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We present a complete reevaluation of the irreducible two-loop vacuum-polarization correction to the 

photon propagator in quantum electrodynamics, i.e. with an electron-positron pair in the fermion 

propagators. The integration is carried out by reducing the integrations to a limited set of master integrals, 

which are calculated using integration-by-parts identities. Dimensional regularization is used in D = 4 — 2€ 

dimensions, and on-mass shell renormalization is employed. The one-loop effect is given to order e, to be 

combined with the 1 /e divergence of the two-loop amplitude. Master integrals are given. Final evaluations of 

two-loop energy shifts for 1S, 2S, and 2P states are done analytically, and results are presented, with an 

emphasis on muonic hydrogen. For relativistic Dirac-Coulomb reference states, higher-order coefficients are 

obtained for the Za-expansion. We compare the results obtained to the existing literature. 
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I. INTRODUCTION 

The two-loop vacuum-polarization correction to bound- 
state energy levels is an important contribution to the Lamb 

shift in muonic bound systems. Specifically, the irreducible 

two-loop effect lowers the 2S level energy in muonic 
hydrogen by roughly 1.25 meV in comparison to the 2P 

level [1,2]. This energy shift needs to be compared to the 
proton-size discrepancy commonly referred to as the proton 

radius puzzle (0.88 fm versus 0.84 fm, for a recent brief 

summary see Ref. [3]). The proton radius puzzle corre- 

sponds to a 0.3 meV shift of the 2S states, when expressed 

in energy units [1,2]. The two-loop effect is thus phenom- 
enologically extremely relevant; any conceivable inaccur- 
acy in its evaluation could lead to at least a partial 
theoretical explanation of the proton size discrepancy. 

Vacuum-polarization effects are drastically enhanced in 
muonic as compared to electronic bound systems [4—7]. 

Here, we present a reevaluation of the irreducible two-loop 
diagrams, on the basis of modern integration-by-parts 

techniques, employing dimensional regularization. We note 

that dimensional regularization was not yet sufficiently 
developed in 1973 (despite Refs. [8,9] which appeared in 
the literature at the time) to make an evaluation of the 

Published by the American Physical Society under the terms of 

the Creative Commons Attribution 4.0 International license. 
Further distribution of this work must maintain attribution to 

the author(s) and the published article’s title, journal citation, 
and DOI. Funded by SCOAP”. 

2470-0010/2024/109(9)/096020(17) 096020-1 

two-loop effect using dimensional regularization §tech- 

niques feasible [10]. For vacuum-polarization effects in 

particular, the modern techniques lead to drastic simplifi- 

cations of the calculations. We find both the imaginary as 

well as the real part of the two-loop vacuum tensor in 

closed analytic form. 
We also derive analytic expressions for the expectation 

value of the two-loop potential, evaluated on (nonrelativistic) 

Schrédinger-Coulomb eigenstates, generalizing the treat- 

ment originally outlined in Ref. [4] to two-loop order. In 

general, for predominantly nonrelativistic bound systems, 
energy shifts can be represented in terms of a semianalytic 

expansion (in powers of Za and In|(Za)~7], where a is the 
fine-structure constant and Z is the nuclear charge number). 

As a byproduct, we derive a few higher-order coefficients 

from the expectation value of two-loop potential, evaluated 

on the relativistic Dirac-Coulomb eigenstates. 

This paper is organized as follows. We start by briefly 
discussing the evaluation of the one-loop vacuum- 
polarization effect in Sec. IJ. Throughout this paper, 

we use dimensional regularization with the number D 

of dimensions expressed as 

D=4-2e. (1) 

The one-loop effect needs to be evaluated to order e, 
because finite contributions are generated at two-loop 

order when the one-loop terms of order € are multiplied 

by the 1/e-terms from the two-loop amplitudes. The 

irreducible two-loop diagrams are discussed in Sec. III, 
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including master integrals and their series expansions, as 
well as complete results. A comparison to the available 
literature is also performed. In Sec. IV, we demonstrate 

that energy shifts due to the two-loop effect can be 
evaluated analytically, for muonic bound systems. 
Conclusions are reserved for Sec. V. 

Il. ONE-LOOP VACUUM POLARIZATION 

A. Orientation 

Our aim is to evaluate the one-loop vacuum-polarization 
effect to order €, i.e., in a form suitable for the later two-loop 

calculation. For simplicity we set the lepton mass (electron 
mass) in the vacuum-polarization loops to be m = 1. We use 
for a metric tensor 9g, = diag(1,-1,-1,-1) (see, for 

example, Refs. [11,12]), where 

P“=(Po.P), Pu =(Po.-P): (2) 

1 
~Fombie’ m=1. (3) {yr} =29", S(p) 

Here, m = 1 is the electron mass. 

Due to current conservation, the vacuum polarization 

function IT,,, has this tensorial structure 

Tha (97) = (udu — V Iuv Iq"). (4) 

We follow the convention of Ref. [13] so that 

2 
amg)! 9 (5) 

dq q=0 

at the one-loop and two-loop level. For completeness, we 
note that the opposite conventions are used elsewhere in the 
literature, e.g., in Refs. [14,15]. The conventions employed 

here are consistent with those employed in Ref. [13]. 
Summation over the Lorentz indices in D dimensions 
leads to the result 

TM .(q°) =(-@ oy + o%q, IMG?) = 9° (1-D)M(q"). (6) 

So, we can extract the scalar vacuum polarization 

function TI(q7) as 

I“,,(q”) 
II(q") ~ PD) (7) 

The threshold for pair production of II(g*=s) is 
gq’ = s =4. The argument of the polarization tensor is 

G=(PY -F, (8) 

which is the four-momentum square of the photon entering 
the vacuum-polarization loop. 

B. Calculation 

For the renormalization of the two-loop diagram with a 
self-mass insertion we need the one-loop vacuum polari- 

zation function TI), and the function 1” from the same 

diagram with iterated electron propagators on one side of 
the loop. The unrenormalized tensors read as follows: 

The needed quantities are expressed in terms of two one- 
loop master integrals, 

M1) (q*) = (<2) (<) PY (@?), 

mig") = (SEP) (2) moma). (ub 
Ana t 

(11a) 

The prefactor in these results simplifies to unity provided 
we set 

C(e)=T(1+e)(42)ou-**. (12) 

One observes that the identification (12) is not completely 
canonical in dimensional regularization. Namely [see, e.g., 

Eq. (10.173) of Ref. [15] ], in the MS scheme, one normally 

has the relation e* = (4z)!~*ap*e’#*, where yp = 
0.5772156649... is the Euler-Mascheroni constant, and yu 
is the renormalization scale induced by dimensional regu- 
larization. This is equivalent to Eq. (12) up to terms linear 
in e. The prefactor 1/C(e) helps to simplify results after 
integration. 

The one-loop integrals are as follows: 

1 2 (D ~ 2)q° +4 2 (D ~ 2)M>(q") PYG) = 1D De 12(9°) Do D@ 

(13) 

1a)(,2) . (D-4)a° +4 > _, 2(D — 2)M>(q") 
PONG) = Pea Met) + Bera) 

(14) 

where 

Mile) = Ne) [ S. (15a) 

male) = Nie) [ FA. (15b) 
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D,;=-p;+1-ie, j=l,...,2. (15c) 

Pi=k,, Pr =k, - 4, (15d) 

[d?k] = ped? k. (15e) 

The above definition of [d?k] contains the factor y~7¢. It 
simplifies with the factor 1/y~7 of N(e) so that the master 
integrals are independent of yz. The normalization factor is 

7 we 7 4é 7 4(4n7) 

N(e)= m-T(1+e) -2-*C(e) (2n)4-*C(e)’ (16) 

The latter form exhibits the dimension D = 4 — 2e. With 

the normalization factor N(e), all master integrals M 
occurring in our calculations are dimensionless and not 
only uncluttered from logarithms of yp, but also, from 
logarithms of 4z. 

One can show that the one-loop master integrals satisfy 
the following differential equations: 

M3(q°) = 9, (17a) 

[(D — 4)q? + 4]My2(q°) + 2(D — 2)M2(q’) 

— 2(q° — 4)q°M',(q7) = 9, (17b) 

where the differentiation is with respect to g*. One finds 
that M, is a momentum-independent vacuum integral, 

M,(q°) =- (18) 

For M,2(q7), one writes the result as a function of the 
variable v = v(q’), 

” (19) 

The result is 

(1 — 2¢)M)2(q°) 

where we include the terms of order € and €? which will be 
useful in the context of the two-loop calculation. The 

explicit form of Nj»(q7) is given in Appendix A. 

C. Renormalization 

Substituting Eqs. (18) and (20) into (13), we can find the 

expansions of P‘!)(q*) and P(!® (q?). But for the renorm- 
alization we need to subtract the values at g* = 0, 

P\4)(0) = : (21) 

In our formalism, the scaled functions P“) and P®) do not 

have powers of yp, but the scalar vacuum polarization 

functions HW, m@ depend on yw. Yet, after renormalization 

the dependence disappears in the limit e — 0. The renor- 

malized expression for the one-loop function PY ) (q7) is as 
follows: 

1 x, VV,» v—-1 
= 9 (8— 30°) - E(w - 3) n( } 

+0 (v) +2OS (v) + O(e). (22) 

The coefficient of the term linear in € is 

0 (») = (v2 ~3) |ratin (2") — 32 (24 DvD = DvD _— —_— 

! 36 *\p+1 y+l 

2 —1 
+ 12I1n ° In ° + 77 

v+1 v+1 

Ay? v-1 82 52 
_-—}\1 -" 425 (23 +(e >) (5) g tay 3) 

For the explicit form of the term of order e*, we refer to 

Appendix A. 

The renormalized value for the function PY“ (gq?) with 
iterated electron propagators is as follows: 

PR (@?) = P(g?) — PU)(0) 
ye 2 

vot —— + (v2 ymn(2 +) 

+€0!'(v) +208 (v) + O68). (24) 

The term linear in € is given as 

v 

1 v—-l nr v-l1 
—|n?2 —— 21 +5 (2) =) + " =) 

2v 
Ay}. 25 a) ) +4 9 

The quadratic term in ¢, denoted as Oo (v), is given in 

Appendix A. Actually, only the terms proportional to € are 
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necessary for the renormalization of the two-loop vacuum 
polarization, but higher-order terms are useful for higher- 
loop calculations, and are thus relegated to Appendix A. 

In the limit e — 0*, one recovers the known result for the 

one-loop vacuum polarization, 

The dispersion relation is 

2 oo I ie 12 ‘ 
q | d r2 m. R (g + ie) (27) 

gq” ( gq’ _ gq’) 

The imaginary part is positive infinitesimally above the cut, 
and negative infinitesimally below the cut. One has the 
simple representation 

Im) (g? + ie) = = 0(3 ~ 1)@(q2-4). (28) 

On the cut, the v variable runs from v = 0 to v = 1. Here, © 

denotes the Heaviside step function. The above result given 
in Eq. (26) in the v representation fulfills [see also Eq. (5)] 

My'(@?) =< + O(9"), (29) 

for g? = (4°)? — F 

HI. TWO-LOOP VACUUM POLARIZATION 

A. Orientation 

We focus on the diagrams in Fig. |. The first diagram 1 is 
the proper two-loop vacuum polarization diagram, while 
diagram 2 is a one-loop vacuum polarization diagram with 

a self-energy insertion. The expression Te? (q2) corre- 
sponds to diagram 1, 

D D 
(2:1) _ dvk, dvky 

Mv’ (q") =e | oor 

x [-Tr(y,S(pa)y’S(p2)rS(—pi)y 

x S(=p3)D,o(ps))] (30a) 

while II‘3”’(g) corresponds to the self-energy insertion 
into a fermionic line of the vacuum-polarization loop, 

a re a 
bs 1 ow LU 1 oH 7 i # 

i] 
] i] 

0 € 

€ e i 
J 

0 € 

| | | 
x x x 

(diagram 1) (diagram 2) (diagram 3) 

FIG. 1. The diagrams concern the electronic two-loop vacuum- 
polarization diagrams in muonic hydrogen (the negatively 
charged muon line is denoted by yw—). These are naturally divided 
into diagram (1), which is a proper two-loop diagram, diagram 

(2), which is a one-loop diagram with a self-energy insertion, and 
the loop-after-loop (reducible) diagram (3). 

(2:2) 7 2) __ of dP ky WP ky 
mea | ab a—E 

x [-Tr (7,,8(pa)y?S(p2)¥?S( pa) 

x S(=p3)Dyo(Ps)) | (30b) 

Here, the photon propagator is given by [see Eq. (9.133) of 
Ref. [15] ] 

and the momenta and denominators are 

Pi=k. pr=q-k, p3=ko, (32a) 

Pa =9-ky, Ps =k, — ky, (32b) 

D; =-p; +1 -ie, jJ=1,...,4, (32c) 

Ds = —pz — ie. (32d) 

These conventions are adapted to FORM [16,17]; in an East 

Coast metric with g,,, = diag(—1,—-1,—1,1), one would 

replace p; > —p%. 

B. Reduction to master integrals 

After the calculation of traces, performed with computer 
algebra (using FORM, see Refs. [16,17]), and a Wick 

rotation, the scalar contribution IT) (g?) and IT?) (q?) of 
the two diagrams are reduced to a combination of 24 and 41 
Feynman integrals, respectively. In order to further reduce 
the expressions, we use the integration by parts (IBP) 
identities [18,19]. A system of IBP identities is built and 

solved with the program sys, which is based on an 
algorithm described in Refs. [20,21]. These identities allow 

one to reduce II‘) (q*) and IT) (q?) to a linear combination 
of five irreducible master integrals. 
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The choice of the master integrals is somewhat arbitrary; 
we chose the following ones: 

Mise = (wep [Fo 3) 

Mas. = (weep [SAI ab 

Mass = (wp [SAE 3 

roan MBE, 
Mo, = [N(6)]? / a (33e) 

The following master integrals are reducible and factorize 
into a product of two one-loop master integrals, 

M>4(q°) = [M2(q°))°. (34a) 

Mo34(q?) = Mx(q?)M12(q7), (34b) 

M j734(q7) = [Mi2(q°)/°. (34c) 

The expressions for the contribution of diagrams 1 and 2 
are given as 

T(4?)=[C(e)P (2) (PO E@) +262 (G")). (350 

m1°2)(4?)=[C(e)P (2) (P22) q?) +2G21(g")), (350) 
where 4 is the gauge parameter [see Eq. (31)], and 

. 2; 231 

PON (g?) = PY) Mo4(@?) + PS’ Moa4(@) 
2:1 2:1 

+ Pis4M io34(q?) + PoqsMo35(@) 
2:1 

+ Py Moask(4?). (36) 

The coefficient functions PED, PE), POD, PED and 

PE) are given in Appendix B. The gauge-dependent part 
of diagram | is given as 

. 2:1 231 

GO) (q?) = GY Mo4(q?) + G5) M35 (@") 
2:1 

+ G8) Maas (@?), (37) 

with the coefficient functions Gay, Ge) and Gah) also 
being indicated in Appendix B. For diagram 2, one has the 
following reduction: 

P??)(q?) — PY) M34 (4?) + Ps) Mo35k(@°) 

+ PS? Mo35(q?) + PE) Mo4(q?). (38) 

Again, the coefficient functions Per), PS, Po, Po, 

and Pee) are given in Appendix B. The gauge-dependent 

part of the second diagram cancels the gauge-dependent 
part of the first diagram, in view of the relation 

GEA(g?) = —FGD(q?). 

C. Differential equations and master integrals 

A system of differential equations in qg is being created; 
we need to compute the five master integrals. Three of them 
are reducible into products of one-loop integrals, as outlined 

in Eq. (34). We obtain a system of differential equations in q7 
satisfied by the irreducible master integrals [22—24]. The 

first of these equations is of second order, 

gq’ [-3((D —4)9¢° + 4)M3,5(9°) 

+2q°(q° —4)M%35(q°)] + (D —2)?Mo4(q") 

+ (D -3)[D(q? +2) -4(q° + 1)]Mo35(q7) =0, (39a) 

while the remaining one 1s a first-order differential equation, 

[D(q? + 2) — g? — 6|My35(q*) + 6(D — 2)My354(q") 

+ (D-2)Mo4(q") + °(¢? — 4)M),5(4°) = 0, (39) 

where the differentiation is with respect to g*. The initial 

conditions at g* = 0 for these diagrams are simple vacuum 
integrals. 

D. Results for the master integrals 

Due to the appearance of the factor D—4 in the 
denominators of Eqs. (36)-(38) (for the coefficients, see 

Appendix B), the master integrals have to be evaluated up 
to order O(e). It is not sufficient to keep only the finite part. 
The results are as follows. For M>35, one finds the following 

relation, where we note the prefactor (1 — v”): 

2 2 

(1 — 0°)Mo35(g") = “ 5 + ve 
1 

6u- += + [67 +5 

+ €N535(q°) + Ole’). (40) 

The order-e coefficient N35(q”) is found in Appendix C. 
For M>35;, one finds the relation 
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€? €e| 6 2 

$A (<0 $304 + 502 7) In? vol 
8 v+1 

1 — | 
— gu(3e" — 8v" + 21)in( 2 *) 

1 
+ Dp (—6v* — 910? — 7) + €N 354 (gq?) + O(e*). (41) 

Again, N35; (gq) can be found in Appendix C. Similar master 
integrals have recently been considered in Refs. [25,26]. 

E. Renormalization 

We now substitute the master integrals (34a)—(34c), (40), 

and (41) into the reduction formulas given in Eqs. (36) 
and (38). We can thus find the series expansions of the 

vacuum-polarization functions TT?!)(q7) and I?) (q?). 
For the renormalization, we need the values at g7 = 0. The 

behavior, for small g’, is the following: 

126 + 4e* — 2363 — 14€2 —2le -6 
POV (ge) =— 12(e — 2) (e— l)e2(2e + 1) (2e +3) 

1 1 
, 

“Faso s2e(lade 1 OF? 

p(22)(g) = (e+ Det Be" Be" + 2le +3) 
12(e€ —2)(e— 1)e?(2e + 1)(2e +3) 

1 1 
3-1 —e(1 + 2e)(1 — 26) + O(q’). (42) 

Terms containing 1 /q* appear, due to the fact that the single 
diagrams are not gauge invariant. Taking the gauge 

invariant sum P':!)(q*) + 2P@?)(q?), the divergent terms 
cancel out, so that, taking the limit g* > 0 one gets 

10c? —7e —9 

PEN(0) + 2PEM(0) = — 12(€ — 2)e(2e + 1) 
(43) 

In order to carry out the renormalization, we need the 

renormalization constants 

i) (@\" (e’Cle)\% 

» 1 Ana 

where J stands for the vertex renormalization (J = 1), the 

wave function renormalization (J = 2), and the mass 

(44) 

renormalization (J = m), and L enumerates the loop order. 

We define the one-loop quantities 

F=-z')), Sy =6m=—Z), S| —-7))), (45) 

and obtain the results 

3 -—2e 3-—2e€ 
= , &=8S 46 
Jenbe  “O~Gengear SiS (46) 

We note that Zz!) = zs) because of the Ward-Takahashi 

identity. The identity zs) = Zz" isa simple coincidence, 
which occurs only at one-loop order in dimensional 
regularization, but to all orders in e«. The constants F, So 
and §, in Eq. (45) are defined with the prefactor (—1) so 

that the expansion of the self-energy insertion into the 
fermion line about the mass shell acquires positive terms, 

for /x~m=l1: 

(47) 

Finally, the renormalized contributions of the diagrams are 
found as 

pe) (2) _ P(:)) (4?) _ P°1)(Q) — 2F PW (q?), (48) 

Pee '(q?) = PO?) ~ P)(0) 
— (SPR (4g?) + SoPRO(@))\(-I), (49) 

and the renormalized two-loop function PY (@) iS 
obtained as 

PO (gq?) = POY (g?) + 2PR7)(q2). (50) 

F. Results 

We recall the definition of v in Eq. (19). In the limit 

€ > 0*, one obtains the two-loop vacuum-polarization 
function 

(51) 

We find a compact representation (see also Ref. [27]) 
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4 2 2), a\2 (vt —2v° -3 v—-1 ,(v-1 
Tl —(f\J2 7" "lo | rn () (=) 4 12 Nasi)” Wl 

v-l v-1 
— 4d, | —— } 1 6@ (5) (5) + 

v-l 

3 v+1 

30 -—v v-1 v—-1 v—-1 v—-1 5v-3v° v-1 
3C(3 A®, | ——— | In{ ——— ] —4@ 3In? ] 

+ 36( )) + 12 (=) n(=) (=) + n ()] + 8 n(=) 

96 +1 24 

where 

®,, (x) =Li,(x)+2Li,(-—x), Li,(x)=—-In(1-x). (53) 

For small positive g*, one obtains the expression 

a\? 41q? 
TM? (q2) = (<) sept (54) 

The representation for the imaginary part just above the cut 
is even more compact, 

p—-l 3p —v p—-l 
~2@ 2 

(= )|+ 6 (S) 

l—v 1 l—v 
31 — (Ty* — 22y? — 33)1 

+ n(7=*)| +55 (te ° yn") 

os (55) 

G. Comparison with the literature 

An essential ingredient of our calculations is the master 
integrals, which should be compared to results communi- 
cated in Refs. [28—30]. In Refs. [28,29], the authors define a 

master integral Jp,,; which is equivalent to our M,> up a 

factor 

Jou => in?-T(1 + €)M yp. (56) 

In Eq. (1) of Ref. [28], the general term of the e-expansion 
of Jo,, 18 given in terms of log-sine integrals which can be 
written in terms of Nielsen polylogarithms; the analytic 
continuation is shown in Eqs. (2.9)-(2.23) of Ref. [29]. 

Moreover, an closed analytical expression for Jo); is given 
in Eqs. (2.10}-(2.14) of Ref. [29], containing hypergeo- 
metric ,F', functions. 

Changing the variable from t = g* to v and using the 
transformations for Nielsen polylogarithm S,, ,(—1/z) > 

Snp(—Z), we found that the results in our Eqs. (20) and 

(Al) agree perfectly with the corresponding terms of 

+ = (T04 — 2202 — 33)? (: — 7 _ BEA) 
v 

+ at (52) 

Eq. (1) of Ref. [28] and the expansion given in 
Eqs. (2.10)-(2.14) of Ref. [29]. 

In Eqs. (4.9), (4.10), and (E.4) of Ref. [30], analytical 

results for master integrals equivalent to our M3; and 
M35, were presented. These master integrals are related to 
ours by the following relations: one finds for the ultraviolet- 
convergent integral (4.9) of Ref. [30], 

4q°(q? — 4)*Joui (1, 2,2) 

= -24(D —3)(D —2)(q? +2) Moasx 

— (D -2)((D -2)q* - 2D¢’ 

+ 16D — 40)M 4 — 4(D — 3)(2(D - 2)¢q4 

— (D - 6)q? + 8D = 20) Mo35, (57) 

while, for the ultraviolet-convergent linear combination of 
integrals given in Eq. (4.10) of Ref. [30], one has 

4(D —4)q°(q? — 4)? (Jou, 2, 2) + 2Jo11 (2, 1, 2)) 

= —(D—2)|(D —4)(D -2)q° + 2(D —6)(D - 4)q* 
+ 16(D(5D — 31) +.47)q* —32(2D —7)(2D —5)|Mo4 

— 4(D —3)|4(D —4)(D —2)q° + 3D(3D — 10)q* 

+ 24(D — 4)(D —3)q? — 16(2D —7)(2D — 5)|M35 

— 48(D —3)(D -2)(q? -1) 

x (D(g? +8) —4(¢° +7)) Mosse. (58) 

and for the ultraviolet divergent integral (E.4) of Ref. [30], 

Jou(L, 1, 1) = M235. (59) 

The ¢€-expansion obtained from those of M535 and M»35; 
agree perfectly with those presented in Ref. [30]. 

Our results for the complete two-loop function given in 
Eq. (52) and for its imaginary part, as given in Eq. (55), 
agree with the calculation of Ref. [31]. One notes that 

Eq. (49) of Ref. [31] contains the imaginary part, while 
Eq. (57) of Ref. [31] also contains the real part of the two- 

loop vacuum polarization. One should note, though, that 
some integrals are left unevaluated in Ref. [31]. 

Furthermore, it needs to be pointed out that the expressions 
in Ref. [31] also contain the reducible diagram (see diagram 

3 in Fig. 1) with two iterated one-loop vacuum 
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polarizations on the same line. Our result for the imaginary 
part also agrees with the result given in Eq. (5-4.200) 
of Ref. [32]. Our results are also in agreement with the 

paper [33], specifically, with the results given in Eqs. (71), 
(78)-(81) of Ref. [33]. Furthermore, we can refer to related 

investigations on the vector part of the quantum chromo- 
dynamic vacuum-polarization tensor [34—36]. 

In Ref. [10], the two-loop vacuum polarization was also 
calculated. The result given in Eq. (49) of Ref. [10] is 

expressed in terms of the variable @, which in our notation 

reads as 0 = 7. The last-but-one line of Eq. (49) of 

Ref. [10] contains two terms, which, in the notation of 

Ref. [10], read as 21n(@)Li,(@) and 21n(@)Li,(—@). The 
term 21n(@)Li,(—@) contains a misprint; it should have 
read as 41n(@)Li,(—0). Formula (49) of Ref. [10] was 
referred to in Ref. [37], and it was stated in Ref. [37] that 

Eq. (49) of Ref. [10] has a misprint. Indeed, Eq. (49) of 

Ref. [10] is rewritten as Eq. (6) of Ref. [37], with a change 

of notation: The variable 6 used in Ref. [37] is related to the 

variable @ used in Eq. (49) of Ref. [10] by the relation 

6 = (1+86)/(1-@) =v. In Eq. (6) of Ref. [37], the 

wrong term 21In(@)Li,(—@) is corrected to the right 
Aln(@)Li,(—@), but unfortunately new misprints are 
inserted. The terms (in the notation adapted in Ref. [10]) 

T, = —(6(5 — 36°)/8) Ind, (60a) 

T, = +2In29| 23+ 225° = 70" 6(3-—62)|,  (60b) 
a4 24 

have the wrong signs and should have read 

T, > T, = +(6(5 — 367)/8) Ind, (61a) 

~ 1, ,,,[33+226° —765+ 5 
Py >T,=—7In 7 a4 —6(3-6 ) . (61b) 

In Ref. [38], Eq. (6) of Ref. [37] 1s rewritten as Eq. (140) of 

Ref. [38], but the two terms involving In(@)’s keep the 
wrong sign. 

In Ref. [39], the work from Ref. [31] 1s being cited for 

the imaginary part of the proper two-loop vacuum polari- 
zation, and it is expressed in terms of the variable d, which 
equals our v. However, Eq. (16) of Ref. [39] contains a 

misprint. Namely, the term +3/2In((1 + d)/(1 —d)) Gn 
Ref. [39]) has a logarithm missing and should read 

+3/2In((1+d)/(1—d))In((1+d)/2). We should clarify 
that, despite the typographical error in Eq. (16) of Ref. [39], 
final results for the energy shifts due to the two-loop 
vacuum polarization obtained in Ref. [39] are in agreement 

with those reported here. 

IV. CONTRIBUTIONS TO ENERGY SHIFTS 

A. Muonic hydrogen 

Armed with the compact expressions given in Eqs. (52) 
and (55) for the imaginary part of the two-loop vacuum- 
polarization function, we can evaluate energy shifts in 
hydrogenlike ions. In Chap. 10 of Ref. [15], the calculation 
of the vacuum-polarization energy shift is outlined in detail; 
specifically, we refer to Eqs. (10.244) and (10.245) of 

Ref. [15]. (We note the different sign conventions for the 

sign of the imaginary part of the renormalized scalar 
function IIp, as compared to Ref. [15].) From the one- 

loop and two-loop scalar functions, one infers the one-loop 
and two-loop irreducible vacuum-polarization potentials 

ve \(r) and ve (nr), respectively, 

 d(q?) ea” Za 

~~ 2 
H JA qd r 

V(r) = Im{T?(q2 +ie)], (62) 

ee) 2) e-4r 

vO(7 = - | en im TY (g +ie)]. (63) 
H JA qd r 

Of particular phenomenological importance for the proton 
radius puzzle [3] is the contribution of the irreducible two- 

loop vacuum-polarization effect on the 2P-2S energy 
interval in muonic hydrogen. We use the following results: 

exp(—gr) ,.. 1 +2(Bq)° (25| |2S) = Ap + Bay (64a) 

exp(—qr) _ 1 
(2P| ——— |2P) = ap + Bay + Bay (64b) 

Here, the / parameter is 

1 
p= Zap’ (65) 

where Z is the nuclear charge number, a@ is the fine- 
structure constant, and y is the reduced mass of the system. 

For muonic hydrogen, one has Z= 1. In units where 
the electron mass is m= 1 and the muon mass is m,, 

one has p=m,/(1+m,) for ordinary hydrogen and 

= m,m,/(m, + m,) for muonic hydrogen. 

The contribution of the irreducible two-loop vacuum 
polarization diagrams to the 2P-2S splitting in muonic 
hydrogen is obtained as 

E2)(2P — 2S) = (<) (za)? uf(p), 

[een tie) 
4 g a |x 

(Bq) 
2(1 + Bq)*’ 

(66) 

fO(B) = 
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Quite surprisingly, the two-loop energy shift can be 
expressed analytically. We define 

Vl—-w? 
yO OWE 1-4f°, (67) p= 

and find the result 

1 

288w° 
(8) = af —A80(0? = 1)20°F l-w 

iF) 
+ 128(15w® — 25w4 + 8w* + 3)wI, ( =) 

l+w 

+ 404w® — 312w® — 176w* + 96w? 

— 32nV 1 —w?(15w4 — 19w? + 3)w4 + 4(w? - 1) 

1- 
x (41w® + 58u4 — 10w? — 60)wIn ” 

l+w 

— 16x°7(1 — w’)?/*(15w® — 5wt — 2w? + 6) 

— (199w!9 — 302w* + 51w® — 4wt + 176w? — 96) 

l-w 
In? ( ——— 1 4, 68 <(m(sn) **]} 6 

where the expressions J;(a) with j = 1, 2 read as follows: 

1 1, (a) = = [63(—a?) — 4, (a?) in(a?) 
+ ®; (—a’)In*(a*) — 4ix (Lip (ia) — Lip (—ia)) 

— x" In(1 + a*) — 4x7 In(1 + a) + 36(3)], (69) 

In(a) = <2 [-4@a(—a") + 4, (02) in(a?) 
+ 3(In?(a*) + 2”) — 8zarctan(a)). (70) 

Some of the terms could also be expressed in terms of the 

Legendre y function, y,(z) = 4{Li,(z) — Li,(—z)]. 
For muonic hydrogen (Z = 1), one obtains for the 

nonrelativistic energy shift due to the irreducible two-loop 
diagrams, using CODATA values for the relevant physical 
constants [40,41] (see also Ref. [27]), 

E?)(2P — 28)| 4 = 1.25298 meV. (71) 

This is consistent with the literature (e.g., Ref. [2]). The 

result (71) confirms the numerical value of a contribution to 

the proton radius puzzle in muonic hydrogen whose 
numerical magnitude could have potentially contributed 
to an explanation of the discrepancy. The confirmation is 
obtained based on modern quantum-field theoretical 
methods. 

The reducible diagram, according to Eqs. (D8) and (D9), 

leads to an energy shift of 

E®) (2P — 28). = 0.25495 meV. (72) 

For selected individual low-lying atomic reference states, 
an analytic integration of the one-loop and two-loop energy 
shifts, for arbitrary #, still in the nonrelativistic approxi- 

mation, is presented in Appendix D. 

B. Relativistic ordinary hydrogen 

Given our analytic approach, we may also study the 
energy shifts to low-lying S$ and P states for ordinary 
(electronic) hydrogen, with a relativistic reference state. We 
focus on higher-order terms in the semianalytic expansion 
in powers and logarithms of Za, for relativistic Dirac- 
Coulomb reference states (see Chap. 8 of Ref. [15]). 

The potential vw 

ve) = 22 [POE mnfirrig? +i. (73) 
I qd r 

due to the reducible diagram is 

We study the energy shifts 

AE") (nS) = (w\Vi ly). (74) 

where |y) is the relativistic reference-state wave function, 
and (y stands for the Hermitian adjoint (not for the Dirac 

adjoint yw = y‘y°). The relevant semianalytic expansion is 
as follows: 

Z 4 r r AE) = (<) (Za) { (Za)BY} + (Za)?BY) 
nu n> 

+ (Za)*[BS} In{(Za)*] + BiG. (75) 
For the nS levels, the dependence on n is given, for the 

reducible diagram, by the following formulas (see also 
Table I): 

t 232 BY? (nS) = ~= (76a) 

; 29 8 
BW (nS) = 810 + 295n2 ’ (76b) 

Tt 1 Tt By} (nS) = 5 Bog (nS), (76c) 

(2) 232 5700292 46 
B —_ ey 2 in(2 

70 (NS) = — eo Wn — Tesgeng — 567 7 nl?) 
1294 . 76d 

18711n2 (76d) 

n 1 

Here, P(x) =I"(x)/T(x) is the logarithmic derivative of 
the Gamma function. For the nP,/; levels, one has 
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TABLEI. Coefficients from the reducible diagram are indicated 

for S and P states. 

TABLE II. Coefficients from the irreducible diagrams are 

indicated for S and P states. 

1S 28 2P 1/2 2P3/2 1S 28 2Pi jy 2P3/ 

Bo — 24 — 2a 0 0p 2 2 0 0 

BY 1050 7050 335 335 BS P30 ~ ae + a3 7 In(2) EEG — aE + a3 In(2) 0 0 

nf ng +5 a Bh 
BY -% -% 0 0 

BY (nP) = B")(nP) =0 and the following results for the 
other coefficients for the reducible diagram, 

8 n?-1 
BU (nP\/2) = 675 ne , (77) 

rt 9832 n?—1 

Big (Pa) = ~ 93555. (78) 

For the nP3 /2 levels, one has the results 

BY (nP3,2) = BY? (nP\/>), (79a) 

: 1272 n?-1 

Byy(nP3j2) = — 17820 2 (798) 

The two-loop energy shift from the irreducible diagrams, 
evaluated on the relativistic wave function, is 

AE® = (y|VOlw), (80) 

where ve dis given in Eq. (63). It gives rise to the following 
semianalytic expansion, 

a\? (Za)" 2 2 AE?) = (<) 73 {Bio + (Za)BS 

+ (Za)?[B inl(Za)-7] + BO) | 

+ (Za)3 BY In{(Za)~2] + BY | \. (81) 

For the irreducible diagrams, the dependence on n is the 
following (see also Table II): 

Bio (nS) == (82a) 

B2)(n8) = on - er + > in(2), (82b) 

rl) LB ay 
BG(nS) = 5 BR (nS), BY (nS) = 5 BS(n8). (824) 

(2) The Catalan constant G = 0.915965... enters the By, 
coefficient, 

2 2 a) _ B Bi (n8) = Byy Wn + Boy +>, 

a) 104_, 25, 2007 13° 
BS = — qln2(2) — =? In(2) -—— G + —— 70 = Gy Mn’ (2) — Gem In(2) ——E-G + Te 

79318In(2) 823612° 89515961z 

19845 79380 " 20003760 ’ 
(82e) 

wo) _ 33048317 | 18912" 1076, of 
70 1428840 + 2268 567 7M). — (824) 

For the nP 1/2 levels, the coefficients are 

(2) 737 n?-1 
Beg (AP 1/2) = — 5095 2 (83a) 

B°\nP,») = 1764797 _ 809x  3281n(2)] n?-1 
70 W127 *)7744900 11340 2835 | on 

(83b) 

For the nP3 /2 levels, the coefficients are 

449 n?-1 2 
BY) (nP3/9) = ~ 4050 ne” (84a) 

2) 15163 31m. 191n(2)]n2-1 B®)(nP3)=2|——-> 84b 
70 ("Psi2) = |Sos09- 10+ 405 | ae (84b) 

The fine-structure difference 

; ; 41 n2-1 
BY (nP3)>) — BY (nP 1/2) Ten 72 (85) 

is consistent with the result communicated in Eq. (7.7) 

of Ref. [42]. 
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V. CONCLUSIONS 

We have completed a complete reevaluation of the two- 
loop vacuum-polarization tensor in dimensional regulari- 
zation, on the basis of integration-by-parts identities. The 
two-loop vacuum-polarization tensor constitutes a numeri- 
cally significant contribution to the Lamb shift of muonic 
hydrogen which influences the determination of the proton 
radius from muonic hydrogen spectroscopy [2]. 

In Sec. II, we have discussed the evaluation of the one- 

loop vacuum polarization insertion into the photon propa- 

gator, evaluated to order e, and e*, and thus, in a form 

suitable for inclusion into higher-order loop calculation 
where knowledge of the terms of higher orders in € is 
indispensable. We note that we use somewhat nonstandard 

conventions for the MS charge, as given in Eq. (12). 
In Sec. III, the irreducible two-loop vacuum polarization 

insertion has been evaluated, by expressing it in terms of 
master integrals. The renormalization has been carried out, 
and final results have been presented for the real and 
imaginary parts, in Eqs. (52) and (55). A comparison to the 
existing literature is being performed as well (Sec. HII G). 

In Sec. IV and Appendix D, we demonstrate that, for 
arbitrary reduced mass of a two-body bound system, the 
two-loop vacuum-polarization corrections to the energy can 
be evaluated analytically (for nonrelativistic reference 
states) and expressed in terms of dilogarithmic, and 
trilogarithmic, functions. This applies both to the 2P-2S 
difference (see Sec. IVA) as well as to individual hydro- 

genic levels (see Appendix D). Higher-order coefficients 
for the semianalytic expansion of the two-loop vacuum- 
polarization energy shift could be evaluated with the help of 
the fully relativistic hydrogen wave function. Results have 
been presented in Sec. IV B. 
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APPENDIX A: TERMS OF ORDER ec? 

We first give the terms quadratic in e for Eq. (20), for the master integral Mj», 

1 2 
7 _ 24Lis( ° 

+1 
Ny(v) = —12L1, (; p+ 1 

v-1 
+ 12In? 20 In —In{—- 

v+l1 v+1 

)-m( 
v-l 

v+1 

v-1 2v v-l 
+ ") -6in( yim (25 *) 

)) -2 in) + 6° n( =) +12¢(3). (AL) 

We now give the expressions for the terms of order €* in the one-loop effect, as discussed in Eq. (22). For the quadratic term 

QS) (v) in Eq. (22), one obtains the result 

3 2 (1) Ay _fl-v 1 _,f/v-l 2v v—-l 1 
= {| v -— } |-2Lip | —— ] + =] — 2In{| —— }1 —_— 

22 (0) (0 -)| (4) +510 ( "\o+l) +l) 6 
1 4 _f{l-v 2v v-1 2v v—-1 
— — 3)/12L 24L — In? 61 In? 

+360" | n(saa) + »() " “)+ n( Sy) (5) 

+121 In Ive —ln val In2 
v+1 v+1 

—1 4 3 v 2_ - ((s9 si0)In( =>) + 78e 160) 

v+1 

| 
} n( ~ 62° n( 

p+ ot 

(A2) 

For the term Om (v) from the integral with two fermion propagators, one finds for the term quadratic in e the expression 

2 (1a) _v — | wl 2_ 1) / 101; l-v AL; 2v tn v—-l 61 2v In? v-l1 9 

QM) =a { g (0 1) | TAL is |) + 24Lbs (a) i a) Fe a aaa) 7 * 
2v v—-l l-v v-l 2v v—-l 

~ 24In2 1 12{ inf") 41 In? 2] 
ra) (T+ (mos) + (Sa) (Ga) + (i) 

l-v v-1 2v v-l 1 
12 2|_ALj in? al] ~1)1 7) a gy lh. A3 c()] +0 -atia( 7) +m°(TF5) ~4(In(S5) -1) nT) -F] 8p 
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APPENDIX B: COEFFICIENT FUNCTIONS 

The coefficients in Eq. (36) are as follows: 

(2 — D)(D*(-q? — 4) — D(q* — 5q° — 28) + 2(q* — 24° — 20)) 
ie 

Bl 
Poss 2(D —4)(D —3)(D—1N@(4—@) , (BI) 

1) _ _ (D=2)(3D°q" — 4D(3q" — 2q° + 8) + 4(3q" — 8q° + 20)) 
Pag =~ 4 22 , (B2) 

2(D — 4)(D — 3)(D — 1)q*(4- q°) 

ge) _ —(D? - 9D? + 30D — 32)q* + 4(D? — 11D? + 38D — 40)q? + 32 
P i734 = 3 5 (B3) 

8(D — 4)(D - 1)q°(4- 4°) 

. 1 
Posh =~ 5 (3(-4D3¢°(1 — gq?) — D?(-9° + 30q4 — 36q? + 16) 

(D — 4)(D —3)(D -1)q*(4—- 4’) 
+ 4D(-¢° + 18g — 28q + 20) — 4(-¢° + 14q* — 28q° + 24))], (B4) 

1 

4(D —4)(D -3)(D- 1)q*(4-@) 
+ 4D?(q® — 35q® + 1194 — 176q? — 32) — 8D(2q° — 40g® + 127q4 — 1484? — 88) 

+ 8(2g° — 31q° + 98q4 — 84q* — 120)]. (BS) 

PEs) =- [—D4q7(4 — q*)? + D°q?(23q* — 100g? + 176) 

The coefficients in Eq. (37) are 

3(D — 2)(—D?(-q? - 2)q? — D(4q* + 69g? + 8) + 4(q* - g + 6)) 

33k =~ 
B6 a (D-AD-)g4— a) : BO) 

ey  (2— D)(3D?q* — 4D(3q4 — 2¢° + 8) + 4(3q* — 8q? + 20)) 

Gig = 4 22 (B7) 
4(D — 4)(D — 1)q"(4- 4°) 

(2:1) _ 1 3p 3(g2 4.2)¢4 + DU189% + 26g" + 64 

P35 ADHD gage PT FM ED USES 200° S08) 
+ 4D(—9q° — 4q4 + 8q? — 88) + 8(3q° — 2q4 — 10g? + 60)]. (B8) 

The coefficients in Eq. (38) are 

e2)  (D-2)(—2D?q? - D(g* - 14q? + 8) + 2(q* — 10q* + 12)) 
Pra = 2 2 (B9) 

16(D — 3)q°(4-q°) 

(2;2) 3(D — 2) 32 2\2 22/44 2 Po) — —D°q° (4 -q°)* + Dog? (7q¢° — 48q- + 128) 
251 ~ 3D a(D—3)(D-)g4-e) 

+ 2D(-7¢q° + 40q* — 136q? — 32) — 8(-q¢° + 4q4 — 1247 — 24)], (B10) 

; 1 
Po = 5 [D*q?(q° — 4)?(q? + 1) - 3D3q? (39° — 19q4 

8(D — 4)(D — 3)(D — 1)q*(q° - 4) 
+ 28q* + 48) + 4D?(7q° — 40g° + 69q* + 112q7 + 32) — 4D(9q® — 454° + 80q4 

+ 128q7 + 176) + 16(q® — 4¢° + 644 + 6° + 60)], (B11) 

(2:2) D-2 4 2/2 3 2/2 = D —4)-—8D —4 Po DAD 4D 13)g\e oa! gg -4) gg -4) 

+ 12D?q°(2q? — 7) + D(-34q' + 96q" — 32) + 20q* — 64? + 80). (B12) 
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APPENDIX C: HIGHER-ORDER TERMS IN THE MASTER INTEGRALS 

We have the following results for the higher-order terms from the master integrals, with reference to Eqs. (40) and (41). 

For N>35(g), we obtain 

1 vp—-l vp—-l vp—-l vp-l 2 vp-l 
N 2) — —y(1? —3)|180 — 18] ®, ( —— } - 6Li — 6] 1 235(q") 6 ble | (5) n(2=) (75) »(“) “() (5) 

391n( 2) 4 22} +E at 4 20? ~ 3) ]36@, (27+) — 1gin(2= 4) @, (274 
vt1) 7 | to Tee N54 v+1) 2\o4+1 
vp—-l vp-l v—-l 2 vp—-l vp-l 

— 6Li, { —— } Inf —— } - 3ln° — 61 In? 2] 18¢(3 
»() “(S) " (SS) n( + pin Ca) (a+ “ ] 

1 
+3 (ov: + (—S5v* — 16? — 140? + 480 + 3)n°( ; *) + 170). (C1) 

v 

For N535;(q7), we obtain 

l v-1 v-1 v-1 

Nosse(v) = 3g v(30" — 80" + 21) 180, (Ss i) 7 Isn( 7 i) (5 ) ~ 6Li2 | — 

v-1 v-1 
— 18] ®D 

n() (=) 

2 v—-l 1 vp-l 
6] 1 2) 4 — (76 — 3p4 — 5p? +7) |36@ 

n(——) n(2=2) +27] + 5g (Uh = 308 = Sv" + | (SS 
v—-1 v—-1 v—-1 2 v-1 v-1 

— 6Li 1 — 3In? —61 In? >] 18¢(3 
“() (a) " a) (a) " () " (a) + TSE } 

1 —1 
+ — |—2(86v4 + 233v? + 601) — 40(370* — 10807 + 279) In ° 

48 v+1 

—1 
+ (—13v° — 480° + 6304 + 12807 + 10507 — 336v — 27)In* (: " -)| , (C3) 

v 

| 

APPENDIX D: ANALYTIC INTEGRATIONS mass. For the 2S and 2P states of atomic hydrogen, one 
1. One-loop diagram finds, respectively, 

We recall the imaginary part of the one-loop effect from 4 
— 1+2 Eq. (28), (os) SXP(E 9) 9.6 = 14a) (D3a) 

ABU + Bq) 

a 4 2 
Im? (¢? +ie)] ==,/1 -(1 +3), (D1) _ l 

3 P\ ¢ (op| XP=4") 9 py — —_____ (Db) 
r 4B + Bq) 

for g* > 4. We use Eq. (10.245) of Ref. [15] and write 
Hence, 

(1) Za [od(q?)e” (po. . 
Vp (vr) = -— Im +1€)|. D2 — — R ( ) a Jy g r R (q ) ( ) op] XP! 4) 5 py — (2.5| XP 1) 19.6) 

r 

. (Bq) One uses the well-known formula for the generalized Bohr = -— (D4) 

radius in a hydrogenlike ion with nuclear charge number Z, 2B(1 + Bq) 
namely, / = ag = 1/(Zay), where is the reduced mass of 
the two-body system, measured in units of the electron The contribution to the 2P — 2S energy shift is 
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E,(2P—2S) = (2P|V|2P) — (25|v)/25) 
_ (Zaye [days (92 ie) PO" 

= (2) (2a ufi(b) 
_ fod(q?)ImMy?(@2+ie) (Bq)? 

DO [Oe a Sa 
(D5) 

We choose the 2P-2S interval in order to demonstrate that 
energy shifts due to the one-loop and two-loop vacuum- 
polarization effects can be evaluated analytically. For 
muonic hydrogen, one has the result p= m,m,/ 

(m, +m,), where m, and m, are the muon and proton 

masses, respectively. 
It turns out to be advantageous to express the result in 

terms of the variable w defined in Eq. (67), with the result 

(w?-1)? l-w 
=~ |3(8w* + 4w? + 3)1 Pilw) =a is [Si8wi tae’ +3) 

24nw> =. 2(24w® — 280" — sw" +9)w (D6) 

l-w? (w’ -1) 

We can get the expansions for small and large /, 

Sab 32 
AB) =P +E + po (10mip?) +> 

140 In 236 
+ f° (am +S =) + O(f), (D7a) 

1 5 1 35a 1 

fi(B) = 308 3846 | 28f7 4096/5 + 546° 
632 1 

-——- + O( — }. D7b 
16384p7 + (=) (D7b) 

For muonic hydrogen, one has / = 0.737384..., while, for 

ordinary hydrogen, one has / = 137.110.... Hence, the 
second of the above equations is relevant for ordinary 
hydrogen, while none of the expansions can be used with 
good accuracy for muonic hydrogen. It should be possible, 
though, to generalize the results reported in this appendix to 
reference states other than 2S and 2P if desired. Relativistic 
corrections to the one-loop vacuum-polarization shift have 
been analyzed in Ref. [43], with an emphasis on muonic 

hydrogen. 

2. Two-loop reducible diagram 

Next, we consider the contribution of the reducible 

diagram 3 in Fig. 1, 

E®) (2P-28)= (2) (2a)? uf (Bp), 

nim. [2d(@?)Im| (Me (@ +ie))"] (Ba)? 
£8) --| ¢ a |x 2(1+fq)*"" 

(D8) 

We use the conventions outlined in Eq. (67). An analytic 
evaluation leads to the formula 

fw) = aT {431508 + 1005w* — 8364 

+ 84w” +72) + 12(—105w!? + 370w® — 381w® 

+w 

—45(w* — 1)*(7w* — 13) i? () +e \ 

(D9) 

1- 

+964 + 10w? + 12)In(+ “) 

The expansion for small f reads as 

fp) = EP © pe (Zinip") +) 27 

pe 292 2 2 — 57 (180In (B-) + 774 In(f*) + 180x 

— 73) + O(B°). (D10) 

For large #, one obtains the result 

231 1 1272 1 FB) = Zes658 3598 + TOURS” GOR 4530f 456 190086? 607 

16752 1 
———-+ O[ — }. Di1 

* 730296p7 r ( :) (D1) 

3. Two-loop irreducible diagram 

We continue with the contribution of the irreducible two- 

loop vacuum polarization diagrams, 

B,(2P 28) = (2) (Zalursib) 
fe d(q?) Ime (g? + ie) (Bq)? 

fal) = | g aa 2(1+ Bq)* 
(D12) 

The result is a bit more complex and given in Eq. (68). The 
expansion for small / is 
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1 11 3202 56n* 
f2(B)=5,-F (sino +5) +p (F-) 

+p! (com (8) + 69 In(B) — 206(3) + 152° + 3) 
+ O(B>). (D13) 

For large /, one finds the result 

Al 1 ( 15647x 25x? 13 

449 1 ( 75763x 3127 19 4 ——— gq In(2) 
216064 B 544320 864 432 

62479 1 in 713175172 n 371" 

4536008° "| 936714240 2112 

125 1 

4. Individual energy shifts 

+ 

(D14) 

In Sec. IVA, we had concentrated on the 2P-2S energy 
difference, for muonic hydrogen. It is instructive to 
separately give the nonrelativistic contributions to selected 
energy levels with principal quantum number n and orbital 
angular momentum quantum number / (in the nonrelativ- 
istic approximation) from the one-loop diagram, the two- 
loop irreducible and the two-loop reducible diagrams, 

BM(ne) = (2) (zayrufiv(p), (DIS 

Bein) = (2) (Za) uhQ(p), (D136 

Ene) = (2) (ZaPuftp). (D150 
We consider the cases |n?) = |1S), |2S),|2P). The variable 
w has been defined in Eq. (67). We define the variable u as 

follows: 

u=\/1-f, B=V1-u. 

For the ground state, we obtain 

(D16) 

1 
fie (B) = Tan sev 1 — u?(4u? — 7)u — 24u3 + 46u 

u 

1- 

— 3(4u4 - 912 + 3)In( “yy. 
l+u 

(D17) 

For the 2S state, one has the result 

1 
=a —336w’ + 464” — 18w? — 54w 

w 
£59 (B) 

2 + 122w>(14w? — 17)V1—w 

1- 

— 3(56w® — 96w® + 274 +9) in( “) 
l+w 

(D18) 

For the 2P level, we obtain 

1 
f2(B) = ane [-2400" + 352w> — 30w? — 18w 

+ 12nw?(10w? — 13)V1—w? 

— 3(40w® — 72w® + 214 + 4w? 4+ 3) 

l-w 
I ,; D19 

* o(; + "| (D19) 

For the reducible diagram, the results are as follows. Let us 

first indicate the result for the ground state, 

fisA= -T630n |-2880 l-w 

+ 20u(63u* —282u" + 304) 

1 
+ 45u(7u° — 36u4 + 51u? — 18) u>( “) + 

l+u 

1- 

1 60(21u°— LOL + 1261? —24)in( ale 
l+u 

For the 2S state, one has the result 

1 
stom V1l—-w? 

648005 
+20(1386w' —4719w® +4132wt —396w? —216)w 

+45w? (154w® —627w4 + 792w? —315) 

_ 

x we (—) + + 60(462w!° — 17278 
Ww 

_ 

#185109 —468104—540?—36)in( “|. 
1+w 

(D21) 

while the 2P result is 
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t 1 
f\ p)=- —576nw V1 — w* + 60(252w® — 903w® + 820w* — 76w2 — 24)w 

2P 6480w> 
1- 

+ 45 (84w® — 357w* + 462w? — 185) i? (=) + | + 60(252w!® — 987w8 + 1089w* 
Ww 

— 276w* — 34w? — 12) In (; — “) (D22) 
l+w 

The difference of the results given in Eqs. (D21) and (D22) confirms Eq. (D9). 

The results for the irreducible two-loop diagram are more complicated and read as follows [we refer to the definitions of 
T, and J, in Eqs. (69) and (70)]. For the ground state, one obtains 

i) **) 
2 1 l-u 9B) sera | 128011 512 01a (yf) 4 (430! ~94u4 — 45u? — 48) )(m (5 

1- 

+4(43-3712 In) 442 (S(5u —10u? +1)I ni( VF =*)- —57u °+14) 
u 

2 1024 20u 
+V1-uv fe (Feasu? = 113)u2 4S eIn(2) ) +? (- 80u4 Oe )|| (D23) 

For the metastable 2S level, the analytic integration leads to the result 

2 l-—w 
FR (p) = 11538 3 (653 — 1058w® + 93w® + S6w* + 256w" — 192) (1? (=) + 7) 

1- 

— Aw?(447w® — 4304 — 88? + +8)) — 384(55w® — 97w4 + 28w + 6)w3Is ( <<) 

= 
+ 96(55w* — 110w? +51)w®7, ( i) + 12(—227w8 + 77w® + 224wt + 52w? — 120)w 

w 

I= 32 x In (; : " + V1 WA (n(204818 In(2) + (4954 — 75702 + 54)w4) — 1692 
Ww 

x (165w® — 220w® + 21w* + 30w? — 36)) , (D24) 

Finally, the irreducible two-loop diagram, for the 2P level, leads to the energy shift 

1 L- 

fe (B) = 1630" — 1966w® + 75w® + 18404 + 64w? — 192) (1 (=) 4 | 
1152w° l+w 

1- 1- 
— 128(105w® — 1914 + 52w? + 6)w3Iy ( 4/—— ) + 4w?(24(35w4 — TOw? + 31) 47, ( ./ —— 

l+w l+w 

— 937w® + 978wt + 88w? — 48) — 4(517w8 — 299v* — 400w4 + 44w? + 120)w 

I= 32 
x in(; ; “) +V1l-w (2(20480 In(2) +> (315w* — 529w? + 18)w*) 

Ww 

— 1627 (105w* — 140w® + 9w* — 2w? — 12)) ; (D25) 

The difference of the 2P and 2S energy shifts confirms Eq. (71) for muonic hydrogen. 
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