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We revisit the derivation of the apparatus-dependent correction to the energy levels of quantum cyclotron 

states, as previously outlined [Boulware et al., Phys. Rev. D 32, 729 (1985)]. We evaluate the leading 

corrections to the axial, magnetron, cyclotron, and spin-projection-dependent energy levels due to the 

altered photon field quantization in the vicinity of a conducting wall. Our work significantly extends 

previous considerations. Quantum cyclotron states are used for the determination of the electron g factor in 

Penning traps. Our calculations show that the numerically largest apparatus-dependent corrections can 

be expected for the axial and magnetron frequencies, where they can be as large as 10-® in relative units. 

For the cyclotron frequency, one can expect corrections on the order of 107!?, which can affect the 

determination of the anomalous magnetic moment of the electron. 

DOI: 10.1103/PhysRevD.107.076014 

I. INTRODUCTION 

Current g factor measurements are carried out in Penning 
traps [1-6], not in empty space. The measurements aim to 
determine the g factor of the free (unbound) electron to 

utmost precision. Yet, in an actual measurement, the 

trapped electron is in a bound state (a quantum cyclotron 
state), and, moreover, its radiation field is subject to the 

boundary conditions set by the walls of the trap. The 
uniform magnetic and the quadrupole electric fields of 
the Penning trap confine the quantum orbit of the electron 
to a region whose spatial dimension (in the direction 
perpendicular to the magnetic field of the trap) 1s of the 
order of the quantum cyclotron Bohr radius 

AQ.¢ = 4/—_: (1) 

Here, w, = |e|By;/m is the cyclotron frequency, which we 
assume to be larger than the magnetron and axial frequen- 
cies of the Penning trap. The electron mass is denoted as m, 
while the uniform magnetic field of the Penning trap is 

denoted as By, and its modulus is By = |By|. (One usually 
assumes that it 1s directed along the z axis, but, in the 

current context, we reserve the z axis for a different 

symmetry in the problem.) 
In the direction parallel to the magnetic field of the trap, 

the quantum orbit of the bound electron is confined to a 
region commensurate with the axial Bohr radius 

a9. = ’ (2) 
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where @, is the resonance frequency of the harmonic 
oscillator corresponding to the axial, confining, quadrupole 
electric field of the trap. 

On the classical level, corrections to the motion of the 

electron inside the trap due to mirror charges have been 
discussed in Ref. [2]. These calculations, however, do not 

include effects mediated by field quantization. Notably, the 
perturbation of the quantum electrodynamic self-energy of 
the bound electron due to apparatus-induced effects has 
been discussed in Ref. [7]. For completeness, we should 

point out the existence of alternative treatments (e.g., 
Ref. [8]). It turns out that subtle considerations related 

to the choice of gauge for the vector potential correspond- 
ing to the magnetic trapping field [9] invalidate the analysis 
leading to a previously claimed, numerically large effect 
[8]. The preferred treatment available in the literature, 

which takes into account the quantum cyclotron wave 
functions and energy levels, is Ref. [2]. Here, we extend the 

treatment outlined in Ref. [7] to include the apparatus- 
dependent correction to the axial frequency and the spin- 
flip frequency. Subleading corrections to the cyclotron 
frequency are also analyzed. In comparison to the full 
Penning trap geometry, we here simplify the situation 
somewhat and consider, just as in Ref. [2], the electron 

to be in the vicinity of a perfectly conducting wall, which is 
assumed to be located in the xy plane. 

This paper is organized as follows. In Sec. II, we lay the 
foundations for the later analysis by recalling the quantum 
cyclotron wave functions (Sec. IIA), the definition of 
the photon propagator (Sec. ITB), and the environment- 
induced corrections to the photon propagator in the vicinity 
of a conducting wall (Sec. II C). The apparatus-dependent 
correction to the photon propagator is discussed in Sec. III. 
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In Sec. HTA, we find a useful representation of the 
correction to the self-energy of the electron bound in a 
quantum cyclotron state in Eq. (26). Corrections to cyclo- 
tron and axial frequencies are discussed in Sec. IIT B, while 
the treatment of the spin-flip frequency is reserved for 
Sec. IJ] C. Conclusions are drawn in Sec. IV. From now on, 

we use natural units with A =c =e) = 1. 

Il. QUANTUM CYCLOTRON 
AND PHOTON PROPAGATOR 

A. Minireview on quantum cyclotron states 

In order to understand the quantum cyclotron levels 
inside a Penning trap, it is, first of all, necessary to 

remember that the kinetic momentum is given by 

where Br = Byé, is the magnetic field in the trap and 

Pp = —iV is the kinetic momentum operator. We temporarily 
assume, for definiteness, that the magnetic field of the trap is 

directed along the z axis, which is also the axis of the electric 

quadrupole potential. The variable 7 measures the distance to 
the origin of the coordinate system, which is chosen to 

coincide with the center of the quantum-mechanical prob- 
ability density; i.e., in the sense of Eq. (10), one has 

(Wrens |?lWkens) = 0. The kinetic momentum Zz enters the 
velocity-gauge interaction Hamiltonian describing the cou- 
pling of the bound electron (inside the Penning trap) to the 
quantized electromagnetic field. 

The quadrupole electric field in the trap is attractive 
along the z axis and repulsive in the xy plane: 

V=V.+V), VV=0, (4a) 
1 1 

V.= sore, Vi = —qnap>. (4b) 

The unperturbed Hamiltonian is given as follows: 

(6+ zy)? € 2 3B Hy = ———— + V -——ko - By. 5 
0 2m + 2m ROC BT (>) 

Eigenfunctions of the unperturbed Hamiltonian Ho are 
described [10] by four quantum numbers: the axial quan- 
tum number k, the magnetron quantum number 7, the 
cyclotron quantum number n, and the spin projection 
quantum number s = +1. These take on the following 
values: k = 0,1,2,... (axial), 7 = 0,1,2,... (magnetron), 

n=0,1,2,... (cyclotron), and s = +1 (spin). We recall, 

from Ref. [11], the energy eigenvalues of Ho: 

Ss 1 
=o,(1 + K)5 + OH) (n+5) 

ro(te!)-on(e+). 6 
Ekéns 

It is of note that, in view of the repulsive character of the 
quadrupole potential, these eigenvalues are not bounded 
from below. From Ref. [11], we recall the definitions for 

@ +4), Which is the generalized cyclotron frequency, and 

@_), which is the generalized magnetron frequency: 

1 
OH =5 @ + 4/@2- 202) Xe, (7) 

1 aw 
01) =5 (@e~ ya? - 207) w=, (8) 

Matrix elements of the kinetic momentum operators can be 
evaluated by expressing the Cartesian momentum operator 

components of the kinetic “trap” momentum z‘ in terms of 
raising and lowering operators of the magnetron, cyclotron, 
and axial motions. The algebra becomes rather involved. 

For reference, we may express some examples for the 
matrix elements as follows: 

(ahh) = (64 — BLBL YP, + BBL P+ ic BLP, (9a) 
(3n-—k+ l)ayjym  (n— 3k —1)ay_ym 

1” 4 r 4 
k+1)@2 1 

+ (n+ k + Voom wy (: + 5) wm, (9b) 
4(@(4) — -)) 2 

1 1 
P,= (i-+5)oum P3 = — zm. (9c) 

The structure of the results reflects the fact that the quantum 
numbers of the virtual states contributing to the matrix 
elements differ by at most unity from those of the reference 
state. (As pointed out in Sec. ITA, one can express the 

momentum and position operators as linear combinations 
of raising and lowering operators for the cyclotron, magnet- 
ron, and axial motions.) The above approximation for P; is 
obtained in the limit w, > 0, w_) > 0, and a) > @,. 

We use the conventions of Refs. [10,11], for the cyclotron 

lowering and raising operators a.) and aj 4 the axial 

lowering and raising operators a, and a‘, and the magnet- 

ron lowering and raising operators a;_) and a): Kinetic 

momentum operators, and position operators, can be 
expressed in terms of linear combinations of the raising 
and lowering operators [10,11]. 

The eigenfunctions of the unperturbed Hamiltonian are 
given as follows: 

pa (). 0 
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The spin-up (s = +1) and spin-down (s = —1) ground- 
state wave functions are given as follows: 

1/4 1 

x (“) exp (— Sma? a (11) 

The spin-up sublevel of the nth cyclotron ground state and 
the spin-down sublevel of the (n + 1)st excited cyclotron 

state are quasidegenerate and of interest for spectroscopy 
and determination of the anomalous magnetic moment of 
the electron [1-4]. For typical trap parameters, the spatial 
extent of the quantum cyclotron wave function along the 
magnetic-field axis extends over the micrometer range, 
while a strong magnetic trapping field confines the quan- 
tum motion in the plane perpendicular to the magnetic-field 
axis, here assumed to be the xy plane, to the range of about 
10 nm (see Figs. 1 and 2). 

For absolute clarity, we should stress that the treatment 

outlined in the current “minireview” section assumes that 
the magnetic field is oriented along the z axis. For the 
remainder of this article, however, this assumption is being 

relaxed, and we calculate with an arbitrary axis for the 

magnetic trap field, defined by the unit vector By. In the 

2 
| WF x=71=2)1n=0) 

2.0 x 102°m-$ 

1.5 x 10°°m-3 

1.0 x 107°m=-3 

0.5 x 102°m-3 

0.0 

FIG. 1. Using parameters from Ref. [10], @,. = 2a x 164.4 GHz, 

@, = 2a x 64.42 MHz, and @-) = 2a X 12.62 kHz, we calculate 

the probability density |y|? = |weéns(7)|? of the quantum cyclotron 
state with quantum numbers k=7, n=O, and ¢&=2 [see 

Eq. (10)]. The quantum numbers describe the seventh axial excited 
state (k = 7), the cyclotron ground state (n = 0), and the second 

excited magnetron state (¢ = 2). Of course, per Eq. (10), the 

probability density remains independent of the spin projection s. 

The spatial extent of the probability density in the xy plane and in 
the z direction is commensurate with the generalized Bohr radii, 

which are (for the given parameters) equal to dg. = \/h/ (m@,) = 

10.6 nm (cyclotron) and ag, = \/h/(m@,) = 0.435 pm (axial). 

Note that, in the plot, we have assumed the magnetic field of the 

Penning trap to be directed along the z axis. 

2 
|W Kx-71-2)1n=0) 

2.5 x 10° m3 

2.0 x 107°m-$ 

1.5 x 102°m-$ 

1.0 x 10°°m-3 

0.5 x 107°m-$ 

0.0 

40 

FIG. 2. The same as Fig. 1, but for the state with quantum 

numbers k = 7, n = 1, and @ = 2 [see Eq. (10)]. As compared to 

the state with n = 0, one has a more complicated structure of 

the wave function in the xy plane, due to the excited cyclotron 

motion. 

following, the conducting wall will be assumed to be 
(strictly) oriented in the xy plane, so that the distance 
vector from the conducting wall to the center of the 
quantum cyclotron state is oriented along the z axis. This 
assumption also underlies the formulas for the correction 
to the photon propagator induced by the wall, which is 
outlined in Sec. ITC. 

B. Definition of the photon propagator 

Before we discuss details, let us briefly mention a 

notational dilemma: Namely, the photon wave vector is 
usually denoted as k in the literature (see, e.g., Ref. [12]); 

yet, the axial quantum number for a quantum cyclotron 
state is denoted as k, which could very easily be confused 
with the modulus of the wave vector. One might consider 
changing the notation for either quantity in the current 
investigation; however, this would lead to a clash with the 

existing literature. Hence, we here keep the vector character 

of the photon wave vector k in all formulas and denote its 

modulus by |k|, so that we can reserve k for the axial 

quantum number. Thus, we use the notation k # \k| 
throughout this article. 

For the later calculations, it helps to write the photon 
propagator in the vicinity of the wall in a specific 
representation. For the spatial components (i, 7 = 1, 2, 3) 
of the unperturbed photon propagator (free boundary 
conditions), in Coulomb gauge, we use the representation 

d'i(\k|, 7,7) 
LE 2 

Dilo.F.?) = | a(ike) 
0 k° — w* —ie€ 

Pk... + elk?) 

k° — w* —ie€ 
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where dQ, is the infinitesimal solid angle of the k vector, 

arty ean IAL f We ae ryeLae 
ai (|B?) = | Sse Mstti(k), (13) 

and 

kiki 5K) = 89 (14) 

This convention differs by a relative minus sign from the 
ones used in Eq. (9.72) in Ref. [12] and is in agreement 

with the ones used in Eq. (1.10) in Ref. [7]. The correction 

5D'/ due to the conducting wall, assumed to be located in 
the xy plane, ensures that the tangential components of the 
electric field vanish at the boundary. It can be written as 
follows: 

dd"! (|k|, Bs P') Cc 

SD (ev, p, p -| d(|k|?) = (0.5.9) = [° alk?) 
d?k 4 ik-p-ik-p! 

=- | Soi@®=——. (15) 
(27) k —@* —ie 

where 

oe > o> 3S \k| dQ, TB ear D> 

6dJ (|k\, p, p') = -—— | —elk Pig p(k), 16 (\k|,,p") >| Gar (k). (16) 

The conventions for the involved momentum vectors are as 

follows: 

G = {kk -k} = (ke, 3, (17a) 

gi = ki — 2K 6%, (17b) 

> naenre i J 

pti(R) = sii — RR: a i= §8  (17¢) 

We have the relations kith/(k) = t+“i(k)gi =0. The 
environment-induced correction (15) is no longer trans- 

lation invariant, which raises the question of the precise 
definition of the origin of the coordinate system. The 
formulas (15) and (16) are valid provided we define the 

origin of the coordinate system to be the point in the xy 
plane (the plane of the conducting wall) located directly 
under the center of the quantum cyclotron wave function. 
[This is in contrast to the coordinate 7 used in Eq. (3), 

whose origin is defined to coincide with the center of the 
probability density of the quantum cyclotron wave func- 
tion; we assume the origin of the coordinate system to lie in 
the plane of the conducting wall for the remainder of this 

article.] This implies, in particular, that the vector R from 
the conducting plate to the center of the quantum cyclotron 

state has only a z component, R= Ré,. The expression 

for 6D‘) follows from the representation for D/ by the 
replacement d‘/ > éd‘/, 

C. Corrections to the photon propagator 

For later calculations, we will need the photon propa- 
gator and its gradient for equal arguments 7 = 7’ = R, 

where R = zé, is the position above the conducting wall. In 
particular, we need a result for the following expression 

(where we assume that R = RR = Ré.): 

6D'i(w,R, R) = -l oe , (18) 

where qv is defined according to Eq. (17a). One uses the 

relation d?k = 1 dQ,d(\kI?)|kl, performs a partial-fraction 

decomposition of the expression 1/ (kK? — @” — ie), and 
uses the symmetry of the resulting integrand under the 
substitution k + —k, changing the integration interval to 
(—oco, co). The result is, after some algebra, 

exp(2i|@|R) 

82R 

i 1 
x {1+ - 

( 2|a|R Tory) 
_ pipi _ exp@ila|R) L+ i . 

82R(|o|R) 2\@|R 

|jo| = Va + ie. (19) 

The expression |@| is the modulus of the photon frequency, 
defined so that Im|q@|, i.e., assuming that the branch cut 

of the square root function is along the positive real axis 
[13,14]. In particular, the zz component (i = 3, j = 3) 1s 

dD'i(w, R, R) = —(6/ — R'R/) 

° z ~ cos? 
6D3(w@,R,R) = pee

 

* ke — aw —1e 

“(EE a) 
where 6; is the polar angle of k (k? = kcos@,). Note that, 

in Ref. [7], the term 5D** was neglected based on the 
argument [see the text following Eq. (A7) in Ref. [7] ] that, 

since D*? involves the factor 1 —cos* 6,, it should be 

smaller asymptotically than the 5D!! and 6D*? terms. 
However, a closer inspection, described in detail below, 

reveals that the result for 5D*°, in fact, eventually yields the 
dominant apparatus-dependent radiative correction to the 
energy spectrum of the quantum cyclotron levels, expressed 
in terms of the axial frequency (see also Ref. [15]). 
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In the leading order in the 1/R expansion, the result (19) 

is In agreement with Eq. (A9) in Ref. [7]: 

2ilw@|R 

6D; % —(54 , 
v ( An(2R) 

_ R'R/) (21) 

Note that the result given in Eq. (19) is not equal to the 
classical, retarded result for the Green function (see Chap. 2 
in Ref. [16]); namely, the @ in the classical result needs to 

be replaced by |a. 

HI. APPARATUS-DEPENDENT SELF-ENERGY 

A. Exploration and useful representation 

The interaction Hamiltonian of the electron bound in a 
quantum cyclotron level to the quantized electromagnetic 
field, described by the vector potential A of the quantized 
field (see Chap. 2 in Ref. [12]), 1s expressed as 

> > >? > € 2 > 

iy = p — eAy = p ~~ (Br x7), (23) 

where 7, is the kinetic momentum for the trapped electron 

and At is the vector potential of the trap field. As outlined 
in Sec. IT A, quantum cyclotron states are described by the 
axial (k = 0,1,2,...), magnetron (? = 0,1,2,...), cyclo- 

tron (n = 0,1,2,...), and spin (s = +1) quantum numbers. 

The bound-state energies are denoted as E = Ej /,,. 

In order to discuss the environment-induced correction to 
the quantum cyclotron energy levels, we need a convenient 
representation for the (nonrelativistic) self-energy of these 
states. This is because the exchange of hard virtual photons 
with an energy on the order of the electron mass scale is not 
influenced by the environmental conditions, and, in turn, 

for the discussion of infrared photons, a nonrelativistic 

approximation is sufficient (see also Chap. 4 in Ref. [12]). 
Let us see if the following general ansatz for the self-energy 
and its correction makes sense: 

2 

Esp = - sl ale| [ er Jer 
k'é'n fgf 

y Viens Paw en's Pl lW peng (Pe Wrens”) 

Events! — Exens + |k| — ie 

x dii(\k|, R+7,R+7) 

x d'i(\k|, R, R). (24) 

One sums over all possible virtual quantum cyclotron 
states, which carry the primed quantum numbers k’, 2”, 
n’, and s’. Furthermore, Ho is the unperturbed Hamiltonian 

for the electron inside the Penning trap, as defined in 
Eq. (5). The expression Ey = FE;¢,, is a shorthand notation 
for the energy of the reference state. Furthermore, K is an 
ultraviolet cutoff parameter for the virtual photon momen- 
tum which is matched with the infrared divergent slope of 
the Dirac F’, form factor of the electron [12,17—19]. For the 

environment-induced correction, we can replace K — oo in 

view of ultraviolet convergence. 
Here, the expression after the first equal sign is approxi- 

mated by the expression after the second equal sign, 

replacing d/(\k|,R+7,R +7?) > d'i(|k|,R,R). For the 
unperturbed self-energy, this replacement corresponds to 
the dipole approximation [12]. In view of the translation 
invariance of the unperturbed photon propagator, one might 

otherwise set R = 0. (This is different for the apparatus- 
induced correction, which is manifestly not translation 

invariant.) The operator 7/4 = -iV' - eA, (7) in Eq. (24) 

acts on the primed coordinate 7’. One takes note of the fact 

that, in bra-ket notation, f[ Bry, pint EE TWens(P) = 

(k’C'n's'|a>|k@ns). However, the presence of the term 

d'i(|k|,7,7) in the integrand in Eq. (24) prevents one 
from simplifying the integrand unless one replaces 

d'i(\k|, 7.7) > dY(K RR). 
In summary, we use the convention that unprimed 

quantum numbers denote the reference state, while primed 
quantum numbers denote the virtual state. The expression 
after the first equal sign in Eq. (24) serves as a definition of 
the expression after the second equal sign. We use the 

convention that a’, = -iV’ — (e/ 2)(B x 7’) is the kinetic 
momentum operator with respect to the primed coordinate. 

The unperturbed self-energy (without the wall) for an 
electron bound is found to be 

Bye =~ [ey je rf alka (\k|,R R+7, 

x (#4 “') 
Hy - Eo + \k| —1€ 

e 1 

<i [alts 4) m "Ho — Eo + |k| — ie 

ll ay sii kiki 
= 

_ 2a 1 a Pe . =r) (25) 
™ Fo — Ho —|k| +ie™ 

In the second step, we have employed the dipole approxi- 
mation and have replaced a factor e“("-”) by unity. The 
final expression in Eq. (25) is precisely the result we would 
otherwise obtain from a Bethe logarithm calculation (see 
Chap. 4 in Ref. [12]). 

Eventually, Eq. (24) describes the low-energy part of 
the self-energy, which is due to low-energy virtual 

R+?) 
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photons—those with an energy of the order of the atomic 
binding or of the binding energy inside the Penning trap. 
The idea is that the dominant correction due to the modified 
boundary conditions could, in principle, influence only 
low-energy (long-wavelength) photons. Hence, as we 

replace d'i(|k|, R+7,R+?) > ddi(\k|, RE ZR+P), 
we can hope that we obtain ultraviolet convergent expres- 
sions which do not require additional renormalizations. In 
view of the above considerations, the apparatus-induced 
correction to the Bethe logarithm is finally found to be 

5Esp = — & [ai fa er 
» 7M 

y Wiens (FEW eern's (7 P)\[Wheer, / 

Epes! —_ Exens + 

x dd'i(|k|,R+7,R +7’) 

w(F i: tWeens( r’)| 

+ |k| —ie 

x dd‘i(\k|, R, R). (26) 

The theoretical errors induced by the replacement 

d'i(\k|, R4F,R47) > dd'i(\K|, R+7,R 47) are of 
the order of do/R and do,/R [where the generalized 
Bohr radii are defined in Eqs. (1) and (2)]. In view of typical 

trap parameters (see also Figs. 1 and 2), with the trap 
dimensions being in the centimeter range [10], the error 

induced by the approximation d‘/(|k|, R+7,R+7) & 

d'i(\k|,R,R) is less than one percent for the results 
| 

reported below (which pertain to small environment- 
induced effects anyways). 

B. Corrections to cyclotron and axial frequencies 

In order to evaluate the correction listed in Eq. (26), 

one expresses the momentum operators in the matrix 
element (z/,[1/(Ho — Eo + |k| — ie)|x/.) in terms of rais- 
ing and lowering operators of the cyclotron, magnetron, 
and axial motions. One then obtains, from the propaga- 
tor denominators, expressions of the functional form 

[1/(\k| + @ —ic)] + 1/(\k| -@ —ie)], where @ can be 
the cyclotron or the axial frequency. Let us derive an 
important intermediate relation (e — OT): 

1 1 2\k| 
> . + > . = 

|ki t+@—ie |k|-w—ie 2 
2 Te FO: (27) 

The last of the mentioned steps involves a redefinition of e. 
In fact, € is redefined as a quantity multiplied by k in the 
second line. The infinitesimal imaginary part in the 
expression after the equal sign in Eq. (27) is written in 
such a way that it displays symmetry under the replacement 

|k| > —|k|. This symmetrization is useful because one can 

then extend the integration interval from |k| € (0, 00) to 

|k| € (—oo, co) and use the Cauchy residue theorem. After 
writing the kinetic momentum operators in terms of raising 
and lowering operators for the magnetron, cyclotron, and 
axial motions and using Eq. (27) repeatedly, one obtains the 
result 

. 1 . a (k\(nt+4a, 
(#4 = x) ~ (6'/ — BL Bt) ( (n+ 3)@em _ 

Hy- 3 3 

Lo L 1 1 2 
2, aT Ai |k|(k +5)@,m 7 N@ 

: ) + BB ( : ~ 39 : 
ke? ar_) — ie k° — af _) -ie k? —@? -ie k~ — w? ie 

o > wo 

. n+ ho2m 1 klo,m (C+ 5) Wo) m — 5|k| im 
rielBh(t 2 7 : a $5 -), (28) 

k--ow-ie k’-w2-ie) k’-w-ie k’-w?-ie 

where k # |k| is the axial quantum number. The structure of 
these results is again reminiscent of Eq. (9). Furthermore, in 

the term proportional to (5‘/ — B.B/), we have kept the 
leading terms in the limits w, > 0, aw) > O, and 

(4) > @,. The term proportional to ¢/* BY vanishes after 

multiplication with the photon propagator. Terms that 

uniformly shift all quantum cyclotron levels do not lead 

to physically observable effects and can be ignored in 

Eq. (28). 

One decisive observation makes the calculation of the 
environment-induced correction to the quantum cyclotron 

energy levels easier: Namely, the quantities 6D’! and 6d‘ 

are related by an equation involving an integral over d( \k|?) 

and a weighting factor 1/(k° — w” — ie). Yet, the result (28) 

contains terms of the k/ (kK? —@* —ie), where w = @,, 

@ =a _), and @ = w,. When combined with the integral 

operator [ dk, expressions are obtained which exactly lead 

back to 6D”. 
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The induced correction to the self-energy is, with the help of Eqs. (19), (26), and (28), 

d(|k\?) e (1 fe a rere, 1 
O6Egp BW —-— [= =———— )éd'/(k, R, R)(67 — BEB! ~]|o,. se (5 [Pa path, RR) 07 ~ BB) (n +5) 0 

oT 

d(|K\?) e- 1 oo oe > SB As aA? 1 

——[-— —$——— ]dd/(k,R,R)BLBL( k += 
=(5/ Rw -) ( Br ( +5)e. oT 

2 rere 1 
~ ~ = spii(w,, R,R)(6" — BrBt) (: + 5) We 

2m 

2 

© sDii(a,,.B, R)(3 — BBL) (e+ 4) PO — ap (@_), R, R)(6" — ByBr) 15 0, 

e ij BD p\pi pi I — 5 6D'i(w.. R.R)B BY k +5 oo. (29) 

With the help of results of the form (5‘/ — R'R/)(64/ — BBL) = 1+ (R-B,)?, one obtains the final result as 

TO 2in,R 31 3 yh \2 i 1 1 SEgg = ei: | 1 - R-B,)241- - SE aR +R Woke | oa 20,R’ 4oR ES |\"* 2) 

*aR° IR Alo () 
TO. 2ia.R | | 1 _ l _(P.RB 

+ aR° +3aR Woke | 

We use the fact that ro = e?/(4am) = 2.8 x 107 cm is 
the classical electron radius. The above result is more 
complicated, and more complete, than the result recorded in 

Eq. (1.4) in Ref. [7]. In particular, the numerically large 
correction to the axial frequency is being included. One 
uses the fact that, for typical trap geometries, one has 

wR > 1, aR<«\1, oyR«K1. (31) 

Isolating the leading terms in the above limits and taking 
the real part of the energy shift, one obtains 

6Egp & cos (20,R) [1 + (R- By)Jo, (» + 5) 

+——9 
16a_)@,R? 

[1 +(R 

(R- By? -3}a,4(¢ +5) 

+—? 
162 R? 

ByPlw.(i-+5). (32) 

The result given in Eq. (2.7) in Ref. [7] contains the first 
term on the right-hand side of Eq. (32). The results in 

Eq. (32) are written so that the relative corrections to the 

unperturbed spectrum (6) can be readily identified. 

{! sant aeep}| (ta) Bo) 

C. Corrections to the spin-flip frequency 

In order to obtain the spin-dependent correction to the 
self-energy, one needs to generalize the transition current to 
include the magnetic interaction. This can be done by 
considering Eqs. (11.111) and (11.115) in Ref. [12]: 

ad I 1+k 

m 2m 
ex V, (33) 

where the V operator acts on the photon vector potential 
field operator and x x a/(2z) is the anomalous magnetic 

moment correction [20]. The current operator j is valid for 

the annihilation part of the photon vector potential operator. 

For the creation part, one replaces V > -V. The self- 
energy of the quantum cyclotron state, taking into account 
the generalization of Eq. (26), with the spin-dependent part 
of the current (33) included, is 
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The operators V and V’ act on the photon propagation 

function dd‘/(|k|,7,7’), not on the quantum cyclotron 
states. We again use the approximation that, after the 
calculation of the gradient of the photon propagator, we 

can set F=7' = R. 
It is possible to obtain an order-of-magnitude estimate 

of the spin-dependent, environment-induced correction. 
Namely, the dominant term is obtained when the gradient 
operator in the current acts on the photon propagation 
function, which, in turn, contains the factor exp(2im,R) 

(for virtual transitions that change the cyclotron quantum 
number). Taking the scaling of the operators as derived in 
Ref. [11] into account, we have the following order-of- 

magnitude estimates: 

ar We 
— nm , i —— 

m m’ 2mm" (35) 

The leading environment-induced correction involves two 
operators z7/m [see Eq. (26)]. 

The spin-dependent term obtained by replacing one of the 
convective current operators in Eq. (34) by a spin-dependent 
current, therefore, constitutes a correction of relative order 

,/@,/m. If one replaces both convective current operators 

by spin-dependent terms, then one obtains a correction of 
relative order @,./m. 

From Eq. (34), we derive the term linear in the spin- 

dependent current, which leads to the first spin-dependent 
correction OE, jin, a8 follows: 

e fo os k 1 
bE gin =—s—a | Ak\Co = Tr 

2m 0 Hy — Eg + |k| — ie 

x (1+ xe VSI (\k,7,R)|-_g +H.c., (36) 

where H.c. denotes the Hermitian adjoint. A closer inspec- 
tion, though, shows that the matrix element in the integrand 

of Eq. (36) vanishes: 

of ! val 
Hy -Eg+k-ie T 

_ 3 (kEns\ot | C'nls!\(A' ern! sag ken) ~0, (7) 

Ken's! E gens! — Egens + || —1é€ 

and, therefore, 

OE giin = 9. (38) 

The identity (37) can be shown by considering that the spin 
operator acts only on the spin quantum number s of the 
reference state, while all Cartesian components of the 

momentum operator nl, alter the magnetron, cyclotron, 
or axial quantum number. Hence, there is no virtual state 

with quantum numbers q’@’n's’ which could contribute to 
the matrix element (37). 

The dominant spin-dependent correction is given by the 
expression 

e [os k 1 
6E, =-— d|k|(o = oP 

4m 0 Hy — Ey + |k| - ie 

x elk? eiPAVEV' 15d (\k|, 7,7") ~ (39) 
> 35 7 = 

Based on the order-of-magnitude estimates given in 

Eq. (35), we can establish that se wy es Le., the spin- 

dependent part of the apparatus-induced correction 1s 
suppressed in comparison to the spin-independent term 
by an additional factor @,/m. 

The calculation becomes easier if one considers the 
difference between spin-up and spin-down states. For an 
operator M, we denote the spin-dependent difference as 

«M)) = Wren(s=1)|M Ween(s=1)) 

_ (Wien(s=—1)|M Ween(s=-1))- (40) 

After some algebra, one obtains the following result for the 
spin-dependent matrix element of the propagator: 

; oR AG 20 
(o' — oi) = —(6'7 = Bi.B}) 

Hy — Eo + |k| t VR a2 ie 

ar 21k ye 
2 

— W@W; —1é€ 

wo, =(1+k)a. (41) 

The spin-flip frequency w, = @,(1 +x) is numerically 
close to the cyclotron frequency @,. In the limit 
|@|R > oo, one obtains the following results for the 
integral of the gradient of the photon propagation function: 

o 4 1 38 
| d|k| =; —-—— VE!” Sd’ (\kI, 7, r') - 

0 k’ —@* —ie 

AkPC(sij _ Pipi Jaleo’ 

In the long-range limit, the spin-dependent correction is, 
thus, found as 

ro @ : a A 

(5Eq) = — Ze eR + (R- Br)? on, 
2i@,R 

. go Oo “ \2 
_s —(R-B 

Again, rp is the classical electron radius. 
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In the short-range limit, the result is more complicated: 

oE,)) = —— J (1-(R-B R R)\-(R-B (Eq) = 5 (1 = (R= Br)? Jeo, "2 (wo R)?c9, = 2 (0, R)*(R Br) 
2 ix 13 r 

x 3 (In (2@,R) + YE) ~ 3 ~ 7 Ws + O (2, (o,R)'o, ’ @,R = 0. (44) 

Here, yp = 0.55721... is the Euler-Mascheroni constant. The complete result, valid for arbitrary distance R, constitutes 
and interpolating function between the long-range limit (43) and the short-range expression (44) and involves sine and 
cosine integrals: 

(6E,)) = ae {2.cos(2,R)[3@,R{Ci(—2w,R) + Ci(2w,R) — ia} + (3 — 4(@,R)2)Si(20,R)) 

+ sin(2@,R)[(—3 + 4(@,R)*) {Ci(—2@,R) + Ci(2@,R) — 2iz} + 12@,RSi(2@,R)] — 4@,R} 

+— © _(R. By)?42.cos(2@,R)[-w,R{Ci(—20,R) + Ci(2@,R) — 2ix} — (1 + (4@,R)2)Si(20,R)] 
32nmR? 

+ sin(2@,R)|(1 + 4(@,R)2){Ci(—2o,R) + Ci(2@,R) — 2iz} — 4@,RSi(2o,R)] — 40, R}. (45) 

The cosine and sine integrals fulfill the relations 

Ci(z) = - / ” dt cost (46) 

Si(z) =5- / * Te (47) 

Let us write the result (43) as a relative correction to the 

spin-flip frequency and isolate the real part: 

Cred x — MO 8 os(2u.R)(1-+ (R-By)?). (48) 

In this representation, the suppression of the spin-dependent 
correction by a relative factor @,/m ~ @,/m in comparison 

to the result (32) becomes particularly apparent. We re- 
member that @, ~ @, = @,(1 +x), where @, is the spin-flip 
frequency and x x a/(2z) is the anomalous magnetic mo- 
ment correction. 

IV. CONCLUSIONS 

We have considered the apparatus-induced quantized- 
field correction to the electron g factor in the vicinity of a 
conducting wall. We have argued, with Ref. [7], that the 
problem has to be considered in terms of the modification 
of the photon propagator, which enters the calculation of 
the quantum electrodynamic self-energy of the quantum 
cyclotron state. We have recalled that quantum cyclotron 
levels are characterized by four quantum numbers, the axial 
quantum number k, the magnetron quantum number 7, the 
cyclotron quantum number n, and the spin projection 
quantum number s. The relevant frequencies have been 

identified [10] as the axial frequency w,, the cyclotron 

frequency, w,, the magnetron frequency @,, © w2/(2@,), 
the cyclotron frequency ,, and the spin-flip frequency 
w@,~@,(1 +x), where x © a/(2z) is the electron anomaly. 
One needs to realize, though, that the “z axis” relevant to 

the calculation of the axial frequency w, is not necessarily 
equal to the z axis in our calculation. Namely, we have 
assumed that the conducting wall is oriented in the xy 
plane, with the origin of the coordinate system chosen to be 
directly below the center of the quantum cyclotron state 
wave function. That is to say, the distance vector from the 

conducting wall to the electron is R = Ré,. The axial 
frequency, however, 1s calculated with respect to the axis of 

the magnetic field By of the Penning trap, which is 

described by the unit vector By. Hence, in our final results 
we have encountered a lot of occurrences of the scalar 

product R. Br. 
For typical trap geometries [10], the hierarchy of the trap 

frequencies is @, & @, >> w,. The apparatus-induced cor- 
rection to the energy levels of the quantum cyclotron fulfills 
OE, > 6E, > 6E,. Our final results are as follows. From 
the spin-independent part of the self-energy, we obtain the 
apparatus-induced correction to the axial energy 6F, and 
the corresponding correction 6m, to the axial frequency 
[see Eq. (30)]: 

1 
OE, = OO, («+5), 

z_ 10 via R ae _ 59 2io.R |] 
Oo, 4R~ + 

i 1 
20,R 4(@,R)* 

—(R- By {I - cok + ronal . (49) 

076014-9



ULRICH D. JENTSCHURA PHYS. REV. D 107, 076014 (2023) 

For the magnetron frequency, one observes that, according 
to Eq. (6), the unperturbed contribution to the quantum 
cyclotron energy carries a negative prefactor: 

0@(-) _ 0 2ia@_)R c +4 31 3 

W(-) R 20 yR 4(@_)R)* 

A A 1 1 Oy_ 
R-By)?41- (50 

+(R Br) { sak Tomy | Oe (50) 

The correction 6F, to the cyclotron energy and the 
corresponding correction 6@, to the cyclotron frequency 
are obtained as follows: 

1 
OE. = 6O,. (: +5). 

In the limit m,R >> 1, the leading term of the correction to 
the spin-flip (Larmor) frequency is found as follows [see 
Eq. (30)]: 

6E(s = +1) -6E(s = -1) = 6a,, (52a) 

005 OL RB 2) OF eo, k w,R>1, (52b) 
wo,  8R Mem . 

where w, = @,(1 +x) is the unperturbed spin-flip fre- 
quency. The next-to-leading-order term for long range can 
be found in Eq. (43), the short-range expansion is displayed 
in Eq. (44), and the complete interpolating formula is found 
in Eq. (45). 

In order to estimate the magnitude of the corrections, 
we use parameters from Ref. [10], @. = 2a x 164.4 GHz, 

@, = 2m x 64.42 MHz, and O) = 2a X 12.62 kHz, as 

well as R = (1/3) cm (see p. 730 in Ref. [2]). One obtains 

the following estimates (we assume that R-B=1): 

ra) OW _ 
52x10, Ont 10-8, (53a) 
O: O-) 

P P 
Me 23x 1078, S898 x 10-2. (53b) 
We Ws 

In order to put these numbers into context, we should 
note that the above relative corrections pertain to a 
geometry with one conducting wall being located in the 
xy plane at a distance R below the center of the quantum 
cyclotron orbit. An idealized cubic trap would consist of six 

idealized conducting walls, so that the above numbers 

would be multiplied by a factor of 2+4x4= 4. This is 

because, for four of the six walls, one has R - By — 0 as 

opposed to R-By;=1. Also, we use the idealized 
assumption of additive corrections. Under these assump- 
tions, the relative correction to the cyclotron frequency 

potentially becomes as large as 107!” [see also Eq. (55)]. 
For the modified axial frequency of w, © 114 MHz and 
magnetron frequency of w_ ~ 43 kHz given in Ref. [21], 

the estimates given in Eq. (51) change to dw, /m@, ~ —3.0 x 

10° and 6a,_)/@_, ¥ —1.7 x 107°, respectively. The 
apparatus-dependent correction to the axial frequency 
becomes especially relevant if the cyclotron frequency 1s 
determined with the help of the invariance theorem, 

oO. = ee) +a +@?. 

Let us now discuss the signature of the apparatus- 
induced effects in an experiment. The correction to the 
spin-flip frequency ,, given in Eq. (51), is numerically 
suppressed in comparison to the results for the corrections 
to the cyclotron frequency in Eq. (51) and the axial and 
magnetron frequencies in Eq. (49) by a factor w,/m ~ 
@,/m and can, thus, be neglected. The correction to the 

axial and magnetron frequencies, while being numerically 
large, do not directly enter the determination of the 
anomalous magnetic moment of the electron. This is 
different for the correction to the cyclotron frequency, 
which enters the fundamental relation 

K=—-l, (54) 

that determines the anomalous magnetic moment of the 
electron. In order to classify matters, it is necessary to 
observe that the functional form of the result given in 
Eqs. (51) makes it hard to eliminate the effect from the 

experimental signal: The apparatus-induced correction to 
the cyclotron energy is equal to 6@,(n + 1/2), i.e., propor- 
tional to the unperturbed term w,(n + 1/2), and cannot be 
eliminated from the experimental signal by an elaborate 
combination of transitions with different quantum numbers 
n. All cyclotron levels are affected in the same way, 
independent of n. Furthermore, and this is an important 

observation, the functional form of the apparatus-induced 
correction to the cyclotron frequency is independent of the 
trap geometry as can be seen from the matrix element (28): 
The first term on the right-hand side of Eq. (28) is 

proportional to (n + 1/2) and will lead to a uniform 6a, 
for all quantum cyclotron levels when combined with the 

appropriate photon propagator correction éd'/ [see 
Eq. (29)] which depends on the trap geometry. More 
complicated trap geometries will lead to a more compli- 

cated form of dd‘/, but the result will still be a uniform 
correction 6@, to the cyclotron frequency for all quantum 
cyclotron levels. The uniform 6@, depends only on the 
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geometry of the trap and, of course, on the magnetic field 
By. Or, to put it differently, the degrees of freedom of the 
trap somehow “decouple” from the correction to the 
cyclotron frequency, leading to a uniform correction 6@, 
for all levels. 

The shift @, — @, + 6@, leads to an apparatus-dependent 
anomalous magnetic moment «+ 6x, where 6x is the 

apparatus-dependent correction, given by the formula 

K+ 6K = (55) 
oO. + 60- On 

For illustration, let us consider the case R-By =—1lin 

Eq. (32), restore SI units, and keep only the leading term for 
long range: 

re) 2\e|BrR 
bx = — ey — 9 G95 lelBrR ; (56) 

We 2R mc 

The right-hand side shows that the signature of the envi- 
ronment-induced effect would be a small (in this case, for the 

idealized situation of a conducting wall, cosinusoidal) 

modification of the anomalous magnetic moment with the 
strength of the magnetic field of the trap. The order of 
magnitude of 6x is given by the ratio of the classical electron 

radius to the trap dimension ro/R ~ 107"*, for rg = 2.8 x 

107! mand R = 3 x 107 m. If we assume, with Ref. [10], 

that w,. = 2a x 164.4 GHz and R=3x 107? m, then 
@-R/c 10.33 is large against unity. This means that, by 
varying the magnetic field strength of the trap moderately 

(e.g., by a factor of 2), one could change the argument of the 
cosine in Eq. (56) by roughly 10, which is (given the trivial 
inequality 10 > 2z) sufficient to cover a full oscillation 
period of the cosine, and map out the apparatus-induced 
correction to the g factor experimentally. 

Of course, different trap geometries could easily change 
the above rough estimates by an order of magnitude upward 
or downward and modify the functional form expected in 
Eq. (56) from a cosinusoidal dependence to a more complex 
functional form (whose form could still be mapped out 
experimentally by simply varying the strength of the 
magnetic field of the Penning trap). The general statement 
is that the signature of the apparatus-induced effect would be 
a small, but discernible, dependence of the cyclotron 
frequency, and, thus, of the anomalous magnetic moment, 
on the magnetic field strength in the trap. As indicated in the 
discussion surrounding Eq. (51), for typical trap parameters, 
the apparatus-induced effects should alter the determination 
of the anomalous magnetic moment at the level of 

6x ~ 107!*, plus or minus one order of magnitude. These 
results can also be relevant to other measurements, notably, g 

factor measurements of antiparticles [22] and atomic mass 

measurements in Penning traps [23,24]. 
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