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Abstract. The non-perturbative Landau-Khalatnikov-Fradkin (LKF) transformations de- 
scribe how Green functions in quantum field theory transform under a change in the photon 

field’s linear covariant gauge parameter (denoted €). The transformations are framed most sim- 

ply in coordinate space where they are multiplicative. They imply that information on gauge- 

dependent contributions from higher order diagrams in the perturbative series is contained in 

lower order contributions, which is useful in multi-loop calculations. We study the LKF trans- 

formations for the propagator and the vertex in both scalar and spinor QED, in some particular 

dimensions. A novelty of our work is to derive momentum-space integral representations of 

these transformations; our expressions are also applicable to the longitudinal and transverse 

parts of the vertex. Applying these transformations to the tree-level Green functions, we show 

that the one-loop terms obtained from the LKF transformation agree with the gauge dependent 

parts obtained from perturbation theory. Our results will be presented in more comprehensive 

form elsewhere. 

1. Introduction 

The Landau-Khalatnikov-Fradkin (LKF) transformations [1, 2] dictates how the propagator and 

vertex transform under a change of the gauge used to define the longitudinal part of the photon 

propagator. The photon propagator, in the class of gauges covered by the LKF transformations, 

receives a gauge-dependent, longitudinal modification. Here, we continue a series of papers 

started in [8, 4, 5], where we extended the transformation to an arbitrary 2n-point amplitude in 

spinor and scalar QED [6], to generalise these transformations to momentum space and obtain 

analogous transformations for the interaction vertex. For covariant linear gauges, parameterised 

by the gauge parameter, €, a variation £ > €+A6, changes the position space matter propagator 

to: 

S(a',x|é + A€) = S(a',r |e [An (|x!—«l)—Ap (0)| | 4) 

with the gauge-fixing function (D is the space-time dimension) 

dPk eihy ie?(u)_, (D D 
A — _ip? mal —— rie 2,2)\2-F 9 

p(y) ie* (je) (Qn)P kA lene 5 (pry?) 2 (2) 
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This non-perturbative multiplicative transformation relates the complete matter propagator in 

two different covariant gauges. One of the consequences of this relation is that all the gauge 

dependent information of the propagator factorizes into an exponential factor in position space. 

One can fix the original gauge by setting € to zero, in which case the photon propagator reduces 

to the Landau gauge. The gauge transformation of internal photons is what defines this LKF 

transformations, while the transformation of external photons is well-understood by the Ward 

identity (a complete description of the fully-amputated vertex is given in [1]). 

Often, the LKF transformations are applied to perturbative expressions for the propagator 

which require fixing both the dimension and the “input” propagator, S(a’,x|&). The 

transformed propagator then contains extra, gauge-dependent information to all orders in 

perturbation theory, but is only valid for the specific dimension and input selected. There are 

some particular cases where the LKF transformation has been found in momentum space (for 

example, in QED in 3 dimensions [7|) where the transformation can be applied to an arbitrary 
input propagator (we call them momentum-space LKF transformations). 

In Ref. [8], we present a general momentum-space LKF transformation for arbitrary dimension 

and input, for both the propagator and the photon-amputated vertex. From this follows the 

transformation to the longitudinal and transverse parts of the vertex and relations between these 

parts of the vertex in different gauges. One application would be to constrain the transverse part 

of the vertex in the context of the Schwinger-Dyson equations. Here, to ramify the investigations, 

we consider the alternative approach of exploring the consequences of the LKF transformations 

for QED in 2 = 1+ 1 space-time dimensions. 

2. Properties of Momentum—Space LKF—Transformations 

As discussed in detail in [8], we can find a momentum-space LKF transformation in terms of 

momentum integrals. To do so we start from an arbitrary momentum space propagator! in 

the gauge €, denoted S(p’,p|€). Fourier-transforming to position space, we apply the LKF 

transformation (1) and then an inverse Fourier transformation to return to momentum space. 

This allows the LKF transformation to be written completely in momentum space as 

D 

S(p',p|é + Aé) = / Salle Ae) S(p! — ap +418). (3) 

which is nothing but the convolution of the Fourier transformed LKF factor, given by 

Ip (q, AE) = / dex eidé [An(x)-An(o)| +ig-x . 
4) 

with the input propagator. This transformation is given for an arbitrary dimension and input. 

In a similar way, we consider the “photon-amputated” vertex, A(a’,x,z|&), which retains 

its external matter propagators. As noted by Burden and Roberts [10], its position space LKF 

transformation is the same as for the propagator. As elaborated upon in section 4, it follows that 

its momentum-space LKF transformation goes through in the same way, simply by convolution 

with IIp. In [8] we present the LKF transformations in the context of QED in D = 3 and D = 4 
space-time dimensions. Here, we instead discuss the application of the LKF transformation to 

the propagator in D = 2 space-time dimensions and the application of this momentum-space 

LKF transformation to extract some general information in the case of the photon-amputated 

vertex. 

' Our conventions are set in Minkowski space-time with metric signature (—,+,+,...) and Clifford algebra 

{y',y"} = -2n"”, following [9] with the exceptions of the opposite sign on electric charge and choosing all 

momenta to be incoming. The propagator is the inverse of the Dirac operator ( —iDP(x) + m).
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3. LKF Transformation for the Spinor Propagator in D = 2 

In the two dimensional (i.e., 1 + 1 dimensions) case, a subtlety arises due to poles in the 

dimensional regularization parameter, €, appearing in the LKF exponent. We regulate these 

by writing D = 2 — 2e in (2), finding 

+ 2 + 52 4,27,2 
€ € 1€ Yy 

Arey) = — ye (uy) wm P(—1 6) (uy) = So = + og (nyu?) +e ~1] +O(6)- (6) 

As Ao ».(0) = 0 for € > 0 in view of y? In(y?) > 0 for y? — 0, the poles are not cancelled 
when A»_»,-(0) is subtracted (as it happens in the 4 dimensional case [8]). This implies an 
essential singularity for the LKF transformation, in the limit « — 0. The poles, of arbitrary 

order, must thus be taken into account at all orders in the transformation. This, along with 

the physically interesting aspects of two dimensional QED, make the proceeding calculations of 

both theoretical and practical interest. 

In position space, the singular part of the multiplicative LKF factor is 

=e (- Aso (2 — 2") (6) 

We will also require the finite contribution for this case: 

pide [Az—2e (w)—Az—2e(0)| 

oidé [Az—2e(w)—Az—2e(0)| a (- ASCH ( — a! {loglrp? (a ~ 2")? +96 - 1}) (7) 

3.1. Perturbative Verification: Spinor QED 

To deal with the complicated pole structure, a perturbative calculation must be carried out 

about the physical dimension, maintaining D = 2 — 2e throughout. We have the modest aim 

of verifying the LKF transformation to (£ = 1)-loop order, beginning from the bare, tree- 

level propagator, to verify that the known results for the self-energy can be recovered with this 

technique. As such, the tree-level propagator in momentum space defines our reference gauge 

(in two dimensions we will implement the Clifford algebra of the Dirac equation using the Pauli 

matrices y! = 01 and y? = iog without continuation when using dimensional regularisation), 

(27)P5) (p+ p’) , ptm 
= viv — Se (p,v' |€) = em (8) 

which maintains our convention that all momenta are incoming (the metric is g“” = diag(—1, 1), 

consistent with our 4-dimensional conventions). Rather than applying (3), which would contain 

poles to all orders, we carry out the transformation between position and momentum space. At 

one-loop order, corrections linear in € that arise in these transformations are sufficient — it is 

precisely these linear corrections that combine with the t pole in (5). 

We begin by transforming the tree-level propagator to position space using the integrals 

collected in Appendix A, finding (jy is an arbitrary scale introduced on dimensional grounds and 

Kq(z) is the modified Bessel function of the second kind) 

2€ 

SS * (0,218) = Gime [m+ a] (5) Kelme), (9) 

We multiply by the LKF factor as per (1) and compute the Fourier transform in D = 2 — 2e 

dimensions (multiplying now also by p~*°). Note that integrating the term with the derivative
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by parts we arrive at (we suppress the global momentum conserving 6-function for brevity): 

52—(p, p! |€ + A€) = N(2Y [ avad-c(pe)K 1 oe (PPLE + AL) = [m+ fp] (— x aJ_(px)K_(ma)} 1+ 
0 

so” wac|- + log (wx? Ll ) + YE — 1 + O(07 Ac?) | 

A € 
| 7 

+ eas dx (—) K_.(mz) (J, Ao-2<(2)) piAEAn—ve(w)+ip! x (10) 

Since Ap(a) is a function only of the magnitude of x, the partial derivative can be written 

as @Ap(x) = EA’ (2), following which we generate the 7 via a derivative if, acting on the 
Fourier exponent. In this way the second integral in the equation above can be cast in the 

simpler form —iG,, (2 .). fo da J_c(p'x) K_-(max)A}_ nel are AEA2—2e(0)], So far we have been 

working with this contribution to all orders in aA€. For the one-loop corrections, we reuse (5), 

keeping contributions up to linear order in aA€. This leads to the following expansion in € for 

the LKF-transformed propagator, 

Sor PE A) = lm + PPG Pile + 8 
21 1+ +1 + +1 Poa ae tdy{ hat els mt) +108 (arin) 48 rOleaas)}, () pl? + m2 € pf? + m2 

where Ds~*“(p, p’ |E+ AE) is just the LKF-transformed scalar propagator, found here as part of 

the spinor calculation to be (up to corrections of O(e, a7AE?)), 

_ 1 ap2AE p* — m? D?* 2€ ; / +A _ _ 

0 (p Pp |é ) p? 4m? E (p? + m?2)° 

pe m? p m? Ap 

Ag ————,, |21 — ] —_ =— O Aé€)?). (12 
tay? ag ot [tae (1+ Sa) oe (grea) te Gaga] F OCO(0AE)*). 02) 
Computing the derivative we can give the result decomposed in the basis {1l,y!, y7} as 

Sor" (p. PE + A€) = S6(p, 0!) 
2 2 2 2 2 2 2 9 pe—m* 1 pe —m p m Ap 

— ap ac] Be a [2k (1 + 2a) + tos ( 5) +1- a 
(p2+m?)%€  (p2 +m?) An ps? p? —m? 

Om 1 2m? log (1+ 2 me) + ros (pe) + Pe 

“8 Garnet Prey 

After amputating the external spinors, this corresponds to the gauge-dependent part of the 

well-known one-loop electron self-energy calculated in dimensional regularisation given in, for 

example, [11, 12]. This asserts that the dimensional regularisation of the LKF factor is consistent 

as long as one carries out the appropriate Fourier transformations with the same dimensional 

deformation in order to account for the poles structure in (5). 

4. Momentum-space LKF Transformation for the Vertex 

In this section we return to a general space-time dimension to discuss the LKF transformation 

of the QED 3-point interaction vertex. As mentioned in the introduction it is convenient to
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work with the photon-amputated vertex, AM(p',p|&), related to the fully amputated vertex, 

I (p’,p|€), through the relation 

AM (pp, k\€) = S(p|)P"(p', p, | €)S(p" | €) . (14) 

Although physical interest is in the fully amputated vertex, the LKF transformation of the 

photon-amputated vertex is far simpler: by virtue of having two external matter propagators, 

in position space it transforms multiplicatively, analogously to (1). Decomposing the vertex to 

extract the momentum conserving 6-function, 

M©(p!,p,k|§) = (27)75? (yp! +p + k)AM(p',p|é). (15) 

the reduced vertex satisfies the momentum-space LKF transformation 

AM (p! __ dq Leff __ Perle +g = | Fapll(a. As) A“! —a.p +418). (16) 

In [8] we use this to obtain the fully non-perturbative form of the LKF-transformed vertex and 
also verify that it correctly reproduces the known results for scalar and spinor QED in D = 3 

and D = 4 space-time dimensions. 

The Ward-Fradkin-Green-Takahashi identity provides a natural decomposition of the vertex 

[13] into a sum of a longitudinal part, 

Ai (p',p|€) = DXi p'.p\@Ly, (17) 

which completely satisfies the identity alone, and a transverse part, 

Mp. pl) = 7 (p plOT!, — ky Ap pl€)=0, Ab, p|€) =0 (18) 
Jj 

(we reserve the commonly used notation A and 7 for the fully amputated vertex). The specific 

vector structure of the vertices is theory dependent, as is shown below. We calculate the 

longitudinal and transverse parts of the LKF-transformed_photon-amputated vertex, obtainng 

some relations between the parts of the vertex (i.e., the \’s and 7’s) in two different gauges. 

This could be useful in the context of the Schwinger-Dyson equations, where one way to deal 

with the infinite tower of coupled differential equations is to truncate them by giving an Ansatz 

for the full non-perturbative vertex. The Ansatz is constructed based on some basic principles, 

including that it should transform under a change of the covariant gauge parameter as the LKF 

transformation dictates. 

4.1. Scalar Case 

For the scalar case, the vertex can be decomposed into two structures as 

AMM (p',p|€) = AK (p' pI) +AK(p'. pIO) = AD PIL! +F(p'. plOr, (19) 

with 

(p? — p?)kH + k*(p — p')! 5 ; 

The idea is to start with an arbitrary vertex and apply the momentum-space LKF 

transformation; we then find the longitudinal and transverse parts of the LKF-transformed 

vertex, which, as we will see, mixes the longitudinal and transverse parts of the input vertex. 

Lt = (p—p')', T'=p-kp"—p'- kp" = (20)
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Applying the LKF transformation to the longitudinal part of the vertex, we get 

Ley t d?q wan NEO plé+ A8) = f SFT (a, 86) Mo! — p+ a1 OE" 
dP ~ +2 | Spitp(a.A8) Mel — ap al da". (21) 

and using the usual tools of tensor decomposition, we can express the second integral in terms 

of scalar integrals: 

~ dP ~ ~ ~ 
R= | apllpla Ag Aw! —ap + ala" = Lal? + TNT", (22) 

ith 

™ ~ _ heptt-p' ~ _ (P? —p-D)Iy- p+ (v? —p-P/)Iy-p! Ly = ——, Ty, = ; (23) 
p> —p (p? — p)|(p- p')? — p*p”] 

It is simple to show that the LKF transformation of a transverse vertex remains transverse, 

which implies that the longitudinal part of the LKF-transformed vertex arise only from the 

LKF transformation of the original longitudinal part. Then, the longitudinal part of the LKF 

transformed vertex is given by 

Pq ~ d ~ ~ 
A(p', p|E + AE) = / (am pllo(a AE) X(p' — g,p + @|€) + 2Ly. (24) 

Further comments about the WFGT identity and some general remarks are provided in [8]. 

Calculated in a similar way, the transverse part of the LKF-transformed vertex is given by 

D 4 d | - 
FW ple +6) = | Spl. A9FW —aptalQ+PE +2. 5) 

where the tensor decomposition now is performed in the basis {7", K“}, with 

~, dq ~ a Fiorpa To Joo Ip = | Gentine. A970! — a+ a8 = T,T* + Kk, (26) 

~ L-pp-k—-L-pp-k ~ Lek 
T,— PP pr Ke= . (27) 

k?[(p- p!)? — p?p” | k? 

Note the transverse part does receive a contribution (via Ty) from the longitudinal part of the 

input vertex. We think that this relation for the transverse part could be useful in restricting 

Ansatze for the non-perturbative form of the vertex in the context of Schwinger-Dyson equations. 

As for the propagator, in [8], we apply these transformations to the tree-level photon- 

amputated vertex in this scalar QED case in arbitrary dimension, getting an all-orders in a 

expression, which reproduces the order a contribution of the vertex as reported in [14]. 

4.2. Spinor Case 

For the spinor case, there are more vector structures available: the full longitudinal part in this 

spinor case is composed of 3 longitudinal structures (L/’), 

i=", LS =(p—p)*, Ly = (p—p)(p— pv)", (28)
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and the full transverse part by 8 transverse structures (T/"), given by [15] 

Ty =(p-k)p"—(p'-k)p!, T= [(v- k)p™ — (v'- k)p"|\(p—-p’), (29a) 

TH = key — kh, TH = ke? [yh (p— p') + pt — p'"] — 2k" p*p"’oy, , (29b) 

TH =—k,o’#, TH = (p® — p*)y#— Rp — py", (29c) 

Ty = 50 — Dy" (p—p) — pv + p| — (p—p''p*p”’ on , (29d) 

TE = yp’ po, + pp! — ppl. (29e) 

The LKF transformation of a transverse vertex still remains transverse, although the transverse 

structures mix. In general the LKF transformation of a longitudinal part mixes longitudinal 

and transverse vertices. 

The full details of the LKF transformations for these transverse and longitudinal components 

can be found in [8]. Here we show directly the results for the spinor case (the A; and 7; are 

defined in (17) and (18)): 

M (p', p | E + AE) = Ih, + 41 43 (p* _ p*)?Ty, ) Na(p', p | E + A§) = Ih, + 21, ) (30a) 

A3(p’,p|€ + AE) = Tyg + 4Ly, + PT), + 4034, 71(p',p|€ + A€) = L,, + 2T), + 2L,,, 
(30b) 

7o(p’,p|€ + AE) = L,, + 4L, + 2T), + 472, + 4037, + 2k? Toy, (30c) 

73(p’,p|€ + AE) = 1, + 473, + (p? — p*) Kp, + 2Lin + 2k?T 37, + 2K 7 , (30d) 

#a(v!,p|E+A8) = Ing + 2Lny + hy + 5 (Cry ~ Ar). (300) 
75(p',p|€ + AE) = Ing + 2k, + (p? — p*) Ka, + Tor 5 (30f) 

T6(p',p | E + AE) = Ly¢ + ATE); _ (p* _ p”)Ty, + 2k°Térs _ k? Ky + 217, ’ (30g) 

T7(p',p|€ + AE) = 1, +4L,, + Try, 73(p',p|€ + AE) = Lp, + 2L 75. (30h) 

The terms C,,, A;,, Ly, Ty,, Lny,, Ing, and K,, , where f stands for either d or F, are 
combinations of scalar integrals just as in eq. (23), and the sub-index f; show where these terms 

are coming from, and 

dP 

15, = | Sotptnla.A8 fil! — ap +418). (31) 

These expressions are defined fully in [8]; however, by analyzing where the terms are coming 

from, we still can derive some important results without giving their explicit expressions. 

We can see that there are some sub-spaces that are closed under the action of the 

transformation, given by {Ly}, {Ti}, {T3}, {75}, {Té}, {Ts}, {L2,T1}, {T3, Te}, {74,75}, 

{T2, 73, Tg}, {T4, Ts, 177}, {£1, £3, To, T3, 76}, and invariant subspaces given by {7g}, {7%4, 75, T7}, 

{I1, Lo, L3,T,, To, Ts, Te}, respectively. We believe that, again, this could be very useful in the 

context of the Schwinger-Dyson equations, because now we can see that we can fix the gauge 

dependent form of the vertex in parts, taking into account the invariant subspaces. 

5. Conclusions 

We have reported on a momentum-space form of the Landau-Khalatnikov-Fradkin 

transformation for the matter propagator and 3-point interaction vertex in QED, for an arbitrary 

dimension and input. We have also explored the special case of these gauge transformations in
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D = 2 space-time dimensions. We applied them to the photon-amputated vertex to find the 

longitudinal and transverse parts of the LKF-transformed vertex and we found relations between 

the components of the vertex determined in different covariant gauges. We anticipate that these 

relations which may be useful in the context of the Schwinger-Dyson equations. In ongoing work 

these momentum space transformations are being transferred to the fully amputated vertex, 

which are of more direct physical significance. 
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Appendix A. Appendix A — Integrals Involving Bessel functions 

We require the following integrals for the LKF transformation about D = 2 dimensions which 

we record here to avoid interrupting the main text: 

i dz zJo(az)Ka(bz) = i a>-—-l, (A.1) 

/ dz 2°7Jq(az)Ky(bz) = as [b? —a* +a(b?+a7)]; a>-2 (A.2) 

oe 4 3 _ / dz z° log(z) Jo(az)Ko(bz) = ape 

x | (2 —#) (tog (14 =| Hog (5) +2 -1)-0]. (As) 
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