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The so-called proton-radius puzzle (the current discrepancy of proton radii determined from spectroscopic 

measurements in ordinary versus muonic hydrogen) could be addressed via an accurate measurement of the 

Rydberg constant because the proton radius and the Rydberg constant values are linked through high-precision 

optical spectroscopy. We argue that, with manageable additional experimental effort, it might be possible to 

improve circular Rydberg state spectroscopy, potentially leading to an important contribution to the clarification 

of the puzzle. Our proposal involves circular and near-circular Rydberg states of hydrogen with a principal 

quantum number around n = 18, whose classical velocity on a Bohr orbit is slower than that of the fastest 

macroscopic man-made object, the Parker Solar Probe. We obtain improved estimates for the quality factor 

of pertinent transitions and illustrate a few recent improvements in instrumentation which facilitate pertinent 

experiments. 
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I, INTRODUCTION 

The Rydberg constant is of consummate importance for our 

understanding of fundamental physics. Notably, this constant 

is an important input datum for the calculation of transi- 

tion frequencies in hydrogen and deuterium (see Table II of 

Ref. [1] and Refs. [2,3]). In addition to the Rydberg con- 

stant, accurate values of the proton and deuteron radii are 

also required in order to calculate transition frequencies in 

hydrogen and deuterium. Conversely, one can infer proton and 

deuteron radii from precise values of hydrogen and deuterium 

frequencies (see Refs. [1,3] and Table 45 of Ref. [2]). 

With the advent of muonic hydrogen spectroscopic mea- 

surements [4,5], the Committee on Data of the International 

Science Council (CODATA) value of the proton radius has 

shifted from a 2006 value of about R, ~ 0.88 fm to a 2018 

value of about R, ~ 0.84 fm, entailing a concomitant change 

in the Rydberg constant [2,3]. From the 2006 to the 2018 

CODATA adjustments [2,3], the Rydberg constant has shifted 

by much more than the uncertainty associated with the 2006 

value (see Fig. 1). 

One of the most attractive experimental pathways to the 

determination of the Rydberg constant involves transitions 

between two highly excited Rydberg states in atomic hydro- 
gen, as described in Ref. [6] by a research group working at 

the Massachusetts Institute of Technology (MIT). Within the 

same group, a value for the Rydberg constant was obtained in 

an unpublished thesis by deVries [7] (labeled “Rydberg state” 

in Fig. 1), 

CR o0\deVries = 3. 289 841 960 306(69) kHz. (1) 

As is evident from Fig. 1, this value is marginally consistent 

with both the CODATA 2006 value [2] and the 2018 CODATA 

value from Ref. [3]: 

CRoo | CODATA,2018 = 3 289 841 960 250(7) kHz. (2) 

The 2006 CODATA value is 

CRoolcopata,2006 = 3289 841 960 360(21) kHz. (3) 
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A comparison of the three values of the Rydberg constant is 

made in Fig. 1, where we use as the reference value 

Ro = Roolcopata,2018- (4) 

The situation is interesting because, before the advent of 

muonic hydrogen spectroscopy, values of the Rydberg con- 

stant and of the proton radius inferred from hydrogen and 

deuterium spectroscopy alone (without any additional input 

from scattering experiments) were consistent with the 2006 

CODATA values for both the 2006 CODATA value of the 

Rydberg constant and the 2006 CODATA values of the proton 

and deuteron radii. This is discussed in detail in the discussion 

surrounding Table 45 of Ref. [2], where it is pointed out that 

the proton radius R,, the deuteron radius Rz, and the Rydberg 

constant can all be deduced using input data exclusively from 

hydrogen and deuterium spectroscopy. 

Traditionally, the Rydberg constant has been determined 

on the basis of Rydberg state spectroscopy of atomic hydrogen 

[8-14]. An improved measurement of the Rydberg constant 

would thus constitute an important contribution to a resolution 

of the proton-radius puzzle [15]. In a remarkable investigation 

dating about 20 years back, circular Rydberg states around 

quantum numbers 1 ~ 30 were investigated with the ultimate 

aim of an improved measurement of the Rydberg constant [7]. 

Inspired by the importance of Rydberg states, it was pointed 

out in Refs. [16-18] that Rydberg state measurements in hy- 

drogenlike ions of medium charge numbers could potentially 

offer an alternative route to the determination of the Rydberg 

constant. 

The purpose of this paper is threefold. First, we update the 

calculation of the quality factors for transitions among circular 

Rydberg states in comparison to the estimate provided in 

Eq. (6) of Ref. [16]. Second, we discuss the status of quantum 

electrodynamic theory of Rydberg states, demonstrate that the 
theory is very well under control on the level of accuracy 

required for the determination of the Rydberg constant on the 

level of precision required for a resolution of the proton-radius 
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puzzle, and discuss the relative suppression of a number of no- 

toriously problematic quantum electrodynamic corrections for 
circular and near-circular Rydberg states. Calculated values 

for relativistic Bethe logarithms for circular and near-circular 

Rydberg states with principal quantum numbers 16 < n < 20 

are also provided. Third, we provide an overview of recent 

advances in laser technology and other experimental tech- 

niques which facilitate an improvement of measurements of 

the Rydberg constant on the basis of Rydberg state measure- 

ments. Systeme International (ST) mksA units are employed 

throughout this paper. 

Il. QUALITY FACTORS 

Of crucial importance for the feasibility of high-precision 

spectroscopy experiments are so-called quality factors of tran- 

sitions. The quality factor is the dimensionless ratio of the 
transition energy to the natural linewidth of the transition 

(measured in radians per second), where the latter is converted 

to an energy via multiplication by the reduced Planck constant 

h. Here, we present the general formula for the one-photon 

decay rate of a circular Rydberg state, with principal quantum 

number n and maximum orbital angular momentum quantum 

number € = n — 1. This reference state can decay via dipole 

transitions to states with principal quantum number n — 1 

and angular momentum quantum number ¢£ = n — 2. Due to 

the large orbital angular momentum, neither the upper state 

nor the lower state of such transitions is influenced by nu- 

clear structure effects (compare with other recently proposed 

schemes [19] in which the lower state is the metastable 2S 

state, which has a nonvanishing probability density at the 

nucleus). The calculation of radiative (dipole) decay rates of 

hydrogenic states is described in detail in Chap. 4 of Ref. [20] 

(see Gordon’s formula given in Eq. (63.2) of Ref. [20]) and in 

Chap. 3 of Ref. [21]. For the decay rate y, = T’,,/h of the state 

with principal quantum number 7 and maximum orbital angu- 

lar momentum @ = n — 1, as parameterized by the imaginary 
part I’, of the self-energy [22,23], E = ReE —il’,,/2, we find 

the result 

pean _ A" (n _ 1"! ner—4 a(Za)tm Cc Me 3 5) 

"(Qn —1)"-1(2n-3) 3nd 

which can be expanded for large n as follows: 

__ (Zayime? (uw? 3 7 1 
per! = gS (|) 14 4+ — + 0(-—)I, 

” ° 3n> m + aT eet ne 

(6) 

where m is the electron mass, jz is the reduced mass of the 

two-body system, a is the fine-structure constant, Z is the 

nuclear charge number, and the expansion for large n illus- 

trates that the lifetimes of circular Rydberg states scale as n°. 

While we have Z = | for hydrogen, we keep Z in all formulas 

to cover hydrogenlike ions. Also, the presence of Z in the 

formulas helps to distinguish the binding effects (due to the 

Coulomb field, with expansion parameter Za) from the ra- 

diative loop corrections (expansion parameter a). The energy 

difference for transitions among circular Rydberg states is 

2 2 

Ey — En-1 = Za) Aa (; : —_ =) (7) 
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FIG. 1. We examine the values for the Rydberg constant, con- 

verted to frequency units, from CODATA adjustments and from the 

(unpublished, gray) result communicated in Ref. [7]. The CODATA 

(2006) value was reported in Ref. [2], and the CODATA (2018) value 

is from Ref. [3]. The reference value Ro is from the 2018 adjustment. 

which scales as 1/n? for large n. Due to the 1/n> asymptotics 

of the decay rate and the 1/n° asymptotics of the transition 

energy, the quality factor increases for large n with the square 
of the principal quantum number n, 

_ E, _ En-1 

~~ [Por + pean-2 

n—1 

3 my 5 17 o(+)] 6 
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This formula constitutes an update of the estimate given in 

Eq. (6) of Ref. [16] (the quality factor obtained here is larger 

by a factor of 2 compared to Ref. [16]). The estimate in Eq. (8) 

illustrates the enormous advantages of Rydberg states for the 

measurement of the Rydberg constant. The dramatic increase 

of the quality factor with the square of the principal quantum 

number makes Rydberg state transitions very attractive. Also, 

we observe that the quality factor is inversely proportional to 
the second power of the nuclear charge number Z. This means 

that Z = | (atomic hydrogen) offers the best quality factor for 

given principal quantum number n. 

Let us also evaluate the quality factor for the transition 

among near-circular Rydberg states, where the upper level has 

orbital angular momentum @ = n — 2 and the lower level has 

orbital angular £ = n — 3 (see also Fig. 2). The calculation of 

the quality factor proceeds in a similar way, but one needs 

to consider two available dipole decay channels, namely, 

from the reference state with principal quantum number 

and orbital angular momentum quantum number £ = n — 2 

to lower states with n’ =n — 1 and €=n—3andn'’ =n—2 

and £ = n — 3. The decay width evaluates to 

_)_ (Za)+me? (pm 3 1 1 1 

” ° 3n? m 2n = 8n? + n 

n 4(Zoa)+me? ( w\° 434 34 oO) 
376 m 2n  4n? myy 

(9) 

Q 

where the two terms on the right-hand side correspond to the 

lower states with n’ = n — 1 andn’ = n — 2, respectively. The 
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l=n-1 

n=n-1 

(a) 

l=n-1 

n=n-1 

(b) 

FIG. 2. The level diagram for Rydberg states illustrates the 

dipole-allowed transitions among (a) circular and (b) near-circular 

states. Circular Rydberg levels with € = n — 1 are marked in green, 

while near-circular Rydberg levels with € = n — 2 are marked in red. 

Transitions driven for high-precision spectroscopy are indicated with 

two-headed arrows. Transitions relevant for the calculation of decay 

rates (quality factors) are indicated by dashed lines. 

quality factor evaluates to 

En — En-1 

Péan-2 4 pean-3 
n—1 

___(m {1 247 o(=)| (10) 
2a (Za)? (“) On + 8n2 + nm) | 

which is commensurate with Q given in Eq. (8) and illustrates 

that no significant accuracy loss occurs if one measures near- 

circular as opposed to circular Rydberg states. 

Q' = 

A quick look at Eqs. (1), (2), and (3) and Fig. | illustrates 

that one needs to resolve the Rydberg constant to roughly 
one part in 10!" or better in order to meaningfully distinguish 

between the 2006 and 2018 CODATA values of the Rydberg 

constant. One can define a splitting factor S, which measures 
the fraction to which one needs to split the resonance line in 

order to achieve a resolution of one part in 10!'. The splitting 
factor S is given by the formula 

S = 10"/@. (11) 

Again, we emphasize that it is experimentally challenging 

to determine the line center of a resonance line to better 
than ~0.1% of its width. Therefore, an attractive option to 

meaningfully contribute to the proton-radius puzzle is through 

transitions with high quality factors, which lead to low values 

of the required splitting factor S. For Z = 1, one obtains for S 

the perfectly reasonable figure S = 93 for n = 18; expressed 

differently, one only needs to split the resonance lines near 

n = 18 to one part in 93 in order to achieve a resolution which 

meaningfully contributes to a resolution of the proton-radius 

puzzle. 

Cross-damping terms (nonresonant corrections) can be 

generated by virtual levels displaced by a fine-structure 

interval [24]. A rough estimate of the corresponding en- 

ergy (frequency) shift SEcp (we set ii = 1) is given by the 

expression [24] 

r3 bEcp ~ (12) 

Here, 5£ is the displacement of the virtual state responsi- 

ble for the cross-damping energy shift. As pointed out in 
Ref. [24], the nearest virtual states which can contribute to 

differential cross sections are states displaced from the upper 

state of the Rydberg transition by a fine-structure interval. The 
maximum angular momentum is €y4, =” — 1. The total an- 

gular momenta for the circular Rydberg states are €max + 1/2. 

The two possible values for the total angular momentum 

quantum numbers of the upper level are thus j, =n — 1/2 

and j- = n — 3/2, with one of these being the reference level 

and the other being the virtual level which contributes to the 

cross damping. So we have potential nonresonant contribu- 

tions from virtual levels with an energy displacement 

(Za)*m 7 (Za)*m 

2nt(in—1) 2nd | 

The ratio of the cross-damping energy shifts relative to transi- 

tion frequency is thus estimated by the expression 

5Ecp 2 a? (Za) 

E,-E,1 9 nm 

SE = Ey j, —Enj. = (13) d+ 

x (14) 

For Z = 1 and n = 18, this evaluates to 1.9 x 107!*, which 

is less than the accuracy required to distinguish between the 

2006 and 2018 CODATA values of the Rydberg constant. This 

estimate suggests that cross-damping effects are suppressed 

for Rydberg states and do not represent an obstacle for the 
determination of the Rydberg constant from highly excited, 

circular Rydberg states. 

The above estimates given in Eqs. (12)-(14) are valid for 

the differential cross section [24]. For the total cross section, 

these estimates improve even further, consistent with pertinent 

considerations reported in Refs. [24-26]. 

062822-3



ULRICH D. JENTSCHURA AND DYLAN C. YOST PHYSICAL REVIEW A 108, 062822 (2023) 

II. QUANTUM ELECTRODYNAMIC EFFECTS 

One might ask whether the theory of Rydberg state 

transitions is well enough under control to facilitate the in- 
terpretation of a measurement of transitions among Rydberg 

states. As outlined in Ref. [2], the theoretical contributions to 

the Lamb shift of Rydberg states on the level necessary for 

a determination of the Rydberg constant can be summarized 

into just four terms: (i) the Dirac energy (in the nonrecoil 

limit), which is summarized in Eq. (1) of Ref. [16], (ii) the 

recoil corrections from the Breit Hamiltonian, which are sum- 

marized in Eq. (2) of Ref. [16], (ii) the relativistic-recoil 

corrections summarized in Eq. (3) of Ref. [16], and (iv) the 
self-energy effect summarized in Eq. (4) of Ref. [16]. Calcu- 

lated values of nonrelativistic Bethe logarithms, which enter 

the expression for the relativistic recoil correction, were tab- 

ulated for all states with principal quantum numbers n < 200 

in Ref. [27]. This favorable situation illustrates the tremen- 

dous simplifications possible for Rydberg states. Notably, 

vacuum-polarization, nuclear-size, and nuclear-structure cor- 

rections can be completely ignored for circular Rydberg states 

whose probability density at the nucleus vanishes. For vacuum 

polarization, the energy shift due to the Uehling potential 

(Eq. (10.245) of Ref. [21]) is of order a(Za)?"* xc? for cir- 

cular Rydberg states with £ = n — 1 and of order a(Za)*" uc? 

for near-circular Rydberg states with € = n — 2. Here, we are 

concerned with n > 13; effects that scale with a(Za)*° uc? 

(or higher powers of Za) are numerically completely neg- 

ligible. The Wichmann-Kroll potential takes into account 

Feynman diagrams with three and more Coulomb vertices 

in the fermion loop [28,29], in contrast to the Uehling po- 

tential with only one Coulomb vertex [21]. An asymptotic 

expression of the Wichmann-Kroll (WK) potential, valid for 

r~ ag and thus applicable to circular Rydberg states (ag 

is the Bohr radius), was recently evaluated in Eq. (18.103) 

of Ref. [21] based on effective-field-theory methods. Its ex- 

pression is given as Vwx(r) © ss < (Za)®uc?ae/r°. It gives 

rise to energy shifts that scale as w(Za)®c? and are thus 

parametrically suppressed by four powers of the fine-structure 

constant in comparison to the leading self-energy effects and 

by two powers of the fine-structure constant in compari- 

son to the relativistic corrections to the self-energy effects, 

which will be discussed below. Thus, we can neglect vacuum- 

polarization effects here altogether. 

The most interesting radiative effect concerns the bound- 

state self-energy Esp, which is described by the formula (see 

Ref. [29] and Chap. 15 of Ref. [21]) 

——5 (Aso + (2a? 

x {4c in zu] + Ac) (15) 

The first subscript of the A coefficients counts the number 

of Za, while the second counts the number of logarithms 

In[i(Za)~*]. 

The general result for the Aygo coefficient for circular 

Rydberg states with orbital angular momentum @ 4 0 and 

principal quantum number n > 2 is well known, 

Aw --(#) — 4 (HY intotn,), (16 0 (7) sare ~3(m) noon, 09 
where « = (—1)/t*+!/? is the Dirac angular quantum num- 
ber and Inko(n, €) is the Bethe logarithm. (For values of 

Inko(n, €), one should consult Ref. [27].) The functional 

dependence on the reduced mass is a consequence of the 

proton’s convection current; an explanation is given in Chap. 

12 of Ref. [21]. Here, we will place special emphasis on 

circular and near-circular Rydberg states with € = n — 1 and 

£=n-—2, with n > 13, and refer to them as the following 

series of states: 
(i) Series A has € =n —1, j=€4+1/2,« =—-(j + 1/2). 

(ii) Series B has £=n—1, 7 =€—1/2,K =(j+ 1/2). 

(iii) Series C has € = n—2,j7 =€4+1/2,K = -—(j + 1/2). 

(iv) Series D has €=n—2,j7 =€—-—1/2,K =(j4+ 1/2). 

Series A has the highest € and j for given n. The Ago 

coefficients evaluate to the following expressions for the four 

series of states: 

As(A,n) _ 1 4 

(ume InQn=1) 3m homn—V, UD 

Aso(Bin) I 4 inkotnn—D, 
(y./m)? 2(n—1)(2n-1) 3m 

(18) 

Aao(C,n) _ . tH inko(n, n—2), 
(u/m)y 2(n—1)(2n—3) 3m 

(19) 

Aso(Dn) _ I — nko(n.n —2). 
(y/m)? 2(n —2)(2n—3) 3m 

(20) 

As a function of the principal quantum number, the Bethe 

logarithms In kg(n, n — 1) and In ko(n, n — 2) decrease with n 

for large n as n>. In the nonrecoil limit 2 > m and the limit 

of large n, one has 

Aao(A, n) © —Ago(B, n) © Aao(C, n) 

~& —Ago(D, n) © n—>oo. (21) 
An?’ 

The leading quantum electrodynamic corrections for circular 

and near-circular Rydberg states are parameterized by the A4o 

coefficient. The quantum electrodynamic effects are seen to 
be suppressed, for large n, by a factor of n~? which appears in 

addition to the overall scaling factor n~> in Eq. (15). 

Higher-loop contributions to the anomalous magnetic mo- 

ment can be taken into account by the replacement 

wy 1 wy 1 de 
—({— |} ———— > —-[ — , (22) 
(«) 2x (2€ + 1) («) 2x (2€ + 1) a/(27) 

where a, contains the higher-loop contributions to the electron 

anomalous magnetic moment, which determines the g factor 

of the electron according to g = 2(1 + a,). The term a/(277) 

is the one-loop Schwinger value [30]. The quantity a, can 

be taken either as the most recent experimental value of the 
electron anomalous magnetic moment [31], which results in 

de = 1.159 652 180 59(13) x 1073, or as a purely theoretical 

prediction including higher-order effects [32]. 
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The suppression of the quantum electrodynamic effects 

for circular and near-circular Rydberg states has a physical 

reason which is connected to the slow velocity of electrons on 

highly excited near-circular Bohr orbits. Namely, the velocity 

of a classical electron orbiting the nucleus in a Bohr orbit 

corresponding to the principal quantum number n is 

ZAC 
va = ——. (23) 

The ratio vg/c = Za/n is thus additionally suppressed with 

respect to the usual expansion parameter Za of bound-state 

quantum electrodynamics by an additional inverse power 

of n. The effective expansion parameter for Rydberg states 

is thus, strictly speaking, not Za, but, more precisely, 

Za/n. The persistence of the principal quantum number 

n in the denominator of the expansion parameter is evi- 

dent not only in the nonrelativistic Schrddinger-Coulomb 

spectrum but also in the Dirac-Coulomb binding energy, 

that is, the solution of the relativistic Dirac equation cou- 

pled to the Coulomb field. For reference (see Eq. (8.49e) 

of Ref. [21]), the bound-state Dirac-Coulomb energy E 

fulfills E/m = f(n, j), where f(n, j) =[1+(Za/ay]'”. 

Here, A =n—|j+1/2| +/+ 1/2) — (Za) fulfills A = 
n — (Za) /(2|j + 1/2|) + O(Za)* and thus # ~ n for large n 
and j. The approximate formula f(n, j) © [1 + (Za/n)y | '/? 

exhibits the effective expansion parameter Za /n. 

The classical velocity v., evaluates, for Z = 1 and n = 18 

(this choice of n is explained in Sec. IV), to a velocity of 
1.21 x 10° m/s. This is slower than the velocity of the fastest 

macroscopic man-made object, namely, the Parker Solar 

Probe, which recently reached a velocity of 1.48 x 10° m/s 

on its orbit around the Sun [33,34]. Effects originating from 

relativity and quantum electrodynamics are thus highly sup- 

pressed for circular Rydberg states. Furthermore, the slow 

speed of the bound electrons in comparison to macroscopic, 

gravitationally bound systems is interesting in view of the 

weakness of gravitational interactions in general; the compar- 

ison illustratively demonstrates the weak binding of Rydberg 

electrons, which makes them suitable for high-precision de- 
terminations of the Rydberg constant. 

The general result for the Ag; coefficient, valid for Rydberg 

states with n > 13 and € =n —1 and £ = n — 2, was given in 

Eq. (6) of Ref. [35] and Eq. (4) of Ref. [16] and reads 

a -(#) 3n? — e(€ + 1) 
Nin) 3n2(€+3/2)(€ + D(C + 1/2)€(@ — 1/2)’ 

(24) 
a result which is independent of the spin orientation. This 
expression evaluates to 

Aei(A,n) — Aoi(B,n) 8 

(u/mp —— (u/mp 3 n?'(n — 1)(2n — 1)(2n — 3) 

(25) 

Agi(C,n) Agi (D, n) 32(n + 2) 
— = 3 . (26) 

(u/my (u/mP 3? TP?_,(2n — i) 

In the large-n limit, one has 

Aoi (A, n) © Agi (B, n) 

~ Aoi (C,n) © Agi (D, n) © — n> ©. 
3n° 

(27) 

TABLE I. Calculated values for the Ago coefficients for highly 

excited Rydberg states for the A, B, C, and D series of states for 

principal quantum numbers 16 <n < 20. 

A series B series 

n € J Ago(ne;) j Ago(n€; ) 

16 15 +  1.059675(5)x 10° 20.121 748(5) x 10-° 

17 16 3  0.805212(5)x 10-° 0.078 287(5) x 10~° 

18 17) 8 0.621952(5)x 10-5 80.049. 885(5) x 107 

19 18 2% 0.487434(5)x 10° 2 0.031 113(5) x 10-° 

20 19 2 0.387025(5)x 10-5 0.018 584(5) x 10- 

C series D series 

n e J Ago(n€;) J Ago(n€;) 

16 14 2 1.540182(5)x 10°52 0.155.784(5) x 107° 

17 15 2 1.145325(5)x 10-5 2 0.096.026(5) x 107° 

18 16 % 0.867820(5)x 10-5 # 0.058 328(5) x 107° 

19 17 2 0.668553(5)x 10° 8 (0.034217(5) x 10-° 

20 18 + 0.522676(5)x 10-5 = 0.018 690(5) x 10-° 

The suppression with n>, in addition to the overall scaling 

factor n-> from Eq. (15), again illustrates the smallness of 

relativistic and quantum electrodynamic effects for circular 

Rydberg states. 

The next higher coefficient is Ago, which is called the 

relativistic Bethe logarithm [36,37]. Its absolute magnitude 

is highly suppressed for circular Rydberg states. Specifically, 

according to Refs. [16-18] and Table 7.2 of Ref. [38], one 

has 

max{|Ago(A, 7)|, |Aoo(B, n)|, 

x |Aeo(C, n)|, |Aco(D, n)|} < 107*, n> 13. (28) 

Furthermore, according to the calculations reported in 
Refs. [18,39], the approximation Gsp * Ago for the non- 

perturbative self-energy remainder function remains valid to 

excellent approximation for circular Rydberg states for low 

and medium nuclear charge numbers (see Table | of Ref. [39] 

and Tables 1 and 2 of Ref. [18]). Relation (28) implies that 

the correction to the transition frequency among circular Ryd- 

berg states induced by the relativistic Bethe logarithm A¢o for 

Z = 1 is smaller than one part in 10-' for n > 13. Neverthe- 

less, it is useful to calculate numerical values of relativistic 

Bethe logarithms for the states under investigation here (see 

Table I). We follow the calculational procedure outlined in 

Ref. [35]. For calculated values of Ago for circular and near- 

circular Rydberg states with 13 <n < 16, we refer to Table 1 

of Ref. [16] and Table 1 Ref. [18]. 

IV. EXPERIMENTAL CONSIDERATIONS 

Let us also include a few considerations relevant to the 
experimental realization of a high-precision measurement of 

the Rydberg constant based on circular Rydberg states. One 

might assume that ultimate experimental success could be 
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bolstered by choosing transitions with as high a quality factor 

QO as possible. As discussed around Eq. (8), since O « n’, high 

n is desirable. 

However, it is also important to consider the sensitivity of 

a given measurement to systematic effects. Many systematic 

effects increase with powers of n. For instance, shifts and 

distortions of resonances due to the Stark effect scale as n° 

[7,40,41], which produces challenges to measuring transitions 

between circular Rydberg states with very high n. However, 

the previous measurement between circular Rydberg states of 

hydrogen [7] between n = 27 andn = 28 and betweenn = 29 
and n = 30 had negligible contributions from uncertainties in 

the Stark shifts [7]. The experimental accuracy was instead 

limited by dipole-dipole interactions. Since the dipole mo- 

ment for an atom in a superposition of adjacent circular Ryd- 

berg states scales as n” and the systematic effect is related to 

the interaction energy of two dipoles, this effect scales as n*. 

Therefore, in order to mitigate the dipole-dipole interac- 

tions, it may be interesting to consider transitions between 

circular Rydberg states with somewhat lower n. For instance, 
with all other experimental parameters being similar, a transi- 

tion between n = 18 and n = 19 would reduce the effects of 

the dipole-dipole interactions by a factor of ~6 compared to 

the previous measurement [7]. Another experimental benefit 

to reducing n below that demonstrated in [7] is that blackbody- 

radiation-induced transitions would be mitigated because the 

thermal radiation spectral density for temperatures < 300 K 

is reduced for the more energetic transitions occurring be- 
tween lower-lying states. This may allow the experiment to 

be performed at liquid-nitrogen as opposed to liquid-helium 

temperatures. 

The MIT measurement [7] used pulsed lasers at a repetition 

rate of 61 Hz to produce circular Rydberg states. Therefore, 

another option to mitigate dipole-dipole interactions could be 

to produce a near-continuous source of circular Rydberg states 

using continuous-wave (cw) lasers. Since the dipole-dipole 

interaction is related to the peak density of circular Rydberg 

states, a near-continuous source of circular Rydberg states 

could allow for a large reduction in the peak density while 

maintaining sufficient statistics. This could be accomplished 

by first using the 1S—2S two-photon transition to populate the 

2S metastable state as in Refs. [42,43], followed by excitation 

to Rydberg levels using a 365-nm cw laser. Then circular- 

ization would be performed using the methods outlined in 

Ref. [6]. The use of a cw rather than a pulsed laser for the 

excitation into the Rydberg states [44] constitutes the main 

technological advancement over the methods used in Ref. [7]; 

its use could lead to a drastic increase in the number of avail- 

able Rydberg atoms and thus drastically improved statistics 

with simultaneously reduced systematic effects due to lower 

peak Rydberg atom density. 

To perform spectroscopy of the n = 18 to n = 19 circular 

Rydberg states, a millimeter-wave Ramsey apparatus akin to 

the one employed in Ref. [7] could be used. To excite the 

transition, a radiation source at 1.04 THz is needed. While the 

millimeter-wave source in [7] operated at 256 or 316 GHz, 

a similar source operating at frequencies above 1 THz is 

possible using a planar GaAs Schottky diode frequency 

multiplier [45]. The output power of such terahertz sources 

is relatively low. However, due to the large transition matrix 

element between circular Rydberg states, the transition can 
be saturated with <1 nW and a 3-mm beam waist. Therefore, 

commercially available terahertz sources would likely be 

sufficient [46]. 

Vv. CONCLUSIONS 

The main conclusions of this paper are as follows. In 

Sec. II, we showed that the quality factors of transitions 

among circular Rydberg are sufficient to comfortably al- 

low for a distinction between the 2006 and 2018 CODATA 

values of the Rydberg constant (see Eqs. (2) and (3) and 

Refs. [2,3]). Furthermore, according to the considerations 

reported in Sec. II, cross-damping terms do not present an 

obstacle to such a measurement. In Sec. III, we showed that 

the theory of bound states is sufficiently under control to allow 

for a determination of the Rydberg constant from transitions 

among circular Rydberg states in atomic hydrogen. Experi- 

mental considerations (Sec. IV) corroborate the advances in 

technology which make such a measurement more feasible 

than reported in Ref. [7], in part by reducing several sys- 

tematic effects through a less dense atomic beam which can 

be realized in a continuous-wave excitation scheme into the 

circular states. 

A few concluding remarks on the proton-radius puz- 

zle are in order. We recall that the proton-radius puzzle 

refers to the difference between the “smaller” proton ra- 

dius of R, ~ 0.84fm obtained in Ref. [4] and the larger 

value of R, © 0.88 fm from the 2006 CODATA adjustment 

(see Refs. [1,2,12,13] and references therein). Various recent 

scattering experiments [47,48] and spectroscopic experiments 

[42,43,49-51] came to conflicting conclusions on the proton 

radius. A recent measurement described in Refs. [43] led to 

a value of R, © 0.86fm. It was very recently pointed out 

in Ref. [15] that two older scattering experiments, carried 

out in 1969 at Brookhaven (see Refs. [52,53]), are consis- 

tent with an 8% discrepancy in the cross sections between 

muon-proton and electron-proton scattering, which translates 
into 4% for the form-factor slope, which in turn amounts to 

2% for the radius. This is precisely the difference between 

the smaller proton radius of R, ~ 0.84fm and the recently 

obtained [43] value of R, ~ 0.86 fm. The MUon proton Scat- 

tering Experiment (MUSE) experiment [54-56] at the Paul 

Scherrer Institute (PSI) aims to remeasure the muon-proton 

cross sections in the near future. 

In conclusion, we have shown that the idea formulated 

in Refs. [6,7,16-18,40,41] could lead to a feasible pathway 

toward a determination of the Rydberg constant. This could 

be interesting because most recent spectroscopic experiments 
[42,43,49-51] focus on transitions in atomic hydrogen which 

depend on both constants in question, namely, the proton ra- 

dius and the Rydberg constant. Focusing on Rydberg states, as 

proposed here, means that one isolates one of these constants, 

thereby potentially obtaining a clear and distinct picture of 

the proton-radius puzzle. The current situation provides mo- 

tivation not only to carry out the MUSE experiment at PSI 

[54—56] but also to redouble efforts to measure the Rydberg 

constant. 
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