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Quantum electrodynamic corrections to cyclotron states in a Penning trap
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We analyze the leading and higher-order quantum electrodynamic corrections to the energy levels for a single
electron bound in a Penning trap, including the Bethe logarithm correction due to virtual excitations of the
reference quantum cyclotron state. The effective coupling parameter ¢, in the Penning trap is identified as the
square root of the ratio of the cyclotron frequency, converted to an energy via multiplication by the Planck
constant, to the electron rest mass energy. We find a large, state-independent, logarithmic one-loop self-energy
correction of order @ a?mc? In(a;%), where m is the electron rest mass and ¢ is the speed of light. Furthermore,
we find a state-independent “trapped” Bethe logarithm. We also obtain a state-dependent higher-order
logarithmic self-energy correction of order e a®mc? In(a;2). In the high-energy part of the bound-state self-
energy, we need to consider terms with up to six magnetic interaction vertices inside the virtual photon loop.
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1. INTRODUCTION

Relativistic and quantum electrodynamic corrections to
the quantum cyclotron energy levels in a Penning trap are
of essential importance for the determination of funda-
mental physical constants [1-6]. In a recent article [7],
higher-order relativistic corrections for the energy levels
in a quantum cyclotron have been analyzed. Here, our
goal is to supplement the preceding analysis [7] by a
calculation of the intricate and notoriously problematic
quantum electrodynamic (QED) corrections to the quan-
tum cyclotron energy levels inside the Penning trap.
In our calculations, we use expansion parameters which
allow us to initiate a systematic classification of the
correction terms, in terms of a semianalytic expansion in
terms of a “trapped fine-structure constant a,,” and a
cyclotron scaling parameter &, as well as an axial scaling
parameter £,. These parameters replace and supplement
the QED coupling parameter, which is the fine-structure
constant a.

As already anticipated, the effective coupling parameter
in a quantum cyclotron could be identified as the maximum
of the cyclotron (¢) and the axial (z) coupling constants.
In particular, one may identify the coupling parameters (in a
unit system with A=c =¢y = 1)
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which depend on the cyclotron frequency w., and the
axial frequency .. The cyclotron frequency [3] is . =
le|Bt/m, where e is the electron charge, |e| = —e is the
(positive) elementary charge, By is the magnetic field in the
Penning trap, and m is the electron mass.

The hierarchy of typical frequencies in a Penning
trap [3,7] implies that the magnetron frequency w,, is
much smaller than the axial frequency w,. Following the
conventions of Ref. [3], we define the corrected cyclotron
frequency as w4 and we define the corrected magnetron

frequency as o, = w(_y, where

1
o =3 (00 +for -2a2). (2a)
1 w?
W) = On =7 (a)c -/ @? —20)?) ~ 20)” .

c

(2b)

The magnetron frequency is, typically, much smaller than
the cyclotron frequency w.. One defines the generalized
coupling parameter

Om = 7 (3)

for the magnetron frequency. We assume the following
hierarchy to be fulfilled (see Ref. [3]):

an K a, X a,. 4)
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We also define scaling parameters &, and &, by

Uy = Emae, (5)

e L) E

The hierarchy of the frequencies allows us to perform a
systematic expansion in terms of a., &,, and &, as well as
the coupling parameter of quantum electrodynamics, that
is, the fine-structure constant a. The expansion in &, gives
rise to an expansion in £2, and we can henceforth use the
parameter £, in order to universally describe the parametri-
cally suppressed effects due to both the axial as well as
magnetron motions.

A remark is in order, concerning the anticipated results
of our studies. It is well known [8—10] that the leading
logarithmic quantum electrodynamic self-energy correction
to hydrogen energy levels is proportional to (in natural
units, 4 = ¢ = ¢y = 1, which are used here)

a, = gzacv

Q

AEqgep ~ a(Za)*m In[(Za)™?], (7)

where « is the fine-structure constant, and Z is the nuclear
charge number. We here anticipate that we shall find the
following, analogous scaling for the leading quantum
electrodynamic self-energy correction to quantum cyclo-
tron levels in a Penning trap,

AEqep ~ adim In(a;?), (8)

where the coefficient a is due to the absorption and
emission of the virtual photon, and the factors of a,
describe the binding to the trap fields, which is typically
smaller than the coupling parameter a for atoms. It is our
goal to calculate these energy shifts.

This paper is organized as follows. In Sec. II, we present
a brief review of the quantum cyclotron states which enter
our formalism. Vacuum-polarization corrections are negli-
gible for quantum cyclotron states, for reasons outlined in
Sec. III. Self-energy effects are discussed in Sec. IV; these
constitute the dominant radiative corrections for quantum
cyclotron states. Conclusions are reserved for Sec. V.

II. QUANTUM CYCLOTRON LEVELS

In order to understand the quantum cyclotron levels
inside a Penning trap, it is, first of all, necessary to
remember that the kinetic momentum is given by

> - e - € = -
ﬂT:P—eAT:P_E(BTX’”)» )
where ZT = %(f}T X F) is the vector potential, Br = By g,

—
is the magnetic field in the trap, and p = —iV is the kinetic
momentum operator. The kinetic momentum 7y enters

the interaction Hamiltonian describing the coupling of the
bound electron (inside the Penning trap) to the quantized
electromagnetic field.

The quadrupole electric field in the trap is attractive
along the z axis and repulsive in the xy plane,

=2
V=V.+V,, V'v=0, (10a)

L 55 L 25
V,= 5 Mwzz V)= — g mezp”. (10b)

The unperturbed Hamiltonian is given as follows:

[T AL Ay (11)

= — —Ko - By.

0 2m 2m T

Eigenstates of the unperturbed Hamiltonian H, are
described [3] by four quantum numbers: the axial quantum
number k, the magnetron quantum number #, the cyclotron
quantum number n, and the spin projection quantum
number s = +1. These take on the following values:
k=0,1,2,... (axial), #=0,1,2,... (magnetron), n =
0,1,2,... (cyclotron), and s = +1 (spin). We recall, from
Ref. [7], the energy eigenvalues of H,

s 1
Ekfns = wc(l + K') E + D) (I’L + 5)

+wz(k+%) —a)(_)<f+%>. (12)

It is of note that, in view of the repulsive character of the
quadrupole potential, these eigenvalues are not bounded
from below. We use the conventions of Refs. [3,7], for

the cyclotron lowering and raising operators a4 and az 4

the axial lowering and raising operators a, and al, and the
magnetron lowering and raising operators a(_ and az_).

The eigenstates of the unperturbed Hamiltonian are given
as follows:

- (al)" @y ()

u/kf’ns(r) = m \/I; \/a

() () o

The orbital part of the ground-state wave function is

my/ @z — 2w?

m
o exp <_Z \/w? - 2a)§p2>
ma.\ /4 1
x (T) exp (—Emwzzz) (14)

The spin-up sublevel of the nth cyclotron ground state, and
the spin-down sublevel of the (rn + 1)st excited cyclotron

ll/o(7))(s/2»

wo(F) =
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state, are quasidegenerate and of interest for spectroscopy
and determination of the anomalous magnetic moment of
the electron [1,2,4-6].

III. VACUUM POLARIZATION

For atomic bound states, quantum electrodynamic energy
shifts are naturally separated into vacuum-polarization and
self-energy corrections. The vacuum-polarization shift of a
hydrogenic energy level is due to the screening of the
proton’s charge by virtual electron-positron pairs. The closer
the electron is to the nucleus, the less pronounced is the
screening of the bare proton charge, and the stronger is the
(corrected) Coulomb potential. The dominant contribution
to the one-loop effect is described by the Uehling potential
[11]. In a Penning trap, the potential is generated by the trap
electrodes in addition to the axial magnetic field. Hence, the
electron, on its quantum cyclotron orbit, is always suffi-
ciently far away from any other charged particle that the
vacuum-polarization energy shift can be safely neglected.
This statement can be quantified as follows.

The long-range tail of the Uehling potential is given as
follows [12]:

_a(Za)mexp(—mr)
dym  (mr)’?

where r is the distance from the nucleus. The one-loop
Uehling correction needs to be compared to the Coulomb
potential,

Vy(r) = r—oo, (15)

Velr) z—(Z’:—I:;, (16)

leading to the relative correction,

Viy(r) ~ a
Ve(r)  ay/a(mr)’?

exp(—mr), r—oo. (17)

A typical Penning trap dimension [3] is of the order of
about (r) ~ 1 cm, while the quantity mr is dimensionless
in natural units. When converted to Systeme International
mksA units, one realizes that m takes the role of the inverse
of the reduced Compton wavelength of the electron,

r

mr:%:2.59x1012xR, R=-—. (18)

(4
where R is measured in meters. For R being on the order of
1 cm, one has mr on the order of 10'°. The quantity

exp(—m(r)) ~ exp(=1010) & 10743¥1¢"  (19)

is very small indeed. Its smallness illustrates that, because
of the exponential expression of the one-loop vacuum-
polarization correction to the quadrupole trap potential, the
vacuum-polarization corrections can be neglected. The same
exponential suppression factor exp(—mr) enters the magnetic

photon exchange [13] which is the basis for the magnetic
field of the trap. Therefore, vacuum-polarization corrections
can be safely neglected for quantum cyclotron levels.

IV. SELF-ENERGY

A. Orientation

Inspired by the formalism pertinent to bound states in a
Coulomb field [10,14], we write the semianalytic expan-
sion of the one-loop bound-state energy shift of a quantum
cyclotron state as follows:

a
Esg = ;nlgArs(ac)rlns (ac_zv (20)

where the first subscript of the A coefficients counts the
power of ., and the second subscript indicates the power
of the logarithm In(a;?).

The A,, coefficients are analogous to the coefficients A,
used in Lamb shift calculations for hydrogenlike systems
(see Sec. 15.4 of Ref. [15]). For the electron in the Penning
trap, the role of the Coulombic coupling parameter Za is
taken by the cyclotron coupling parameter a.. In Lamb
shift calculations for hydrogenic systems, one scales out a
factor 1/n? from the coefficients, where 7 is the principal
quantum number. This reflects on the typical scaling of
quantum electrodynamic energy corrections in hydrogen-
like systems. In the Penning trap, the role of #n is played by
the cyclotron quantum number. However, there is a decisive
difference: For the Penning trap, no 1/n* dependence is
incurred, and in fact, some logarithmic coefficients are seen
to increase with n, not decrease as is typically the case in
Coulombic bound systems. We thus do not scale out 1/x°
in the definition of the A, coefficients.

The leading self-energy coefficient is seen to be A,,, and
is due to the leading Schwinger term [16] in the anomalous
magnetic moment of the electron. Here, we focus on the
coefficients A,g, A4p, Ayg, and Ag;, which constitute the
leading nonvanishing coefficients for a general quantum
cyclotron state. The higher-order nonlogarithmic coeffi-
cients possess an expansion in powers of &, e.g., Ay =
Agole —o + O(&,). We here evaluate Ay, Ay and Ag,, and
Ay in the leading order in &, and partial results for the
corrections proportional to &, and £,. The Bethe logarithm
inside the Penning trap is seen to contribute to A, albeit
only at order &,. Indeed, in the leading order in the
expansion in &, the Bethe logarithm in the Penning trap
will be seen to vanish. Our result for the Bethe logarithm is
numerically small and, somewhat surprisingly, state inde-
pendent. The contribution of the Bethe logarithm is thus not
visible in any transitions among quantum cyclotron states.
Let us anticipate some results which will be derived in the
following, in order to lay out the work program of our
article. Indeed, we obtain two contributions to the order-¢,
correction to A4y, one from a higher-order anomalous
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magnetic moment term, and a second one from the Bethe
logarithm. There might be another contribution to the
order-£, correction to Ay, from the high-energy part,
which we evaluate only to leading order in &,. The
evaluation of the complete order-&, correction to A4y will
be left for a future investigation. The dominant state-
dependent correction, in the leading order in &, and &,
is found to be given by the Ay, coefficient.

The coefficients Ay, A4y, Asg, and Ag,, determined
here, constitute the leading nonvanishing coefficients for
the self-energy effect. Coefficients of odd order in a, such
as Az, and Aj, as well as As, vanish. [By odd order, in
general, we refer to an odd integer r in Eq. (20).] A brief
discussion on this point, mostly based on the high-energy
part discussed in Sec. IV C, is in order. The A, coefficients
are a consequence of the Schwinger term [16] which enters
at lower order because the main binding potential involves
the magnetic trap field. Operators in the high-energy part
can be expanded in the (vector)potential Dirac operator I'y
defined in Eq. (41) and in the momentum operators. For
quantum cyclotron states, momentum and potential oper-
ators (coordinates) can be expressed in terms of raising and
lowering operators of the cyclotron and magnetron quan-
tum numbers [7], and hence, all of these matrix elements
are convergent (in arbitrarily high orders in a). Because of
symmetry reasons, matrix elements which would otherwise
lead to an odd power of a, vanish. An example would be
terms of third order in the momentum operators, whose
matrix element on the reference state vanishes due to parity.
[Odd orders in a, would otherwise correspond to half-
integer powers in @,, in view of Eq. (1).]

The terms A4, and Ay are generated by a mechanism
much in analogy to those at work in Coulombic bound
systems (see Chapters 4 and 11 of Ref. [15]). Finally, one
might ask why the term Asq vanishes for quantum cyclo-
tron levels in a Penning trap, while the corresponding term
Asq for Coulombic systems is nonvanishing (see Chapter 15
of Ref. [15] and Ref. [17]). A closer inspection reveals that
the emergence of the Asy term (for radially symmetric S
states in Coulombic systems) is caused by the singularity
of the Coulomb potential and of the hydrogen eigenstates.
The singularity of the Coulomb potential eventually leads
to the divergence of matrix elements (p°) when evaluated
on reference S states, which prevents the direct expansion
of the high-energy part of the self-energy (Sec. IV C) in
powers of momentum operators beyond fourth order. For
quantum cyclotron states, however, the potential has no
singularity at the origin, and hence, matrix elements of
arbitrarily high orders in the momenta are convergent. No
term of fifth order in ¢, is generated (Asy = 0).

B. Form factor treatment

In typical cases, the self-energy shift of a bound
electronic state is the sum of a high-energy part (due to
virtual photons of high energy), and a low-energy part

(due to virtual photons whose energy is of the same order
as the quantum cyclotron binding energy). The matching
of the high- and low-energy parts is quite problematic
(see footnote 13 on page 777 of Ref. [18]). One may
complete the matching based on photon mass or photon
energy regulations, or in dimensional regularization (see
Chapters 4 and 11 of Ref. [15]). In many cases, the high-
energy part can be handled on the basis of a form-factor
approach [see, e.g., Eq. (3) of Ref. [19]], provided the
photon mass and photon energy cutoffs are properly
matched [see, e.g., Egs. (32) and (33) of Ref. [19]].

In the case of a Penning trap, one needs to reformulate
the effective Dirac Hamiltonian obtained from a form-
factor treatment, because there is both a nonvanishing
vector potential, as well as an electric quadrupole potential,
present in the trap. Let us discuss in some detail. We start
with the structure of the electromagnetic field-strength
tensor, in a component-wise representation,

0 -E* —-E¥ —F¢ Hy
E* 0 —cB* B’
F = .21
EY  ¢B*? 0 —cB*
E* —¢BY ¢B* 0
For the Dirac matrices, we use the Dirac representation,
where

“2><2 0 ) . < 0 Gi>
0 =p= , 7= . . 22
r'=p ( o —1,.) "\l o (22)

The o' are the Pauli matrices, and Latin indices are spatial
(i=1, 2, 3). The spin matrices are defined as
o =3 [r*,7"], and the Dirac a and X matrices are

. 0 o ) g 0
a’:( | ) zt:( ) (23)
¢ 0 0 o

One derives the relation
0, F* =2iG-E 2% - B. (24)

The replacement for the y* matrix at the vertex (Greek
indices are spatiotemporal, ¢ =0, 1, 2, 3) is (see
Chapter 10 of Ref. [15])

.ot
= rF(g) + 1%%1”2(‘]2)' (25)

Here, F, is the Dirac form factor, while F, is the Pauli form
factor. In coordinate space, the interaction Hamiltonian is

. o =2 .
obtained from the replacement ¢> - —g> — V', g, — i9,,
and results in

—_2 N —_ e L 2 -
ey'A, = F1(V7)ey'A,(7) + Fo(V )%(105-E—2-B).

(26)
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The interaction Hamiltonian of quantum electrodynamics
is j*A, = eyy’y*Aw. So, the contribution to the
Hamiltonian, in the space of the scalar product equipped
with y and y', is obtained from the expression ertA,,
via multiplication by }/0. Hence, the modified Dirac
Hamiltonian reads as

- o 2
Hgx=a-p+pm+F (V)W

—0. e

F, (V"™ E B

4 PV (7 -5 B,
W = ey°r*A, = ea’A,, (27)

We now consider a vector potential A* = (A%(7), A(F)),
where A°(F) = ®(¥) is the quadrupole potential of the
Penning trap and A(7) = A¢(F) = %(ET x F) is the vector
potential corresponding to the magnetic field of the trap.
One can rewrite the radiatively corrected Hamiltonian as

Hy =@+ [p = eFy(V)A(F)| + pm+ Fi(V)ed(7)
+ F(V)5-[i7- E(F) - p2 - B(7) . (28)

This expression can alternatively be written as the sum of
a covariantly coupled tree-level Hamiltonian Hy and a
form-factor correction Hyp,

HR — HT +HFF’
Hy =a- 7+ pm+ eA%(F),

Hyg = [F1(V7) = 1]eA(7) = [F1(V7) = 1]ed - A (7)

+Fy(V )—[17 E(F) - BZ- B(7)). (29a)

For the nonrelativistic momenta typical of an electron in a

Penning trap, one can expand the Dirac form factor F, (62)
in terms of its argument. The quadrupole potential of the
trap is, according to Eq. (10),

1 1
V:eA%(?):Ema)% {12—5(x2—|—y2)}, V'V =0
(30)
So, we can replace
[F1 (V) — 1]eA}(?) =0, (31)

by expansion of the form factor in powers of its argument.
Also, one has

Ar(F)=0. (32)

Hence, corrections induced by the Dirac form factor vanish
for a particle bound into a Penning trap.

The only contribution which can be evaluated based on
the form-factor treatment concerns the contribution of the
anomalous magnetic moment of the electron to the self-
energy. It can be evaluated based on a Foldy-Wouthuysen
transformation [7] of the radiatively corrected Dirac
Hamiltonian given in Eq. (11.40) of Ref. [15]. One starts
from Eq. (28), approximates [20]

F,(0) k= a/(2n), (33)

and performs a number of unitary transformations in order
to disentangle the particle degrees of freedom from the
antiparticle degrees of freedom. After the Foldy-Wouthuysen
transformation, one gets two contributions to the
Hamiltonian which are proportional to the electron anoma-
lous magnetic moment. The relevant terms from Eqgs. (82)
and (87) of Ref. [7] can be summarized in the radiatively
corrected anomalous-magnetic moment Hamiltonian H,,

ex — .
HK:—%G BT+2 '(VVXﬂ'T)
ex .,
+?(0 7i1)(By - 7ir). (34)

In view of the occurrence of the scalar product ET A =
Brp., the expectation value of the effective Hamiltonian H,,
contains terms which are linear and quadratic in the axial
frequency .. The energy perturbation is obtained as

<l//kfns|HK‘kans> - 0) + EHI}Z;P’ (35)

where
EE;)]%P = 2Kks0, (36)

is the leading term due to the anomalous magnetic mo-
ment, and

(1) SK@, W, 1
) of S N st A
HEP 4m ( * 2)

_07sk ) (” + %) + o) (f + %) (37)
2m (1) — W) )

The two terms after the equal sign are proportional to &
and &, respectively.

C. High-energy part

From Lamb shift calculations for hydrogenic bound
states [10,14], we know that in typical self-energy calcu-
lations, the low-energy part, which involves the Bethe
logarithm, has an ultraviolet divergence. This ultraviolet
divergence is compensated by an infrared divergence of the
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high-energy part. Furthermore, for the one-loop self-energy
of a hydrogenic bound state, the infrared divergence of the
high-energy part can be obtained on the basis of an effective
potential proportional to the infrared slope of the Dirac
form factor (see Chapters 4 and 11 of Ref. [15]).
However, we have shown that the Dirac form-factor
induced one-loop correction to the energy of a quantum
cyclotron state vanishes. This leaves the question of the
correct treatment of the high-energy part of the bound-
electron self-energy in the quantum cyclotron state.
From bound-state calculations for an electron in a
Coulomb field [10], we know that an appropriate treatment
of the high-energy part consists in the expansion of the one-
loop self-energy operator in terms of the binding field.
In the Feynman gauge, the bound-electron self-energy
for a quantum cyclotron state can be written as [see
Eq. (15.17) of Ref. [15]]
P 1p>
TE—H=m

d*k e’g,, <q;
— (P|6m|¥). (38)

7/I./

AEq: = €2
SE = € /c 211 &

Here, Cp specifies the Feynman integration contour for
the photon energy integration. The metric is g, =
diag(1,—1,—-1,—1). The Dirac matrices are used in the
Dirac representation given in Eq. (22). The kinetic-
momentum four-vector is

7 = (E.,7), 7=17p=D—eAr, (39)

where 7y is defined in Eq. (9). In the high-energy part,
one can expand the Feynman propagator in powers of the
binding vector potential,

1 L1
Ff-m F—f=m pfm pfm
1 1 1
- T fm -

S lm). @

_|_

where

p'=(E.p), Tr=—ef-Ar (41)
is the Feynman slash of the vector potential of the trap.

The mass counterterm is 6m, and the Dirac adjoint is
7 = y'yY. Alternatively, the use of the Feynman contour
can be enforced by the replacements,

1

G G 1
s
F—K-m F—K—m+ie

1 (42)

in the photon and electron propagators. We use the
noncovariant photon energy cutoff e introduced in
Refs. [9,10,14] which cuts off the Feynman contour for
the photon energy integration at an infrared cutoff e which
is of order of the binding energy of the bound state. The
dependence on ¢ disappears when the high- and low-energy
parts are added.

A further difficulty arises: For hydrogenic states, the
operator I't is replaced by T'¢c = +ey050 = y%(=Za/r),
where Z is the nuclear charge number, o is the fine-
structure constant, and r is the electron-nucleus distance
[10,14]. One notes that I't is an odd operator (connecting
upper and lower components of the Dirac bispinor), while
I'c is an even operator in the bispinor basis [see Eq. (22)].
We must now go into detail and reflect on the Za
expansion. For hydrogenic bound states, the Coulomb
potential scales as (Za)?m, because r~ay/Z=1/(Zam),
where a, is the Bohr radius. Hence, every insertion of a
power of I'¢ into the diagram adds two powers of Za.
For the quantum cyclotron state, the expansion works
differently: The role of the coupling parameter Za is taken
over by a,, defined in Eq. (1). One has the following order-
of-magnitude estimates: By~ azm?, r~1/(a.m), and
|7Zr| ~ a.m. However, the matrix element (P|T'r|¥) is of
order a2m and thus, of order of the bound-state energy in
the quantum cyclotron, because it connects upper and lower
components of the Dirac bispinor solution [21] (lower
components are suppressed by a factor of a.). Now, while
in one occurrence of the operator I'y, one connects upper
and lower components, two such operators connect upper
to upper, and lower to lower components, eliminating two
powers of a, from the product. Hence, in order to evaluate
the self-energy of a bound-electron quantum cyclotron
state to order aatm, we need to expand the propagator
1/(#— ¥ —m) up to fourth order in Iy, i.e., up to the
four-magnetic-vertex term [term with n =4 in Eq. (40),
see also Fig. 1].

A further difficulty arises. In Fig. 1, the outer lines
(outside of the self-energy loop) are still fully dressed by

FIG. 1. The figure illustrates the Feynman diagrams contrib-
uting to the high-energy part of the bound-electron self-energy of
a quantum cyclotron state in magnetic interaction vertices. These
correspond to ascending powers of the operator I'y as delineated
in Eq. (40).
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the external field; for hydrogenic bound states, one therefore
uses the known solutions of the Dirac-Coulomb equation for
the bispinors |¥) and (P that enter the diagram (see, e.g.,
Chapter 8 of Ref. [15]). For the quantum cyclotron problem,
the nonperturbative Dirac solutions have recently been
analyzed in Ref. [15]. They read as follows:

wnr(7)
VO =N a0 ) =) @)
ED+m wnr(7)

where ynr is the nonrelativistic wave functions, and all
symbols will be explained in the following. For the high-
energy part, one notes, in particular, that the relativistic states
are needed for the untransformed Dirac equation, i.e., in the
form of four-component bispinors. Two-component solu-
tions obtained after a Foldy-Wouthuysen transformation (see
Ref. [22]) cannot be used as bra and ket vectors for the fully
relativistic self-energy matrix element in the integrand of
Eq. (38). We use the relativistic states in an approximation
where the axial motion is being neglected, i.e., in the leading
order in the expansion in powers of &, and &,. The Dirac
energy is

ED:m\/l—k&(Zn—ks—kl). (44)
m

The nonrelativistic Landau level in the symmetric gauge can
be separated into a spinor component y,; and a coordinate-
space wave function,

WNR(?) = l//fns(?) = Wm,”(ﬁ))(s* (45&)
p=xé, + 8, (45b)
(o) #=(1) @
= , = . C
AR 0 X1 1

The nonrelativistic coordinate-space wave function is
given as (see Ref. [15])

2—zm £+1)

Wae(p) = max(n, 7)1

mmn,f)' p [n—¢|
f) 0

x iln= f\L‘n f‘

it (2)
ol ]

Here, p = |p| and ¢ = arctan(y/x), and we use the asso-
ciated Laguerre polynomials L%(x) in the conventions of
Ref. [23]. The magnetic Bohr radius is

Imc® h h | n
(n — —_—— = r—— 47
a0 hw.mc a.mc le| By (47)

The wave functions ., (7) fulfill the Dirac equation

Hp¥sus = Ep®pss (48a)
Hp=a-h+pm,  #h=pj—eAr, (48b)
13” = py&; + pyéy (48C)

Finally, we can give the normalization factor as

2mENR :| _%

MR Eg=
(Ep+m)* R

N= [1+ 76(2n+s+1). (49)

The relativistic wave function W given in Eq. (43) is valid
for vanishing axial frequency, i.e., to leading order in the
expansion in the ratio @,/®,, and can thus be used in order
to evaluate the high-energy part of the quantum cyclotron
bound-state self-energy in the leading order in the expan-
sion in powers of w,/,.

We employ analogous procedures as those that were
used for the high-energy part of the self-energy of bound
states in hydrogenlike systems [10], and map the algebra of
the quantum cyclotron states onto a computer algebra
system [24]. This enables us to evaluate the matrix elements
of the vertex terms for the high-energy part, where we
employ a noncovariant integration procedure for the virtual
photon integration contour outlined in Sec. 3 of Ref. [14].
The final result for the high-energy part is (almost) state
independent (except for the obvious spin-dependence of the
leading term) and reads

2) a 200 m 13
Ejpn = — — |In| —
T { ! (26) 72 (50)

where ¢ is the (noncovariant) photon energy cutoff. The first
term in EHEP reproduces the leading anomalous-magnetic-

moment correction E%P given in Eq. (36).

D. Low-energy part

The appropriate reference state for the low-energy part
is given by the nonrelativistic quantum cyclotron wave
function indicated in Eq. (13). Employing the formalism
outlined in Chapter 4 of Ref. [15], we obtain the expression

P 1 1\ =
ELEP:_ / dkk<V/kfns T(ﬁ k) =t l//kfm>,
(51)

where k = o is the angular frequency of the virtual photon,
€ is the photon energy cutoff, and |w) = |wizn,) 1S the
reference state. The sum over i = 1, 2, 3 is implied by the
Einstein summation convention. We use the relation

V=L )

i

—L (Ho - Eo)

7
W
m
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which can be shown after expressing the Cartesian com-
ponents of the kinetic-momentum operator in terms
of raising and lowering operators of the cyclotron and
magnetron motions [3,7,21,25,26]. Notably, the matrix
element given in Eq. (52) is state independent. After an
integration over the photon energy, the low-energy part is
obtained as

2 2
ELEP = —(Z&hl <2i> - _aM, (53)

3 m acm 3z

where the coefficient of the logarithmic term contains a
logarithmic sum (Bethe logarithm) over the virtual excita-
tions of the quantum cyclotron state,

)

|Hy — Eo|\ 7
<¢r —L(Hy— Eg)In (0[%—7,1)%

@y In (%> ~ ) ln( mc>> 0l (o,
- + %, (—) (54)
m(w(y) — o) 2m  \w,

In the simplification of the expressions, the following
identities prove to be extremely useful:

W4y = o) = /o - 207, (55)
20)(_,_)&)(_) = G)g (56)

Furthermore, it is very interesting to observe that, in the
limit @, — 0, which implies ) — o, and w_) — w,, the
Bethe-logarithm matrix element M vanishes. The first
nonvanishing contribution to M appears at order &7,

E. Self-energy shift

After adding the high- and low-energy contributions,
the dependence on the photon energy cutoff e cancels
[see Egs. (37), (50), and (53)]. The total self-energy shift

Egg, up to order aam, is obtained as follows:

6
Esg = Eygp + Ejgep + Ergp = Z T, (57)
i=1

where the six individual contributions (together with their
respective expansion in powers of £,) are

T, = gswc = goc%ms. (58a)
z P
a 13
7,=2 (a2 ——1
2 = Zatm inar?) - 32 - . (58b)
. 3500, k-l—l ——ia“ms{,‘z k+l (58¢)
3787 m 2] 8z ¢ ¢ 27’

@y (f + %)

W(4) — D)

1
a w2s ) (” + E) +
dr m

Ty=-

a

= —ma {—1(271 + l)sfﬁ} + O(&8),
T 8

aw? (o
Te—e 2% (%
> 3 m n(w)
a 2
= ;maﬁ [—gﬁfﬁ 1n(€z):| ,
_2a9(yln (52) — ol m(%)
3z m(wy — o)

g0{4m é + O(&).

(58d)

(58e)

Te=

(581)

The leading (state-independent) logarithmic contribution to
the Lamb shift of a quantum cyclotron state is

2 - 2, .,
—m—In(a;?) = —aimIn(az?). (59)
37 m 3z

It is reassuring to see that the only state-dependent
contributions to the QED energy shift of order aatm come
from the anomalous magnetic moment.

The final results of our investigations can be summarized
in the following, concise form, encapsulating the leading
coefficients in the self-energy shift given in Eq. (20),

_a 5 a 4 -2

Egg = ;acmAzo + ;acm[Am In(a;?) + Ago],  (60a)

where the coefficients are, except for A,,, state indepen-

dent, and read as follows in the leading order of the
expansion in powers of &,

2

Ay = s, Ap = 3 (60b)
_ 2B 2

We also evaluate partial results for the dependence of the
Ayo coefficient on the axial frequency. These results are
partial, because the treatment of the high-energy part of the
self-energy employed by us is valid only to leading order
in &,. The corrections evaluated by us add up to the partial
higher-order (h.o.) result

Asole, 0—§<k+ >§2

4 B —%(Zn +1)s —éln(fz)] fi} + O(fg)

A40 |h‘0

(61)
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FIG. 2. The diagrams with five magnetic vertices (left), and six
magnetic vertices (right) contribute to the state-dependent,
logarithmic term of order & a®m In(a~2), as discussed in Eq. (62).

F. Higher-order logarithmic term

It is somewhat surprising to see that the coefficients 4,
and Ay, are state independent in the leading order in the
expansion in £,. Because the axial frequency is small
compared to the cyclotron frequency, this observation
raises the question at which order in the expansion in a,
(i.e., in the main cyclotron frequency expansion parameter)
any state dependence is actually incurred. With some effort,
one can obtain the leading logarithmic terms in the sixth
order in a, from the six-vertex correction (see Fig. 2). We
obtain, after algebraic simplification, the result

4
SEgg = gagm.Am In(a;?), Ag =2n+1- ?s (62)
n

This result depends on the spin orientation of the reference
state, just like Ay, and also grows with the principal
quantum number n, which is the quantum number that
counts the cyclotron excitations. Further details of the
derivation will be presented elsewhere [27].

For hydrogenic bound states, the higher-order coeffi-
cients typically decrease with the principal quantum
number [28]; for quantum cyclotron states, the depend-
ence is reversed. The physical reason for this is that in
hydrogen, higher excited states have lesser expectation
values of the momentum square, and are, in that sense,
less relativistic and subjected to a lesser extent to
relativistic and quantum electrodynamic corrections.
Specifically, in a hydrogenic state with principal quantum
number n, the typical momentum scale is Zam/n, where Z
is the nuclear charge number, a is the fine-structure
constant, and m is the electron mass. For a quantum
cyclotron state, the momentum scale is a.m+/n, where a,
is defined in Eq. (1). So, it is natural that Ag, increases
with the quantum cyclotron quantum number 7.

V. CONCLUSIONS

In this paper, we have discussed the QED energy shitfts of
quantum cyclotron levels. We start from a very concise
recap of the main ingredients of quantum cyclotron levels
in Sec. II, with vacuum-polarization effects discussed in
Sec. III and the dominant self-energy shift discussed in
Sec. IV. In the Penning trap, the rotational symmetry of the
hydrogen and atomic bound-state problem is lost, and only

the axial symmetry of the magnetic trap field remains.
Hence, one formulates the bound states using spin-up and
spin-down fundamental spinors [see Eq. (13)], rather than
the spin-angular functions known from atomic bound-state
theory (see Chapter 6 of Ref. [15]).

The kinetic momentum operator 7z given in Eq. (9) can
easily be decomposed into raising and lowering operators
for the cyclotron, axial, and magnetron motions. Hence,
one can express the matrix elements of the radiatively
corrected relativistic Hamiltonian given in Eq. (34) in terms
of the quantum numbers k, #, n, and s (see also
Refs. [3,7,21,25,26]). One adds the high-energy contribu-
tion due to the anomalous magnetic moment from Eq. (37),
and the high-energy contribution from the terms with up to
four magnetic vertices, as given in Eq. (50), to the low-
energy term listed in Eq. (§3). The complete self-energy
shift of order aa?m is given in Eq. (57). By considering
diagrams with up to six magnetic vertices (see Fig. 2), as a
significant further result, one obtains a state-dependent,
higher-order logarithmic binding correction of order
aalmIn(az?) in Eq. (62).

A few words on the experimental and phenomenological
relevance of the higher-order binding corrections calculated
here are in order. Because of the scaling with higher powers
of the coupling parameter a,, the effects become more
pronounced in stronger magnetic fields. In current Penning
trap experiments [6], field strengths of the order of
Br ~5.3 T are employed, resulting in w,~27 x 148 GHz
and cyclotron coupling parameter a, = 3.5 x 107>, which
implies In[a;?] ~ 20.5. With an axial frequency of the order
of w, % 2w x 114 MHz, one has &, = 0.028.

The higher-order one-loop binding corrections to the
quantum cyclotron energy levels calculated here scale as
follows. We have in the fourth order in a,, from Eq. (60a),

where the coefficients A4,, and A, are state independent in
the leading order in the expansion in &, [see Eqs. (60b)
and (60c)]. Quantum cyclotron levels are displaced from
each other by an energy w, = aZm. Hence, the relative shift
of the cyclotron frequency due to the quantum electrody-
namic effects is

SEW a
KW ~v—=— Y =—alln(a?). (64)
azm T

The nonlogarithmic coefficient .4, receives corrections of
order & according to Eq. (61). Parametrically, these addi-
tional terms lead to a relative energy shift of the order

of ¥\, where

7 =2 (65)
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for quantum cyclotron levels. Finally, the higher-order
binding corrections given in Eq. (61) give rise to a relative
energy shift described by the parameter y(®), where

70 =2 ot In(az?). (66)
T

For By =53 T and w, =27 x 114 MHz, i.e., the param-
eters of Ref. [6], one has

)((4)|BT:5.3 r=58x107", (67)
Z(Z)|BT:5.3 T =2.1x1075, (68)
29Ng, 531 =69 x 10720, (69)

In view of these results, we can say that the absence of a
state dependence of A4, and Ay (in the leading order in &,)
is crucial for the validity of the evaluation of the recent
experiment [6], as any dependence on n could have
easily shifted the determination of the cyclotron frequency
(and of the electron ¢ factor) on the level of 107!, which
is larger than the experimental uncertainty reported in
Ref. [6] by roughly 2 orders of magnitude. The absence
of a state dependence of Ay, and Ay, in the leading order
in £,, is one of the most important results of the current
investigation.

The corrections parametrized by ¥ and »(® are not
relevant at current experimental conditions [6]. However,
according to Table 1 of Ref. [29], it is clear that magnetic
field strengths in excess of 30 T are current maintained in
continuous (dc) mode by a number of laboratories around
the world. One of the most impressive results available to
date is the 45.5 T field reported in Ref. [30]. It is thus
instructive to carry out calculations for a magnetic field of
By =30 T, with the results

7 9p, 307 =3.0x 107, (70)
X Ip, 301 =2.1x 1075, (71)
¥Op, 301 = 2.0 x 10715, (72)

For these conditions, the correction of order aal In[a;?]
could become relevant, when experimental techniques are

combined with modern spectroscopic techniques [31]. It is
also very important to realize that state-dependent coef-
ficients grow linearly with the cyclotron quantum number
n, and axial quantum number & [see Egs. (61) and (62)].
The corrections thus become much more important for
higher excited cyclotron states. We also observe that the
mass m of the trapped particle cancels out in the relative
corrections denoted by the symbols ;(<4), )((Z), and )((6),
discussed above; in other words, the quantities 79, 4@,
and »(© are functions of the coupling parameter @, only.
For a given magnetic field, the coupling parameter a, is
inversely proportional to the trapped particle mass m [see

Eq. (1)], in view of the relation a. = \/|e|B/m. Hence,
for hydrogenlike and lithiumlike bound systems (ions) in a
Penning trap, the quantum electrodynamic effects scale
according to the dependence of a. on the mass of the
trapped ion.

Three final remarks are in order. (i) First, we reempha-
size that vacuum-polarization contributions can be safely
neglected, as already discussed near the beginning of
Sec. TII. (ii) Second, we would like to remind the reader
that modifications of the QED shifts due to the cylinder
walls of the Penning trap [25,26] have not been considered
in the current work. We here work with the full photon
propagator that is unperturbed by the external conditions
due to the cylinder walls of the Penning trap. Because the
average spatial extent of a quantum cyclotron state is only a
tiny fraction of the trap dimension, this approximation
is well justified, with limitations being discussed in
Refs. [25,26]. (iii) Relativistic Bethe logarithm corrections
to the leading one-loop terms are of order self-energy shift
of order za®m while the correction obtained in Eq. (62) is
enhanced by the logarithm In(a;?). The evaluation of
relativistic Bethe logarithms, for quantum cyclotron states
complementing work on hydrogenic levels [9,10], would
be an inspiration for future studies [27].
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