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This paper presents the subsystem descriptions and testing of a small robotic platform intended to harvest straw-
berries that are grown on elevated beds in open field conditions. Agricultural robots can assist in the optimization
of farm resources and help solve issues related to increasing farm costs and labor shortages. Monolithic, large
size harvesters are already in development; however, they are susceptible to single-point-of-failure and lack the
flexibility to adapt to varying field conditions and farm sizes. The proposed robotic harvester covers one row at a
time and features a Delta arm configuration manipulator with a five-finger structure as the end-effector to indi-
vidually pick strawberries. A deep neural network-based vision subsystem using a YOLOv4 model was adopted,
which was configured to detect small objects and to locate and classify strawberries into five stages of maturity.
During experiments on a commercial farm, the proposed platform, including vision, manipulation, and overbed
navigation and control subsystems, achieved an overall success rate of 71.7% for five environment scenarios,
with a minimum of 37.5% (the most complicated scenario) and a maximum of 94.0% (the easiest scenario). The
average harvesting speed of the system was 7.5 s per strawberry.

1. Introduction sure physical performance of crops by fusing measurements provided
by different onboard sensors [8]. For weeding tasks, robotic systems
automatically detect and eliminate weeds in different stages of a crop’s
growth using mechanical, chemical, fire, laser, or electrical discharge
removal methods [9]. Similarly, for pruning tasks, robots detect and
selectively remove undesired parts of a plant that would negatively im-

pact its growth [10].

1.1. Urgent needs in agricultural operation automation

The world population is anticipated to reach the 10 billion mark by
2050, which will need an increase of 55% in the current food produc-
tion to keep up with global caloric demands [1]. According to the 2017
US Census of Agriculture, labor costs in the farming sector increased by
approximately 17% with respect to 2012 [2]. Furthermore, increasing
labor shortages have been reported in recent years and worsened due
to the COVID-19 pandemic [3]. There is a consensus in the agricultural
industry that creating labor-saving technologies and enabling agricul-
tural operation automation are keys to protecting producers against the

1.2. Background: strawberry harvesting robots and associated subsystem
technologies

As of 2017, more than 60,000 acres in the US are dedicated to straw-

shortage of labor and addressing labor cost issues [4].

Different agricultural robots have been proposed to aid in a variety
of farming activities, dealing with varying environments (e.g., lighting,
terrain, and weather) and different types of objects (e.g., shape, color,
size, distribution, and reflectance) [5]. In spraying, robots precisely de-
liver the necessary amount of water [6] or pesticide while detecting
areas in a farm that require attention [7]. In phenotyping, robots mea-
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berry production, with a market value of more than 2 billion USD [2].
The states of Florida and California are the largest producers with a
combined 76% of total strawberry production in the US [2]. Strawberry
harvesting is heavily reliant on manual labor. Thus, the development
of a strawberry harvesting robot would greatly reduce their cost and
dependence on seasonal workers. Such a machine needs to reliably
scout throughout semi-structured strawberry fields, accurately detect
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and pick mature strawberries, and maintain a high post-harvest fruit
quality.

Strawberry harvesting robots for greenhouses and polytunnels have
been extensively studied [11]. In such structured environments, (i)
strawberry plants grow in tabletops, allowing pickers to stand upright;
and (ii) strawberries hang down to the sides of their pots, mostly un-
covered by leaves, making them easier to be detected and picked [12].
In [13], a cable-driven robot is used for harvesting strawberries in poly-
tunnels using a Mitsubishi® 5-DOF serial arm. A new version of this
robot is presented in [14] with a single-rail dual-arm manipulator and
an obstacle separation algorithm. In [15], a picking mechanism consist-
ing of a movable bench and a stationary 7-DOF robotic arm is designed
to approach fruits from below. A Belgium-based company, Octinion, de-
veloped the first commercial greenhouse strawberry harvesting robot,
Rubion, featuring a robotic arm and a soft end-effector [16].

In contrast, strawberry harvesting robots in open fields have been
of less success when compared to their greenhouse counterparts. In
open farms, strawberry plants are grown on raised beds. The geomet-
rical dimensions of these beds depend mostly on the type of tractor
or machinery used on the farm. These fields are characterized by un-
structured growing conditions, with leaves and variable light conditions
complicating strawberry detection [17], and sandy or wet terrain cre-
ating unfavorable conditions for the motion control subsystem [18].
Nevertheless, several companies are developing robots for strawberry
harvesting in open fields. Agrobot, a Spain-based company, created a
platform that features 24 robotic arms working in both greenhouses
and open fields [19]. Harvest CROO Robotics has developed a harvester
that contains 16 picking devices using machine learning algorithms to
detect strawberries [20]. Similarly, Advanced Farm Technologies cre-
ated a mobile platform containing several suction-rotating-picking type
robotic arms [21]. Lastly, Traptic developed a system with 8 robotic
arms that grab strawberries by their stems [22]. Additionally, while
not intended for harvesting, some robots have been designed to aid
human pickers. EasyPick, developed by Naber’s Ag Equipment LLC, al-
lows workers to lie facing down above the beds to reduce the physical
strain of crouching or kneeling [23]. Strawbot, by AgPro Robotics, is
a semi-autonomous mobile platform that follows the workers in their
harvesting process and collects the picked fruits [24].

Subsystems in strawberry robots have been extensively studied as
reviewed in [11]. Aside from the multi-row harvesting configurations,
typical designs have a modified version of a tractor, each with its unique
capabilities and adapted for working on specific tasks. These include
differential steering drive [19] or skid-steered configurations [18,25].
Their navigation subsystems may include GPS, range finders [25], IMU
[26], and/or cameras [27,28]. To be able to scout a field, PID algo-
rithms [27], robust controllers [29], and optimal controllers [28] have
been successfully applied. Additionally, cooperative configurations of
aerial and ground vehicles have been proposed for use in agriculture
[30].

When it comes to end-effectors, harvesting robots usually include
some sort of suction or cutting mechanism [13] or soft fingers for grip-
ping [31]. An extensive review of agricultural end-effectors for different
types of crops can be found in [32]. It has been reported that a max-
imum force between 22 N [31] and 26 N [15] is enough to detach
a strawberry from its stem. Five types of end-effectors have appeared
in previous designs [11]: holding-cutting [14], suctioning-pulling [33],
suctioning-cutting [34], suctioning [15], and grasping-pulling/twisting
[31]. Contact-grabbing end-effectors are common including three-finger
claw designs with force limit or fingers assisted with a rotational mech-
anism to detach from peduncles [31]. The grasping end-effector with
force limit sensors [31] is susceptible to fruit orientation inside the fin-
gers. In case of misplacement, a large force is applied that can damage
the fruit. The rotational motion to break the strawberry peduncle in
[15] is created by tilting the whole harvesting robot arm, which made
the harvesting time to be as long as 31.5 s. A different approach is fol-
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lowed in [35] with the design of a spiral-curve tooth to pull strawberries
inside a spherical shell.

There are two types of manipulators used in strawberry harvesting:
industrial serial arms [13] and rail-based Cartesian type structures [34].
Industrial serial arms are typically expensive, while a Cartesian mech-
anism, like used in [35], is made up of three perpendicularly oriented
linear axes, making it easy to control. However, the operating speeds
are slow [35], because some of the moving components must carry mo-
tors and other parts, resulting in a more extended period to accelerate
or decelerate the inertia of the mechanism.

Aided by the accelerated development of computational hardware
and graphical processing units (GPUs), modern machine learning algo-
rithms such as Support Vector Machines (SVM) [36], (Deep) Convolu-
tional Neural Networks (CNN/DCNN) [37], and Region-based Convolu-
tional Neural Networks (R-CNN) [17] were introduced in agricultural
applications for fruit identification and maturity grading in open field
environments. In [38], RCNN-based networks were applied for agricul-
tural product detection with high accuracy/average precision of over
80% and over 95%, respectively, but the processing speeds of these
models were slower than 5 fps, which brought high responding time
during the field detection. The above techniques have shown high
robustness and accuracy, but their detection speed is limited by the
two-stage structure inherent in R-CNN-based models (dense and sparse
prediction networks) [39].

A model with promising results for fast detection is the You-Only-
Look-Once (YOLO) model [39]. YOLO uses a single feed-forward net-
work that directly outputs bounding boxes and class probabilities,
which makes it computationally more efficient than the two-stage mod-
els of R-CNNs [39]. Subsequent versions of this model, YOLOv2 [40]
and YOLOv3 [41], use anchor boxes and more complex backbone mod-
els to improve agricultural products detection performance. YOLOv4
with spatial pyramid pooling (SPP) [42] and path aggregation network
(PAN) [43], as discussed in [44], showed promising results with an av-
erage precision (AP) of over 90% in detecting mature strawberries with
processing speed of ~19 fps based on a field strawberry dataset.

1.3. Focus of this study

The common denominator in current commercial robots is a mono-
lithic robotic platform with multiple arms [19,20]. They work on multi-
ple rows at the same time, allowing harvesting speeds to be comparable
to those of a skilled human picker [19,20]. However, such designs have
some inherent issues noticeable in the long run: difficult farm-to-farm
platform transportation, single-point-of-failure, significant idle time im-
pact, low platform flexibility, and low adjustment capabilities to adapt
to field variations [45]. This is the reason a small robotic platform is de-
veloped, aiming to cooperatively harvest with similar robots in a fleet
in the future, allowing for potentially faster and more robust harvesting
when compared to manual harvesting procedures.

In this paper, we present the testing of a modified version of the field
robot first shown in [25,27,30], which was intended for disease detec-
tion. It is an aluminum structure with a skid steer, differentially driven
style [30]. Its navigation system consists of eight ultrasonic range find-
ers that allow scouting over elevated beds, and two quadrature encoders
fixed on its drivetrain motors, providing position and velocity feedback
[25]. Unlike its predecessor, the robot in this study, shown in Fig. 1, is
made of steel, has a fixed height, and a Delta arm configuration manip-
ulator with an actuator to individually pick strawberries. Delta robots
are well known in industry for their precision and high speed for pick-
ing and placing operations. Their downsides are their high cost and
requirement of a high-power source to operate. Our system is devel-
oped to defeat these shortcomings while preserving its much-needed
accuracy to handle small objects like strawberries. We present a system
built with off-the-shelf parts making it easy to build and low-cost. Due
to the low weight of strawberries, the load on the arms of the robot is
very small and our system can be run with a low-power source (24V). It
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Fig. 1. Developed robotic platform.

also has the advantage of being faster than Cartesian mechanisms and
many-DOF robotic arms found in the literature. Its small size makes it
convenient to transport and allows for the use of multiple arms in a
single platform if needed. Moreover, a YOLOv4-based detection system
proposed in [44] was adopted and integrated with the robot to iden-
tify and spatially locate mature strawberries from RGB images. Also, a
harvesting logistic developed for motion control, image processing, and
picking is different from its predecessor.

The main contributions of this work are as follows. (i) A robot is
experimentally validated, capable of identifying and picking strawber-
ries. (ii) A fast and precise fruit detection model, YOLOv4, was adopted
from [44] for detecting and classifying strawberries in their different
stages of growth into multiple maturities in field conditions with spe-
cific network settings for small objects. (iii) A Delta-arm manipulator
is custom-designed to reduce the time in picking. (iv) A high harvest-
ing success rate is achieved. During field experiments, our harvester
reached an average success rate of 71.7% including challenging envi-
ronmental scenarios.

It is worth mentioning that, since the subsystems were designed and
developed before the integration, the technologies used therein may
not be the most advanced ones. However, the robotic harvesting plat-
form achieves a satisfactory performance during harvesting testing in
commercial open fields. Further information about the latest subsys-
tem technology development can be found in published sources from
different research groups worldwide. For instance, Zhang et al. [46]
developed a strawberry detection algorithm with deep NN using edge
devices.

Furthermore, in contrast to the previous strawberry detection soft-
ware in [44], RGB images with a higher resolution of 768x1152 pixels
are fed into YOLOv4, which resulted in more features of strawberry
canopies. This allowed the model to detect strawberries in five finely
separated maturity levels. This level of strawberry maturity detection
in field conditions had not been addressed in the literature yet. Addi-
tionally, to achieve a rapid detection of strawberry canopies, the whole
detection procedure is simplified as a single YOLOv4 model, while a
combination of YOLOv4 and AlexNet was utilized in the previous work
[44]. This image processing algorithm was integrated with the robotic
harvester, and evaluated in real-time and in-situ under field environ-
ment conditions, instead of offline processing based on RGB images
presented in [44].

The paper is organized as follows. Section 2 presents three key sub-
systems: strawberry detection, end-effector/manipulator, and guidance,
navigation, and control (GNC). Additionally, the hardware and soft-
ware will be given. Laboratory and field experiments are presented in
Section 3, where failure cases and future directions are also discussed.
Finally, in Section 4, conclusions drawn are listed.
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Fig. 2. An example image with the bounding box labels.

2. Materials and methods
2.1. Deep NN-based strawberry detection

2.1.1. Raw image collection and processing [44]

A commercial strawberry farm, located in Oviedo, Florida, was used
for collecting images for the training of the strawberry detection model.
The sensor used was a ZED 2 camera (RGB-D camera with depth sens-
ing capabilities), from which we acquired RGB images of strawberry
plants. Images were collected from February 15 to February 22, 2020.
The camera was installed at a fixed height of 100 cm and pointed ver-
tically down onto strawberry beds, and with an average bed height of
30 cm, the distance between the camera and the surface of the beds
was 70 cm. A total of 1,400 RGB images were selected and resized to
1000x1200 pixels and the location and maturity (flower, immature,
nearly mature, mature, and overripe) of each strawberry in the selected
images were manually labeled using labellmg [47] (Fig. 2). More details
on the dataset can be found in [44].

2.1.2. Neural network model training

As described in [44], YOLOv4 included three parts: backbone (CSP-
Darknet 53), neck (SPP and PAN), and head (structure from YOLOv3)
[39] (Fig. 3). The main task of the backbone network (CSPDarknet 53)
is to conduct feature generation and image aggregation. The main task
of the neck network is to generate the output feature map through the
input analysis from the backbone [39]. The head of YOLOv4 was used
to apply anchor boxes on the feature map output from its neck and
outputs the bounding boxes, probabilities, and label names over the de-
tected targets (i.e., maturity levels of fruits) [39].

The YOLOv4 model first resizes the RGB images to 768x1152 pix-
els and uses them as inputs. This size of the input layer of YOLOv4
provides sufficient details to extract most of the features in strawberry
canopy images. The training strategy, similar to [44], consisted of a to-
tal learning iteration of 10,000, and a variable learning rate between
0.001 and 0.00001, as well as 0.949 in momentum and 0.05 in decay.
The network settings were changed from the regular/default values to
effectively detect small objects in RGB images by following the settings
for detection of small objectives in [48].

The training dataset included 1,300 RGB images while the test
dataset had 100 images. For comparison, we also trained the YOLOv4
model with images with a 648x768 pixels resolution as in [44]. The
performance of models was evaluated by the mean average precision
(mAP) and average precision (AP) in each maturity class [44].

2.1.3. Coordinates estimation of detected strawberries

A two-step calibration process is followed to obtain the location of
strawberries in the world coordinates, which is defined to be the ma-
nipulator’s frame of reference. First, a procedure provided by ZED SDK
(Colab Inc., 2022) was performed using a calibration board to remove or
minimize the effect of lens distortion in RGB images. Second, as shown
in Fig. 4, three strawberries (a, b, and ¢) were placed in fixed locations,
and their coordinates (x,, y,), (x;, ), and (x,,y.) in the manipulator’s
reference frame were recorded. Using the trained YOLOv4 model, the
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centers (X,,Y,),(X,;,Y}), and (X,,Y,) of the bounding boxes covering by=Y,—kyy, =Y, —kyy, =Y, - kyy,, (©)]
these three strawberries in the RGB image were detected and recorded,
completing the system’s calibration process. The location (x;, y;) of the
ith strawberry in the RGB images and their counterparts (X,,Y;) in the and,
manipulator’s coordinate frame are linearly related and can be calcu-

X;=kyx; + by, (%)

lated with the following expressions. Y, =kyy; + by, (6)
= where k; and k, are the slopes, b; and b, are the intercepts on the x
1= 00 = x0)/(Xp = X,), @ and y axes, respectively, of the target’s position in the RGB image co-
ky =0, —v.)/(Y, = Y.), ) ordinates ar.ld the 2D/horizontal frame of the. rob(?tlc manipulator. It is
worth mentioning that any of the three equations in Eq. (3) can be used

by =X, —kyx, =X, —koxy =X, —kyx,, 3 to compute b;, and the difference between them is very small. Under
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field conditions, minor variations in the ground slightly change the cam-
era to bed distance, introducing some error in the estimation of the 2D
coordinates (evaluation described in Section 3.4). This error was negli-
gible in practice as we did not observe any issue regarding the motion
of the manipulator over detected strawberries. However, a new calibra-
tion is always needed if the field conditions are different, and the beds
have a different height. For the estimation of the Z-coordinate, we did
not use the depth sensing capabilities of the ZED 2 camera. We ask the
reader to refer to Remark 6 in Section 3.4 for more details. The height
(Z-coordinate) is determined from the origin of the reference frame of
the manipulator down to the ground along the negative z-axis. Its esti-
mation is done by using a heuristic method observing that strawberries
are located between 70 cm to 72 c¢m in the field. Starting at 70 cm, the
height is increased by 1 cm in each subsequent picking attempt. The
reason for this process is explained in Remark 4 in Section 2.6.

Several approaches incorporate the use of LiDAR or its fusion/inte-
gration with RGB(D) cameras in fruit detection [49]. However, in our
application, incorporating such a sensor would substantially increase
the complexity and cost of the vision system with little benefit to the
overall performance of the robot. This is because we can easily create
an environment with relatively uniform lighting conditions within the
workspace of our robot, and strawberries are at a relatively known dis-
tance from the camera. Thus, the heuristic method explained before was
sufficient for picking strawberries.

2.2. Picking mechanism

2.2.1. Delta arm

The manipulator consists of three arms in a Delta configuration [50],
as shown in Fig. 5. The actuators are mounted on the base, reducing
the inertia and structural weight of the arms. This arm arrangement
allows fast acceleration and high accuracy, suitable for pick-and-place
applications [50].

The base of the Delta configuration is connected to three parallel and
identical kinematic chains carrying the end-effector. A revolute joint
connects each chain to its corresponding four-bar parallelogram link.
The chains are made of aluminum, and the joints are 3D printed to keep
the structure lightweight. A stepper motor on the base platform actuates
each arm, enabling the end-effector to travel along the three Cartesian
axes without rotation [51]. The motor drivers are configured to 1,600
micro steps, achieving the resolution of the end-effector movement to
be within =1 mm. The fixed and moving platform radii are 225 mm
and 75 mm, respectively. The active arm length is 250 mm and the
forearm length is 520 mm.

2.2.2. Trajectory control

The vision subsystem sends in the target locations of strawberries,
which are used to compute the joint angles via an inverse kinematic
method [52]. In Fig. 5, the center point of the robotic platform is the
origin of the world coordinate frame XY Z. The dimensions of the Delta
arm are denoted as r4,rp,L;,L,, and a;,i = 1,2,3. For a given end-
effector coordinate (X,Y,Z), following [52] each active joint angle
command is computed with

/2 2 2
., —D;—+\/D; + E - F; 4
0, =2tan ,i=1,2,3,

P E @)
where,

D, =2L,Z

E;=2(ry —rg)Ly —2L X cosa; —2L,Y sina; ®

F=(ry—rg)P —20r4 —rg)Xcosa, —2(r, —rg)Y sina;+

LI-L3+X*+Y?+ 2%
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Fig. 5. Schematic view of the developed Delta robot strawberry harvesting ma-
nipulator with parameters and geometric relations.

A controller then drives the stepper motors to follow the active joint
angle commands computed above. The real-time active joint angles are
measured using encoders. The closed-loop system is shown in Fig. 6.

2.2.3. End-effector

The end-effector needs to be robust to the size, position, and ori-
entation of strawberries, and should not damage either plants or fruits
[53]. It consists of five identical fingers to grasp the fruit, and a wrist
that can rotate about the roll axis to detach it, as shown in Fig. 7(a).
Multiple fingers help distribute the holding force around the fruits to
reduce bruising. The fingers are flatter towards their tips to try to pull
strawberries from below and not squeeze them. Its overall dimensions
are 100 mm X 100 mm X 200 mm as shown in Fig. 7. Each finger is
part of a four-bar linkage mechanism as described before. These fin-
gers are all connected to a driving translational joint to open or close.
The translational movement is created using a single servo motor. The
maximum diameter of the end-effector when open is 60 mm, enough
to grasp average-sized strawberries between 30 mm and 40 mm [13].
The fingers are 3D printed with hard polylactic acid (PLA) to distribute
the holding force around the fruit, and they enclose strawberries almost
completely to help prevent their slipping through the sides.

Remark 1. (rotation motion of the end-effector): A rotation mechanism,
mimicking human workers, is included in the end-effector, although it
was only used in laboratory experiments. As shown in Fig. 7(a), this ro-
tation motion is available to the fingers by gear transmission. In field
conditions, when encountered with dense groups of plants, the fingers
would grab not only the fruits but also stems and/or nearby fruits.
The rotation motion would then spin everything with it changing the
location of those initially detected fruits. This is detrimental to the per-
formance of the picking mechanism since a new image is needed after
every picking attempt to estimate the new locations of the fruits, in-
creasing the harvesting time.

Remark 2. (eye-in-hand camera): An eye-in-hand Pixy2® camera has
been incorporated (Fig. 7(b)) to check if a strawberry is inside the fin-
gers or help the detection of fruits by counting the number of red pixels
in an image, similar to [35]. However, we did not use this function in
field experiments. When picking a strawberry, stems and leaves would
cover the camera lens rendering it useless for any detection task inside
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Fig. 7. Schematic view of the developed rotating-grasping end-effector. (a) Iso-
metric view, and (b) section view.

the fingers. Using the camera to automatically detect strawberries in-
side the fingers was unreliable as occlusions would produce many false
positives and negatives. Instead, we manually counted the times the
end-effector picked a strawberry in field experiments.

Remark 3. (Soft material for the fingers): The use of soft materials for
the fabrication of the fingers was considered and successfully tested in
laboratory conditions on a few plants on pots. However, in field experi-
ments, they proved to be too soft, and strawberries would slip through.
Strawberries on the farm seemed to have stronger stems, thus, making
them more difficult to detach. As a solution, the hard PLA material we
used worked very well but was prone to produce fruit damage. To try
to counter this, we designed the fingers flatter towards their tips. In
this way, they would go under the fruits as the fingers close and avoid
squeezing them.

2.3. Guidance, navigation, and control

GNC enables the harvesting robot to scout throughout a strawberry
field without scratching its plastic mulch, precisely move over straw-
berry beds (over-bed), pause at predefined harvesting stops, and rapidly
transit at headlands (or cross-bed).

The harvesting robot in this study uses the same GNC subsystem in
the previous version [27-29], meaning that the robot motion is guided
by a sequence of two-phase paths: over-bed and headland transition.
In the over-bed phase [29], the robot moves forward one distance unit
equal to the width of the reachable area of the manipulator on the beds’
surface, harvests detected strawberries and moves forward again. In the
headland transition, the robot makes a turn, aligns with the row next to
it, and moves onto that row [28].

The sensors used here are the same as those in [18,27-30]. In the
over-bed motion, ultrasonic range finders are used to align the robot
with the strawberry beds and not damage the plastic mulch [29]. In the
headland transitions, only RGB cameras are used [27,29].

While in an over-bed phase, the robot is driven by a PID controller
according to the computed heading angle error and the mismatch be-
tween the bed centerline and the robot’s center of mass [29]. Different
control strategies have been designed and implemented on row headline
transitions. The controller here utilizes a search-space dimension re-
duced dynamic programming-based optimal control method in headline
transitions [28]. The onboard camera automatically tunes its brightness
and shutter speed [27]. As shown in [28], the over-bed and headline
transitions reach the centimeter level of accuracy.

2.4. Hardware integration

As shown in Fig. 8, the hardware architecture of the robot is mod-
ified and enhanced based on the previous version in [30], featuring
the following major differences. (i) A printed circuit board (PCB) is
made to simplify and better organize the circuitry for onboard sensors
and actuators. (ii) A Delta manipulator and a finger-type end-effector
are designed for strawberry picking. (iii) A YOLOv4 model-based vision
processing algorithm is included and tested for fruit detection in field
experiments.

An onboard laptop oversees the operation logic of all the subsystems
such as drivetrain, GNC, picking, and image processing. GNC relies on
information from eight ultrasonic range finders that help the robot re-
main centered over a bed during its overbed motion [30]. The distance
traveled by the robot is obtained from a Kangaroo® motion controller
that uses feedback signals from two quadrature encoders attached to
the motors, maintaining a given speed set by the GNC algorithm [29].
RGB cameras and row markers are used for row transition (cross-bed)
motion [27,28]. Each motor is driven by a Sabertooth® DC motor driver
connected to a 12 V battery [30]. The YOLOv4 model-based vision sub-
system uses an RGB camera directly connected to the laptop via USB.
The Delta manipulator and end-effector are controlled by a Raspberry
Pi® and stepper motor drivers. The motion of the manipulator’s arms is
restricted by three limit switches. The end-effector uses a servo motor
to open and close its five fingers. The stepper motors and Raspberry Pi®
use a 19 V and 5 V power source, respectively, obtained from DC-DC
converters powered by a 12 V battery. A voltage adapter (5 V to 3.3
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Fig. 9. Software architecture.

V) is used for serial communication between the Arduino and the Rasp-
berry Pi. The new PCB is connected to the Raspberry Pi and contains the
voltage regulators to power the stepper motor drivers, DC motor, and
servo motor. It also contains a set of terminals to facilitate the transmis-
sion of the control signals for the manipulator and the end-effector.

2.5. Software integration

As shown in Fig. 9, three programming languages are used for con-
trolling the robot: MATLAB, C/C++, and Python. The software pack-
ages in MATLAB and C/C++ for GNC are from the previous version
[30]. We chose these three languages due to their vast community sup-
port and their versatility to handle algorithms, sensors, and peripherals
from different manufacturers. The laptop runs MATLAB scripts for im-
age processing, strawberry detection, and GNC, and interacts with the
manipulator/end-effector. The Arduino MEGA runs a program written
in C/C++ to collect information from the ultrasonic range finders and
to drive the robot’s wheels through the Kangaroo® motion controller
[30]. It also allows data transfer between the Raspberry Pi® and the
laptop via serial communication. The Raspberry Pi runs a script written

in Python to control the manipulator and end-effector, and exchanges
information about the picking process with the laptop.

2.6. Control and harvesting sequence

The robot stops every time a picking process starts, which has been
termed static harvesting [54]. The control sequence that the robot fol-
lows is shown in Fig. 10. After loading the NN parameters and having
established the communication with the Arduino and Raspberry Pi, the
robot starts to move forward a distance equal to the width of its ma-
nipulator’s reachable area, which for the Delta configuration is about
50 cm. The robot comes to a stop and takes an image of the bed ly-
ing underneath. The vision subsystem passes the coordinates (X,Y, Z)
of reachable mature strawberries to the Raspberry Pi to proceed with
the picking process (Fig. 11). This process will repeat after three pick-
ing attempts have been carried out or until one of the following events
happens: the collection basket is full, the robot needs servicing, the end
of a row is reached, or all the beds have been harvested. If no mature
strawberries are within range, the robot will move forward another 50
cm. Ultimately, the robot will return to a central station where it can
charge its batteries or simply be stored for future use.

The picking process (Fig. 11) begins when the locations of reach-
able mature strawberries are received by the Raspberry Pi. Then, the
trajectory paths are calculated using the inverse kinematic method as
discussed in Section 2.2. Starting at the home position and with the
end-effector’s fingers open, the manipulator will move 10 cm down and
then parallel to the ground to the first strawberry location. Once over
the desired target, the manipulator will move down the remaining dis-
tance to match the estimated height. The height will increase by 1 cm
each attempt, starting at 70 cm, as described in Section 2.1.3. The fin-
gers are then commanded to close, and the end-effector retracts first 15
cm at a slow speed (~2.9 cm/s) and then 5 cm at a normal speed (~9.3
cm/s). The slow-motion allows the fingers to completely close and grab
a strawberry when the height has been overestimated. The retraction
action will detach most strawberries from their stem.

Next, the manipulator moves parallel to the ground to the collec-
tion basket, the fingers are opened to release the strawberry, and one
attempted strawberry is counted. This information is sent to the laptop.
If more than one strawberry is within reach, the manipulator will pro-
ceed to attempt to pick the next target fruit without going back to the



L. Tituafia, A. Gholami, Z. He et al.

Load NN parameters.
Initialize the RGB cameras and
the serial communication with the
Arduino and the Raspberry Pi.

>l |
Y .
Take a picture. Pick )
Detect strawberries. strawberries.
NO

ithin reach? LS 3rd attempt?
NO |¢

4 YES

‘Move forward 50 cm.|

Return to the
central station.

Fig. 10. Flow diagram of the general harvesting process.

Move to the next bed.
L ]

home position. After attempting to pick all reachable strawberries, a
“done” signal is sent to the laptop, the manipulator returns to the home
position, and one attempt is counted. Another image is taken to update
the locations of strawberries that were not picked or might have moved
due to previous picking actions. This process is repeated on every bed
location up to three times (attempts) or until there are no mature straw-
berries within reach. If the computer does not receive any information
from the Raspberry Pi within a specific amount of time, a timeout sce-
nario is triggered, indicating that either a new picture must be taken,
or the robot should move forward.

Remark 4. (height estimation): The height estimation technique previ-
ously described resulted to work significantly better than estimating the
height using stereoscopic vision, whose accuracy decreases as straw-
berries are further away from the center of an image. Plus, the same
strawberry needed to be detected in both pictures, which is not always
the case due to the slight change of perspective of the cameras.

3. Results and discussion

In this section, we first present the laboratory experiments of each
of the three subsystems described in Section 2. Then the strawberry
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Fig. 11. Flow diagram of the strawberry picking subprocess.

picking field experiments conducted on a commercial, open strawberry
field are discussed.

3.1. Strawberry detection subsystem evaluation

An example of the output generated by the YOLOv4 model is shown
in Fig. 12. Table 1 shows a summary of the performance metrics of the
YOLOvV4 model in [44] and our modified version. The mAP of YOLOv4
(small objects) with input images that have a resolution of 768x1152
pixels was 89.3% on the training dataset and 80.2% on the test dataset,
respectively. These results were slightly better than the mAP of 87.1%
on the training dataset and 79.9% on the test dataset achieved by
YOLOV4 in the previous work [44]. The detection of mature strawber-
ries, which was the most important target for robotic picking, achieved
the highest AP of 91.9% with the test dataset. The trained YOLOv4
in this study also performed well with the immature and nearly ma-
ture classes, with an AP of 87.0% and 81.6%, respectively. It shows
that the adopted method could distinguish among key maturity stages
(immature/nearly mature/mature) of strawberries. Flowers and over-
ripe strawberries were more challenging to detect than the shapes of
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Table 1
Performance of the YOLOv4 models in strawberry detection - training and tests datasets.
Datasets Methods Image resolution AP of Class (%) mAP (%) Processing
R : a
(pixels) Flower Immature Nearly mature Mature Overripe time (ms)
Training YOLOV4 in [44] 648x768 77.49 91.68 90.20 94.63 81.66 87.13
(1300 images) Ours 768x1152 79.93 92.86 92.55 95.69 85.58 89.32
Test YOLOV4 in [44] 648x768 71.51 87.57 81.33 90.31 68.88 79.92 55.19
(100 images) Ours 768x1152 69.95 87.02 81.75 91.89 70.41 80.20 64.40

2 Processing time is achieved using a dedicated GPU.

Table 2

Results of strawberry harvesting mock-up test in the laboratory.

# of target fruits in
six different trials

Grasp success

Harvest success ~ Average harvesting

100%
83.3%
80%
100%
100%
80%

g w U o

attempts
77.7% 1.3
83.3% 1.0
60% 1.4
80% 1.2
100% 1.0
80% 1.2

Fig. 12. An example image with strawberries detected by the YOLOv4 model
(small objects).

strawberries in the other three groups, which explains the inferior per-
formance of the trained YOLOv4 model when detecting objects in these
two groups. The processing time of the new model increased by 9.21
ms when detecting strawberries with higher-resolution images. How-
ever, the increase in the processing time is negligible when compared to
the overall harvesting time (discussed in Section 3.4). Overall, YOLOv4
(small objects) showed an improved ability in detecting strawberries
with different maturity levels, especially mature strawberries when the
input image resolution was set to 768x1152 instead of 648x768 used
in [44].

3.2. Guidance, navigation and control subsystem evaluation

The GNC subsystem uses the same control strategy as our previous
version [29]. Here, we re-tuned the PID controller for the overbed mo-
tion to accommodate the larger dimensions of the new robot. The robot
is kept centered on the bed with the aid of eight ultrasonic rangefinders
that collectively estimate the distance between the center of the robot
mass to the row edge. The detailed GNC performance can be found in
[28] and [29].

3.3. Picking mechanism subsystem evaluation
Four quantitative performance criteria are selected to evaluate the

performance of the picking subsystem: grasp success (%), harvest suc-
cess (%), average harvesting attempts, and harvesting time (s). We

define the grasp success as the number of strawberries that were suc-
cessfully grabbed (not detached) per target fruit and the harvest success
as the number of strawberries detached from the plants per target fruit.
In the laboratory experiments, the in-hand camera can detect strawber-
ries inside the fingers by counting the number of red pixels in the image.
If no strawberries are detected after the fingers close, the end-effector
will open again and attempt to harvest the same fruit in the same lo-
cation one more time, up to two attempts. Artificial strawberries were
placed randomly on a black surface. The results of the laboratory exper-
iments are shown in Table 2. On average, the picking mechanism was
90.9% successful in grasping and 78.8% successful in harvesting the
strawberries. The manipulator could harvest single strawberries mostly
in one attempt. The two main reasons for failure in laboratory testing
are: (i) the artificial strawberries are light; thus, with a minimal touch,
they might displace; and (ii) the artificial strawberries are not attached
to the experiment surface, so after gripping the fruit, there is a great
chance the leaves are facing the in-hand camera; hence, the red pix-
els cannot be detected, and the end-effector drops the fruit. Please note
that the harvesting time in the laboratory experiments is reported in
Fig. 17.

3.4. Field experiments

As shown in Fig. 13, field experiments were carried out on a farm
where strawberries are grown in open field conditions on elevated beds
covered with a black plastic mulch. It is demonstrated in our field ex-
periments that operating the robot is not difficult. Nevertheless, as men-
tioned in Section 2.1.3, a key step that is always needed upon startup
is the camera calibration. To better fit real field conditions, some steps
discussed in the control sequence are modified or further explained in
the remarks below.

Remark 5. (Impact of the robot’s size on the field): Unlike common
agricultural machinery like tractors, which are heavy and powered by
fossil fuels, the light weight of our robot and its electric power source
reduce soil compaction and incurs in significantly lower carbon and
nitrogen emissions responsible for soil acidification [55].

Remark 6. (image processing in field conditions): A graphics card is not
available in our field setup as it was in our laboratory tests, and with-
out it, the processing time of each image is considerably increased from
55.19 ms to an average of 6.4 s. This is explained by the significantly
less processing power of our laptop’s CPU when compared to the GPU
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Table 3
Strawberry harvesting results in field conditions.
Type 1 Type 2 Type 3 Type 4 Type 5
Isolated and mostly  closely grouped, Isolated and partially ~ Loosely grouped, Closely grouped,
uncovered uncovered mature  covered partially covered with  partially covered with
strawberries obstacles obstacles
1st time 77.50% 46.55% 54.20% 35.48% 13.89%
2nd time 12.00% 34.48% 20.61% 18.28% 15.97%
3rd time 4.50% 3.45% 3.82% 5.38% 7.64%
# Picked 188 49 103 55 54
Total # strawberries 200 58 131 93 144
Success rate 94.00% 84.48% 78.63% 59.14% 37.50%

Fig. 13. Harvesting robot in a nearby commercial, open strawberry field.

used for Deep NN operations. Additionally, without the GPU we were
unable to use the depth-sensing capabilities of our RGB-D camera, and
instead, we used the method explained in Section 2.6. for height esti-
mation. As noted in this section, the harvesting rate was not impacted
significantly by this method, which proved that the use of a depth sen-
sor was not essential.

Remark 7. (light conditions): Natural light on a sunny day intensifies
the brightness in images giving strawberries a false color, as shown in
Fig. 14. This results in strawberries not being accurately detected or
misclassified. However, this negative effect was successfully mitigated
by enclosing the robot with a tarp, blocking most of the direct sunlight
into the camera’s field of view.

Remark 8. (diseased/wilted leaves effects): Diseased and/or wilted
leaves were sometimes identified as mature strawberries as their shape,
size and color can resemble a mature fruit, as shown in Fig. 15. Out of
655 mature strawberries detected by the vision system, 29 were leaves
that will not be counted. This corresponds to a 95.6% accuracy of our
YOLOv4 model in the detection of mature strawberries in the field ex-
periments, which is higher than the 91.89% accuracy reported for the
trained model on the test dataset in Table 1. Nevertheless, the false pos-
itives do not affect the harvesting process as the leaves are only lifted
by the end-effector.

Five experiments were conducted throughout March and April 2022,
on sunny days from 11 A.M. to 3 P.M. This time of the year is the end
of the strawberry season in Florida and plants were in their late stages
of development with many wilted leaves and mature/overripe fruits, a
challenging time for robotic harvesting. As mentioned in Remark 7, the
sides of the robot were covered to decrease the brightness of the images
and reduce false positives and negatives in the detection process. Wet

terrain due to heavy rain before the day of harvesting did not affect any
of our subsystems. The size and tread of our tires are large enough to
navigate over mud or sand, and the automatic brightness adjustment of
the camera was enough to compensate for dimmer light conditions due
to cloudy weather.

To assess the overall picking performance of the robot in the open
field, we classified strawberry growth conditions according to their har-
vesting complexity into five categories (Fig. 16), from Type 1 to Type 5.
The classification method is similar to the one in [14] which is meant
for strawberries in greenhouses. However, we considered larger groups
of mature strawberries as opposed to groups of only one or two fruits
in [14]. Furthermore, we have specified a distance between each fruit
within each Type. The five classifications are defined as follows:

Type 1: Isolated and mostly uncovered Strawberries are easily iden-
tifiable and are not surrounded by leaves, stems, or other fruits. The
distance between neighboring strawberries is larger than the size of a
typical strawberry.

Type 2: Closely grouped and mostly uncovered Strawberries are mostly
uncovered, but found in groups very close to each other, or even touch-
ing others.

Type 3: Isolated and partially covered Strawberries seem to be isolated
but are somewhat difficult to identify due to leaves partially cover-
ing them, making the detection of their centers difficult. The distance
between neighboring strawberries is larger than the size of a typical
strawberry.

Type 4: Loosely grouped, partially covered with obstacles Strawberries
are found in groups but not too close to each other. Leaves are covering
some of the groups and stems may be in the way of the gripper. The dis-
tance between neighboring strawberries is less than the size of a typical
strawberry but are not touching each other.

Type 5: Closely grouped, partially covered with obstacles Strawberries
are in groups close to each other. Stems and leaves are on the way of the
gripper to reach a strawberry. Neighboring strawberries are touching
each other.

Unlike the laboratory tests, two quantitative criteria are selected to
evaluate the overall operation performance under field conditions: suc-
cess rate (%) and harvest time (s). The data shown in Table 3 were
manually collected and organized in their corresponding types. Our
robot achieved an overall success rate of 71.7% and harvested a total
of 626 strawberries in at most three attempts. The success rate drops as
more complex the scenario is, with the highest success rate of 94.0% for
the easiest situation, Type 1. Even though strawberries were in groups
(a challenging situation), the success rate for Type 2 strawberries was
84.48%. Notice that 34.48% of them were picked in the second attempt.
This is because the picking motion of the end-effector initially breaks
up the groups, separating strawberries and making them easier to pick
in a subsequent attempt. It is less likely for them to get covered since
they are already isolated. Type 3 closely follows with a success rate of
78.63%, showing that partially covered strawberries are more difficult
to harvest. The success rate significantly drops for Types 4 (59.14%)
and Type 5 (37.50%). This shows challenges for our harvesting subsys-
tems (vision and picking) in dealing with groups of strawberries that

10



L. Tituafia, A. Gholami, Z. He et al.

Smart Agricultural Technology 8 (2024) 100454

A

Fig. 16. Strawberry growth situations classification.

are covered by obstacles (e.g., stems and leaves) and in the later stage
of a growing season.

The harvesting time was automatically measured by software and
was counted from the moment the manipulator leaves its home posi-
tion until returns to it, including the picking and traveling times. This
time corresponds to one attempt per strawberry, and for the cases with
more than one reachable fruit, we divided the total time by the number
of reachable fruits. For the cases with more than one reachable straw-
berry, we divided the total time by the number of attempted fruits.
Fig. 17 shows an error bar with the maximum, minimum, and average
harvesting times as a function of the number of attempted strawberries
during both laboratory and field tests. For the laboratory tests, uni-
formly distributed, random coordinate pairs were generated 300 times
for every case of attempted strawberries. The overall average harvesting
time was 8.57 s with a maximum of 11.9 s and a minimum of 6.2 s per
strawberry. For the field tests, the overall average harvesting time was
7.5 s with a maximum of 11.74 s and a minimum of 5.9 s per strawberry.
The gradual decrease in the harvesting time is because the manipulator
does not return to the home position after dropping every fruit in the
collection basket, but instead it goes straight to the next reachable fruit.
The “true” time would be an average of the harvesting times for fruits
located at every point in the reachable area (infinite points). The more
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Fig. 17. Harvesting times in both laboratory (solid line, larger cap) and field
(dashed line, shorter cap) experiments as a function of the number of reachable
strawberries.
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Table 4
Performance assessment indicators for the three robotic strawberry harvesters.

Harvest success rate  Cycling time  # of picked strawberries

Our robot 71.7% 7.5s 449
Robot in [14] 79.43% 6.1s 139
Robot in [15] 67.1% 315s 159

points we have, the closer we get to converge to the true value. This
trend is seen in Fig. 17. Moreover, the average harvesting time during
field experiments was smaller than the time in laboratory experiments
in most of the cases. Because of the pattern plants are placed on the
beds, strawberries often grow in areas near the center, which is closely
aligned with the home position of the arms. Thus, the end-effector trav-
els short distances more often, as opposed to locations near the edges
of the bed.

In Table 4, we show a comparison between our platform and other
small strawberry harvesting robotic systems found in the literature.
We excluded commercial robots from this comparison as detailed data
about their performance is not publicly available and they belong to
a different category. The table shows two indicators that are generally
used to assess the performance of robotic harvesting systems. The har-
vest success rate is defined as the number of picked mature fruits versus
the number of target fruits. The cycling time is the time it takes the
robot to harvest a single fruit with a single manipulator/end-effector.
This time includes image processing, motion planning, and execution.
It is worth noting that the other robots used in this comparison were
tested in greenhouses and not in open fields, and the comparison might
be unfair to our proposed robot as the growing conditions in open fields
are significantly more different and more challenging. Nonetheless, it
can provide a general insight into the current state of non-commercial
strawberry harvesting systems. The robotic system in [14], with a
single-rail dual-arm manipulator, reported harvesting 139 out of 175
strawberries for a 79.43% harvest success rate, and a cycling time of
6.1 s. The 7-DOF robotic arm on a stationary platform in [15] achieved
a harvest success of 67.1% by picking 159 out of 237 strawberries, and
a cycling time of 31.5 s. Our system, even though does not have the
highest harvest success (71.7%), is very fast with a cycling time of 7.5
s. It is also worth noting that our robot has been tested the most with
a total of 449 out of 626 strawberries harvested, and furthermore, not
all scenarios in our harvesting were experienced by the other robotic
harvesters in greenhouses.

On a new test performed on March 21, 2023, we measured the dam-
age rate, defined as the percentage of damaged/bruised fruits during
and after the harvesting process. We assume that any damaged fruit is
an unsellable fruit, though, they can still be used to create derived prod-
ucts such as jelly. We performed a visual inspection right after each fruit
was picked, and then 24 hours afterwards to check for possible bruises
caused by the pulling of the fingers. Out of 34 harvested strawberries,
only two were slightly bruised or damaged by the end effector for a
5.9% damage rate. We found that bruising happens due to inaccurate
height estimation. As the fingers retract, they scratch the fruits without
grabbing them. Bruising also occurred to strawberries adjacent to the
one attempted. As the end-effector reaches down for a fruit, the tip of
the fingers may puncture those near the target. We did not observe any
bruising or food quality degradation 24 hours after harvesting.

3.5. Discussion of failure cases during field experiments and future
directions

The failure cases in Table 3 are due to the following three reasons.
(i) The vision system fails to identify the strawberries in subsequent
attempts due to occlusions or varying lighting conditions. (ii) The end-
effector is not strong enough to close its fingers when breaking the stem
of a strawberry. This happens mostly when the end-effector attempts to
grasp a group of strawberries. This is not an issue of the fingers them-

12

Smart Agricultural Technology 8 (2024) 100454

Vision

Mechanical

Fig. 18. Percentages of failed cases according to their causes.

selves, but of the servomechanism used to close them. (iii) The initial
height estimation falls short, and a failed attempt is counted. Subse-
quent picking attempts can solve this issue, but it could be addressed
from the first time by using a more complex height detection approach.

In Fig. 18, we can see the distribution between the causes of failure.
Out of 177 failed attempts, about 72.9% of them included mechanical
reasons whereas 44.6% were mechanical only. Failures that included
vision-related limitations accounted for 48.6% of the total, with 20.3%
of them being due to vision only. Failed picking attempts for Types 2
to 5 were due to mechanical, vision, or a combination of both reasons.
Failed attempts that included height estimation inaccuracy correspond
to 11.9% of the total, with 2.3% of them being due to the height es-
timation issue only. Note that our height estimation strategy does not
have a significant impact on the total number of failed cases. Failed at-
tempts for Type 1 strawberries were caused exclusively due to height
estimation reasons. Since they are isolated, they are easy to detect and
pick; thus, there were no mechanical or vision issues involved.

Future direction 1: More field experiments will be done in different
stages of the strawberry growing season in Florida, and failure cases
will be analyzed to determine the main issues in the robotic harvesting.

Future direction 2: A stronger servomechanism will be adopted so the
fingers can be closed tightly. Also, to avoid bruising picked fruits, a dif-
ferent fruit detachment mechanism, soft materials for the end-effector
or a design like in [35] may be adopted.

Future direction 3: A better vision algorithm can be adopted to esti-
mate the center of partially covered strawberries.

Future direction 4: A more complex height estimation method will be
implemented that could include the use of an RGB-D sensor or LiDAR.
On the other hand, it is noted that in [35] we investigated a method to
reliably estimate the Z-coordinate using the in-hand RGB camera of the
end-effector. However, the algorithm is out of the scope of this paper
and will be considered as another alternative. This would reduce the
occurrence of the height estimation as one of the main sources of failure
of our system and decrease the damage to the fruits.

Future direction 5: An environmental impact study should be carried
out to identify and evaluate the potential effects that our planned fleet
of robots would have on farms and on the environment. Such study
would provide vital information about the effects of our system in other
farming activities such as irrigation, soil fertilization or pesticide de-
livery; while also considering sustainable practices related to energy
efficiency and responsible use of natural resources.

4. Conclusions

In this work, a small harvesting robot is presented to pick strawber-
ries in open field conditions. Three key subsystems, vision, picking, and
GNC, are discussed. The deep NN-based vision subsystem implements a
YOLOvV4 (small objects) model to locate mature strawberries from RGB
images with high accuracy. The picking mechanism includes a manip-
ulator in a Delta configuration and a five-finger end-effector. The GNC
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subsystem is based on a previously developed disease detection robot
and can reliably control the robot to stay over beds using ultrasonic
range finders. During field tests, the proposed robotic harvester reached
high success rates (94.0% and 84.5%) when picking mostly uncovered
strawberries (Types 1 and 2, respectively). The harvesting performance
decreased to the lowest success rate of 37.5% when occlusions, obsta-
cles, and strawberry clusters posed difficult circumstances (Type 5) for
the end-effector to be able to grab and detach fruits. On average over
five different scenarios, the robot achieved a harvest success rate of
71.7% with an average harvest time (cycle time) of 7.5 s per fruit.
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