM) is used to represent the distribution
of angles within the fault-tolerant rotation ranges for a given
grid center x. A GMM can accurately represent an arbitrary
number of rotation ranges for each grid center because it is
composed of an arbitrary number of normal distributions.
First, a mixture density network is used to predict the
GMM parameters for an arbitrary workspace location and
the predicted GMM is used to sample many potential fault-
tolerant rotation angles. Then, these samples are sorted and
a difference filter is applied to these sorted rotation angles
to remove the outlying rotation angles. Finally, the predicted
fault-tolerant rotation angles within the same rotation range
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Fig. 2. The flowchart of the proposal method for computing the fault-
tolerant rotation ranges of each grid center x is shown.

are grouped together and the lower and upper bounds of the
fault-tolerant rotation ranges are identified. The flowchart of
the proposed method to compute the fault-tolerant rotation
range at a given grid center is shown in Fig. 2.

To predict potential fault-tolerant rotation angles, samples
are drawn from the GMM using the following equation

K

Bx ~ Z Tk (X)N(Mk? (x),

k

or(x)) (5)

where K represents the number of mixture components in the
GMM, 7 (x) represents the probability that [y belongs to
the k™ mixture component, 1, (x) represents the mean of the
k™ mixture component, and o2 (x) represents the variance of
the k™ mixture component. Each of the GMM components
are computed by the mixture density network as a function of
only the workspace location x for the given robot kinematic
parameters and artificial joint limits. This sampling process
is repeated to collect IV different rotation angle samples for
each workspace location x. An example of the probability
distributions produced by the GMM for each grid center x
of a planar 3R robot with link lengths of 1m, Im, and 1m
and artificial joint limits of [—17°,17°], [-120°,120°], and
[—120°,120°] is shown in Fig. 3. The fault-tolerant rotation
angles are represented by the green and yellow areas, which
are the regions with high probabilities.

Considering that several of the values sampled from the
GMM may be outliers because they are sampled randomly
from a probability distribution, a difference filter is then ap-
plied to remove these outlying rotation angles. The difference
filter is developed as follows. First, the sampled BX values
are sorted, and the difference between adjacent samples is
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Fig. 3. An example GMM probability distribution indicating the probability
that a rotation angle [x is fault tolerant given a grid center x is shown.
The rotation angles with the highest probability of being fault-tolerant are
shown as the green and yellow regions.

taken as follows
= {8V - B2,..., -y (©)

where N is the number of sampled Bx values, and B,(f)
represents the i largest sample. The mean and variance
of these differences are then computed, denoted as ua and
o3, respectively. This information is then used to determine
which sampled BX values should be removed. If the differ-
ence between Bx- and B Y s much larger than the avera, e
difference between the other ﬁx values, then the values [3,(
and BXZ'H) are likely to be outliers. In the proposed method,
if AB,(!') — pa is greater than « - oA, where o > 0 is
a filter parameter, then the samples B,(f) and B,((Hl) are
both removed. Because many samples that are very close to
one another most likely belong to negligible fault-tolerant
rotation ranges, the differenqe filter can also be used to
remove these samples. If AB is less than e where € > 0 is
another filter parameter, then the samples ﬁx and ﬁ(Hl are
both removed. The filtering process can be repeated as many
times as necessary to ensure all of the unwanted samples
are removed. An example of the difference filter is given in
Fig. 4. The unfiltered predicted fBx values are shown in Fig.
4(a), while the filtered values are shown in Fig. 4(b). This
example demonstrates the filters ability to remove outliers
and samples that belong to negligible fault-tolerant rotation
ranges.

Once the outlying samples have been removed, the re-
maining samples within the same rotation range are grouped
together. This can be accomplished using a procedure similar
to the difference filter. Based on the remaining Bx samples,
A[i'x is recomputed along with its mean and variance, pa
and 03 . Instead of removing samples that have a large dif-
ference between them, these large differences are now used
to determine the boundarles of each fault-tolerant rotation
range. Therefore, if Aﬁx — pa is less than fy oa, where
v > 0 is not necessarily equal to «, then ﬁx and 6,&””
are considered to belong to the same rotational range. The

B
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Fig. 4. The predicted Bx values both before and after the difference
filter is applied are shown in (a) and (b), respectively. Very few of the Sx
values remaining after applying the difference filter are outliers or belong
to negligible fault-tolerant rotation ranges.

boundaries of the fault-tolerant rotation ranges are found
when this condition is violated. These boundaries are used to
define the R fault-tolerant rotation ranges for the workspace

location x, denoted [gi”,ﬁff)} for1<r<R.

B. Training Mixture Density Networks

The key component of the above proposed method is to
use the mixture density network to learn the relationship
between artificial joint limits and the resulting fault-tolerant
workspace for a given robot. To achieve this goal, many
different combinations of artificial joint limits are used to
train the mixture density network. Because the workspace
dimension is two, the hyperplane in Fig. 1 is reduced to a
line along the x-axis. Therefore, only the workspace locations
along the x-axis need to be sampled. The first step in
collecting the training data is defining a set of random
artificial joint limits. Using these artificial joint limits, the
fault-tolerant rotation ranges using the traditional method
are computed for a set of workspace positions along the x-
axis. This process is repeated to form a dataset of different
grid centers, artificial joint limits, and fault-tolerant rotation
ranges.

After the dataset is created, the mixture density network is
trained on the resulting data. The inputs to the mixture den-
sity network are the artificial joint limits and the workspace
position along the x-axis for which the fault-tolerant rotation
range is being predicted for. The outputs of the mixture
density network are X' GMM mixture components, 7y, [k,
and o7, relative to the input parameters. The mixture density
network is trained using backpropagation to minimize the
following negative log-likelihood error

——Zlog

where Z represents the set of input parameters, Y represents
the set of By values uniformly distributed between the fault-
tolerant rotation ranges of the given workspace location, and
N represents the total size of the dataset. The probability of
y@ occurring given z( is derived from the equation of the

L(Z,Y) (y¥z")) ©)
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GMM as follows

—(y — 1 (2))?

Zmak oo () o

IV. OPTIMIZING ROBOT PARAMETERS AND ARTIFICIAL
JOINT LIMITS

After the above method is developed to efficiently compute
the fault-tolerant workspace, the problem of optimizing the
artificial joint limits to maximize the area of the fault-tolerant
workspace for a given robot is studied in this section. This
optimization problem can be formulated as

(7 -27)

where A is the set of artificial joint limits, and p is the length
of the grids along the x-axis. The objective function Ap is
the area of the fault-tolerant workspace. Conceptually, this
can be computed by sweeping the grid associated with each
workspace location x about its fault-tolerant rotation range
[gfj),ﬁff)]. The constraint a; = —a; is added because the
area of the fault-tolerant workspace is affected only by the
difference of the limits of joint one.

Because this optimization objective is very complicated
and contains many local maxima, the best choice of opti-
mization algorithms is a global optimization method such
as a genetic algorithm. To make use of a genetic algorithm
to solve this problem, the concepts of population, fitness,
crossover, and mutation must be defined. The population in
this work is composed of different sets of artificial joint
limits. The fitness of each member of the population is
defined as the A value computed for that specific member.
To perform crossover between two sets of artificial joint
limits, the new upper limit of each joint is the average of
the two upper limits of each set of joint limits for that joint,
and likewise for the lower limits. To mutate a set of artificial
joint limits, one of the joints is chosen at random and its
artificial joint limits are set to random values, making sure
to keep the upper joint limit larger than the lower limit. By
solving this optimization problem using a genetic algorithm,
the artificial joint limits which maximize the area of the fault-
tolerant workspace for a given robot can be determined.

max Ap=p- > Zx

xeX r=1

€))

st. a; =—ay

V. RESULTS

To validate the ability of the proposed method to produce
accurate fault-tolerant workspaces, a dataset is created using
a planar 3R robot with link lengths of 1.25m, 0.5m, and
1.25m; 20,000 different sets of artificial joint limits; and
the fault-tolerant rotation ranges associated with each set
of artificial joint limits for the given robot. The mixture
density network used to learn the GMM parameters is a deep
feedforward neural network with 3 hidden layers having 100
neurons each. The activation function for each of these layers
is the leaky ReLU function. The final layer is a linear layer
with 3 x K outputs: 7y, i, and a,%, where K = 5 in these
experiments. Once the mixture density network is trained
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(2) (b)

Fig. 5. The actual (a) and predicted (b) fault-tolerant workspaces of the
planar 3R robot with link lengths of 1.25m, 0.5m, 1.25m and artificial joint
limits of [0°,0°], [—180°,180°], and [—180°,180°] are shown.

on this dataset, its performance is analyzed by using it to
predict the fault-tolerant workspace of the above planar 3R
robot with artificial joint limits of [0°,0°], [—180°, 180°],
and [—180°,180°]. The actual and predicted fault-tolerant
workspaces are shown in Fig. 5, where the predicted fault-
tolerant workspace is very similar in shape to the actual
fault-tolerant workspace. The same training process is used
to learn the fault-tolerant workspace of the robot with link
lengths of 0.5m, 1.0m, and 1.5m given arbitrary artificial
joint limits. Two examples of the actual and predicted fault-
tolerant workspaces are shown in Fig. 6 and Fig. 7, where
the predicted fault-tolerant workspaces are again very similar
to the actual fault-tolerant workspace. A high-performance
cluster node with 192GB of RAM and a 48-core, 2.1-
GHz Intel Xeon CPU is used to compute the actual fault-
tolerant workspace. The predicted fault-tolerant workspace
is computed on a laptop with an Nvidia MX150 GPU and
3GB of VRAM. The computational time required to compute
the actual fault-tolerant workspace was roughly 60 seconds,
while the proposed method required only 0.15 seconds.

The proposed method is also validated by computing A
as a part of the fault-tolerance optimization process described
in Section IV. The goal of this optimization is to compute the
optimal artificial joint limits which maximize A for a robot
with link lengths of 0.5m, 1m, and 1.5m. Because the mixture
density network is used during each iteration of the genetic
algorithm, its computational efficiency greatly impacts the
speed of the optimization process. With a population size
of 100 sets of artificial joint limits, a single iteration of
the genetic algorithm using the mixture density network
takes 15.41 seconds, while it takes roughly 6000 seconds to
calculate the area of the fault-tolerant workspace for these
joint limits using the method from [15]. The final output
of the genetic algorithm is the optimal artificial joint limits
[-11.4°,11.4°], [-126.1°,126.1°], and [—137.5°,137.5°]
which maximize the area of the fault-tolerant workspace
with the result Az = 4.65m?. Both the actual and predicted
fault-tolerant workspaces are shown in Fig. 8. This example
demonstrates the efficiency and accuracy of the proposed
method.

The proposed method is finally validated by placing a tra-
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Fig. 6. The actual (a) and predicted (b) fault-tolerant workspaces of the

planar 3R robot with link lengths of 0.5, 1.0m, 1.5m and artificial joint
limits of [—68.8°,68.8°], [—126.1°,126.1°], and [—114.6°,114.6°] are
shown.
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Fig. 7. The actual (a) and predicted (b) fault-tolerant workspaces of the

planar 3R robot with link lengths of 0.5, 1.0m, 1.5m and artificial joint
limits of [—11.4°,11.4°], [-126.1°,126.1°], and [—137.5°,137.5°] are
shown.

jectory inside of the predicted fault-tolerant workspace, plac-
ing another trajectory outside of the fault-tolerant workspace,
and demonstrating that the trajectory inside the fault-tolerant
workspace is achievable after an arbitrary joint failure, while
the other trajectory is not guaranteed to be achievable. This
experiment is performed using the 7 DOF Kinova Gen3 robot
arm with joints 1, 3, 5, and 7 locked, which reduces the arm
to a planar 3R robot. The proposed fault-tolerant workspace
prediction method is used to search for the artificial joint lim-
its which produce a fault-tolerant workspace that contains the
example fault-tolerant trajectory. The produced artificial joint
limits are [—30°,30°], [—100°,100°], and [—100°,100°].
Once the fault-tolerant workspace is computed, the example
fault-tolerant trajectory is placed inside of it as shown by the
green points in Fig. 9(a)-9(c). It can be seen that the robot is
able to complete the entire trajectory after joint 2 is locked
in Fig. 9(a), joint 4 is locked in Fig. 9(b), joint 6 is locked
in Fig. 9(c). By contrast, a trajectory is placed outside of
the fault-tolerant workspace, as shown by the green points
in Fig. 9(d)-9(f). Although the task is completed when joint
6 is locked in Fig. 9(f), the task fails when joint 2 is locked
in Fig. 9(d) and when joint 4 is locked in Fig. 9(e).

VI. CONCLUSION

This paper develops an innovative, efficient method of
predicting the fault-tolerant workspace of planar 3R robots

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on August 04,2024 at 03:19:39 UTC from IEEE Xplore. Restrictions apply.



a Kinova robot arm. The results show that the trajectory

2 2 -‘ placed inside the predicted fault-tolerant workspace can still
1 1 ?‘ be completed despite arbitrary joint failures. This algorithm
SO 0 ‘ will be extended to robots with high degrees of freedom in
. ’ future works.
| N
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