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This paper presents the subsystem descriptions and testing of a small robotic platform intended to harvest straw-
berries that are grown on elevated beds in open field conditions. Agricultural robots can assist in the optimization 
of farm resources and help solve issues related to increasing farm costs and labor shortages. Monolithic, large 
size harvesters are already in development; however, they are susceptible to single-point-of-failure and lack the 
flexibility to adapt to varying field conditions and farm sizes. The proposed robotic harvester covers one row at a 
time and features a Delta arm configuration manipulator with a five-finger structure as the end-effector to indi-
vidually pick strawberries. A deep neural network-based vision subsystem using a YOLOv4 model was adopted, 
which was configured to detect small objects and to locate and classify strawberries into five stages of maturity. 
During experiments on a commercial farm, the proposed platform, including vision, manipulation, and overbed 
navigation and control subsystems, achieved an overall success rate of 71.7% for five environment scenarios, 
with a minimum of 37.5% (the most complicated scenario) and a maximum of 94.0% (the easiest scenario). The 
average harvesting speed of the system was 7.5 s per strawberry.
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1. Urgent needs in agricultural operation automation

The world population is anticipated to reach the 10 billion mark by 
50, which will need an increase of 55% in the current food produc-
n to keep up with global caloric demands [1]. According to the 2017 
S Census of Agriculture, labor costs in the farming sector increased by 
proximately 17% with respect to 2012 [2]. Furthermore, increasing 
bor shortages have been reported in recent years and worsened due 
 the COVID-19 pandemic [3]. There is a consensus in the agricultural 
dustry that creating labor-saving technologies and enabling agricul-
ral operation automation are keys to protecting producers against the 
ortage of labor and addressing labor cost issues [4].
Different agricultural robots have been proposed to aid in a variety 

 farming activities, dealing with varying environments (e.g., lighting, 
rrain, and weather) and different types of objects (e.g., shape, color, 
ze, distribution, and reflectance) [5]. In spraying, robots precisely de-
er the necessary amount of water [6] or pesticide while detecting 
eas in a farm that require attention [7]. In phenotyping, robots mea-
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sure physical performance of crops by fusing measurements provided 
by different onboard sensors [8]. For weeding tasks, robotic systems 
automatically detect and eliminate weeds in different stages of a crop’s 
growth using mechanical, chemical, fire, laser, or electrical discharge 
removal methods [9]. Similarly, for pruning tasks, robots detect and 
selectively remove undesired parts of a plant that would negatively im-
pact its growth [10].

1.2. Background: strawberry harvesting robots and associated subsystem 
technologies

As of 2017, more than 60,000 acres in the US are dedicated to straw-
berry production, with a market value of more than 2 billion USD [2]. 
The states of Florida and California are the largest producers with a 
combined 76% of total strawberry production in the US [2]. Strawberry 
harvesting is heavily reliant on manual labor. Thus, the development 
of a strawberry harvesting robot would greatly reduce their cost and 
dependence on seasonal workers. Such a machine needs to reliably 
scout throughout semi-structured strawberry fields, accurately detect 
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d pick mature strawberries, and maintain a high post-harvest fruit 
ality.

Strawberry harvesting robots for greenhouses and polytunnels have 
en extensively studied [11]. In such structured environments, (i) 
rawberry plants grow in tabletops, allowing pickers to stand upright; 
d (ii) strawberries hang down to the sides of their pots, mostly un-
vered by leaves, making them easier to be detected and picked [12]. 
 [13], a cable-driven robot is used for harvesting strawberries in poly-
nnels using a Mitsubishi® 5-DOF serial arm. A new version of this 
bot is presented in [14] with a single-rail dual-arm manipulator and 
 obstacle separation algorithm. In [15], a picking mechanism consist-
g of a movable bench and a stationary 7-DOF robotic arm is designed 
 approach fruits from below. A Belgium-based company, Octinion, de-
loped the first commercial greenhouse strawberry harvesting robot, 
bion, featuring a robotic arm and a soft end-effector [16].
In contrast, strawberry harvesting robots in open fields have been 

 less success when compared to their greenhouse counterparts. In 
en farms, strawberry plants are grown on raised beds. The geomet-
cal dimensions of these beds depend mostly on the type of tractor 
 machinery used on the farm. These fields are characterized by un-
ructured growing conditions, with leaves and variable light conditions 
mplicating strawberry detection [17], and sandy or wet terrain cre-
ing unfavorable conditions for the motion control subsystem [18]. 
evertheless, several companies are developing robots for strawberry 
rvesting in open fields. Agrobot, a Spain-based company, created a 
atform that features 24 robotic arms working in both greenhouses 
d open fields [19]. Harvest CROO Robotics has developed a harvester 
at contains 16 picking devices using machine learning algorithms to 
tect strawberries [20]. Similarly, Advanced Farm Technologies cre-
ed a mobile platform containing several suction-rotating-picking type 
botic arms [21]. Lastly, Traptic developed a system with 8 robotic 
ms that grab strawberries by their stems [22]. Additionally, while 
t intended for harvesting, some robots have been designed to aid 
man pickers. EasyPick, developed by Naber’s Ag Equipment LLC, al-
ws workers to lie facing down above the beds to reduce the physical 
rain of crouching or kneeling [23]. Strawbot, by AgPro Robotics, is 
semi-autonomous mobile platform that follows the workers in their 
rvesting process and collects the picked fruits [24].
Subsystems in strawberry robots have been extensively studied as 
viewed in [11]. Aside from the multi-row harvesting configurations, 
pical designs have a modified version of a tractor, each with its unique 
pabilities and adapted for working on specific tasks. These include 
fferential steering drive [19] or skid-steered configurations [18,25]. 
eir navigation subsystems may include GPS, range finders [25], IMU 
6], and/or cameras [27,28]. To be able to scout a field, PID algo-
thms [27], robust controllers [29], and optimal controllers [28] have 
en successfully applied. Additionally, cooperative configurations of 
rial and ground vehicles have been proposed for use in agriculture 
0].

When it comes to end-effectors, harvesting robots usually include 
me sort of suction or cutting mechanism [13] or soft fingers for grip-
ng [31]. An extensive review of agricultural end-effectors for different 
pes of crops can be found in [32]. It has been reported that a max-
um force between 22 N [31] and 26 N [15] is enough to detach 
strawberry from its stem. Five types of end-effectors have appeared 
 previous designs [11]: holding-cutting [14], suctioning-pulling [33], 
ctioning-cutting [34], suctioning [15], and grasping-pulling/twisting 
1]. Contact-grabbing end-effectors are common including three-finger 
aw designs with force limit or fingers assisted with a rotational mech-
ism to detach from peduncles [31]. The grasping end-effector with 
rce limit sensors [31] is susceptible to fruit orientation inside the fin-
rs. In case of misplacement, a large force is applied that can damage 
e fruit. The rotational motion to break the strawberry peduncle in 
5] is created by tilting the whole harvesting robot arm, which made 
2

e harvesting time to be as long as 31.5 s. A different approach is fol- ve
Smart Agricultural Technology 8 (2024) 100454

wed in [35] with the design of a spiral-curve tooth to pull strawberries 
side a spherical shell.
There are two types of manipulators used in strawberry harvesting: 
dustrial serial arms [13] and rail-based Cartesian type structures [34]. 
dustrial serial arms are typically expensive, while a Cartesian mech-
ism, like used in [35], is made up of three perpendicularly oriented 
ear axes, making it easy to control. However, the operating speeds 
e slow [35], because some of the moving components must carry mo-
rs and other parts, resulting in a more extended period to accelerate 
 decelerate the inertia of the mechanism.
Aided by the accelerated development of computational hardware 
d graphical processing units (GPUs), modern machine learning algo-
thms such as Support Vector Machines (SVM) [36], (Deep) Convolu-
nal Neural Networks (CNN/DCNN) [37], and Region-based Convolu-
nal Neural Networks (R-CNN) [17] were introduced in agricultural 
plications for fruit identification and maturity grading in open field 
vironments. In [38], RCNN-based networks were applied for agricul-
ral product detection with high accuracy/average precision of over 
% and over 95%, respectively, but the processing speeds of these 
odels were slower than 5 fps, which brought high responding time 
ring the field detection. The above techniques have shown high 
bustness and accuracy, but their detection speed is limited by the 
o-stage structure inherent in R-CNN-based models (dense and sparse 
ediction networks) [39].
A model with promising results for fast detection is the You-Only-
ok-Once (YOLO) model [39]. YOLO uses a single feed-forward net-
ork that directly outputs bounding boxes and class probabilities, 
hich makes it computationally more efficient than the two-stage mod-
s of R-CNNs [39]. Subsequent versions of this model, YOLOv2 [40]
d YOLOv3 [41], use anchor boxes and more complex backbone mod-
s to improve agricultural products detection performance. YOLOv4 
ith spatial pyramid pooling (SPP) [42] and path aggregation network 
AN) [43], as discussed in [44], showed promising results with an av-
age precision (AP) of over 90% in detecting mature strawberries with 
ocessing speed of ∼19 fps based on a field strawberry dataset.

3. Focus of this study

The common denominator in current commercial robots is a mono-
hic robotic platform with multiple arms [19,20]. They work on multi-
e rows at the same time, allowing harvesting speeds to be comparable 
 those of a skilled human picker [19,20]. However, such designs have 
me inherent issues noticeable in the long run: difficult farm-to-farm 
atform transportation, single-point-of-failure, significant idle time im-
ct, low platform flexibility, and low adjustment capabilities to adapt 
 field variations [45]. This is the reason a small robotic platform is de-
loped, aiming to cooperatively harvest with similar robots in a fleet 
 the future, allowing for potentially faster and more robust harvesting 
hen compared to manual harvesting procedures.
In this paper, we present the testing of a modified version of the field 
bot first shown in [25,27,30], which was intended for disease detec-
n. It is an aluminum structure with a skid steer, differentially driven 
yle [30]. Its navigation system consists of eight ultrasonic range find-
s that allow scouting over elevated beds, and two quadrature encoders 
ed on its drivetrain motors, providing position and velocity feedback 
5]. Unlike its predecessor, the robot in this study, shown in Fig. 1, is 
ade of steel, has a fixed height, and a Delta arm configuration manip-
ator with an actuator to individually pick strawberries. Delta robots 
e well known in industry for their precision and high speed for pick-
g and placing operations. Their downsides are their high cost and 
quirement of a high-power source to operate. Our system is devel-
ed to defeat these shortcomings while preserving its much-needed 
curacy to handle small objects like strawberries. We present a system 
ilt with off-the-shelf parts making it easy to build and low-cost. Due 
 the low weight of strawberries, the load on the arms of the robot is 

ry small and our system can be run with a low-power source (24V). It 
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Fig. 1. Developed robotic platform.

so has the advantage of being faster than Cartesian mechanisms and 
any-DOF robotic arms found in the literature. Its small size makes it 
nvenient to transport and allows for the use of multiple arms in a 
ngle platform if needed. Moreover, a YOLOv4-based detection system 
oposed in [44] was adopted and integrated with the robot to iden-
y and spatially locate mature strawberries from RGB images. Also, a 
rvesting logistic developed for motion control, image processing, and 
cking is different from its predecessor.
The main contributions of this work are as follows. (i) A robot is 
perimentally validated, capable of identifying and picking strawber-
es. (ii) A fast and precise fruit detection model, YOLOv4, was adopted 
om [44] for detecting and classifying strawberries in their different 
ages of growth into multiple maturities in field conditions with spe-
fic network settings for small objects. (iii) A Delta-arm manipulator 
 custom-designed to reduce the time in picking. (iv) A high harvest-
g success rate is achieved. During field experiments, our harvester 
ached an average success rate of 71.7% including challenging envi-
nmental scenarios.
It is worth mentioning that, since the subsystems were designed and 
veloped before the integration, the technologies used therein may 
t be the most advanced ones. However, the robotic harvesting plat-
rm achieves a satisfactory performance during harvesting testing in 
mmercial open fields. Further information about the latest subsys-
m technology development can be found in published sources from 
fferent research groups worldwide. For instance, Zhang et al. [46]
veloped a strawberry detection algorithm with deep NN using edge 
vices.

Furthermore, in contrast to the previous strawberry detection soft-
are in [44], RGB images with a higher resolution of 768×1152 pixels 
e fed into YOLOv4, which resulted in more features of strawberry 
nopies. This allowed the model to detect strawberries in five finely 
parated maturity levels. This level of strawberry maturity detection 
 field conditions had not been addressed in the literature yet. Addi-
nally, to achieve a rapid detection of strawberry canopies, the whole 
tection procedure is simplified as a single YOLOv4 model, while a 
mbination of YOLOv4 and AlexNet was utilized in the previous work 
4]. This image processing algorithm was integrated with the robotic 
rvester, and evaluated in real-time and in-situ under field environ-
ent conditions, instead of offline processing based on RGB images 
esented in [44].
The paper is organized as follows. Section 2 presents three key sub-
stems: strawberry detection, end-effector/manipulator, and guidance, 
vigation, and control (GNC). Additionally, the hardware and soft-
are will be given. Laboratory and field experiments are presented in 
ction 3, where failure cases and future directions are also discussed. 
3

nally, in Section 4, conclusions drawn are listed. re
Smart Agricultural Technology 8 (2024) 100454

Fig. 2. An example image with the bounding box labels.

 Materials and methods

1. Deep NN-based strawberry detection

1.1. Raw image collection and processing [44]
A commercial strawberry farm, located in Oviedo, Florida, was used 
r collecting images for the training of the strawberry detection model. 
e sensor used was a ZED 2 camera (RGB-D camera with depth sens-
g capabilities), from which we acquired RGB images of strawberry 
ants. Images were collected from February 15 to February 22, 2020. 
e camera was installed at a fixed height of 100 cm and pointed ver-
ally down onto strawberry beds, and with an average bed height of 
 cm, the distance between the camera and the surface of the beds 
as 70 cm. A total of 1,400 RGB images were selected and resized to 
00×1200 pixels and the location and maturity (flower, immature, 
arly mature, mature, and overripe) of each strawberry in the selected 
ages were manually labeled using labelImg [47] (Fig. 2). More details 
 the dataset can be found in [44].

1.2. Neural network model training
As described in [44], YOLOv4 included three parts: backbone (CSP-

arknet 53), neck (SPP and PAN), and head (structure from YOLOv3) 
9] (Fig. 3). The main task of the backbone network (CSPDarknet 53) 
 to conduct feature generation and image aggregation. The main task 
 the neck network is to generate the output feature map through the 
put analysis from the backbone [39]. The head of YOLOv4 was used 
 apply anchor boxes on the feature map output from its neck and 
tputs the bounding boxes, probabilities, and label names over the de-
cted targets (i.e., maturity levels of fruits) [39].
The YOLOv4 model first resizes the RGB images to 768×1152 pix-

s and uses them as inputs. This size of the input layer of YOLOv4 
ovides sufficient details to extract most of the features in strawberry 
nopy images. The training strategy, similar to [44], consisted of a to-
l learning iteration of 10,000, and a variable learning rate between 
001 and 0.00001, as well as 0.949 in momentum and 0.05 in decay. 
e network settings were changed from the regular/default values to 
ectively detect small objects in RGB images by following the settings 
r detection of small objectives in [48].
The training dataset included 1,300 RGB images while the test 
taset had 100 images. For comparison, we also trained the YOLOv4 
odel with images with a 648×768 pixels resolution as in [44]. The 
rformance of models was evaluated by the mean average precision 
AP) and average precision (AP) in each maturity class [44].

1.3. Coordinates estimation of detected strawberries
A two-step calibration process is followed to obtain the location of 

rawberries in the world coordinates, which is defined to be the ma-
pulator’s frame of reference. First, a procedure provided by ZED SDK 
olab Inc., 2022) was performed using a calibration board to remove or 
inimize the effect of lens distortion in RGB images. Second, as shown 
 Fig. 4, three strawberries (𝑎, 𝑏, and 𝑐) were placed in fixed locations, 
d their coordinates (𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏), and (𝑥𝑐, 𝑦𝑐) in the manipulator’s 

ference frame were recorded. Using the trained YOLOv4 model, the 
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Fig. 3. Architecture of YOLOv4 including backbone (CSPDarknet 53), neck (PA-Net and FPN), and head (YOLOv3), (sketched based on [39]).

Fig. 4. 2D calibration for estimating strawberry coordinates.
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nters (𝑋𝑎, 𝑌𝑎), (𝑋𝑏, 𝑌𝑏), and (𝑋𝑐, 𝑌𝑐) of the bounding boxes covering 
ese three strawberries in the RGB image were detected and recorded, 
mpleting the system’s calibration process. The location (𝑥𝑖, 𝑦𝑖) of the 
 strawberry in the RGB images and their counterparts (𝑋𝑖, 𝑌𝑖) in the 
anipulator’s coordinate frame are linearly related and can be calcu-
ted with the following expressions.

= (𝑥𝑏 − 𝑥𝑐)∕(𝑋𝑏 −𝑋𝑐), (1)

= (𝑦𝑎 − 𝑦𝑐)∕(𝑌𝑎 − 𝑌𝑐), (2)
4

=𝑋𝑎 − 𝑘2𝑥𝑎 =𝑋𝑏 − 𝑘2𝑥𝑏 =𝑋𝑐 − 𝑘2𝑥𝑐, (3) to
= 𝑌𝑎 − 𝑘2𝑦𝑎 = 𝑌𝑏 − 𝑘2𝑦𝑏 = 𝑌𝑐 − 𝑘2𝑦𝑐, (4)

𝑖 = 𝑘1𝑥𝑖 + 𝑏1, (5)

d,

= 𝑘2𝑦𝑖 + 𝑏2, (6)

here 𝑘1 and 𝑘2 are the slopes, 𝑏1 and 𝑏2 are the intercepts on the 𝑥
d 𝑦 axes, respectively, of the target’s position in the RGB image co-
dinates and the 2D/horizontal frame of the robotic manipulator. It is 
orth mentioning that any of the three equations in Eq. (3) can be used 

 compute 𝑏1, and the difference between them is very small. Under 
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ld conditions, minor variations in the ground slightly change the cam-
a to bed distance, introducing some error in the estimation of the 2D 
ordinates (evaluation described in Section 3.4). This error was negli-
ble in practice as we did not observe any issue regarding the motion 
 the manipulator over detected strawberries. However, a new calibra-
n is always needed if the field conditions are different, and the beds 
ve a different height. For the estimation of the 𝑍-coordinate, we did 
t use the depth sensing capabilities of the ZED 2 camera. We ask the 
ader to refer to Remark 6 in Section 3.4 for more details. The height 
-coordinate) is determined from the origin of the reference frame of 
e manipulator down to the ground along the negative 𝑧-axis. Its esti-
ation is done by using a heuristic method observing that strawberries 
e located between 70 cm to 72 cm in the field. Starting at 70 cm, the 
ight is increased by 1 cm in each subsequent picking attempt. The 
ason for this process is explained in Remark 4 in Section 2.6.
Several approaches incorporate the use of LiDAR or its fusion/inte-
ation with RGB(D) cameras in fruit detection [49]. However, in our 
plication, incorporating such a sensor would substantially increase 
e complexity and cost of the vision system with little benefit to the 
erall performance of the robot. This is because we can easily create 
 environment with relatively uniform lighting conditions within the 
orkspace of our robot, and strawberries are at a relatively known dis-
nce from the camera. Thus, the heuristic method explained before was 
fficient for picking strawberries.

2. Picking mechanism

2.1. Delta arm
The manipulator consists of three arms in a Delta configuration [50], 

 shown in Fig. 5. The actuators are mounted on the base, reducing 
e inertia and structural weight of the arms. This arm arrangement 
lows fast acceleration and high accuracy, suitable for pick-and-place 
plications [50].
The base of the Delta configuration is connected to three parallel and 
entical kinematic chains carrying the end-effector. A revolute joint 
nnects each chain to its corresponding four-bar parallelogram link. 
e chains are made of aluminum, and the joints are 3D printed to keep 
e structure lightweight. A stepper motor on the base platform actuates 
ch arm, enabling the end-effector to travel along the three Cartesian 
es without rotation [51]. The motor drivers are configured to 1,600 
icro steps, achieving the resolution of the end-effector movement to 
 within ±1 mm. The fixed and moving platform radii are 225 mm 
d 75 mm, respectively. The active arm length is 250 mm and the 
rearm length is 520 mm.

2.2. Trajectory control
The vision subsystem sends in the target locations of strawberries, 

hich are used to compute the joint angles via an inverse kinematic 
ethod [52]. In Fig. 5, the center point of the robotic platform is the 
igin of the world coordinate frame 𝑋𝑌𝑍 . The dimensions of the Delta 
m are denoted as 𝑟𝐴, 𝑟𝐵, 𝐿1, 𝐿2, and 𝛼𝑖, 𝑖 = 1, 2, 3. For a given end-
ector coordinate (𝑋, 𝑌 , 𝑍), following [52] each active joint angle 
mmand is computed with

= 2 tan−1
(−𝐷𝑖 −

√
𝐷2

𝑖
+𝐸2

𝑖
− 𝐹 2

𝑖

𝐹𝑖 −𝐸𝑖

)
, 𝑖 = 1,2,3, (7)

here,

𝑖 = 2𝐿1𝑍

𝑖 = 2(𝑟𝐴 − 𝑟𝐵)𝐿1 − 2𝐿1𝑋 cos𝛼𝑖 − 2𝐿1𝑌 sin𝛼𝑖

𝑖 = (𝑟𝐴 − 𝑟𝐵)2 − 2(𝑟𝐴 − 𝑟𝐵)𝑋 cos𝛼𝑖 − 2(𝑟𝐴 − 𝑟𝐵)𝑌 sin𝛼𝑖+
2 2 2 2 2

(8)
5

𝐿1 −𝐿2 +𝑋 + 𝑌 +𝑍 . co
Smart Agricultural Technology 8 (2024) 100454

g. 5. Schematic view of the developed Delta robot strawberry harvesting ma-
pulator with parameters and geometric relations.

A controller then drives the stepper motors to follow the active joint 
gle commands computed above. The real-time active joint angles are 
easured using encoders. The closed-loop system is shown in Fig. 6.

2.3. End-effector
The end-effector needs to be robust to the size, position, and ori-
tation of strawberries, and should not damage either plants or fruits 
3]. It consists of five identical fingers to grasp the fruit, and a wrist 
at can rotate about the roll axis to detach it, as shown in Fig. 7(a). 
ultiple fingers help distribute the holding force around the fruits to 
duce bruising. The fingers are flatter towards their tips to try to pull 
rawberries from below and not squeeze them. Its overall dimensions 
e 100 mm × 100 mm × 200 mm as shown in Fig. 7. Each finger is 
rt of a four-bar linkage mechanism as described before. These fin-
rs are all connected to a driving translational joint to open or close. 
e translational movement is created using a single servo motor. The 
aximum diameter of the end-effector when open is 60 mm, enough 
 grasp average-sized strawberries between 30 mm and 40 mm [13]. 
e fingers are 3D printed with hard polylactic acid (PLA) to distribute 
e holding force around the fruit, and they enclose strawberries almost 
mpletely to help prevent their slipping through the sides.

emark 1. (rotation motion of the end-effector): A rotation mechanism, 
imicking human workers, is included in the end-effector, although it 
as only used in laboratory experiments. As shown in Fig. 7(a), this ro-
tion motion is available to the fingers by gear transmission. In field 
nditions, when encountered with dense groups of plants, the fingers 
ould grab not only the fruits but also stems and/or nearby fruits. 
e rotation motion would then spin everything with it changing the 
cation of those initially detected fruits. This is detrimental to the per-
rmance of the picking mechanism since a new image is needed after 
ery picking attempt to estimate the new locations of the fruits, in-
easing the harvesting time.

emark 2. (eye-in-hand camera): An eye-in-hand Pixy2Ⓡ camera has 
en incorporated (Fig. 7(b)) to check if a strawberry is inside the fin-
rs or help the detection of fruits by counting the number of red pixels 
 an image, similar to [35]. However, we did not use this function in 
ld experiments. When picking a strawberry, stems and leaves would 

ver the camera lens rendering it useless for any detection task inside 
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Fig. 6. Block diagram of the picking mechanism trajectory tracking control subsystem.
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g. 7. Schematic view of the developed rotating-grasping end-effector. (a) Iso-
etric view, and (b) section view.

e fingers. Using the camera to automatically detect strawberries in-
de the fingers was unreliable as occlusions would produce many false 
sitives and negatives. Instead, we manually counted the times the 
d-effector picked a strawberry in field experiments.

emark 3. (Soft material for the fingers): The use of soft materials for 
e fabrication of the fingers was considered and successfully tested in 
boratory conditions on a few plants on pots. However, in field experi-
ents, they proved to be too soft, and strawberries would slip through. 
rawberries on the farm seemed to have stronger stems, thus, making 
em more difficult to detach. As a solution, the hard PLA material we 
ed worked very well but was prone to produce fruit damage. To try 
 counter this, we designed the fingers flatter towards their tips. In 
is way, they would go under the fruits as the fingers close and avoid 
6

ueezing them. co
3. Guidance, navigation, and control

GNC enables the harvesting robot to scout throughout a strawberry 
ld without scratching its plastic mulch, precisely move over straw-
rry beds (over-bed), pause at predefined harvesting stops, and rapidly 
ansit at headlands (or cross-bed).
The harvesting robot in this study uses the same GNC subsystem in 
e previous version [27–29], meaning that the robot motion is guided 
 a sequence of two-phase paths: over-bed and headland transition. 
 the over-bed phase [29], the robot moves forward one distance unit 
ual to the width of the reachable area of the manipulator on the beds’ 
rface, harvests detected strawberries and moves forward again. In the 
adland transition, the robot makes a turn, aligns with the row next to 
 and moves onto that row [28].
The sensors used here are the same as those in [18,27–30]. In the 
er-bed motion, ultrasonic range finders are used to align the robot 
ith the strawberry beds and not damage the plastic mulch [29]. In the 
adland transitions, only RGB cameras are used [27,29].
While in an over-bed phase, the robot is driven by a PID controller 
cording to the computed heading angle error and the mismatch be-
een the bed centerline and the robot’s center of mass [29]. Different 
ntrol strategies have been designed and implemented on row headline 
ansitions. The controller here utilizes a search-space dimension re-
ced dynamic programming-based optimal control method in headline 
ansitions [28]. The onboard camera automatically tunes its brightness 
d shutter speed [27]. As shown in [28], the over-bed and headline 
ansitions reach the centimeter level of accuracy.

4. Hardware integration

As shown in Fig. 8, the hardware architecture of the robot is mod-
ed and enhanced based on the previous version in [30], featuring 
e following major differences. (i) A printed circuit board (PCB) is 
ade to simplify and better organize the circuitry for onboard sensors 
d actuators. (ii) A Delta manipulator and a finger-type end-effector 
e designed for strawberry picking. (iii) A YOLOv4 model-based vision 
ocessing algorithm is included and tested for fruit detection in field 
periments.

An onboard laptop oversees the operation logic of all the subsystems 
ch as drivetrain, GNC, picking, and image processing. GNC relies on 
formation from eight ultrasonic range finders that help the robot re-
ain centered over a bed during its overbed motion [30]. The distance 
aveled by the robot is obtained from a Kangaroo® motion controller 
at uses feedback signals from two quadrature encoders attached to 
e motors, maintaining a given speed set by the GNC algorithm [29]. 
B cameras and row markers are used for row transition (cross-bed) 
otion [27,28]. Each motor is driven by a Sabertooth® DC motor driver 
nnected to a 12 V battery [30]. The YOLOv4 model-based vision sub-
stem uses an RGB camera directly connected to the laptop via USB. 
e Delta manipulator and end-effector are controlled by a Raspberry 
® and stepper motor drivers. The motion of the manipulator’s arms is 
stricted by three limit switches. The end-effector uses a servo motor 
 open and close its five fingers. The stepper motors and Raspberry Pi®
e a 19 V and 5 V power source, respectively, obtained from DC-DC 

nverters powered by a 12 V battery. A voltage adapter (5 V to 3.3 
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Fig. 8. Hardware architecture. New hardware in the dashed-line boxes.
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Fig. 9. Software architecture.

 is used for serial communication between the Arduino and the Rasp-
rry Pi. The new PCB is connected to the Raspberry Pi and contains the 
ltage regulators to power the stepper motor drivers, DC motor, and 
rvo motor. It also contains a set of terminals to facilitate the transmis-
on of the control signals for the manipulator and the end-effector.

5. Software integration

As shown in Fig. 9, three programming languages are used for con-
olling the robot: MATLAB, C/C++, and Python. The software pack-
es in MATLAB and C/C++ for GNC are from the previous version 
0]. We chose these three languages due to their vast community sup-
rt and their versatility to handle algorithms, sensors, and peripherals 
om different manufacturers. The laptop runs MATLAB scripts for im-
e processing, strawberry detection, and GNC, and interacts with the 
anipulator/end-effector. The Arduino MEGA runs a program written 
 C/C++ to collect information from the ultrasonic range finders and 
 drive the robot’s wheels through the Kangaroo® motion controller 
0]. It also allows data transfer between the Raspberry Pi® and the 
7

ptop via serial communication. The Raspberry Pi runs a script written ce
 Python to control the manipulator and end-effector, and exchanges 
formation about the picking process with the laptop.

6. Control and harvesting sequence

The robot stops every time a picking process starts, which has been 
rmed static harvesting [54]. The control sequence that the robot fol-
ws is shown in Fig. 10. After loading the NN parameters and having 
tablished the communication with the Arduino and Raspberry Pi, the 
bot starts to move forward a distance equal to the width of its ma-
pulator’s reachable area, which for the Delta configuration is about 
 cm. The robot comes to a stop and takes an image of the bed ly-
g underneath. The vision subsystem passes the coordinates (𝑋, 𝑌 , 𝑍)
 reachable mature strawberries to the Raspberry Pi to proceed with 
e picking process (Fig. 11). This process will repeat after three pick-
g attempts have been carried out or until one of the following events 
ppens: the collection basket is full, the robot needs servicing, the end 
 a row is reached, or all the beds have been harvested. If no mature 
rawberries are within range, the robot will move forward another 50 
. Ultimately, the robot will return to a central station where it can 
arge its batteries or simply be stored for future use.
The picking process (Fig. 11) begins when the locations of reach-
le mature strawberries are received by the Raspberry Pi. Then, the 
ajectory paths are calculated using the inverse kinematic method as 
scussed in Section 2.2. Starting at the home position and with the 
d-effector’s fingers open, the manipulator will move 10 cm down and 
en parallel to the ground to the first strawberry location. Once over 
e desired target, the manipulator will move down the remaining dis-
nce to match the estimated height. The height will increase by 1 cm 
ch attempt, starting at 70 cm, as described in Section 2.1.3. The fin-
rs are then commanded to close, and the end-effector retracts first 15 
 at a slow speed (∼2.9 cm/s) and then 5 cm at a normal speed (∼9.3 
/s). The slow-motion allows the fingers to completely close and grab 
strawberry when the height has been overestimated. The retraction 
tion will detach most strawberries from their stem.
Next, the manipulator moves parallel to the ground to the collec-
n basket, the fingers are opened to release the strawberry, and one 
tempted strawberry is counted. This information is sent to the laptop. 
more than one strawberry is within reach, the manipulator will pro-

ed to attempt to pick the next target fruit without going back to the 
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Fig. 10. Flow diagram of the general harvesting process.

me position. After attempting to pick all reachable strawberries, a 
one” signal is sent to the laptop, the manipulator returns to the home 
sition, and one attempt is counted. Another image is taken to update 
e locations of strawberries that were not picked or might have moved 
e to previous picking actions. This process is repeated on every bed 
cation up to three times (attempts) or until there are no mature straw-
rries within reach. If the computer does not receive any information 
om the Raspberry Pi within a specific amount of time, a timeout sce-
rio is triggered, indicating that either a new picture must be taken, 
 the robot should move forward.

emark 4. (height estimation): The height estimation technique previ-
sly described resulted to work significantly better than estimating the 
ight using stereoscopic vision, whose accuracy decreases as straw-
rries are further away from the center of an image. Plus, the same 
rawberry needed to be detected in both pictures, which is not always 
e case due to the slight change of perspective of the cameras.

 Results and discussion

In this section, we first present the laboratory experiments of each 
8

 the three subsystems described in Section 2. Then the strawberry ri
Smart Agricultural Technology 8 (2024) 100454

Fig. 11. Flow diagram of the strawberry picking subprocess.

cking field experiments conducted on a commercial, open strawberry 
ld are discussed.

1. Strawberry detection subsystem evaluation

An example of the output generated by the YOLOv4 model is shown 
 Fig. 12. Table 1 shows a summary of the performance metrics of the 
LOv4 model in [44] and our modified version. The mAP of YOLOv4 
mall objects) with input images that have a resolution of 768×1152 
xels was 89.3% on the training dataset and 80.2% on the test dataset, 
spectively. These results were slightly better than the mAP of 87.1% 
 the training dataset and 79.9% on the test dataset achieved by 
LOv4 in the previous work [44]. The detection of mature strawber-
es, which was the most important target for robotic picking, achieved 
e highest AP of 91.9% with the test dataset. The trained YOLOv4 
 this study also performed well with the immature and nearly ma-
re classes, with an AP of 87.0% and 81.6%, respectively. It shows 
at the adopted method could distinguish among key maturity stages 
mmature/nearly mature/mature) of strawberries. Flowers and over-

pe strawberries were more challenging to detect than the shapes of 
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Table 1

Performance of the YOLOv4 models in strawberry detection - training and tests datasets.
Datasets Methods Image resolution 

(pixels)

AP of Class (%) mAP (%) Processing 
time (ms)a

Flower Immature Nearly mature Mature Overripe

Training

(1300 images)

YOLOv4 in [44] 648x768 77.49 91.68 90.20 94.63 81.66 87.13 -

Ours 768x1152 79.93 92.86 92.55 95.69 85.58 89.32 -

Test

(100 images)

YOLOv4 in [44] 648x768 71.51 87.57 81.33 90.31 68.88 79.92 55.19

Ours 768x1152 69.95 87.02 81.75 91.89 70.41 80.20 64.40

a Processing time is achieved using a dedicated GPU.

Table 2

Results of strawberry harvesting mock-up test in the laboratory.
# of target fruits in 
six different trials

Grasp success Harvest success Average harvesting 
attempts

9 100% 77.7% 1.3

6 83.3% 83.3% 1.0

5 80% 60% 1.4

5 100% 80% 1.2

3 100% 100% 1.0

5 80% 80% 1.2
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g. 12. An example image with strawberries detected by the YOLOv4 model 
mall objects).

rawberries in the other three groups, which explains the inferior per-
rmance of the trained YOLOv4 model when detecting objects in these 
o groups. The processing time of the new model increased by 9.21 
s when detecting strawberries with higher-resolution images. How-
er, the increase in the processing time is negligible when compared to 
e overall harvesting time (discussed in Section 3.4). Overall, YOLOv4 
mall objects) showed an improved ability in detecting strawberries 
ith different maturity levels, especially mature strawberries when the 
put image resolution was set to 768×1152 instead of 648×768 used 
 [44].

2. Guidance, navigation and control subsystem evaluation

The GNC subsystem uses the same control strategy as our previous 
rsion [29]. Here, we re-tuned the PID controller for the overbed mo-
n to accommodate the larger dimensions of the new robot. The robot 

 kept centered on the bed with the aid of eight ultrasonic rangefinders 
at collectively estimate the distance between the center of the robot 
ass to the row edge. The detailed GNC performance can be found in 
8] and [29].

3. Picking mechanism subsystem evaluation

Four quantitative performance criteria are selected to evaluate the 
rformance of the picking subsystem: grasp success (%), harvest suc-
9

ss (%), average harvesting attempts, and harvesting time (s). We le
fine the grasp success as the number of strawberries that were suc-
ssfully grabbed (not detached) per target fruit and the harvest success 
 the number of strawberries detached from the plants per target fruit. 
 the laboratory experiments, the in-hand camera can detect strawber-
es inside the fingers by counting the number of red pixels in the image. 
no strawberries are detected after the fingers close, the end-effector 
ill open again and attempt to harvest the same fruit in the same lo-
tion one more time, up to two attempts. Artificial strawberries were 
aced randomly on a black surface. The results of the laboratory exper-
ents are shown in Table 2. On average, the picking mechanism was 
.9% successful in grasping and 78.8% successful in harvesting the 
rawberries. The manipulator could harvest single strawberries mostly 
 one attempt. The two main reasons for failure in laboratory testing 
e: (i) the artificial strawberries are light; thus, with a minimal touch, 
ey might displace; and (ii) the artificial strawberries are not attached 
 the experiment surface, so after gripping the fruit, there is a great 
ance the leaves are facing the in-hand camera; hence, the red pix-
s cannot be detected, and the end-effector drops the fruit. Please note 
at the harvesting time in the laboratory experiments is reported in 
g. 17.

4. Field experiments

As shown in Fig. 13, field experiments were carried out on a farm 
here strawberries are grown in open field conditions on elevated beds 
vered with a black plastic mulch. It is demonstrated in our field ex-
riments that operating the robot is not difficult. Nevertheless, as men-
ned in Section 2.1.3, a key step that is always needed upon startup 

 the camera calibration. To better fit real field conditions, some steps 
scussed in the control sequence are modified or further explained in 
e remarks below.

emark 5. (Impact of the robot’s size on the field): Unlike common 
ricultural machinery like tractors, which are heavy and powered by 
ssil fuels, the light weight of our robot and its electric power source 
duce soil compaction and incurs in significantly lower carbon and 
trogen emissions responsible for soil acidification [55].

emark 6. (image processing in field conditions): A graphics card is not 
ailable in our field setup as it was in our laboratory tests, and with-
t it, the processing time of each image is considerably increased from 
.19 ms to an average of 6.4 s. This is explained by the significantly 

ss processing power of our laptop’s CPU when compared to the GPU 
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Table 3

Strawberry harvesting results in field conditions.

Type 1 Type 2 Type 3 Type 4 Type 5

Isolated and mostly

uncovered

closely grouped,

uncovered mature

strawberries

Isolated and partially

covered

Loosely grouped,

partially covered with

obstacles

Closely grouped,

partially covered with

obstacles

1st time 77.50% 46.55% 54.20% 35.48% 13.89%

2nd time 12.00% 34.48% 20.61% 18.28% 15.97%

3rd time 4.50% 3.45% 3.82% 5.38% 7.64%

# Picked 188 49 103 55 54

Total # strawberries 200 58 131 93 144

Success rate 94.00% 84.48% 78.63% 59.14% 37.50%
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Fig. 13. Harvesting robot in a nearby commercial, open strawberry field.

ed for Deep NN operations. Additionally, without the GPU we were 
able to use the depth-sensing capabilities of our RGB-D camera, and 
stead, we used the method explained in Section 2.6. for height esti-
ation. As noted in this section, the harvesting rate was not impacted 
gnificantly by this method, which proved that the use of a depth sen-
r was not essential.

emark 7. (light conditions): Natural light on a sunny day intensifies 
e brightness in images giving strawberries a false color, as shown in 
g. 14. This results in strawberries not being accurately detected or 
isclassified. However, this negative effect was successfully mitigated 
 enclosing the robot with a tarp, blocking most of the direct sunlight 
to the camera’s field of view.

emark 8. (diseased/wilted leaves effects): Diseased and/or wilted 
aves were sometimes identified as mature strawberries as their shape, 
ze and color can resemble a mature fruit, as shown in Fig. 15. Out of 
5 mature strawberries detected by the vision system, 29 were leaves 
at will not be counted. This corresponds to a 95.6% accuracy of our 
LOv4 model in the detection of mature strawberries in the field ex-
riments, which is higher than the 91.89% accuracy reported for the 
ained model on the test dataset in Table 1. Nevertheless, the false pos-
ves do not affect the harvesting process as the leaves are only lifted 
 the end-effector.

Five experiments were conducted throughout March and April 2022, 
 sunny days from 11 A.M. to 3 P.M. This time of the year is the end 
 the strawberry season in Florida and plants were in their late stages 
 development with many wilted leaves and mature/overripe fruits, a 
allenging time for robotic harvesting. As mentioned in Remark 7, the 
des of the robot were covered to decrease the brightness of the images 
10

d reduce false positives and negatives in the detection process. Wet te
rrain due to heavy rain before the day of harvesting did not affect any 
 our subsystems. The size and tread of our tires are large enough to 
vigate over mud or sand, and the automatic brightness adjustment of 
e camera was enough to compensate for dimmer light conditions due 
 cloudy weather.
To assess the overall picking performance of the robot in the open 
ld, we classified strawberry growth conditions according to their har-
sting complexity into five categories (Fig. 16), from Type 1 to Type 5. 
e classification method is similar to the one in [14] which is meant 
r strawberries in greenhouses. However, we considered larger groups 
 mature strawberries as opposed to groups of only one or two fruits 
 [14]. Furthermore, we have specified a distance between each fruit 
ithin each Type. The five classifications are defined as follows:
Type 1: Isolated and mostly uncovered Strawberries are easily iden-
able and are not surrounded by leaves, stems, or other fruits. The 
stance between neighboring strawberries is larger than the size of a 
pical strawberry.
Type 2: Closely grouped and mostly uncovered Strawberries are mostly 
covered, but found in groups very close to each other, or even touch-
g others.
Type 3: Isolated and partially covered Strawberries seem to be isolated 
t are somewhat difficult to identify due to leaves partially cover-
g them, making the detection of their centers difficult. The distance 
tween neighboring strawberries is larger than the size of a typical 
rawberry.

Type 4: Loosely grouped, partially covered with obstacles Strawberries 
e found in groups but not too close to each other. Leaves are covering 
me of the groups and stems may be in the way of the gripper. The dis-
nce between neighboring strawberries is less than the size of a typical 
rawberry but are not touching each other.
Type 5: Closely grouped, partially covered with obstacles Strawberries 
e in groups close to each other. Stems and leaves are on the way of the 
ipper to reach a strawberry. Neighboring strawberries are touching 
ch other.
Unlike the laboratory tests, two quantitative criteria are selected to 
aluate the overall operation performance under field conditions: suc-
ss rate (%) and harvest time (s). The data shown in Table 3 were 
anually collected and organized in their corresponding types. Our 
bot achieved an overall success rate of 71.7% and harvested a total 
 626 strawberries in at most three attempts. The success rate drops as 
ore complex the scenario is, with the highest success rate of 94.0% for 
e easiest situation, Type 1. Even though strawberries were in groups 
 challenging situation), the success rate for Type 2 strawberries was 
.48%. Notice that 34.48% of them were picked in the second attempt. 
is is because the picking motion of the end-effector initially breaks 
 the groups, separating strawberries and making them easier to pick 
 a subsequent attempt. It is less likely for them to get covered since 
ey are already isolated. Type 3 closely follows with a success rate of 
.63%, showing that partially covered strawberries are more difficult 
 harvest. The success rate significantly drops for Types 4 (59.14%) 
d Type 5 (37.50%). This shows challenges for our harvesting subsys-

ms (vision and picking) in dealing with groups of strawberries that 
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Fig. 14. Artificial strawberry misclassified

Fig. 15. Diseased/wilted leaves misclas

Fig. 16. Strawberry growth situ
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e covered by obstacles (e.g., stems and leaves) and in the later stage 
 a growing season.
The harvesting time was automatically measured by software and 

as counted from the moment the manipulator leaves its home posi-
n until returns to it, including the picking and traveling times. This 
e corresponds to one attempt per strawberry, and for the cases with 
ore than one reachable fruit, we divided the total time by the number 
 reachable fruits. For the cases with more than one reachable straw-
rry, we divided the total time by the number of attempted fruits. 
g. 17 shows an error bar with the maximum, minimum, and average 
rvesting times as a function of the number of attempted strawberries 
ring both laboratory and field tests. For the laboratory tests, uni-
rmly distributed, random coordinate pairs were generated 300 times 
r every case of attempted strawberries. The overall average harvesting 
e was 8.57 s with a maximum of 11.9 s and a minimum of 6.2 s per 

rawberry. For the field tests, the overall average harvesting time was 
5 s with a maximum of 11.74 s and a minimum of 5.9 s per strawberry. 
e gradual decrease in the harvesting time is because the manipulator 
es not return to the home position after dropping every fruit in the 
llection basket, but instead it goes straight to the next reachable fruit. 
e “true” time would be an average of the harvesting times for fruits 
11

cated at every point in the reachable area (infinite points). The more str
Smart Agricultural Technology 8 (2024) 100454

due to varying light conditions.

sified as mature strawberries.

ations classification.

g. 17. Harvesting times in both laboratory (solid line, larger cap) and field 
ashed line, shorter cap) experiments as a function of the number of reachable 

awberries.
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able 4

erformance assessment indicators for the three robotic strawberry harvesters.

Harvest success rate Cycling time # of picked strawberries

Our robot 71.7% 7.5 s 449

Robot in [14] 79.43% 6.1 s 139

Robot in [15] 67.1% 31.5 s 159

ints we have, the closer we get to converge to the true value. This 
end is seen in Fig. 17. Moreover, the average harvesting time during 
ld experiments was smaller than the time in laboratory experiments 
 most of the cases. Because of the pattern plants are placed on the 
ds, strawberries often grow in areas near the center, which is closely 
igned with the home position of the arms. Thus, the end-effector trav-
s short distances more often, as opposed to locations near the edges 
 the bed.
In Table 4, we show a comparison between our platform and other 
all strawberry harvesting robotic systems found in the literature. 
e excluded commercial robots from this comparison as detailed data 
out their performance is not publicly available and they belong to 
different category. The table shows two indicators that are generally 
ed to assess the performance of robotic harvesting systems. The har-
st success rate is defined as the number of picked mature fruits versus 
e number of target fruits. The cycling time is the time it takes the 
bot to harvest a single fruit with a single manipulator/end-effector. 
is time includes image processing, motion planning, and execution. 
is worth noting that the other robots used in this comparison were 
sted in greenhouses and not in open fields, and the comparison might 
 unfair to our proposed robot as the growing conditions in open fields 
e significantly more different and more challenging. Nonetheless, it 
n provide a general insight into the current state of non-commercial 
rawberry harvesting systems. The robotic system in [14], with a 
ngle-rail dual-arm manipulator, reported harvesting 139 out of 175 
rawberries for a 79.43% harvest success rate, and a cycling time of 
1 s. The 7-DOF robotic arm on a stationary platform in [15] achieved 
harvest success of 67.1% by picking 159 out of 237 strawberries, and 
cycling time of 31.5 s. Our system, even though does not have the 
ghest harvest success (71.7%), is very fast with a cycling time of 7.5 
 It is also worth noting that our robot has been tested the most with 
total of 449 out of 626 strawberries harvested, and furthermore, not 
l scenarios in our harvesting were experienced by the other robotic 
rvesters in greenhouses.
On a new test performed on March 21, 2023, we measured the dam-
e rate, defined as the percentage of damaged/bruised fruits during 
d after the harvesting process. We assume that any damaged fruit is 
 unsellable fruit, though, they can still be used to create derived prod-
ts such as jelly. We performed a visual inspection right after each fruit 
as picked, and then 24 hours afterwards to check for possible bruises 
used by the pulling of the fingers. Out of 34 harvested strawberries, 
ly two were slightly bruised or damaged by the end effector for a 
9% damage rate. We found that bruising happens due to inaccurate 
ight estimation. As the fingers retract, they scratch the fruits without 
abbing them. Bruising also occurred to strawberries adjacent to the 
e attempted. As the end-effector reaches down for a fruit, the tip of 
e fingers may puncture those near the target. We did not observe any 
uising or food quality degradation 24 hours after harvesting.

5. Discussion of failure cases during field experiments and future 
rections

The failure cases in Table 3 are due to the following three reasons. 
) The vision system fails to identify the strawberries in subsequent 
tempts due to occlusions or varying lighting conditions. (ii) The end-
ector is not strong enough to close its fingers when breaking the stem 
 a strawberry. This happens mostly when the end-effector attempts to 
12

asp a group of strawberries. This is not an issue of the fingers them- ul
Smart Agricultural Technology 8 (2024) 100454

Fig. 18. Percentages of failed cases according to their causes.

lves, but of the servomechanism used to close them. (iii) The initial 
ight estimation falls short, and a failed attempt is counted. Subse-
ent picking attempts can solve this issue, but it could be addressed 
om the first time by using a more complex height detection approach.
In Fig. 18, we can see the distribution between the causes of failure. 

ut of 177 failed attempts, about 72.9% of them included mechanical 
asons whereas 44.6% were mechanical only. Failures that included 
sion-related limitations accounted for 48.6% of the total, with 20.3% 
 them being due to vision only. Failed picking attempts for Types 2 
 5 were due to mechanical, vision, or a combination of both reasons. 
iled attempts that included height estimation inaccuracy correspond 
 11.9% of the total, with 2.3% of them being due to the height es-
ation issue only. Note that our height estimation strategy does not 
ve a significant impact on the total number of failed cases. Failed at-
mpts for Type 1 strawberries were caused exclusively due to height 
timation reasons. Since they are isolated, they are easy to detect and 
ck; thus, there were no mechanical or vision issues involved.
Future direction 1: More field experiments will be done in different 

ages of the strawberry growing season in Florida, and failure cases 
ill be analyzed to determine the main issues in the robotic harvesting.
Future direction 2: A stronger servomechanism will be adopted so the 
gers can be closed tightly. Also, to avoid bruising picked fruits, a dif-
rent fruit detachment mechanism, soft materials for the end-effector 
 a design like in [35] may be adopted.
Future direction 3: A better vision algorithm can be adopted to esti-
ate the center of partially covered strawberries.
Future direction 4: A more complex height estimation method will be 
plemented that could include the use of an RGB-D sensor or LiDAR. 
n the other hand, it is noted that in [35] we investigated a method to 
liably estimate the Z-coordinate using the in-hand RGB camera of the 
d-effector. However, the algorithm is out of the scope of this paper 
d will be considered as another alternative. This would reduce the 
currence of the height estimation as one of the main sources of failure 
 our system and decrease the damage to the fruits.
Future direction 5: An environmental impact study should be carried 
t to identify and evaluate the potential effects that our planned fleet 
 robots would have on farms and on the environment. Such study 
ould provide vital information about the effects of our system in other 
rming activities such as irrigation, soil fertilization or pesticide de-
ery; while also considering sustainable practices related to energy 
ciency and responsible use of natural resources.

 Conclusions

In this work, a small harvesting robot is presented to pick strawber-
es in open field conditions. Three key subsystems, vision, picking, and 
NC, are discussed. The deep NN-based vision subsystem implements a 
LOv4 (small objects) model to locate mature strawberries from RGB 
ages with high accuracy. The picking mechanism includes a manip-

ator in a Delta configuration and a five-finger end-effector. The GNC 
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bsystem is based on a previously developed disease detection robot 
d can reliably control the robot to stay over beds using ultrasonic 
nge finders. During field tests, the proposed robotic harvester reached 
gh success rates (94.0% and 84.5%) when picking mostly uncovered 
rawberries (Types 1 and 2, respectively). The harvesting performance 
creased to the lowest success rate of 37.5% when occlusions, obsta-
es, and strawberry clusters posed difficult circumstances (Type 5) for 
e end-effector to be able to grab and detach fruits. On average over 
e different scenarios, the robot achieved a harvest success rate of 
.7% with an average harvest time (cycle time) of 7.5 s per fruit.
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