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It is usually assumed that interaction potentials, in general, and atom-surface potential, in particular, can be 

expressed in terms of an expansion involving integer powers of the distance between the two interacting objects. 

Here, we show that, in the short-range expansion of the interaction potential of a neutral atom and a dielectric 

surface, logarithms of the atom-wall distance appear. These logarithms are accompanied with logarithmic sums 

over virtual excitations of the atom interacting with the surface in analogy to Bethe logarithms in quantum 

electrodynamics. We verify the presence of the logarithmic terms in the short-range expansion using a model 

problem with realistic parameters. By contrast, in the long-range expansion of the atom-surface potential, no 

logarithmic terms appear, and the interaction potential can be described by an expansion in inverse integer 

powers of the atom-wall distance. Several subleading terms in the large-distance expansion are obtained as a 

byproduct of our investigations. Our findings explain why the use of simple interpolating rational functions for 

the description of the atom-wall interaction in the intermediate regions leads to significant deviations from exact 

formulas. 
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I. INTRODUCTION 

A. Motivation 

We investigate the Casimir-Polder (CP) interaction poten- 

tial [1] between an atom and a dielectric surface, which arises 

due to quantum fluctuations of the electromagnetic field. As 

well known, (see Refs. [2-4]), the dominant term of the inter- 

action mediated by the dipole polarizability in the short-range 

limit is of the form 

vex—S, 2« 2, (1) 
z a 

where z is the atom-wall distance, a is the fine-structure con- 

stant, do is the Bohr radius, and C3 is a constant coefficient. 

In the long-range limit, retardation effects become important, 

and the dipole contribution to the atom-wall potential is de- 

scribed by the formula, 

C. a 
Vg)e—-S, 2>—, (2) 
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where C4, also is a constant coefficient. Atom-surface inter- 

actions are particularly interesting with regard to quantum 

reflection [5,6]. The functional form of atom-surface in- 

teractions has been verified for cavities [7,8], confirming 

theoretical predictions [9,10]. It has been an interesting prob- 

lem studied in Ref. [11] to find a suitable functional form 

for the interpolation between the 1/z° and the 1/z* regimes. 

The corresponding (dimensionless) interpolating function af- 

ter dividing out the leading short-range term has been termed 

the shape function [see Eqs. (34) and (35) of Ref. [11]]. 

One particularly simple functional form, which encompasses 

the interpolation, has been discussed in the literature (see 
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Refs. [5,11,12]), 

Vz) © C3 (3) 
4 
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where the second approximate relation is a consequence of the 
first. Here, € is a parameter, of order ag /a@ * 137 a9, which 

describes the transition point between the short-range and the 
long-range asymptotics. The functional form (3) constitutes a 

very simple rational interpolation between the short-range and 

the long-range asymptotics, regimes of the CP interaction. 
For (perfectly) conducting surfaces, in the transition region 

Zz © ao/a, a numerical evaluation of the complete expression 
for the atom-wall interaction potential, in general, shows good 

agreement with the interpolating form given in Eq. (3) as de- 

scribed in Refs. [3,5,11,13]. However, for realistic materials, 

the simple interpolating model (3) is less suitable to describe 

the transition region z © ag/a. Substantial deviations are ob- 

served in the transition region z * aj/a. Here, we argue that 

the difficulties in adequately approximating the exact potential 
with a rational function are not accidental, and find a natural 

explanation in the presence of logarithmic terms in the short- 

range limit, which defy an accurate representation or even 

approximation by a simple rational function. In particular, we 

find that the simple interpolating form given in Eq. (3) is not 

able to represent the exact atom-wall potential in the regime 

of intermediate atom-wall distances because of the presence 

of logarithmic terms in the short-range expansion, which are 

hard to approximate by a rational function of the atom-wall 

distance (see also Fig. 6). 

This paper is organized as follows. The (semi-)analytic 

structure of the short-range expansion of the atom-surface po- 

tential (which involves logarithms of the atom-wall distance) 

is analyzed in Sec. II. Numerical evaluations of the potential 
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and the verification of the analytic short-range coefficients 

are discussed in Sec. III. The long-range coefficients of the 

atom-surface potential are analyzed in Sec. IV, and numerical 

calculations are presented in Sec. V. Conclusions are reserved 

for Sec. VI. Syst¢me International (SI) mksA units will be 

adopted in the following except for the numerical calculations 

reported in Secs. III and V where we switch to the atomic unit 

system. 

B. Expansions involving logarithms 

We here argue that the correct short-range expansion of the 

atom-wall interaction can be written in the following form: 

T i 
V@a=- S- SH in (=) 

GB2nZ0)j ~ 

r qi 

~ > G2" fin (=) | (4) 
(n>0)j - 

which is a semianalytic expansion in powers of the atom-wall 

distance z and in powers of the logarithm In(2a@z/ag). The 

expansion (4) is valid forz < ©. The first index n of the short- 

range C,,; coefficients corresponds to the inverse power of the 

atom-wall distance z (functional form z~”), whereas, the sec- 

ond index j gives the power of the logarithm In(2@z/ao). The 

dominant term is obtained for n = 3 and 7 = 0 and reads as 
—C39/z°. It is of note that the presence of a logarithm numer- 

ically enhances a term in the limit z > 0, i.e., a contribution 

proportional to Cj); parametrically dominates a contribution 
proportional to Cig. The C3 coefficient from Eq. (1) qualifies 

itself as the C3o coefficient in the semianalytic expansion given 

in Eq. (4). Subleading terms involve powers z~" withO <n < 

3. Furthermore, the coefficients C,,; multiply terms involving 

positive powers of z, and are, thus, proportional to z”. They 

also involve the jth power of the logarithm In(2@z/ag). In 

other words, when the power of the atom-wall distance z is 

positive, we add a bar over the C coefficient. 
The expansion (4) can be written in terms of a sum of terms 

P,j(z) (describing terms proportional to z~” with integer 7) 

and P, j() (describing terms proportional to z” with integer 

n), 

V(z)= So Pajlz)+ D> Pail), (Sa) 
(n20)j (n<0)j 

; i 

Pyj(z) = —— [in (“)] | (5b) 
xz ag 

i 

Py j(Z) = —Cyj z" [in (=) . (Sc) 
0 

Specifically, for a nonperfect conductor in the limit z > 0, 
the short-range expansion has the functional form 

C. C 2 C 2 viy= ~~ Sin (SE) 8 gy, in (=) 
z a 

_ 2 

—Coo — C12 z In? (=) + O[z In(z)]. (6) 
0 

We here list the terms in ascending parametric order in the 

regime z < do/a. The results for the leading and subleading 

terms (proportional to C39 and C,,) can be found in Eqs. (35) 

and (37), respectively. We here suppress, in the notation, a 

possible temperature dependence of the coefficients, which 

could be caused by the explicit temperature dependence of 

the optical response of the medium (see, e.g., Ref. [14]). It 

is somewhat surprising that for a realistic dielectric function, 

which describes a (necessarily) nonperfect conductor, the term 

of order 1/z? vanishes. By contrast, in the limit €(w) — oo 

one obtains a nonvanishing 1/z” term (see Appendix A). 

Expressed differently, the limit €(w) — oo is approached 

nonuniformly (see also Ref. [4]). Some of the nonlogarithmic 

coefficients in the short-range expansion (6), notably the co- 

efficients Cig and Coo, involve logarithmic sums over virtual 

excitations of the atom, much in analogy to the well-known 

Bethe logarithm correction in atomic systems [15,16]. 

In the long-range limit, the appropriate expansion involves 

inverse powers of the atom-wall distance (no logarithmic 

terms) of the functional form z~”. The terms up to subsub- 

leading order are 

Cy Cy CG 1 
YO=-Go aT wets) (7) 

The expansion (7) is valid in the regime z >> ©. The long- 

range expansion is an expansion in inverse powers of n. Both 

Secs. III and V include numerical examples, which verify the 

accuracy of the (semi-)analytic expansions given in Eqs. (7) 

and (6). 

Il. SHORT-RANGE ASYMPTOTICS 

A. General considerations 

For a material with an angular-frequency-dependent di- 

electric function €(w), the atom-wall interaction potential 

V (z) the can be written as follows (see Refs. [3,13] and Chap. 

5 of Ref. [17]): 

V(z) -o| doatioyw® f dp H{e(iw), ple 7?”""", 
0 1 

h (8) 
802€9c3 

where H = H[e(iw), p] is defined in Eq. (9). The dipole po- 

larizability #(@) of the atom is evaluated at imaginary angular 

frequency argument. The atomic reference state is assumed 

to be the ground state; for an excited reference state, the 

derivation becomes more complex (see Ref. [18]). For com- 

pleteness, we note that fi is the reduced Planck constant, the 

vacuum permittivity is €9, and the speed of light is c. The H 

function is given as follows, 

O= 

e-l+p-p 
ve-1+p+p 

e—l+p’—pe 

ea 4 P+ pe 

A remark is in order. In principle, €(@) could depend on other 

variables, such as the temperature of the material. external 
pressure applied to the crystal, or, the concentration of impuri- 

ties or dislocations in the crystal structure. If P is the pressure 

and 7 is the concentration of impurities, then our notation 

A(€, p) = 

+(1-2p’ (9) 
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€ = €(iw) is taken to describe a functional relation of the form 

€(iw) = €(Tn, Pn, ...3iw). (10) 

The dimensionless parameter T, = (T — 7o)/7To has been 

used in Ref. [14] in order to investigate the temperature de- 

pendence of the dielectric function (7g denotes a reference 

temperature, taken as the room temperature in Ref. [14]). 

A further practical remark on the two-dimensional nu- 

merical integration of Eq. (8) also is in order. Namely, the 

numerical integration of Eq. (8) can prove to be a little 

more difficult than one would initially assume. For the con- 

venience of the reader, we may point out that numerically 

accurate results were obtained when we used Gaussian nu- 

merical quadrature methods adapted to the problem at hand. 

Specifically, we used Gauss-Legendre quadrature [19] for the 

regime of low p variable in Eq. (8), and Gauss-Laguerre 

quadrature [19] for the exponential tail in the p variable in 

Eq. (8), followed by a substitution in the @ variable, which 

maps the interval w € (0, oo) to the interval t € (0, 1) where, 

for example, @ = wot/(1 —t), and wg is a suitably chosen 

parameter of order unity in atomic units. The ¢ variable could 

then be integrated over using Gauss-Legendre quadrature. 

We are interested in the short-range asymptotics of the 

interaction potential V(z) for the range of z << ao/a = 

h/(a*mc), where m is the electron mass. In this range, 

the exponential damping due to exp(—2wpz/c) is not very 

pronounced. Typical atomic angular frequencies are in the 

range of w ~ a’?mc’/h. In this range of frequencies, one has 

wz/c < 1 forz « ao/a. Contributions from large @ are, thus, 

not significantly suppressed, and the region of large p and w 

contributes significantly to the integral. 

The expansion for z < ag/a has to be approached with 

extreme care. We first consider the integral over p where the 

integration region is the interval p € (1, 00). The presence of 

the exponential factor exp(—2@pz/c) and the fact that we are 

integrating from p = 1 to p = & (as opposed to starting the 

integration at p = 0) ensures that the exponential damping is 
still prevalent for small z, even if the exponential damping 

is not very pronounced. We will need the exponential sup- 

pression due to the factor exp(—2mz/c), which is still present 

after p integration, in order to ensure the convergence of the 

w integral. Thus, we cannot simply expand the exponential 

exp(—2wpz/c) in powers of its argument. 

However, we can expand the function H (€ (iw), p) for large 

p, and integrate over p, while keeping the exponential factor 

exp(—2wpz/c). We then apply the method of the overlapping 
parameter (see Chap. 4 of Ref. [17]) to the resulting integral 

over w. (The only caveat connected with the expansion of the 

function H(€(iw), p) for large p is that it is invalid in the 

integration interval around p ~ 1. This fact will give rise to 

an extra term to be discussed in Sec. ITD; but let us not worry 

about this aspect at the current stage of the derivation.) For the 

@ integration, we introduce a scale-separation parameter @ = 

A/h, where A has dimension of energy. We then consider the 

low-energy part (LEP) and the high-energy part (HEP) of the 

virtual photon energy integrals, 

LEP: @ € (0, A/A), HEP: € (A/fh, 00), (11) 

where A acts as an ultraviolet regulator for the low-energy 

part and as an infrared regulator for the high-energy part. In 

the low-energy part, one can expand the exponential, 

2 2 2 
exp (-~) = 1-4 o(=) (12) 

C C C 

in powers of its argument. The atom-wall distance is on the 

order of z ~ ao « ao/a for the short-range expansion. At the 

overlapping (transition) parameter @ ~ A/h, the expansion 

breaks down, and we have 

Az Aap hic 1 —~——~1, A~—=amc? = —E;, (13) 
hic hc ao a 

where E;, = a*mc? is the Hartree energy, which is unity when 

measured in atomic units. 

The atomic polarizability varies appreciably over the an- 

gular frequency range 0 < w < E,/h. In the high-energy part, 

where w € (A/h, oo), we can, thus, expand the atomic polar- 

izability for large argument w. 

Finally, we expand both the high- as well as the low-energy 

parts, first in z for small z, then in A for large A, keeping 

only terms that are divergent in the limit of large A. The 

dependence on A cancels out because A only constitutes an 

artificial scale-separation parameter (for an illustration of the 
method, see Chap. 4 of Ref. [17] and Appendix B). 

In order to consider the high-energy contributions to the 

short-range expansion of the atom-surface potential, the di- 

electric function and the dynamic polarizability are expanded 

in the following form: 

. a2 a4 4 
a(iw) = 7 + oF + O(@"). (14) 

This equation implicitly defines the coefficients a2 and a4. 

For the dielectric function, we write the following asymptotic 

expansion for large w: 

2 3 

€(iw) = 1+ St + (=) + (=) + (=): (15) 
a) a) a) a) 

Some remarks are in order. The coefficients Q2;_3 are defined 

so that they have the same physical dimension, namely, that 

of an angular frequency. The coefficient (3 is defined to be 

real rather than complex, which means that if the coefficient 

of order w~> in the expansion of €(iw) is negative, then Q3 

is negative too. One might ask if the coefficient QQ; could 

be nonvanishing for typical functional forms of the dielectric 

function. For example, if one assumes, at least, in the regime 

of large w, a Sellmeier functional form [20] 

ew) * Yo 
k Wy, — W 

ak oO 

. rv) 

> — iwy 
(16) 

with fixed parameters a,, wz, and y%;, then Qy = 0, and 

(Qo)? = So ay wf. (17) 
k 

However, when we use a Lorentz-Dirac form [14,21—23] 

2_ 7,,/ 

ew) = So lee MO) | (18) 2 2; TO — OF — 1wYK 

then the oscillator strength in the numerator becomes a com- 

plex frequency-dependent quantity. In this case, the parameter 
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§2; is nonvanishing, 

Q= lary, (P= \oalo-ny), 9) 
k k 

where if the width of the resonances is small, one can assume 

that yey, K @,. 

B. Derivation of the leading coefficients 

We concentrate on the derivation of the short-range expan- 

sion of the atom-surface potential with a particular emphasis 

on the three leading terms from Eq. (6) in the short-range 

limit, 

C39 Cu 
— In 

Cio 
Vsr(Z) © — a 

2Z 
(=) -= + O[z In(z)]. (20) 

x ao 

Our goal is to discuss, in some detail, the derivation of the 

coefficients C39, Ci;, and Cio, which constitute the leading 

coefficients in Eq. (6). These terms will need to be extracted 

from Eqs. (8) and (9). This constitutes a nontrivial exercise. 

The short-range asymptotics of the atom-wall potential are 

obtained from the contribution of high-energy virtual photons 

(high w) and large integration variables p. The exponential 

suppression factor exp(—2wpz/c) cuts off the ultraviolet di- 

vergences of the integrals over w and p, and it is, thus, 

necessary to keep this term in unexpanded form; a Taylor 

expansion of the exponential exp(—2m@pz/c) in powers of z 
leads to problems in the ultraviolet integration region of large 

w. Hence, one proceeds as follows. 

First, one expands the function H(€(iw), p) for large p, 

leading to 

H(e, p) = S(€, p) + O(p®), (21) 

where 

e—|1 (e —1)GBe +1) 
S(e, p) = 2p" = (€, P) Poy (e+ 12 

(e€ — 1) Be? + lle* tet 1) 

4p*(e + 1) 

(e€ — 1)? (3e* + 12€3 + 16? + I) (22) 

8p*(e + 1)4 
For the calculation of the leading analytic terms, one uses the 

result, 

/ dpe < St, P) = fil€, o) + fale, @) + fle, ). 
1 

(23) 

The functions f;(€, @) with i = 1-3 are given as follows: 

_-dez/e l/e\? ce \?le—1 
filé, wo) =e >(<) +(<) op] 

-£(1) + | - (= )"Irc ) 
wz\e+1 Bie C Cc “ip 

(24) 

_ wz (e — 1) Ge? + Ile? +e +1) . 20WZ 

Re w= e+ 13 Ei(-) 
(25) 

file, @) =— (“)'meei(—“*), (26) 

(e — 1)(3e° — 9e4 — 80€? — 88e7 — lle —7) 

24(e + 1)4 
(27) 

ge) = 

(ce — 1)? Bet + 12€7 + 16? + 1) 

Me) = 24(e + 14 (28) 

One defines the potential, 

Vs(z) -of dww'a(iw) / dp Sle(iw), ple 22!" 
0 1 

= Vi(z) + Vo(z) + V3(z), (29) 

where 

Vi(z) =Q | dow atiw) file (ia), pl, (30a) 
0 

Vo(z) = Q | do walio)frlelio), pl, 30b) 
0 

oO 

V3(z) = Q | dow aliw)file(iw), pl. — (30c) 
0 

For each term, one then splits the integral into two domains, 

A < hw < o, and 0 < hw < A, where A ~ Ey is a cutoff 

parameter. In the high-energy part A < iw < o, one keeps 

the exponential suppression factor exp(—2wz/c), but other- 

wise expands the polarizability and the dielectric function for 
a large-frequency argument with the help of Eqs. (14) and 

(15). One then performs the integral over m in the integration 

domain A/li < w < oo, and expands the result in powers and 

logarithms of z. Specifically, the logarithmic terms obtained 

from the high-energy part are proportional to In[2Az/(/ic)]. 

In the low-energy part 0 < w < A/h, one can expand the 

entire integrand [including the exponential suppression factor 

exp(—2wz/c)] in powers of z. The condition w < A/h, valid 

for the low-energy part together with the observation that 

wi <Aices, 2«® AWG, (1) 
c hice a 

ensures the applicability of the expansion in z of the in- 

tegrand for the low-energy part. One then integrates every 

term obtained from the expansion of the low-energy integrand 

in powers of z, over the integration interval 0 < w < A/h. 

This leads to the logarithmic terms proportional to In(A/E;). 

Because A constitutes a scale-separation parameter, all depen- 

dence on A necessarily cancels at the end of the calculation 
when the high- and low-energy parts are added. The same 

mechanism lies behind the calculation of self-energy effects 

in hydrogenlike systems [24,25]. In view of the identity, 

2A A 2E 2 
In “ —In{—)=In ns =In ai , (32) 

hic E), he ag 

the functional form of the logarithmic terms in Eq. (20) finds 

a natural explanation. 

Applying this procedure to V(z) as defined in Eq. (30a), 

one obtains the following high-energy part: 

Paylin (222) + ye |, 3) —_—.— - a n({ — , 
162 2€gc? z a he YE 

VEEPCA, z) = 
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where we keep terms up to order 1/z and In(z)/z. The low-energy part can be written as 

C30 h VLEP(A 7) = — 0 4g 
1 (As2) 2 16m eqc? z h 

where the leading-order coefficient is 

[ain (2) + [del cine SG Meter a |}. G4) 
0 [e(iw) + 1} w+ o 

Cr a | dw aio) + (35) 
0 ~ 1677 

The addition of the high- and low-energy parts leads to 

C30 h 
Viz) = —- 

where, again, we keep terms of orders 1/z and In(z)/z. We can 

read off the result for the logarithmic coefficient C);, which 

multiplies the term z~! In (724 , 

C, = hay (24 (37) 

1 T612€ C2 

The contribution from Vj (z) to the Cio coefficient is 

ay Aypa2Q) | h [ deo 
10 = I. A2 Ie. p2 16z-e€9c 162-E9c- Jo 

; 5 le(iw) — 1]Be(iw) + 1] QQ, 
x | a(i@)w - — . 

[e(iw) + 1]? wot+ E;,/h 

(38) 

From V>(z) as defined in Eq. (30b), one obtains an additional 

term, 

Co) = -———. (39) 

There are no contributions from V3 to Cj; and Cio. The com- 

plete result for Cio reads as follows: 

1 2 
Cio = Cio + Cio 

hi (ve — Z)on Qi h ee 

~ 1677€ 9c? 7 1677 €9c? i dw 

x ation” [e(i@) — BeG@@)+ 1 a8 | 
[e(iw) + 12 oO +E,/h 

(40) 

Quite surprisingly (see, for comparison, the case of an ideal 

conductor discussed in Ref. [4]), there is no coefficient on the 

order of 1/z*, and one has Cx) = 0, an observation which will 

be discussed in the following. 

The same mechanism, which leads to the emergence of 

the logarithmic terms in z, leads to the Bethe logarithms in 

Lamb shift calculations [16]. At this stage, we have derived 

all coefficients for short range, up to the orders of 1/z and 

In(z)/z. The next step is the evaluation of the constant terms 

in Zz. 

C. Higher-order coefficients 

In Sec. ITB, we have considered all terms in the expansion 

(6) up to the orders of 1/z and In(z)/z. We remember that 

€(iw) + 1° 

©30 2Enz _ oe . > le(iw) — 1] [3e(iw) + 1] by QQy 
3 16m 2€902z fon [in ( hic ) + | i dw tion [e(iw) 4 172 w+ fo | |. (36) 

the expansion (6) is valid for z — 0, and, thus, an expansion 

in ascending powers (and logarithms) of z. In terms of the 

C coefficients given in Eqs. (4) and (6), we have determined 

the contributions to Cj; and Cio, but no contributions to C,; 

coefficients with n = 0. Here, we list the contributions to the 

logarithmic coefficient Co, and the nonlogarithmic coefficient 

Coo, Obtained from the potentials V;, V2, and V3, given in 

Eqs. (30a), (30b), and (30c). 
These higher-order coefficients, obtained from V;, are 

han (Q7 + 1425) 
Cor = — ; 4] 

"! 962 2e9c? (41) 

ca _ _Fiaa(722 = 3223) _ yehar(Qi + 1423) 
00 288m 2€9c3 96m 2€9c3 

h | °° a(iw)o*[e(iw) — 1] foo(e(iw)) 
— ———_ dw - 

822e9c7 Jo 24[e(iw) + 1]* 

(42) 6 12(@ + Ex/h) 

foo(e) = 3e° — 9e* — 136° — 208e7 — 83e — 15. (43) 

7 on (Q? + 1492 
+ +0702) + >| u 2) ; 

For a dielectric function with Q,; = 0, the coefficient Ci; 

vanishes. In this case, the term proportional to Co, is the first 

nonvanishing logarithmic term in the short-range expansion 

of the atom-surface potential. From the potential V2, one gets 

the contribution CO, which had been indicated in Eq. (39), as 

well as the following higher-order coefficient: 

_ fran (Qt + 225) C2 = 
00 3277 E9c3 

(44) 

Furthermore, it is interesting to note that the potential V>(z) 

yields the only contribution to the double-logarithmic C12 

coefficient, which multiplies the term proportional to z [In(z)]’ 
in Eq. (6), 

- fi(4a4Qy — a2Q} + 40204 Q3 + 40203) 
Co =- — . (45) 

647-€0c 

Finally, from V3, we get the following contribution to the 

nonlogarithmic Coo coefficient, 

(46) 
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This concludes the discussion of the contributions to the 

expansion (6), from the potentials V;, V2, and V3 given in 

Eq. (30). The potentials are obtained by expanding the func- 
tion H(e€, p), defined in Eq. (9) for large p [see Eq. (21)]. 

D. Extra term 

In Sec. ITB, we had considered all contributions to the 

short-range expansion of the atom-surface potential generated 

by expanding the function H(e, p) in powers of p for large p. 

After the w integration, this expansion captures the leading 

terms in the (semi-)analytic expansion of V(z) for z —> 0. 

However, let us remember that the expansion (21) is valid only 

for p > 1. The difference H(e, p) — S(€, p) is nonvanishing. 

This difference will lead to a (parametrically suppressed) 

contribution to the atom-surface interaction energy from the 

integration interval @ € (0, oo) and p ~ 1. The only question 

is at which order in the expansion in ascending powers of z 

this additional, parametrically suppressed, contribution will 

become visible. This question will be answered in the current 
section. 

In the difference term, 

Vilz) = Q | deo whaic) | Ipe-2le 
0 1 

x {H[e(iw), p] — Sle (iw), pl}, (47) 

one can approximate exp(—2wzp/c) © 1 in the limit of small 

z because the divergent terms in the limit of large p have 

already been subtracted. One can, thus, approximate V4(z) © 

Cy where 

h io, @) ; io, @) 

Cy = Sree i dwaratio) [ dp 

x {H[e(iw), p] — S[e(iw), pl}. (48) 

This completes the contributions to the nonlogarithmic coeffi- 

cient Coo. 

E. Sum of terms 

Because the intricate nature of the expansion (6) and the 

manifold contributions to the logarithmic and nonlogarithmic 

coefficients, a brief summary is in order. One obtains C39, C11, 

and Co; exclusively from V; [see Eqs. (35), (37), and (41), 

respectively]. The coefficient Cio is obtained from the sum 

of the terms cy and Cy listed in Eqs. (38) and (39). The 

coefficient Cog is obtained from the sum of the terms Cis 

Ci. Cs’, and C\, listed in Eqs. (42), (44), (46), and (48). 
We summarize 

Cio = Ci + Cig’, 

Coo = Cho + CS) + Ch) + Cog’: 

(49a) 

(49b) 

Finally, the double logarithmic coefficient Cj. is obtained 

from V> [see Eq. (45)]. 

Il. NUMERICS FOR SHORT RANGE 

A. Coefficients 

From now on for the numerical investigations, we tem- 

porarily switch to atomic units with A = 1, €9 = 1/(47), and 

c = 1/a, where a is the fine-structure constant. All energies 

are measured in terms of the Hartree energy E, = a7mc*, and 

distances are measured in terms of the Bohr radius ao. 

It is instructive to recall all formulas for the coefficients 

relevant to Eq. (6), this time in atomic units. For C39, one has 

from Eq. (35), 

€(iw) — 
C39 = — d 50 30 = =| wai). (50) 

For C1, we scale out a factor a”, and obtain from Eg. (37) the 

result, 

oe (51) 
where we recall that a is related to the high-frequency 

asymptotics of the atomic polarizability according to Eq. (14). 

According to the Thomas-Reiche-Kuhn sum rule [26,27], one 

has a = N, where N is the number of electrons in the atom. 

The result for the nonlogarithmic coefficient Cig in atomic 

units is relatively compact, 

Cio _ (Ye = 4)a2@ [ dw 
a2 Aor 0 4x 

x atioyo” [e(iw) — 1][3eGiw) + 1] _ 

[e(iw) + 1]? 

a7 024 

otl| 

(52) 

For the logarithmic coefficient Co;, one has the following 

result from Eq. (41), upon conversion to atomic units, 

C an (Q? + 1403 Cor _ (2 2) (53) 
a3 240 

whereas the result for Cog in atomic units can be simplified to 

Coo a (15Q7 — 1493) Yea (Qz + 1495) 

a3 720 247 

7 ia dw coe — hte 
0 on 24[e(iw) + 1]* 

7 a2(Q7 + 1425) 
“wO 

eM TS 4D 

20 

— S[e(iw), pl, (54) 

where foo has been defined in Eq. (43). Finally, according 

to Eq. (45), the double-logarithmic coefficient C12 involves 

a scaling factor a+ and reads as follows: 

Cir 4 4 Qy = 0 QF + 402243 + 40223 (55) 

at 16x 

where atomic units have been employed 

~dwo 4. ~ +| — w aio) | dp[H[e(ia), p] 
0 1 

B. Model problem 

We consider a model problem with the intent of demon- 

strating the power of the method described in the previous 

section. For definiteness and reproducibility, the coefficients 

of the model problem are chosen in a rather realistic manner, 
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FIG. 1. The plot shows the real part of the dielectric function 

of the model problem defined in Eq. (56) with parameters given in 

Eq. (57). 

leading to C3 and C, coefficients, which are numerically com- 

mensurate with realistic applications, such as helium atoms 

interacting with silicon [14]. 

The model problem involves the following functional form 

of the dielectric function, which is inspired by the so-called 

Lorentz-Dirac functional form used in Ref. [14] for the de- 

scription of the dielectric function of intrinsic silicon, but with 

only one resonance included 

2 ay 

E(w) =14 zr — we (56) 

We choose the parameters (in atomic units), 

wy =1.0, w, =0.9, (57a) 

y=0.5, y’ =0.2. (57b) 

The real and imaginary parts of the dielectric function of the 

model problem are displayed in Figs. 1 and 2, respectively. 

For definiteness, we calculate with the exact numerical value 

a = 1/137.036 for the fine-structure constant. 

1.0-- 

Im
(€
(w
))
 

-1.0-+- 

Ww [a.u.] 

FIG. 2. The figure is the same as Fig. | but for the imaginary part 

of the dielectric function. 

The dielectric function at the imaginary frequency argu- 

ment reads as 

Ow, + y'w 
€(iw) = 1+ (58) 

o+o?+ yo 

For the atomic polarizability, we choose the following 

functional form: 

(59) a(@) = a(iw) = 
1—@?’ 1+a@?’ 

which, for an imaginary frequency argument, approximates 

the trend in the data indicated in Fig. 7 of Ref. [14] for 

the atomic polarizability of atomic hydrogen, simultaneously 

providing a simple functional form. 

For the model problem, one obtains the following high- 

frequency coefficients: 

m= 1, a=-l, (60a) 

Q, = y' = 02, (60b) 

Q2 = (w? — yy’) = 0.842615, (60c) 

Q3 = —(yor + y'o2 — yy)” = -0.821797. (60d) 

All results are given in atomic units. 

C. Expansion coefficients 

One obtains the following results, where we denote the 

coefficients relevant to the model problem by the calligraphic 

symbol C as opposed to C, for absolute clarity: 

C39 = 1.977912 968 x 107°, (61a) 

Cy, = a” x 1.591549 430 x 1077, (61b) 

Cio = —a” x 2.340951522 x 107”, (61c) 

Cor = —a? x 1.323 638610 x 1071, (61d) 

Coo = —a? x 2.175 921908 x 1071, (6le) 

Ci. = a* x 4.894014 500 x 1077. (61f) 

All results are indicated to ninr significant figures for defi- 

niteness and numerical verifiability. They use the parameters 

given in Sec. IIIB. They are given in atomic units with the 

appropriate power of the fine-structure constant being factored 

out. The calculations for the coefficient Cop can be some- 

what involved, which is why give the contributions listed in 

Eqs. (42), (44), (46), and (48) separately, 

CK) = —a3 x 1.599635 302 x 1071, (62a) 

CS = —a3 x 5.809 155.423 x 107, (62b) 

Ci = a x 1.768 388 257 x 1074, (62c) 

C&O = of x 2.860547 387 x 107+. (62d) 

The scaling of the higher-order coefficients with the powers of 

a means that the expansion is rapidly converging for not too 

large z, where z is expressed in atomic units, i.e., in units of 

the Bohr radius (see also Sec. IT A). 
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TABLE I. For the case z = 0.1, the validity of the approximation (64) for the model problem discussed in Sec. III B is being verified by, 

subsequently, adding the ? terms. The relative difference A of the partial sum of ? terms and the exact result for V(z = 0.1) is indicated in 

the last column. Digits displaying apparent numerical convergence are being underlined. All quantities are indicated in atomic units. 

Partial sum of P terms 

P30 

P30 + Pu 

P30 + Pi + Pio 

P30 + Pir + Pio + Pio 

P30 + Pir + Pio + Pio + Poo _ 

P39 + Pi + Pio + Pio + Poo + Piz 

V(z = 0.1) (Exact) 

Numerical partial sum A 

—19.779 129 681 x 10~? 3.4 x 107° 

— 19.779 074 340 x 10-7 6.2 x 1077 

— 19.779 061 874 x 10-7 1.3 x 10-8 

— 19.779 062 210 x 10-7 4.2 x 10~-° 

— 19.779 062 126 x 10~? 6.5 x 107! 

— 19.779 062 126 x 10~? 3.5 x 107! 

— 19.779 062 126 x 10-7 

D. Comparison to numerical data 

If our expansion (4) is the correct representation of the 

atom-wall interaction for z << do/a, then the leading terms 

of the expansion, given in Eq. (6), should show apparent 

numerical convergence to the full potential, given in Eq. (8) 

for small values of z. 

One can also write the potential V(z) for the model prob- 
lem in terms of individual contributions, each proportional to 

a particular C coefficient. We denote the individual terms by 

the symbol ? in order to differentiate the notation from the 

general case, given in Eq. (5), 

Vied= Yo Pail) + > PajZ), (63a) 
(nZ20)j (n<0)j 

; J 

Prj(z) = ma [in (=) ; (63b) 
z ao 

J 

Prj(Z) = —Cyjz" [in (“)] , (63c) 
ag 

According to Eq. (6), the leading terms P39, Pi1, Pio, Pio 

and Po9, P12 should exhibit numerical convergence to V(z), 
leading to the approximation, 

V(z) © P3o(z) + Piz) + Pio) 

+ Pio(z) + Poolz) + Pir(z) 

for small z. We demonstrate the convergence for the case 

z = 0.1, in Table I, to about 11 decimal figures. For the case 

z = 1.0, the convergence is slower and is being demonstrated 

(64) 

applicable. For z = 0.1, one would have a situation with the 

atomic wave functions overlapping with the wall; the case of 

z = 0.1 is presented for numerical completion. The signifi- 
cance of the numerical data given in Tables I and IJ is that they 

indicate the consistency of our (semi-)analytic expansion of 

the atom-surface potential for short range with high numerical 

precision, including the existence of the logarithmic terms. 

This offers an excellent way to illustrate the convergence of 

the short-range expansion (6). 
The terms in Eq. (6) display a definitive hierarchy: For 

short range (z — QO), the logarithms are enhanced, and terms 

are suppressed in ascending powers of Z, i.e., terms propor- 

tional to 1/z* dominate terms of order 1/z, and so on. We 

define the following two remainder functions r,;(z) in terms 

of the remainder term left over after adding the all terms of 
lower order than P,, ;(z). In atomic units, one has the following 

relations: 

C C 
rio(Z) = = [vie + > + — In(2az) (65) 

1 C C C 
rool) = = vio + > + In@az) += 

+ Coy In(2az) + Cyoz aaa (66) 

If our expansion (6) is correct, then we should obtain the 

results that 

in Table II, to about seven decimal digits. lim 7j9(z) = Co = —0.023 409. (67) 

A remark is in order. Of course, the values z = 0.1 as well 0 o 

as z = 1.0 represent situations in which the atom is too close lim roo(z) = Coo — _(.021 759. (68) 

to the surface for the atom-surface potential to be physically 230 a 

TABLE Il. We present the analog of Table I for the case z = 1.0. 

Partial sum of P terms Numerical partial sum A 

Pro —1.97791297 x 107 2.3 x 1073 
P30 + Pus —1.97755471 x 10-? 5.6 x 1073 

P30 + Pi + Pro —1.977 43005 x 107? 7.1 x 10° 

P39 + Pir + Pio + Pio —1.977 45179 x 107? 3.9 x 107° 

Pao + Pit + Pio + Pio + Poo —1.977 443 34 x 107? 3.7 x 1077 

P39 + Pit + Pio + Pio + Poo + Pro —1.977 443 58 x 107? 2.5 x 1077 

V(z = 0.1) (Exact) —1.977 44407 x 10-7 
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FIG. 3. Numerical data for the function 7;9(z) defined in Eq. (67) 

(diamonds) are plotted for short-range z values and compared to the 

limit lim,_.9 rio{Z) => Cio / a? = —0.023 409 (circle), 

The numerical data presented in Figs. 3 and 4 are consistent 
with Eqs. (67) and (68). 

IV. LONG-RANGE ASYMPTOTICS 

A. General considerations 

Now, we switch back to SI mksA units and look at the long- 
range limit z >> ao for the atom-surface interaction potential 

V(z). For convenience, we recall Eq. (8) in the form 

h o 3 . 

| dw w a(iw) 
0 

V(z) = -—_— 
@) 87 2Eqc> 

x / dp H(e(iw), pye7??", (69) 
1 

aiming to expand for large z where the exponential suppres- 

sion due to the term e~”?”/¢ is very pronounced. The relevant 
integration interval for the virtual photon energy, therefore, 

encompasses low frequencies on the atomic scale w <« E),/h. 

For the p integration, we can concentrate on the integration 

region near p = | due to exponential suppression. One can, 

thus, expand both the atomic polarizability as well as the 

dielectric function for small frequency arguments. For the 

-0.17F 

-0.18F 

Foo
(Z)

 
[a.

u.]
 

> 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

z [a.u.] 

FIG. 4. Numerical data for the function 7o9(z) defined in Eq. (68) 

(diamonds) are plotted for short-range z values and compared to the 

limit lim,_.9 ro0(z) = Coo/a? = —0.021 759 (circle). 

atomic polarizability, this implies that 

2 
a(iw) = a(iw) + iwa'(0) — <2") + O(w°), (70) 

and 

dH (e, 
H (cio), p) = H(€(0), p) + @ a 

e=e(0) 

. (xe 4 O(w”). (71) 

Ow _ 

The quantities, 

T =iwa'(0), h= (<< 
0@ 

(72) 
o=0 

are, surprisingly, real rather than complex. In order to see this, 

we consider the fact that the first derivatives of the polariz- 

ability and the dielectric function are generated by the small 
“width terms” in the propagator denominators. We recall the 

H function from Eq. (9), 

S—p S — pe 
He, p) = Ep +(1 ~ Pe s=VJ/e—1+p?’. 

(73) 

Some properties of the H function and of its derivatives are of 
interest. We have 

2(/é — 1) _ We-1) 5 

Vet’ 7 e+ 1 

(74) 

He, p=1)= H(e, p> w) 

In view of the expansion (71), it is necessary to consider the 

derivative of the H function with respect to the first argument 

€, and to make sure that its derivatives do not diverge stronger 

than p* because of possible infrared problems in the w integral 

generated by divergences (high negative powers of w after the 
p integration). Or, expressed differently, if we carry out the w 

integral first, then we observe that 

3c*a(0) 
pe (75) 

oO 

| daw walim)e 7PO!* zs 
0 

Any divergence of H or of its derivatives stronger than p* 

would make the p integral divergent at the upper limit because 

it would multiply a term proportional to 1/p*. We will evalu- 

ate both at the lower limit p = 1 of the integration range over 

p as well as the upper limit p = oo. For the first and second 

derivatives, we have 

dH(e,p)| 2 

be | Vee +1)? “9 
dH (e, p) — 4 4 

Fe |g FIP uw? 
2 OH(e,p)|  _ Be +1 | (78) 

de2 63/2(,/e + 1) 

0°H (Ee, p) 7 8 5 —a _ = “Gap? . (79) 
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At p = &, the second derivative of the H function does not 

diverge stronger than p’. 

B. Expansion for long range 

In view of the considerations reported in Sec. IV A, we 

can ascertain that the long-range expansion of the atom-wall 

potential is 

C. C. C 
Viz) = -= _ = _— = + O(277), (80) 

without the presence of any logarithmic terms. The leading 

coefficient C4 is obtained as follows: 

3cha(0) 

G4 = 327 2€) Bnet 1 (0)). (81) 

Here, Y(¢) is a function which is normalized to unity in the 

limit €(0) — oo (limit of a perfect conductor) and which can 

otherwise be expressed as follows: 

ve—1+je-1 

Je+1—/et+1 
Jet+1+f/e-1] 

Wie) = Alo + Bein TE) 

onl (82) 

An alternative representation of the W function (with 

a different normalization factor) has been given in 

Eq. (23) of Ref. [13]. We here aim to express W in a 

slightly more concise form as compared to Eq. (23) of 

Ref. [13], namely, with the help of only two logarithmic 

terms. The coefficients involve both fractional and integer 

powers of €, 

6c? — 3e°/° — 4e — 3./e + 10 
A(e) = 83 (€) 6-1) (83a) 

26° — 4e7 + 3€ 41 
Ble) = 83b 

e2 

C(e)=— (83c) 
Je+l 

The first two correction terms about the perfect-conductor 
limit lead to the following expansion for the Cy coefficient: 

__ 3fica(0) So 2 o( 1 )] 
* 32726) | 4 /e(0)  ‘15€(0) (03/2 J |" 

(84) 

By expanding the integrand as in Eq. (70), one obtains the 

Cs coefficient as follows: 

2 

321 7€9 
C5 = [—ia’ (0) Wa, €), (85) 

where we take note of the fact that a’(0) is imaginary. Here, 

0 ia'(O 

Wa €) = 7 od DP 22) OP) a0) 

dH (e, p) (<2 ) (86) 
OE Ow , 

e=€ (0) a=0 

This integral converges both at the lower as well as the upper 

limit. The perfect conductor limit is 

1 
(5) _ w (we) =140( =): (87) 

For the term C6, one finds 

tie a" (OY (a, €) (88) a, €), © 647r2€5 
where the coefficient @¢ is given as 

(0) [™ dp a’"(0) we) =—— cP | H[e(0), (a, €) 2a") I, pe [<(0), P] (0) 

0-H (€, p) 
de? 

(< 
Ow 

e=€(0) 

a’(0) { de(w) 07€(w) 

+ pae( Jw )+( Jw? )| 
a=0 o=0 

dH(¢, P) | (89) 
e=€(0) 

de 

Again, all integrals converge, and the perfect-conductor limit 

is 

WO@e)=1+ of (90) 725) e(O) 
Now, we turn our attention to a numerical example. 

V. NUMERICS FOR LONG RANGE 

A. Expansion coefficients 

For the numerical calculations, just as in Sec. IITA, let us 

write the relevant coefficients given in Eqs. (81), (85), and (88) 

in atomic units. They read as follows: 

Cy = — a(0)W(c(0)), (1a) 
Sra 

Cs = 5 [-ia'(O)JW'(a, €), (91b) 
Sra 

_ " (6) Co = loro? a’ (O)W’ (a, €). (91c) 

For the model problem discussed in Sec. III B, the results 

are as follows: 

Cy =a! x 2.617 284022 x 1077, (92a) 

Cs = —a* x 4.126588 852 x 107°, (92b) 

C6 = —a? x 5.762 148081 x 10°77. (92c) 

Parametrically, in atomic units, the higher-order terms acquire 

another power of a with each order in the expansion in 1/z. 
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TABLE III. For the case of z = 100 00.0, the approximation (93) 

is investigated for the model problem discussed in Sec. IIIB, by, 

subsequently, adding the P terms. The relative difference A of the 

partial sum of P terms and the exact result for V(z = 10000.0) is 

indicated in the last column. Digits displaying apparent numerical 

convergence are being underlined. All quantities are indicated in 

atomic units. 

Partial sum of P terms Numerical value A 

Ps —3.586621 x 107'° 2.6 x 1073 

Ps + Ps —3.578 872 x 107!° 4.1 x 107+ 

Ps+ Ps + Ps —3.577 389 x 10718 5.0 x 107° 

V(z = 10000.0) (Exact) —3.577 407 x 107'° 

This means that the expansion parameter, effectively, is az, 

For the case of z = 10000 (which implies wz = 72.9735), the 

validity of the approximation, 

V(z) © Paz) + Ps(z) + Po(Z) 

~ 4 Os _&% (93) 

with an obvious definition of P4(z), Ps(z), and P6(z), is being 

demonstrated in Table III. 

B. Comparison to numerical data 

Some general remarks on applicable approximations to the 

atom-surface potential are in order. Namely, our considera- 
tions for the short-range regime clearly indicate the presence 

of logarithmic terms, which are not captured in the simple 

interpolating formula given in Eq. (3). In fact, one particular 

deficiency of Eq. (3) is that upon expansion for small z, a term 

on the order of 1/z” is being generated, which is not present 

in Eq. (6). 

For the model problem defined in Sec. HII B, the leading 

terms in the short-range expansions are 

C a 
Vigp~ me, pc 2 (94) 

xz a 

In the long-range regime, one has 

C. a 
Vig)e¥-a, z=. (95) 

z a 

We investigate the interpolating regime z ~ ao/a in Fig. 5 

and confirm the transition between the short-range (x 1/z°) 

and long-range (ox 1/z*) asymptotics of the atom-surface 

potential. 

The rational approximation for V(z) given in Eq. (3) can 

be adapted to the model problem discussed in Sec. IIIB, 

C4 C4 
V,. x ae) = 7 96 (z) BGEHD) Co (96) 

In Fig. 6, we present data for the function, 

Vz) — V(Z) 
= |" | 97 x (Z) | VQ (97) 

which is the relative difference of the full potential and the 

rational approximation. We find a 20% deviation in the inter- 

mediate region z ~ ao/a, consistent with the inadequacy of 

the rational interpolation (3). 

OF 

r= -10} 
5 

&, 
® -20 

> 

= -30 

-~40+ 

0 2 4 6 8 

In(z) [a.u.] 

FIG. 5. The transition from the short-range 1/z* to the long- 

range 1/z* regime [see Eqs. (94) and (95)] (green curves) is being 

demonstrated by comparison to the full potential (red curve) given 

in Eq. (8). The change in the slope of the red curve in the transition 

region is clearly visible in the double-logarithmic plot. 

Of course, it is possible to designate other methods for the 
fitting of the full potential V(z) in the intermediate region 

z~ ao/a, for example, by using the short-range expansion 
for z < 30, the long-range expansion for z = 1000, and fitting 

the logarithm of the interaction potential in the intermedi- 

ate region using convenient functional forms. Corresponding 

results will be presented elsewhere. However, our findings 

indicate that the presence of logarithms in the short-range ex- 

pansion cannot be ignored, a fact, which fundamentally alters 

our understanding of the functional form of the atom-surface 

potential for close approach. 

VI. CONCLUSIONS 

Let us briefly summarize the findings of the current in- 

vestigation. In Sec. I, we have discussed possible functional 

forms for the interpolation between the known short-range 

and long-range asymptotics limits of the atom-surface po- 

tential [see Eqs. (1)-(3)]. The derivation of the leading 

short-range logarithmic and nonlogarithmic coefficients C39, 

Ci;, and Cio for a realistic dielectric function has been 

discussed in Sec. II. In Sec. III, the existence of the log- 

arithmic terms, involving logarithms of the functional form 

In(2@z) Gin atomic units) has been demonstrated on the ba- 

sis of numerical calculations. In Sec. IV, the derivation of 

the long-range expansion has proceeded accordingly with 

only nonlogarithmic terms found. In Sec. V, a comparison 

to numerical data for long range has been indicated, and 
the failure of the simple interpolating form (96) has been 

demonstrated in Fig. 6. We can confirm that the same phe- 

nomenon (failure of simple rational approximations in the 

interpolating region) is being observed for nonmodel prob- 

lems, such as helium interacting with a silicon surface [14]; 

detailed results will be presented elsewhere. The model prob- 

lem discussed in Sec. IIIB has all characteristics expected for 

atoms interacting with a dielectric surface, while simultane- 

ously, providing a sufficiently simple functional form to make 

independent verifications of the findings reported in this paper 

easily possible. 
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FIG. 6. We show the relative difference of the rational approxi- 

mation and the exact potential, as parametrized by the function x (z) 

defined in Eq. (97). In the intermediate region, one has a difference 

of about 20%. 

Atom-wall potentials are needed as input for other calcu- 

lations, such as quantum reflection off surfaces [5,6], and it 

is advantageous to have a compact analytic form of the atom- 

wall potential available without having to resort to numerical 

integration for each and every given z [see Eq. (8)]. In this con- 

text, it is especially useful to know why interpolating rational 

approximations are not adequate in intermediate regions of the 

atom-wall distance, and why, in particular, no term of order 

1/z is present in the short-range expansion for a realistic 

dielectric function. The emergence of the logarithmic terms 

is especially important for cases where the dielectric function 
is described by complex oscillator strengths, which result in 

a nonvanishing coefficient Q, in Eq. (19) and a nonvanishing 

Ci, coefficient as given in Eq. (37). 

Indeed, for interactions with a realistic dielectric surface, 

we have shown that no term of order 1/z” exists in the short- 

range expansion [see Eq. (6)]. However, in order to put this 

finding into proper context, we show, in Appendix A, that 

the limit of a perfect conductor is approached nonuniformly 

in terms of the functional form of the short-range expansion: 

Namely, for an absolutely perfect conductor, there actually is 

a term proportional to 1/z* present (see Appendix A). How- 

ever, for any realistic dielectric, the approximation € (iw) © oo 

breaks down at a sufficiently high angular frequency w, and 

the coefficient of order 1/z* vanishes, via the mechanism 

described in Appendix A. 

One might wonder about the naturalness of the emergence 

of the logarithmic terms from the integral representation of 

the atom-surface potential. Hence, some remarks are in order. 

In Appendix B, we aim to illustrate the emergence of the 

logarithmic terms on the basis of a model integral, which 

can otherwise be expressed in terms of exponential integrals. 

Still, the logarithmic terms emerge from the addition of the 

high-energy and low-energy parts. 

Finally, we include some remarks on an interesting phe- 

nomenon of “confluence” in the transition range of z ~ ao/a. 

Namely, all terms in the short-range expansion (6), and all 
terms in the long-range expansion (7), assume the same order 

of magnitude, 

V(z) ~ amc’, zZ~ oO (98) 
a 

which is the same order of magnitude that is obtained for the 

Lamb-shift corrections in hydrogenlike systems [17], which 

is the same order of magnitude as the Bethe-logarithm correc- 
tion for hydrogen energy levels [16]. Indeed, we observe the 

confluence of the short-range expansion (6), and long-range 

expansion (7) at the scale z ~ 137 ao, and its correspondence 

with the scale of the Bethe logarithm. Furthermore, we ob- 

serve the analogy of the short-range expansion (6) with the 

semianalytic expansion of the Lamb shift (see Refs. [28] and 

Chap. 15 of [17]) where, in the latter case, one encounters 

logarithmic terms of the form In[(Za)~7], where Z is the 

nuclear charge number. The Bethe logarithm can be written as 
an integral over a matrix element of the reference state [17], 

which resembles the polarizability w(@) but is restricted to 

virtual photon creation processes. The integral defining the 

Bethe logarithm can be written as a logarithmic sum over 

dipole transition elements to virtual states and sums over 

logarithms of excitation energies [16]. The same is true for 

the short-range coefficients Cig and Coo from Eq. (6). Hence, 

it is a natural identification to refer to the coefficients Cio and 

Coo as “interactive Bethe logarithms.” 
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APPENDIX A: NONUNIFORM LIMIT OF PERFECT 

CONDUCTOR 

The limit of a perfect conductor (€ — oo) of Eq. (8) has 

been derived in Ref. [4] as follows: 

_ _ [* dw helio) 20z OZ)? | nucle 

V@)= i (477 )2€9z> c + C + 2/ ) Je , 

(Al) 

The following expansion has been derived in Ref. [4] for a 

perfect conductor, 

h oe ; 
V(zv= -aas | dw a(iw) 

3 2 

+ wavarnc() 40(z!).  (A2) 
An Zz 

Here, N is the number of electrons. 

One might now ask why the expansion (6) has a vanish- 

ing coefficient on the order of 1/z* (nonlogarithmic term), 

whereas, the coefficient on the order of 1/z* in Eq. (A2) 

is manifestly nonvanishing. In order to understand the phe- 

nomenon, let us consider the f; function from Eq. (24), 

file, w) © e2ele l/c - c\’le-1 
E,W) e ~| — — 

' 2\ az WZ e+1 

If we can expand the term proportional to z->e~ 7°" in powers 
of z, the term on the orde of 1/z* vanishes for any possible 
€. The crucial observation is that this expansion is forbidden 

for a perfect conductor because it leads to a divergent integral 

over w. Namely, for a realistic material and large w, one has 

(A3) 
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the following relation according to Eq. (15): 

eia)—-1  Qy 10 1 (Ad) 

e(iw) +1 2w wo J’ 
whereas, for a perfect conductor, one has 

iw) — 1 OTT 1 eliw) > ow. (AS) 
€(iw) + 1 

The polarizability at the imaginary frequency argument has 

the asymptotics given in Eq. (14). Considering the expression, 

€(i@) — 1 _ of. Q 

e(iw) +1 2 
we see that its integral over @ converges at the upper limit 

of integration for a realistic material in the limit w — oo. 

However, for a perfect conductor, one has 

COT EZ 0%), (AD cio) +1 @ 
and, therefore, the integral of X (@) over w diverges for large 

@. So, we cannot approach the limit of a perfect conductor uni- 

formly. Conversely, for a perfect conductor, we cannot expand 
the exponential in the integrand in Eq. (8) to first subleading 

order in z, and we also cannot expand the exponential in 

Eq. (A3) to first order in z without giving rise to a divergent 

integral over w. We conclude that the term on thr order of 1 /z? 

in Eq. (A2), being proportional to the number of electrons 

of the atom, is spurious and a consequence of the physically 

nonsensical assumption of an infinite dielectric function of the 

perfect conductor over all frequency ranges; this assumption 
breaks down in the limit of large w, and this region is decisive 

for the presence or lack of the 1/z” coefficient. 

X(w) = wa(iw) *+0(w), — (A6) 

X(@) = waliw) 

APPENDIX B: OVERLAPPING PARAMETER 

The method of the overlapping parameter is the decisive 

ingredient in the derivation of the logarithmic terms in Eq. (6). 

Here, we consider a model problem to illustrate the method. 

The model problem consists of the integral, 

°° ZW w 
F(z) = i dw exp (-—) EEN EONTT: (B1) 

for which we aim to find a short-range (small z) expan- 

sion. After a partial fraction decomposition of the expression 

w/[w? + (2E,/h)*], one can express the integral F(z) in terms 

of exponential integral functions. Applicable expansions in 

powers and logarithms of z can be found in reference works 

[29]. 

However, that calculation is not our goal, here, since we are 

aiming at illustrating the method of the overlapping parameter. 

We, thus, separate the integral into a low-energy part, and a 

high-energy part where the high-energy part comprises the 

interval A/h < @ < 0, and the low-energy part comprises the 

interval 0 < w < A/h. We have 

F(z) = Fuep(A, Z) + Frep(A, Z), (B2) 

”~ MO) w 
Fupp(A,z)= fd —— , (B3 HEP(A, Z) I, w exp ( - )s rNGIATT? (B3) 

Aik 0) w 

Pep A, 2) = I do exp (-—) w + (2E,/hy2 (Be) 

The idea is to expand both parts in z for small z. Subsequently, 

every term obtained in the expansion for small z is separately 

expanded for large A. The divergent terms (in A) should 

cancel in the sum F(z). Finally, F(z) can be expressed as a 

semianalytic expansion in powers of z and In(z). 

The expansion in z is accomplished as follows: 
oO 

(62) 
Furp(A, z) = / dwe le , (BS) 
ue A/h w* + (2E,/h) 

expand for large w 

Afh dww ZO 
Furp(A, Zz) = ex (-=). B6 Lep(A, Z) i 4 OE, hy PAS (BO) 

expand in z 

For the high-energy part, one expands the expression w/[w* + 

(2E,/h)’] in @ for large @, integrates over w, then expands in 

powers of z, and then, one expands in A for large A (in that 

sequence). For the low-energy part, one expands the integrand 

in powers of z, then integrates over w, and then, one expands 

in A for large A (in that sequence). The results of these 

procedures are as follows: 

Fmo(A,2) = —In(22) 4 48_y, 42] -*% = —In{ — — — — 

MEPIS hc ic 7H ** Ah ¢? 

E? Az E; 3E; 
In ( = — , (BT 

Re " ( =) + YE Qhrc2 = AR? BY) 

Fipp(A.z) =In( 2) 4+-(-4 4 7 =in — —_—— —— 

Lep(A, 2 3B, ) °*\ te * Te 
ae A? 2Eh A (BS) 

— nN a 5 

“lame We \2Ey 
where higher-order terms of orders z° and z? In(z) are ignored. 

The sum of the high- and low-energy parts is 

) Enz 
— yp +a 

he 

E,z\7 2E 
4+ (2) lom( 22 )4+2),,-3]. Bo) 

hic hic 

We see that A has canceled as promised, and logarithmic 

terms have appeared. 
Let us now discuss the physically reasonable range for A. 

One assumes that z is on the same order as the Bohr radius, 

and that the cutoff parameter A is on the order of E),/a, 

F(z)= -in( 

Z~ ao. (B10) 

In the low-energy part, one must still be allowed to expand the 

exponential exp(—zw/c) in the argument zw/c. So, we must 

have 

; (B11) 

N
 S 

ot
 

| 
> 

OS 

where the latter condition is due to the upper integration limit 

of the low-energy part. If we use the assumption z ~ ag and 

the value of w = A/h in the first inequality, then we obtain 
the condition, 

(B12) 
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The resulting condition on A is that 

agea% 
™~ ao 04 

(B13) 

This result confirms that an appropriate order of magni- 

tude for the cutoff parameter A is E;,/a. Conversely, the 

expansion of the quantity [w/(@? + (2E),/h)*)] for large w 

is possible when we have ii@ >> E;,. That this condition is 
fulfilled, follows from the fact that A ~ E,/a and, thus, 

hw > A ~ E;,/a > Ep. 

Let us also discuss the extraction of the finite part of the 
low-energy part. For the lowest-order term in the expansion in 

z, one replaces exp(—*?) — | in the integrand and writes 

(63) 

(63) . 

w? + (2E;,/h)? 

A/h 
Fip(A,z)*L = | d (B14) 

0 

The finite part of the integral can be found as follows. One 

first expands the integrand w/[w” + (2E,/h)"] for large w, to 

find the divergent terms for large A, and then, one replaces 

1/@ — 1/(@ + E;,/h), in order to avoid infrared divergences. 

The result is 

ASh © A/h 1 
L -| dw = | dw ———— + J, 

0 w + (2E,/h) 0 w+ E;/h 

| 5 e — 
0 w* + (2E,/h) 

DE aa = —In(2). 

(B15) 

In the second ultraviolet convergent term, one can let A > 

oo. So, one finds the result, 

_ A+ E, _ A _ -1 
L=in( E )+s=10(=) In(2) + O(A ~~). 

h 
(B16) 

Analogous procedures are employed in the calculations of 
the logarithmic and nonlogarithmic terms for the atom-wall 

interaction. 
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