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We analyze the leading and higher-order quantum electrodynamic corrections to the energy levels fora single 

electron bound in a Penning trap, including the Bethe logarithm correction due to virtual excitations of the 

reference quantum cyclotron state. The effective coupling parameter @, in the Penning trap is identified as the 

square root of the ratio of the cyclotron frequency, converted to an energy via multiplication by the Planck 

constant, to the electron rest mass energy. We find a large, state-independent, logarithmic one-loop self-energy 

correction of order a amc? In(a-7), where m is the electron rest mass and c is the speed of light. Furthermore, 

we find a state-independent “trapped” Bethe logarithm. We also obtain a state-dependent higher-order 

logarithmic self-energy correction of order a a®&mc? In(a;7). In the high-energy part of the bound-state self- 

energy, we need to consider terms with up to six magnetic interaction vertices inside the virtual photon loop. 
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I. INTRODUCTION 

Relativistic and quantum electrodynamic corrections to 
the quantum cyclotron energy levels in a Penning trap are 
of essential importance for the determination of funda- 
mental physical constants [1-6]. In a recent article [7], 

higher-order relativistic corrections for the energy levels 
in a quantum cyclotron have been analyzed. Here, our 
goal is to supplement the preceding analysis [7] by a 
calculation of the intricate and notoriously problematic 
quantum electrodynamic (QED) corrections to the quan- 

tum cyclotron energy levels inside the Penning trap. 
In our calculations, we use expansion parameters which 
allow us to initiate a systematic classification of the 
correction terms, in terms of a semianalytic expansion in 
terms of a “trapped fine-structure constant a,,” and a 
cyclotron scaling parameter &., as well as an axial scaling 
parameter €,. These parameters replace and supplement 
the QED coupling parameter, which is the fine-structure 
constant @. 

As already anticipated, the effective coupling parameter 
in a quantum cyclotron could be identified as the maximum 
of the cyclotron (c) and the axial (z) coupling constants. 
In particular, one may identify the coupling parameters (in a 
unit system with A =c =€) = 1) 
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which depend on the cyclotron frequency @,, and the 
axial frequency w,. The cyclotron frequency [3] is w, = 
|e|B;/m, where e is the electron charge, |e| = —e is the 
(positive) elementary charge, By is the magnetic field in the 
Penning trap, and m is the electron mass. 

The hierarchy of typical frequencies in a Penning 

trap [3,7] implies that the magnetron frequency @,, 1S 
much smaller than the axial frequency w,. Following the 
conventions of Ref. [3], we define the corrected cyclotron 

frequency as a ,) and we define the corrected magnetron 

frequency as @, = @_), where 

1 oy) <5 (we + Vo? = 202). (2a) 
1 2 

O(-) = Om = 5 (0. — 4/@r - 20?) ae (2b) 

The magnetron frequency is, typically, much smaller than 
the cyclotron frequency w,. One defines the generalized 
coupling parameter 

am = 7. (3) 

for the magnetron frequency. We assume the following 
hierarchy to be fulfilled (see Ref. [3]): 

An K a, K ae. (4) 
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We also define scaling parameters €, and €,, by 

Gy = EmQe, (5) 

The hierarchy of the frequencies allows us to perform a 
systematic expansion in terms of @,, €,, and €,, as well as 

the coupling parameter of quantum electrodynamics, that 
is, the fine-structure constant a. The expansion in &,, gives 

rise to an expansion in 2, and we can henceforth use the 

parameter €, in order to universally describe the parametri- 
cally suppressed effects due to both the axial as well as 
magnetron motions. 

A remark is in order, concerning the anticipated results 
of our studies. It is well known [8-10] that the leading 

logarithmic quantum electrodynamic self-energy correction 
to hydrogen energy levels is proportional to (in natural 
units, A = c = €) = 1, which are used here) 

a, = 6 2Ae 

AEogp ~ a(Za)*m In{(Za)~], (7) 

where a is the fine-structure constant, and Z is the nuclear 

charge number. We here anticipate that we shall find the 
following, analogous scaling for the leading quantum 
electrodynamic self-energy correction to quantum cyclo- 
tron levels in a Penning trap, 

AEF oep ~ aatim In(az7), (8) 

where the coefficient a@ is due to the absorption and 
emission of the virtual photon, and the factors of a, 

describe the binding to the trap fields, which is typically 
smaller than the coupling parameter a for atoms. It is our 
goal to calculate these energy shifts. 

This paper is organized as follows. In Sec. II, we present 
a brief review of the quantum cyclotron states which enter 
our formalism. Vacuum-polarization corrections are negli- 
gible for quantum cyclotron states, for reasons outlined in 
Sec. III. Self-energy effects are discussed in Sec. IV; these 
constitute the dominant radiative corrections for quantum 
cyclotron states. Conclusions are reserved for Sec. V. 

Il. QUANTUM CYCLOTRON LEVELS 

In order to understand the quantum cyclotron levels 
inside a Penning trap, it is, first of all, necessary to 

remember that the kinetic momentum is given by 

> > >? > € 2 > 

iy = p — eAy = p ~~ (Br x7), (9) 

where Ay = 5 (By x F) is the vector potential, By = Br é, 
—> 

is the magnetic field in the trap, and p = —iV is the kinetic 
momentum operator. The kinetic momentum 77 enters 

the interaction Hamiltonian describing the coupling of the 
bound electron (inside the Penning trap) to the quantized 
electromagnetic field. 

The quadrupole electric field in the trap is attractive 
along the z axis and repulsive in the xy plane, 

= 
V=V,+V), V V=0, (10a) 

Lo eee V,= 5 nazz V) = ~gmacp’. (10b) 

The unperturbed Hamiltonian is given as follows: 

(6+ zy)? € > 3B Hy = ———— + V -——ko - Br. 11 0 Im. am KO PT (11) 

Eigenstates of the unperturbed Hamiltonian Ho are 
described [3] by four quantum numbers: the axial quantum 
number k, the magnetron quantum number 7, the cyclotron 
quantum number n, and the spin projection quantum 
number s= +1. These take on the following values: 
k=0,1,2,... (axial), @ =0,1,2,... (magnetron), n= 

0,1,2,... (cyclotron), and s = +1 (spin). We recall, from 

Ref. [7], the energy eigenvalues of Ho, 

K) 1 
Exéns = w@,(1 HK) + W(+) n +5 

co.(te!)-on (er). a 
It is of note that, in view of the repulsive character of the 
quadrupole potential, these eigenvalues are not bounded 
from below. We use the conventions of Refs. [3,7], for 

the cyclotron lowering and raising operators a.) and aj 4) 

the axial lowering and raising operators a, and ai, and the 

magnetron lowering and raising operators a,_) and a/_): 

The eigenstates of the unperturbed Hamiltonian are given 
as follows: 

() eG) X1/2 = 9)? X-1/2 = i) 

The orbital part of the ground-state wave function is 

5 my/ a. — 2@° m 
ywo(7) = / 5 EXP (-7 \/ @e — 2u'p*) 

1/4 1 

x (“) exp (-5mw.2’). (14) 
1 2 

The spin-up sublevel of the nth cyclotron ground state, and 
the spin-down sublevel of the (n + 1)st excited cyclotron 
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state, are quasidegenerate and of interest for spectroscopy 
and determination of the anomalous magnetic moment of 
the electron [1,2,4—6]. 

HI. VACUUM POLARIZATION 

For atomic bound states, quantum electrodynamic energy 
shifts are naturally separated into vacuum-polarization and 
self-energy corrections. The vacuum-polarization shift of a 
hydrogenic energy level is due to the screening of the 
proton’s charge by virtual electron-positron pairs. The closer 
the electron is to the nucleus, the less pronounced is the 

screening of the bare proton charge, and the stronger is the 
(corrected) Coulomb potential. The dominant contribution 

to the one-loop effect is described by the Uehling potential 
[11]. In a Penning trap, the potential 1s generated by the trap 
electrodes in addition to the axial magnetic field. Hence, the 
electron, on its quantum cyclotron orbit, is always suffi- 
ciently far away from any other charged particle that the 
vacuum-polarization energy shift can be safely neglected. 
This statement can be quantified as follows. 

The long-range tail of the Uehling potential is given as 
follows [12]: 

a(Za)m exp(—mr) 
— 4\/x 5/2” 

where r is the distance from the nucleus. The one-loop 
Uehling correction needs to be compared to the Coulomb 
potential, 

Vu(r) & ro, (15) 
(mr) 

Zam 
V i , 16 c(r) (mr) ( ) 

leading to the relative correction, 

Vo(r) a 
~ exp(— , > ow. 17 

Ve(r)  4,/x(mr)3/? xp(-mr) reo. (17) 

A typical Penning trap dimension [3] is of the order of 
about (r) ~ 1 cm, while the quantity mr is dimensionless 
in natural units. When converted to Systeme International 
mksA units, one realizes that mm takes the role of the inverse 

of the reduced Compton wavelength of the electron, 

r r 
=—=2,59 x 10” x R, R=—., (18 mr 7 x x _— (18) 

where R is measured in meters. For R being on the order of 

1 cm, one has mr on the order of 10'°. The quantity 

exp(—m(r)) ~ exp(—10!°) = 107431" (19) 

is very small indeed. Its smallness illustrates that, because 
of the exponential expression of the one-loop vacuum- 
polarization correction to the quadrupole trap potential, the 
vacuum-polarization corrections can be neglected. The same 
exponential suppression factor exp(—mr) enters the magnetic 

photon exchange [13] which is the basis for the magnetic 
field of the trap. Therefore, vacuum-polarization corrections 

can be safely neglected for quantum cyclotron levels. 

IV. SELF-ENERGY 

A. Orientation 

Inspired by the formalism pertinent to bound states in a 
Coulomb field [10,14], we write the semianalytic expan- 

sion of the one-loop bound-state energy shift of a quantum 
cyclotron state as follows: 

Ege =—my0A,.(a@)" In’ (as?.)——(20) 

where the first subscript of the A coefficients counts the 
power of a,, and the second subscript indicates the power 

of the logarithm In(a;7). 
The A,., coefficients are analogous to the coefficients A,., 

used in Lamb shift calculations for hydrogenlike systems 
(see Sec. 15.4 of Ref. [15]). For the electron in the Penning 

trap, the role of the Coulombic coupling parameter Za is 
taken by the cyclotron coupling parameter a,. In Lamb 
shift calculations for hydrogenic systems, one scales out a 

factor 1/n? from the coefficients, where n is the principal 
quantum number. This reflects on the typical scaling of 
quantum electrodynamic energy corrections in hydrogen- 
like systems. In the Penning trap, the role of n is played by 
the cyclotron quantum number. However, there is a decisive 

difference: For the Penning trap, no 1/n? dependence is 
incurred, and in fact, some logarithmic coefficients are seen 

to increase with n, not decrease as is typically the case in 

Coulombic bound systems. We thus do not scale out 1/n? 
in the definition of the A,, coefficients. 

The leading self-energy coefficient is seen to be Axg, and 
is due to the leading Schwinger term [16] in the anomalous 

magnetic moment of the electron. Here, we focus on the 

coefficients Ax 9, A4;, Ag, and A¢;, which constitute the 
leading nonvanishing coefficients for a general quantum 
cyclotron state. The higher-order nonlogarithmic coeffi- 
cients possess an expansion in powers of €,, e.g., Agyg = 
Aao|e 9 + O(€,). We here evaluate Azq, Ay; and Ag;, and 

Ago in the leading order in €,, and partial results for the 
corrections proportional to &,, and €,. The Bethe logarithm 
inside the Penning trap is seen to contribute to Ayo, albeit 
only at order €,. Indeed, in the leading order in the 

expansion in &,, the Bethe logarithm in the Penning trap 
will be seen to vanish. Our result for the Bethe logarithm is 
numerically small and, somewhat surprisingly, state inde- 
pendent. The contribution of the Bethe logarithm is thus not 
visible in any transitions among quantum cyclotron states. 
Let us anticipate some results which will be derived in the 
following, in order to lay out the work program of our 
article. Indeed, we obtain two contributions to the order-é, 
correction to Aj g, one from a higher-order anomalous 
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magnetic moment term, and a second one from the Bethe 

logarithm. There might be another contribution to the 
order-€, correction to Ayo, from the high-energy part, 
which we evaluate only to leading order in €,. The 
evaluation of the complete order-&, correction to Ayo will 
be left for a future investigation. The dominant state- 
dependent correction, in the leading order in &,, and é., 

is found to be given by the Ag, coefficient. 
The coefficients Ax 9, Ay;, Ago, and A¢,, determined 

here, constitute the leading nonvanishing coefficients for 
the self-energy effect. Coefficients of odd order in a, such 
as A3, and A39, as well as Asq, vanish. [By odd order, in 
general, we refer to an odd integer r in Eq. (20).] A brief 
discussion on this point, mostly based on the high-energy 
part discussed in Sec. IV C, is in order. The A, coefficients 
are a consequence of the Schwinger term [16] which enters 
at lower order because the main binding potential involves 
the magnetic trap field. Operators in the high-energy part 
can be expanded in the (vector)potential Dirac operator Ty 
defined in Eq. (41) and in the momentum operators. For 

quantum cyclotron states, momentum and potential oper- 
ators (coordinates) can be expressed in terms of raising and 

lowering operators of the cyclotron and magnetron quan- 
tum numbers [7], and hence, all of these matrix elements 

are convergent (in arbitrarily high orders in a,.). Because of 
symmetry reasons, matrix elements which would otherwise 
lead to an odd power of a, vanish. An example would be 
terms of third order in the momentum operators, whose 
matrix element on the reference state vanishes due to parity. 
[Odd orders in a, would otherwise correspond to half- 
integer powers in @,, in view of Eq. (1).] 

The terms A,, and Aj, are generated by a mechanism 
much in analogy to those at work in Coulombic bound 
systems (see Chapters 4 and 11 of Ref. [15]). Finally, one 

might ask why the term As, vanishes for quantum cyclo- 
tron levels in a Penning trap, while the corresponding term 
Aso for Coulombic systems is nonvanishing (see Chapter 15 
of Ref. [15] and Ref. [17]). A closer inspection reveals that 

the emergence of the As) term (for radially symmetric S$ 
states in Coulombic systems) is caused by the singularity 
of the Coulomb potential and of the hydrogen eigenstates. 
The singularity of the Coulomb potential eventually leads 

to the divergence of matrix elements (p°) when evaluated 
on reference § states, which prevents the direct expansion 

of the high-energy part of the self-energy (Sec. IVC) in 
powers of momentum operators beyond fourth order. For 
quantum cyclotron states, however, the potential has no 
singularity at the origin, and hence, matrix elements of 
arbitrarily high orders in the momenta are convergent. No 
term of fifth order in a, is generated (As = 0). 

B. Form factor treatment 

In typical cases, the self-energy shift of a bound 
electronic state is the sum of a high-energy part (due to 
virtual photons of high energy), and a low-energy part 

(due to virtual photons whose energy is of the same order 
as the quantum cyclotron binding energy). The matching 
of the high- and low-energy parts is quite problematic 
(see footnote 13 on page 777 of Ref. [18]). One may 

complete the matching based on photon mass or photon 
energy regulations, or in dimensional regularization (see 
Chapters 4 and 11 of Ref. [15]). In many cases, the high- 

energy part can be handled on the basis of a form-factor 
approach [see, e.g., Eq. (3) of Ref. [19]], provided the 
photon mass and photon energy cutoffs are properly 
matched [see, e.g., Eqs. (32) and (33) of Ref. [19]]. 

In the case of a Penning trap, one needs to reformulate 
the effective Dirac Hamiltonian obtained from a form- 
factor treatment, because there is both a nonvanishing 

vector potential, as well as an electric quadrupole potential, 
present in the trap. Let us discuss in some detail. We start 
with the structure of the electromagnetic field-strength 
tensor, in a component-wise representation, 

T/O -EX -EY —-EF \ 7H 

E* 0 —-cB® cB 
Fe = . (21) 

EY cB 0 —cB* 

EX —cBY cB 0 

For the Dirac matrices, we use the Dirac representation, 

where 

Toyo 0 } . ( 0 °) 
0 Be , y= 22 y=B ( 0 -to) hee 0 (22) 

The o! are the Pauli matrices, and Latin indices are spatial 

(@=1, 2, 3). The spin matrices are defined as 

oY — 4 ly“, 7’], and the Dirac a and & matrices are 

One derives the relation 

Oy FY = 2G E—22.-B. (24) 

The replacement for the 7“ matrix at the vertex (Greek 
indices are spatiotemporal, »=0, 1, 2, 3) is (see 
Chapter 10 of Ref. [15]) 

pV 
_O' 

y! > Fi (q?) + ix av o(q’). (25) 

Here, F’, is the Dirac form factor, while F’, is the Pauli form 

factor. In coordinate space, the interaction Hamiltonian is 
. > S2 . 

obtained from the replacement g* > —g* = V’,q, — id,, 

and results in 

2 e > => > 

) m 

=) . = 
eyA, > F\(V )ey"A,(7) + Fo(V 
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The interaction Hamiltonian of quantum electrodynamics 

is jXA, = ey'y°y"A,w. So, the contribution to the 
Hamiltonian, in the space of the scalar product equipped 

with y and wy", is obtained from the expression eyAy, 

via multiplication by y°. Hence, the modified Dirac 
Hamiltonian reads as 

W = ey A, = eA, (27) 

We now consider a vector potential A’ = (A°(7), A(?)), 

where A°(7) = ®(7) is the quadrupole potential of the 

Penning trap and A(?) = A;(7) = 1 (By x 7) is the vector 
potential corresponding to the magnetic field of the trap. 
One can rewrite the radiatively corrected Hamiltonian as 

Hy = &: |p eF\(V )Aq(7)| + Bm + F\(V eAg(?) 

+ Fs(V°) << lig BP) — pS BEF) (28) 

This expression can alternatively be written as the sum of 
a covariantly coupled tree-level Hamiltonian Hy and a 
form-factor correction Hp, 

Ap = Hy + Agr, 

Hy =a-z+ fm + eAd(7), 

Hyp = [F\(V ) — leA2(#) — [F\(V) — Lea: Ay (7) 

+ F,(V°)<— lig EP) — pE- B)] (29a) 

For the nonrelativistic momenta typical of an electron in a 

Penning trap, one can expand the Dirac form factor F, (V’) 
in terms of its argument. The quadrupole potential of the 
trap is, according to Eq. (10), 

1 1 
V =eAS(7) = Zn: fi -5 (x? + | , VV =o. 

(30) 

So, we can replace 

=>? 5 

[F\(V") — leAq(7) = 0, (31) 

by expansion of the form factor in powers of its argument. 
Also, one has 

= 

Ay (?) = 5 (Br x 7), 

N
l
]
 

Hence, corrections induced by the Dirac form factor vanish 
for a particle bound into a Penning trap. 

The only contribution which can be evaluated based on 
the form-factor treatment concerns the contribution of the 
anomalous magnetic moment of the electron to the self- 
energy. It can be evaluated based on a Foldy-Wouthuysen 
transformation [7] of the radiatively corrected Dirac 

Hamiltonian given in Eq. (11.40) of Ref. [15]. One starts 
from Eq. (28), approximates [20] 

F,(0) xx = a/(2z), (33) 

and performs a number of unitary transformations in order 
to disentangle the particle degrees of freedom from the 
antiparticle degrees of freedom. After the Foldy-Wouthuysen 
transformation, one gets two contributions to the 
Hamiltonian which are proportional to the electron anoma- 
lous magnetic moment. The relevant terms from Eqs. (82) 

and (87) of Ref. [7] can be summarized in the radiatively 

corrected anomalous-magnetic moment Hamiltonian H,, 

+—3(6-a7)(Br- Zr). (34) 

In view of the occurrence of the scalar product Br ‘Tt = 

Br p-., the expectation value of the effective Hamiltonian H,, 

contains terms which are linear and quadratic in the axial 
frequency w,. The energy perturbation is obtained as 

0 
(Wrens|\H|Whens) = EW, + Elo. (35) 

where 

E\., = 2ks@, (36) 

is the leading term due to the anomalous magnetic mo- 
ment, and 

(37) 

The two terms after the equal sign are proportional to 

and &!, respectively. 

C. High-energy part 

From Lamb shift calculations for hydrogenic bound 
states [10,14], we know that in typical self-energy calcu- 
lations, the low-energy part, which involves the Bethe 
logarithm, has an ultraviolet divergence. This ultraviolet 
divergence is compensated by an infrared divergence of the 
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high-energy part. Furthermore, for the one-loop self-energy 
of a hydrogenic bound state, the infrared divergence of the 
high-energy part can be obtained on the basis of an effective 
potential proportional to the infrared slope of the Dirac 
form factor (see Chapters 4 and 11 of Ref. [15]). 

However, we have shown that the Dirac form-factor 
induced one-loop correction to the energy of a quantum 
cyclotron state vanishes. This leaves the question of the 
correct treatment of the high-energy part of the bound- 
electron self-energy in the quantum cyclotron state. 

From bound-state calculations for an electron in a 
Coulomb field [10], we know that an appropriate treatment 
of the high-energy part consists in the expansion of the one- 
loop self-energy operator in terms of the binding field. 

In the Feynman gauge, the bound-electron self-energy 
for a quantum cyclotron state can be written as [see 

d*k CO (7 

Eq. (15.17) of Ref. [15]] 

AEsp = 7 #—___y\p 
SEE | oor ke YF-h-m’ ) 

— (Pldm|P). (38) 

V 

Here, Cr specifies the Feynman integration contour for 
the photon energy integration. The metric is g,, = 

diag(1,-1,-1,-—1). The Dirac matrices are used in the 

Dirac representation given in Eq. (22). The kinetic- 
momentum four-vector is 

it = fy = p - eAg, (39) 

where zy is defined in Eq. (9). In the high-energy part, 
one can expand the Feynman propagator in powers of the 
binding vector potential, 

ee ee ee 1 

t-kK-m p-k-m > p-k-m 'p-k-m 
+ 1 r 1 r 1 

p-k-m 'p-k-m ‘p-k-m 
oe 1 1 n 

+ T ; 40 

\ yaten ("=w) 9) 
where 

p" =(E,p), y= ~e7 Ay (41) 

is the Feynman slash of the vector potential of the trap. 
The mass counterterm is 6m, and the Dirac adjoint is 

yw —yw'y®. Alternatively, the use of the Feynman contour 
can be enforced by the replacements, 

1 _ 1 

f—f-m #—f-m+ie (42) 

in the photon and electron propagators. We use the 
noncovariant photon energy cutoff e€ introduced in 
Refs. [9,10,14] which cuts off the Feynman contour for 

the photon energy integration at an infrared cutoff ¢ which 
is of order of the binding energy of the bound state. The 
dependence on € disappears when the high- and low-energy 
parts are added. 

A further difficulty arises: For hydrogenic states, the 

operator Ty is replaced by T'¢ = +ey%Ay = y°(—Za/r), 
where Z is the nuclear charge number, a@ is the fine- 
structure constant, and r is the electron-nucleus distance 

[10,14]. One notes that I’; is an odd operator (connecting 

upper and lower components of the Dirac bispinor), while 
Ic is an even operator in the bispinor basis [see Eq. (22)]. 
We must now go into detail and reflect on the Za 
expansion. For hydrogenic bound states, the Coulomb 

potential scales as (Za)’m, because r~ag/Z=1/(Zam), 
where dg is the Bohr radius. Hence, every insertion of a 

power of T¢ into the diagram adds two powers of Za. 
For the quantum cyclotron state, the expansion works 
differently: The role of the coupling parameter Za is taken 
over by a,, defined in Eq. (1). One has the following order- 

of-magnitude estimates: By ~o2m?, r~1/(a.m), and 
|z7| ~ a.m. However, the matrix element (P|I'7|P) is of 
order a2m and thus, of order of the bound-state energy in 
the quantum cyclotron, because it connects upper and lower 
components of the Dirac bispinor solution [21] (ower 

components are suppressed by a factor of a,). Now, while 
in one occurrence of the operator 7, one connects upper 
and lower components, two such operators connect upper 
to upper, and lower to lower components, eliminating two 
powers of a, from the product. Hence, in order to evaluate 
the self-energy of a bound-electron quantum cyclotron 

state to order aatm, we need to expand the propagator 
1/(#4-K-—m) up to fourth order in Ty, ie., up to the 
four-magnetic-vertex term [term with n = 4 in Eq. (40), 

see also Fig. 1]. 
A further difficulty arises. In Fig. 1, the outer lines 

(outside of the self-energy loop) are still fully dressed by 

FIG. 1. The figure illustrates the Feynman diagrams contrib- 
uting to the high-energy part of the bound-electron self-energy of 

a quantum cyclotron state in magnetic interaction vertices. These 

correspond to ascending powers of the operator I’; as delineated 

in Eq. (40). 
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the external field; for hydrogenic bound states, one therefore 
uses the known solutions of the Dirac-Coulomb equation for 

the bispinors |) and (‘P| that enter the diagram (see, e.g., 
Chapter 8 of Ref. [15]). For the quantum cyclotron problem, 

the nonperturbative Dirac solutions have recently been 
analyzed in Ref. [15]. They read as follows: 

r 

(7) = n( — ns } =¥,,,(7), (43) 
E,+m YNR 

where Wr is the nonrelativistic wave functions, and all 

symbols will be explained in the following. For the high- 
energy part, one notes, in particular, that the relativistic states 
are needed for the untransformed Dirac equation, 1.e., in the 

form of four-component bispinors. Two-component solu- 
tions obtained after a Foldy-Wouthuysen transformation (see 
Ref. [22]) cannot be used as bra and ket vectors for the fully 

relativistic self-energy matrix element in the integrand of 
Eq. (38). We use the relativistic states in an approximation 
where the axial motion is being neglected, 1.e., in the leading 
order in the expansion in powers of &,, and &,. The Dirac 

energy is 

p= my|1+22(Qn+s +1). (44) 
m 

The nonrelativistic Landau level in the symmetric gauge can 
be separated into a spinor component y, and a coordinate- 
space wave function, 

Wrr(") = Wens (1) = Wane (PX (45a) 

p= xe, + yé,, (45b) 

(,) (i) = ; _)] — . Cc X+1 0 X-1 1 

The nonrelativistic coordinate-space wave function is 
given as (see Ref. [15]) 

9-H \n-2\+1) 

Vira 
Wncl(P) — 

? exp -7 (2 ‘| (46) 

Here, p = |p| and gy = arctan(y/x), and we use the asso- 
ciated Laguerre polynomials L“(x) in the conventions of 
Ref. [23]. The magnetic Bohr radius is 

mc h h h 
iy = 4| —— = —— = ,/_—. AT 
“0 ho.mc ame le|Br (47) 

The wave functions y,,,(7) fulfill the Dirac equation 

Ap ens = Ep ens: (48a) 

Hp =G-#h+fm, = py—eAy, (48b) 

P| = Px€x + Pyéy. (48c) 

Finally, we can give the normalization factor as 

2mE 3 We 
N=|1+ NK | , Exr=z(2nts+1). (49) 

(Ep +m)? 

The relativistic wave function given in Eq. (43) is valid 
for vanishing axial frequency, 1.e., to leading order in the 
expansion in the ratio @,/q@,, and can thus be used in order 

to evaluate the high-energy part of the quantum cyclotron 
bound-state self-energy in the leading order in the expan- 
sion in powers of w,/@,. 

We employ analogous procedures as those that were 
used for the high-energy part of the self-energy of bound 
states in hydrogenlike systems [10], and map the algebra of 
the quantum cyclotron states onto a computer algebra 
system [24]. This enables us to evaluate the matrix elements 

of the vertex terms for the high-energy part, where we 
employ a noncovariant integration procedure for the virtual 
photon integration contour outlined in Sec. 3 of Ref. [14]. 
The final result for the high-energy part is (almost) state 
independent (except for the obvious spin-dependence of the 
leading term) and reads 

(2) a 2a m 13] 
Eyep = — — |In{—]-—|—, 50 HEP 7 Me + t n=) (50) 

where € is the (noncovariant) photon energy cutoff. The first 

term in EO, reproduces the leading anomalous-magnetic- 

moment correction EW, given in Eq. (36). 

D. Low-energy part 

The appropriate reference state for the low-energy part 
is given by the nonrelativistic quantum cyclotron wave 
function indicated in Eq. (13). Employing the formalism 
outlined in Chapter 4 of Ref. [15], we obtain the expression 

2a fe a 1 1\ zi 
E,xep=— | dkk *r(____,_\"r . 

LEP =| (vier m (ats) m View) 

(S1) 

where k = @ 1s the angular frequency of the virtual photon, 
e is the photon energy cutoff, and |y) = |wzzas) is the 
reference state. The sum over 7 = 1, 2, 3 is implied by the 

Einstein summation convention. We use the relation 

ri. ri. 

(v (1 — Ey) 
m m 

yy= 2 (53) 
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which can be shown after expressing the Cartesian com- 
ponents of the kinetic-momentum operator in terms 
of raising and lowering operators of the cyclotron and 
magnetron motions [3,7,21,25,26]. Notably, the matrix 

element given in Eq. (52) is state independent. After an 
integration over the photon energy, the low-energy part is 
obtained as 

2a 2 
EVEp = —— In (=) _ “7M, (53) 

m acm 3n 

where the coefficient of the logarithmic term contains a 
logarithmic sum (Bethe logarithm) over the virtual excita- 
tions of the quantum cyclotron state, 

or) 
oy In(@2) -oF jin(@2) gp (). (54) + —In 

We 

|Ho — Eo|\ 24 
m 

—(H, — Ey) In ( 0 0) ( we u(o 

In the simplification of the expressions, the following 
identities prove to be extremely useful: 

O(4) — O-) = 1/@2 - 202, (55) 

2a(4)@-) = @%. (56) 

Furthermore, it 1s very interesting to observe that, in the 
limit @, — 0, which implies @/,) > @, and @_) > @,, the 

Bethe-logarithm matrix element MM vanishes. The first 

nonvanishing contribution to M appears at order é1. 

E. Self-energy shift 

After adding the high- and low-energy contributions, 
the dependence on the photon energy cutoff e€ cancels 
[see Eqs. (37), (50), and (53)]. The total self-energy shift 

Esp, up to order aatm, is obtained as follows: 

6 

Esp = Exep + Exep + Evep = Ss" Tj, (57) 
i=1 

where the six individual contributions (together with their 
respective expansion in powers of &,) are 

T, =-so, = ams, (58a) 
I 

(58b) 

1 1 T3= _ SOM («+5) = ——aimsé? («+5) ,  (S8c) 

a artsy (n+5) + 0)(¢+4) 

T = 

‘ 4am (4) — W-) 

1 
— = ma -5 (2n+ I)se + O(€), (58d) 

7, = 2% n(2*) 
3am W¢ 

a 2 
= nat -5 ‘in(é.) , (58e) 

3 Ww) _ 3 o T, = 2a 4) in(“2) OF )In( =) 

3x m(@4) — @-)) 

4 

= atm = + Oe). (58f) 
1 3 

The leading (state-independent) logarithmic contribution to 
the Lamb shift of a quantum cyclotron state is 

c 9, __ 2a , ~2 E, =—m-—In(az-) = 3, cm nla ). (59) 

It is reassuring to see that the only state-dependent 

contributions to the QED energy shift of order aa4m come 
from the anomalous magnetic moment. 

The final results of our investigations can be summarized 
in the following, concise form, encapsulating the leading 
coefficients in the self-energy shift given in Eq. (20), 

a 9 aa ~2 
Esp = 7 HcmAr + acm Ag In(az~) + Ago], (60a) 

where the coefficients are, except for Ay, state indepen- 
dent, and read as follows in the leading order of the 
expansion in powers of €., 

2 
Any = S$, Ag, = 3 (60b) 

— 2a) _ 13 2 
Aag = 3 In(2) 108 + O( =). (60c) 

We also evaluate partial results for the dependence of the 
Ajo coefficient on the axial frequency. These results are 
partial, because the treatment of the high-energy part of the 
self-energy employed by us is valid only to leading order 
in €,. The corrections evaluated by us add up to the partial 
higher-order (h.o.) result 

1 1 
Aaolno. = Asoleo - 8 (i + 5) sé 

1 1 2 
+ E ~ g(2n + 1)s— =n.) E+ O(8). 

(61) 
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FIG. 2. The diagrams with five magnetic vertices (left), and six 

magnetic vertices (right) contribute to the state-dependent, 

logarithmic term of order a a&m In(a~*), as discussed in Eq. (62). 

F. Higher-order logarithmic term 

It is somewhat surprising to see that the coefficients Aj, 
and Ay are state independent in the leading order in the 
expansion in €,. Because the axial frequency is small 
compared to the cyclotron frequency, this observation 
raises the question at which order in the expansion in a, 
(i.e., in the main cyclotron frequency expansion parameter) 
any state dependence is actually incurred. With some effort, 
one can obtain the leading logarithmic terms in the sixth 
order in a, from the six-vertex correction (see Fig. 2). We 
obtain, after algebraic simplification, the result 

4 
6Egp = = asmAg, In(az*), Ag, =2n+1- > (62) 

This result depends on the spin orientation of the reference 
state, just like Aj 9, and also grows with the principal 
quantum number n, which is the quantum number that 

counts the cyclotron excitations. Further details of the 
derivation will be presented elsewhere [27]. 

For hydrogenic bound states, the higher-order coeffi- 
cients typically decrease with the principal quantum 
number [28]; for quantum cyclotron states, the depend- 
ence is reversed. The physical reason for this is that in 
hydrogen, higher excited states have lesser expectation 
values of the momentum square, and are, in that sense, 

less relativistic and subjected to a lesser extent to 
relativistic and quantum electrodynamic corrections. 
Specifically, in a hydrogenic state with principal quantum 
number n, the typical momentum scale is Zam/n, where Z 
is the nuclear charge number, a is the fine-structure 

constant, and m is the electron mass. For a quantum 

cyclotron state, the momentum scale is a,.m,/n, where a, 
is defined in Eq. (1). So, it is natural that A,, increases 

with the quantum cyclotron quantum number n. 

V. CONCLUSIONS 

In this paper, we have discussed the QED energy shifts of 
quantum cyclotron levels. We start from a very concise 
recap of the main ingredients of quantum cyclotron levels 
in Sec. I, with vacuum-polarization effects discussed in 
Sec. II and the dominant self-energy shift discussed in 
Sec. IV. In the Penning trap, the rotational symmetry of the 
hydrogen and atomic bound-state problem 1s lost, and only 

the axial symmetry of the magnetic trap field remains. 
Hence, one formulates the bound states using spin-up and 
spin-down fundamental spinors [see Eq. (13)], rather than 
the spin-angular functions known from atomic bound-state 
theory (see Chapter 6 of Ref. [15]). 

The kinetic momentum operator z7 given in Eq. (9) can 
easily be decomposed into raising and lowering operators 
for the cyclotron, axial, and magnetron motions. Hence, 

one can express the matrix elements of the radiatively 
corrected relativistic Hamiltonian given in Eq. (34) in terms 
of the quantum numbers k, 7, n, and s (see also 

Refs. [3,7,21,25,26]). One adds the high-energy contribu- 

tion due to the anomalous magnetic moment from Eq. (37), 

and the high-energy contribution from the terms with up to 
four magnetic vertices, as given in Eq. (50), to the low- 

energy term listed in Eq. (53). The complete self-energy 

shift of order aa4m is given in Eq. (57). By considering 
diagrams with up to six magnetic vertices (see Fig. 2), as a 
significant further result, one obtains a state-dependent, 

higher-order logarithmic binding correction of order 

aa&m |n(a-7) in Eq. (62). 
A few words on the experimental and phenomenological 

relevance of the higher-order binding corrections calculated 
here are in order. Because of the scaling with higher powers 
of the coupling parameter a@,, the effects become more 
pronounced in stronger magnetic fields. In current Penning 
trap experiments [6], field strengths of the order of 
By ~5.3 T are employed, resulting in w, #2 x 148 GHz 

and cyclotron coupling parameter a, © 3.5 x 107>, which 

implies Infaz] © 20.5. With an axial frequency of the order 
of w, © 2a x 114 MHz, one has €, © 0.028. 

The higher-order one-loop binding corrections to the 
quantum cyclotron energy levels calculated here scale as 
follows. We have in the fourth order in a,, from Eq. (60a), 

5E =“ eAm[Ay, In(az?) + Aug), (63) 
W 

where the coefficients A,, and Ayo are state independent in 

the leading order in the expansion in €, [see Eqs. (60b) 
and (60c)]. Quantum cyclotron levels are displaced from 

each other by an energy w, = am. Hence, the relative shift 
of the cyclotron frequency due to the quantum electrody- 
namic effects is 

bE“) a 
Vw =: 7 == In(az’). (64) 

acm 1 

The nonlogarithmic coefficient A4g receives corrections of 

order & according to Eq. (61). Parametrically, these addi- 
tional terms lead to a relative energy shift of the order 

of Vy), where 

a 
y= Oe (65) 
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for quantum cyclotron levels. Finally, the higher-order 
binding corrections given in Eq. (61) give rise to a relative 

energy shift described by the parameter vy), where 

7 = “af In(az2). (66) 
W 

For By © 5.3 T and w, ® 2a x 114 MHz, 1.e., the param- 

eters of Ref. [6], one has 

0 |p .a53 r= 58x10", (67) 

0? |p a53 r= 2.1.x 107", (68) 

x |p 53 TS 6.9 x 10-29, (69) 

In view of these results, we can say that the absence of a 

state dependence of A4, and Ayo (in the leading order in €.) 

is crucial for the validity of the evaluation of the recent 
experiment [6], as any dependence on n could have 
easily shifted the determination of the cyclotron frequency 

(and of the electron g factor) on the level of 107'', which 
is larger than the experimental uncertainty reported in 
Ref. [6] by roughly 2 orders of magnitude. The absence 
of a state dependence of A4, and Ayo, in the leading order 

in €., is one of the most important results of the current 
investigation. 

The corrections parametrized by ©) and y) are not 
relevant at current experimental conditions [6]. However, 

according to Table 1 of Ref. [29], it is clear that magnetic 

field strengths in excess of 30 T are current maintained in 
continuous (dc) mode by a number of laboratories around 

the world. One of the most impressive results available to 
date is the 45.5 T field reported in Ref. [30]. It is thus 

instructive to carry out calculations for a magnetic field of 
By = 30 T, with the results 

x |p,30 7 = 3.0 x 10719, (70) 

£ |p ps0 = 2-1 x 10-85, (71) 

x |p 30 7 = 2.0 x 107!8, (72) 

For these conditions, the correction of order aa® In{a;?] 
could become relevant, when experimental techniques are 

combined with modern spectroscopic techniques [31]. It is 
also very important to realize that state-dependent coef- 
ficients grow linearly with the cyclotron quantum number 
n, and axial quantum number k [see Eqs. (61) and (62)]. 

The corrections thus become much more important for 
higher excited cyclotron states. We also observe that the 
mass m of the trapped particle cancels out in the relative 

corrections denoted by the symbols 7“), vy, and y, 
discussed above; in other words, the quantities y), y©, 

and y) are functions of the coupling parameter a, only. 
For a given magnetic field, the coupling parameter a, is 
inversely proportional to the trapped particle mass m [see 

Eq. (1)], in view of the relation a, = ,/|e|By/m. Hence, 
for hydrogenlike and lithiumlike bound systems (ions) in a 
Penning trap, the quantum electrodynamic effects scale 
according to the dependence of a, on the mass of the 
trapped ion. 

Three final remarks are in order. (1) First, we reempha- 

size that vacuum-polarization contributions can be safely 
neglected, as already discussed near the beginning of 
Sec. III. Gi) Second, we would like to remind the reader 

that modifications of the QED shifts due to the cylinder 
walls of the Penning trap [25,26] have not been considered 
in the current work. We here work with the full photon 
propagator that is unperturbed by the external conditions 
due to the cylinder walls of the Penning trap. Because the 
average spatial extent of a quantum cyclotron state is only a 
tiny fraction of the trap dimension, this approximation 
is well justified, with limitations being discussed in 

Refs. [25,26]. (111) Relativistic Bethe logarithm corrections 

to the leading one-loop terms are of order self-energy shift 

of order aa®m while the correction obtained in Eq. (62) is 

enhanced by the logarithm In(az*). The evaluation of 
relativistic Bethe logarithms, for quantum cyclotron states 
complementing work on hydrogenic levels [9,10], would 
be an inspiration for future studies [27]. 
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