
IFAC PapersOnLine 56-3 (2023) 37–42

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.11.007

10.1016/j.ifacol.2023.11.007 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 

Subspace Structured Neural Network for Rapid Trajectory Optimization 

Luis Tituaña*, Yunjun Xu* 

*Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32826 USA      
(Tel: 407-823-1745; e-mail: luis.tituana@knights.ucf.edu). 

Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial 
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the 
reduced dimension search space guided by a bio-inspired motion rule.  The input nodes of the network are 
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization 
method. The activation function for each node is the inverse of the dynamical system. The weights and 
biases to be optimized in the network are analogous to the parameters of the motion rule.  The network is 
optimized during training by minimizing an augmented loss function where the constraints are considered 
penalties.  The proposed method is simulated in a collision avoidance trajectory planning problem of a 
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid 
body spacecraft. 
Keywords: Trajectory Optimization, Neural Networks, Optimal Control. 

1. INTRODUCTION 

Nonlinear constrained optimal trajectory design problems 
have been studied for decades, and they have been extensively 
applied in autonomous vehicles or robotics, manufacturing, 
precision agriculture, space exploration, biomechanics, etc. 
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017). 

An abundance of optimization theories and algorithms 
have been suggested with effective implementations to tackle 
various practical problems.  Those methods include, but are 
not limited to, indirect approaches (Bryson, 1975; Lewis et al., 
2012), direct approaches (Fahroo et al., 2002; Benson et al., 
2006), adaptive dynamic programming (Bellman, 1961; 
Bertsekas, 2020; Ng et al., 2006), subspace approaches 
(Kurenkov et al., 2019), and learning based algorithms (Sutton 
and Barto, 1998). To date, real-time implementation of many 
existing algorithms is still challenging for problems with high 
nonlinearities and needing to consider stringent and/or pop-up 
constraints due to issues related to the curse of dimensionality 
(Powel, 2007).  Thus, there is an uptrend of emerging 
approximation solutions (Busoniu et al., 2010), finding 
optimal solutions in carefully selected subspaces (Belkin and 
Niyogi, 2003; Liu et al., 2021), or along certain solution 
manifolds (Xu and Li, 2014). 

As one of the motion phenomena observed in insects, the 
virtual motion camouflage (VMC) rule (Srinivasan and Davey, 
2005; Xu and Li, 2014) has been used to iteratively select a 
subspace, in which an optimal solution is searched for in 
nonlinear constrained optimal control problems. Two 
variances of the algorithms have been investigated, one in the 
category of direct collocation (Xu and Basset, 2012; Xu and 
Li, 2014), while the other in the category of adaptive dynamic 
programming (Qiang and Xu. 2022).  Both have shown 
satisfactory performance in terms of computational speed and 
optimality.  

Meanwhile, with the development of methods and tools 
that facilitate the implementation of different kinds of artificial 
neural networks (ANNs), optimal control problems have been 
addressed from the machine learning perspective. After all, the 
training of an ANN is itself an optimization problem. Several 
efforts have used ANNs to create optimal control policies by 
approximating the objective function, system dynamics, or 
both (Janner et al., 2019). Good results have been obtained by 
using ANNs in approximate dynamic programming, which has 
resulted in the development of reinforcement learning 
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just 
as one example. 

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial 
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the 
fundamental part of an ANN, is shown in Fig. 1(a). During a 
forward pass (Omondi and Rajapackse, 2006), the output 𝑦𝑦 is 
determined by an input vector of features 𝑥𝑥, a dense matrix of 
weights 𝑊𝑊, a vector of biases 𝑏𝑏, and an activation function 𝑓𝑓 
as 

𝑦𝑦(𝑊𝑊, 𝑏𝑏) = 𝑓𝑓(𝑏𝑏 + 𝑊𝑊𝑊𝑊).          (1) 

The weights and biases are updated during a training process 
by minimizing a loss function ℒ(𝑊𝑊, 𝑏𝑏). Similarly, the structure 
of a VMC unit reorganized from (Xu and Basset, 2012) is 
shown in Fig. 1(b). This model shares some similarities with 
the structure of the perceptron if we consider 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑣𝑣}, 
𝑥𝑥 = 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟 ,  and 𝑏𝑏 = 𝑥𝑥𝑟𝑟𝟏𝟏, in which 1 is a vector with all 
elements being 1. During a forward pass, the output 𝑦𝑦, seen as 
the control 𝑢𝑢, is 

        𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟) = 𝑧𝑧(𝑥𝑥𝑎𝑎(𝑣𝑣, 𝑥𝑥𝑟𝑟)) = 𝑧𝑧 (𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑟𝑟)),       (2) 

where 𝑧𝑧 is a function to compute control commands, which 
involves the derivative calculation of the trajectory of 𝑥𝑥𝑎𝑎 
(actual or aggressor trajectory) and dynamic inversion. 
Updating 𝑣𝑣 (PCP) and possibly 𝑥𝑥𝑟𝑟  (reference point), during the 



38	 Luis Tituaña  et al. / IFAC PapersOnLine 56-3 (2023) 37–42

training process, is similar to solving the trajectory 
optimization problem by minimizing the loss function 
ℒ(𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟)) as in (Xu and Basset, 2012). One obvious 
difference between the models lies in that their weighting 
matrices are dense and diagonal, respectively, whereas the 
channels between the output of summation operations and the 
activation are single and fully connected, respectively, for the 
regular perceptron model (Fig. 1a) and the VMC network unit 
(Fig. 1b).  

 
(a)

 

 
(b) 

Figure 1. Similarities between, (a) a regular perceptron unit and, 
(b) the VMC unit. 

In this study, we take advantage of the potential of neural 
networks as universal approximators (Abramowitz and 
Stegan, 1970), and use this concept to approximate the solution 
of a discretized finite-horizon nonlinear constrained optimal 
trajectory problem. We construct an ANN perceptron model 
using the VMC rule at its core, limiting the optimization 
process to happen in an iteratively selected subspace. The 
input to the VMC unit is the initial guess of the problem’s 
solution and its output is the control command of the system. 
The shallow network has only one hidden layer consisting of 
three sequential stages. The first stage calculates the candidate 
trajectory 𝑥𝑥𝑎𝑎, the second stage approximates the derivative of 
this trajectory, and the third stage outputs the system’s control 
commands by means of an inverse dynamics (ID) function. 
Each node of the network represents a collocation point from 
a discretized trajectory using the Legendre-Gauss-Lobatto 
(LGL) pseudospectral method (Fahroo and Ross, 2002). 

The implementation of the VMC equation as the 
perceptron unit in NN reduces drastically the quantity of 
parameters requiring optimization, as well as the time 
complexity when compared to standard perceptron models. At 
the same time, formulating the direct collocation type VMC 
problems in a NN structure can utilize the backpropagation 
mechanism in NN aiming to increase the convergence speed, 
as well as different optimization algorithms therein. 

The structure of the rest of the paper is as follows. Section 
2 presents some preliminary concepts used in the study 
including optimal control problem formulation, numerical 
differentiation, and the VMC rule. In Section 3 we show the 

structure of our VMC-based neural network (VMC-NN), and 
explain its training and constraints inclusion. Section 4 shows 
the simulation results of two dynamical systems and shows 
their performance. Finally, in Section 5 we draw some 
conclusions based on simulation results and propose 
extensions of the concepts presented here. 

2. PRELIMINARIES 

2.1 Nonlinear constrained optimal trajectory design problems 

In a classic finite horizon optimal trajectory control 
problem (Bryson, 1975), the goal is to find appropriate control 
commands 𝑢𝑢(𝑡𝑡) that minimize the loss function 

 𝐽𝐽 = Φ(𝑥𝑥(𝑡𝑡𝑓𝑓), 𝑡𝑡𝑓𝑓) + ∫ 𝐿𝐿(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡)
𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑, (3) 

subject to the inequality constraints 

𝑑𝑑(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡) ≤ 0,            (4) 

the equality constraints  

                            ℎ(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡) = 0,            (5) 

and the system’s dynamical equation 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝐵𝐵𝐵𝐵(𝑡𝑡).            (6) 

We assume that the control command can be explicitly 
computed by inverting the dynamics in Eq. (6). For example, 
this assumption can be satisfied if matrix B is square and 
invertible or the system can be written in a control canonical 
form.  

2.2 Discretization method 

The Legendre-Gauss-Lobatto (LGL) based 
pseudospectral method (Fahroo and Ross, 2002) is used to 
discretize the trajectory, approximate the time derivatives, and 
integral of the loss function. It is worth mentioning that other 
discretization methods can also be used. The discretized 
functions are polynomial approximations at the LGL points. 
The original time domain, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓], is transformed to lie in 
the interval 𝜏𝜏 ∈ [𝜏𝜏0, 𝜏𝜏𝑁𝑁] = [−1,1], with 𝜏𝜏0 = −1, and 𝜏𝜏𝑁𝑁 = 1. 
The remaining LGL points are situated at the solutions of  
𝐿̇𝐿𝑁𝑁(𝑡𝑡) = 0, that is when the time derivative of the Legendre 
polynomial of degree N is equal to zero (Fahroo and Ross, 
2002). In the original time scale 𝑡𝑡, the nth-order derivative is 
calculated by 

 
𝑑𝑑𝑛𝑛𝒙𝒙
𝑑𝑑𝑡𝑡𝑛𝑛 = 2

(𝑡𝑡𝑓𝑓 − 𝑡𝑡0)𝑛𝑛 𝐷𝐷𝑛𝑛𝒙𝒙, (7) 

where 𝐷𝐷 is a (𝑁𝑁 + 1) × (𝑁𝑁 + 1) differentiation matrix 
(Fahroo and Ross, 2002). The calculation of the values of the 
matrix can be found in Fahroo and Ross, (2002). The vector 𝒙𝒙 
consists of (𝑁𝑁 + 1) discretized nodes of the state component 
x. The integral part of Eq. (3) is approximated with 

 ∫ 𝑓𝑓(𝑥𝑥(𝑡𝑡))𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

𝑡𝑡0
=

𝑡𝑡𝑓𝑓 − 𝑡𝑡0
2 ∑ 𝑓𝑓(𝑥𝑥(𝜏𝜏𝑘𝑘))

𝑁𝑁

𝑘𝑘=0
𝑤𝑤𝑘𝑘, (8) 



	 Luis Tituaña  et al. / IFAC PapersOnLine 56-3 (2023) 37–42	 39

training process, is similar to solving the trajectory 
optimization problem by minimizing the loss function 
ℒ(𝑢𝑢(𝑣𝑣, 𝑥𝑥𝑟𝑟)) as in (Xu and Basset, 2012). One obvious 
difference between the models lies in that their weighting 
matrices are dense and diagonal, respectively, whereas the 
channels between the output of summation operations and the 
activation are single and fully connected, respectively, for the 
regular perceptron model (Fig. 1a) and the VMC network unit 
(Fig. 1b).  

 
(a)

 

 
(b) 

Figure 1. Similarities between, (a) a regular perceptron unit and, 
(b) the VMC unit. 

In this study, we take advantage of the potential of neural 
networks as universal approximators (Abramowitz and 
Stegan, 1970), and use this concept to approximate the solution 
of a discretized finite-horizon nonlinear constrained optimal 
trajectory problem. We construct an ANN perceptron model 
using the VMC rule at its core, limiting the optimization 
process to happen in an iteratively selected subspace. The 
input to the VMC unit is the initial guess of the problem’s 
solution and its output is the control command of the system. 
The shallow network has only one hidden layer consisting of 
three sequential stages. The first stage calculates the candidate 
trajectory 𝑥𝑥𝑎𝑎, the second stage approximates the derivative of 
this trajectory, and the third stage outputs the system’s control 
commands by means of an inverse dynamics (ID) function. 
Each node of the network represents a collocation point from 
a discretized trajectory using the Legendre-Gauss-Lobatto 
(LGL) pseudospectral method (Fahroo and Ross, 2002). 

The implementation of the VMC equation as the 
perceptron unit in NN reduces drastically the quantity of 
parameters requiring optimization, as well as the time 
complexity when compared to standard perceptron models. At 
the same time, formulating the direct collocation type VMC 
problems in a NN structure can utilize the backpropagation 
mechanism in NN aiming to increase the convergence speed, 
as well as different optimization algorithms therein. 

The structure of the rest of the paper is as follows. Section 
2 presents some preliminary concepts used in the study 
including optimal control problem formulation, numerical 
differentiation, and the VMC rule. In Section 3 we show the 

structure of our VMC-based neural network (VMC-NN), and 
explain its training and constraints inclusion. Section 4 shows 
the simulation results of two dynamical systems and shows 
their performance. Finally, in Section 5 we draw some 
conclusions based on simulation results and propose 
extensions of the concepts presented here. 

2. PRELIMINARIES 

2.1 Nonlinear constrained optimal trajectory design problems 

In a classic finite horizon optimal trajectory control 
problem (Bryson, 1975), the goal is to find appropriate control 
commands 𝑢𝑢(𝑡𝑡) that minimize the loss function 

 𝐽𝐽 = Φ(𝑥𝑥(𝑡𝑡𝑓𝑓), 𝑡𝑡𝑓𝑓) + ∫ 𝐿𝐿(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡)
𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑, (3) 

subject to the inequality constraints 

𝑑𝑑(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡) ≤ 0,            (4) 

the equality constraints  

                            ℎ(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑡𝑡) = 0,            (5) 

and the system’s dynamical equation 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝐵𝐵𝐵𝐵(𝑡𝑡).            (6) 

We assume that the control command can be explicitly 
computed by inverting the dynamics in Eq. (6). For example, 
this assumption can be satisfied if matrix B is square and 
invertible or the system can be written in a control canonical 
form.  

2.2 Discretization method 

The Legendre-Gauss-Lobatto (LGL) based 
pseudospectral method (Fahroo and Ross, 2002) is used to 
discretize the trajectory, approximate the time derivatives, and 
integral of the loss function. It is worth mentioning that other 
discretization methods can also be used. The discretized 
functions are polynomial approximations at the LGL points. 
The original time domain, 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡𝑓𝑓], is transformed to lie in 
the interval 𝜏𝜏 ∈ [𝜏𝜏0, 𝜏𝜏𝑁𝑁] = [−1,1], with 𝜏𝜏0 = −1, and 𝜏𝜏𝑁𝑁 = 1. 
The remaining LGL points are situated at the solutions of  
𝐿̇𝐿𝑁𝑁(𝑡𝑡) = 0, that is when the time derivative of the Legendre 
polynomial of degree N is equal to zero (Fahroo and Ross, 
2002). In the original time scale 𝑡𝑡, the nth-order derivative is 
calculated by 

 
𝑑𝑑𝑛𝑛𝒙𝒙
𝑑𝑑𝑡𝑡𝑛𝑛 = 2

(𝑡𝑡𝑓𝑓 − 𝑡𝑡0)𝑛𝑛 𝐷𝐷𝑛𝑛𝒙𝒙, (7) 

where 𝐷𝐷 is a (𝑁𝑁 + 1) × (𝑁𝑁 + 1) differentiation matrix 
(Fahroo and Ross, 2002). The calculation of the values of the 
matrix can be found in Fahroo and Ross, (2002). The vector 𝒙𝒙 
consists of (𝑁𝑁 + 1) discretized nodes of the state component 
x. The integral part of Eq. (3) is approximated with 

 ∫ 𝑓𝑓(𝑥𝑥(𝑡𝑡))𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

𝑡𝑡0
=

𝑡𝑡𝑓𝑓 − 𝑡𝑡0
2 ∑ 𝑓𝑓(𝑥𝑥(𝜏𝜏𝑘𝑘))

𝑁𝑁

𝑘𝑘=0
𝑤𝑤𝑘𝑘, (8) 

where 𝑤𝑤𝑘𝑘 are weights given by 𝑤𝑤𝑘𝑘 = 2
𝑁𝑁(𝑁𝑁+1)

1
(𝐿𝐿𝑁𝑁(𝜏𝜏𝑘𝑘))2 and 

𝐿𝐿𝑁𝑁(𝜏𝜏𝑘𝑘) is the Legendre polynomial of degree N evaluated at 
the LGL point 𝜏𝜏𝑘𝑘 (Fahroo and Ross, 2002). 

2.3 Virtual motion camouflage equation 

In the observed motion camouflage phenomenon, an 
aggressor conceals its motion by appearing to be in the same 
direction with respect to a prey and a reference point 
(Srinivasan and Davey, 1995; Xu and Basset, 2012) as  

           𝑥𝑥𝑎𝑎(𝑡𝑡) = 𝑥𝑥𝑟𝑟 + 𝑣𝑣(𝑡𝑡)(𝑥𝑥𝑝𝑝(𝑡𝑡) − 𝑥𝑥𝑟𝑟),          (9) 

where 𝑥𝑥𝑎𝑎(𝑡𝑡) is the aggressor’s trajectory, 𝑥𝑥𝑟𝑟  is the reference 
point, 𝑥𝑥𝑝𝑝(𝑡𝑡) is the prey’s trajectory, and 𝑣𝑣(𝑡𝑡) is the path 
control parameter (PCP) that modifies the curvature and 
velocity of the prey’s trajectory (Xu and Basset, 2012).  

2.4 Dynamical constraints in the network 

Similar to augmented Lagrangian or penalty methods 
(Bertsekas, 1996), we redefine the initial optimization problem 
and convert it into an unconstrained one by adding the 
constraint functions to the loss function and setting their 
relative importance by using weights. Equality constraints, 
defined for the initial and terminal states, are eliminated by 
construction of the optimization problem in the VMC 
subspace. Inequality constraints are naturally discontinuous at 
their boundary. Thus, they are approximated by a continuous 
function and treated as soft constraints, i.e., violating them 
does not incur an infinite penalty. The continuous 
approximation is done using the sigmoid function (Smith et al., 
2017) as 

 𝑐𝑐(𝑥𝑥, 𝑢𝑢, 𝑡𝑡) ≈ 1
1 + 𝑒𝑒−𝛾𝛾𝛾𝛾(𝑥𝑥,𝑢𝑢,𝑡𝑡), (10) 

where 𝛾𝛾 controls the steepness of the function and is chosen to 
be large enough to improve the approximation. Thus, the 
augmented performance index is 

 𝐽𝐽 = ∫ [𝐿𝐿(𝑥𝑥, 𝑢𝑢, 𝑡𝑡) + 
𝑡𝑡𝑓𝑓

𝑡𝑡0
∑ 𝛽𝛽𝑗𝑗𝑐𝑐𝑗𝑗(𝑥𝑥, 𝑢𝑢, 𝑡𝑡)]𝑑𝑑𝑑𝑑,

𝑗𝑗
 (11) 

where 𝛽𝛽𝑗𝑗 is a positive penalty value for the 𝑗𝑗𝑗𝑗ℎ inequality 
constraint. 

3. VMC SUBSPACE NN ARCHITECTURE 

Figure 2 shows the information flow in a forward pass of 
the network as well as the backpropagation operation. The 
VMC-NN is a shallow network with the same number of nodes 
(artificial neurons) as the number of discretization points. In a 
forward pass, the input (initially guessed trajectory) passes 
through the hidden layer and is mapped into the actual 
trajectory by the transformation of the VMC rule with the 
weights of the network (PCPs) and the reference point 𝑥𝑥𝑟𝑟 . This 
trajectory goes through a nonlinear activation that consists of 
a numerical differentiation operation and inverse dynamics to 
produce the control commands. The loss of the network is then 
calculated by evaluating the control effort and the penalties 
related to the constraints of the system. The network is 

optimized, and thus the original optimization problem is 
solved during the backpropagation process.    

It is worth mentioning that the dynamics of the system are 
not propagated (forward propagation) during training since it 
is assumed that the inverse dynamics will produce the 
necessary control to drive the system to match the actual 
trajectory and satisfy the boundary constraints. This means that 
the dynamics, with the predicted control from the network, are 
not propagated to verify if the constraints have been met. 
Simulation results in Section 4 show the effect of this 
mismatch due to numerical errors in discretization in terms of 
a root mean square average error (RMSE) (Zhang and 
Scaramuzza, 2018) between the predicted and propagated 
trajectories. Nevertheless, dynamics propagation can be 
included during the forward pass to increase accuracy at the 
expense of increasing the training time. This could allow the 
use of low-order discretization methods to compensate for the 
added time. 

 
Figure 2. Data flow in the VMC-NN. 

Figure 3 shows the structure of the studied VMC-NN 
layers. All the points of the trajectory are used, making it a 
fully connected layer with high accuracy when calculating the 
derivatives. Note that the network can be customized to fit 
other discretization methods and the order of accuracy can be 
regarded as a new hyperparameter.  

 
Figure 3. VMC-NN structure with the LGL discretization 

method. 

4. SIMULATION RESULTS 

The proposed VMC-NN structure is compared against a 
regular fully connected (FC) neural network, with one hidden 
layer, trying to solve the same optimization problem in the first 
simulation example. The results are used to show the 
advantages of the proposed subspace NN-based optimization 
structure in terms of the loss function, time to convergence,  
error between the optimized trajectory and the propagated 
dynamics, and number of optimizable parameters. 
Additionally, in the first simulation example, we compare the 
results when optimizing VMC-NN using two readily available 
optimizers: LBFGS and Adam (Kingma and Ba, 2014). After 
training, the dynamics are propagated using a fourth-order 



40	 Luis Tituaña  et al. / IFAC PapersOnLine 56-3 (2023) 37–42

Runge-Kutta method (RK4) to verify that constraints have 
been met using the predicted control. 

The VMC-NN is implemented using Pytorch 2.0 with 
Python 3.8 in a laptop with an Intel i7-11800H @ 2.0 GHz 
processor and 16 GB of RAM. The reference point 𝑥𝑥𝑟𝑟  was 
considered an optimizable parameter. Changing the reference 
point changes the search space, but modifying the PCP 
explores it. This is the reason why 𝑥𝑥𝑟𝑟  was optimized later after 
the first 150 iterations (epochs) with a different learning rate. 
The training stops after the moving average of the loss 
function, with a window of 30, has reached a change rate of 
less than 5 × 10−5 (convergence). The number of collocation 
points is 21 (i.e., N=20). To measure how different the 
propagated trajectory is from the optimized trajectory, we use 
RMSE.  

The input layer of the FC-NN contains the same points as 
that of VMC-NN. The number of hidden nodes is also 21, 
which is the same size the VMC-NN is composed of, and their 
activation is the hyperbolic tangent function. The derivative 
and inverse dynamics operations are in the output layer. To 
meet the initial and terminal conditions, like the VMC-NN, the 
first and last nodes in the output layer are fixed to match such 
points. The network weights and biases are updated using the 
Adam optimizer. The learning rate is set to 0.001 for the first 
4000 iterations, following a decrease to 0.0001 for the 
remaining of the training. The same stop condition is 
considered only after the FC-NN has surpassed the average 
performance of the VMC-NN. 

4.1 Two-wheel robot 

The dynamic model of the system is given in Laumond et 
al., (1998), and the objective is to drive the robot in a planar 
motion from the initial point 𝑥𝑥(0) = [1, 1] 𝑚𝑚 to the terminal 
state 𝑥𝑥(10) = [6, 6] 𝑚𝑚. The initially guessed motion, for each 
of the ith components, is assumed to follow a convex quadratic 
function. The initial guess for the reference point is assumed 
to be 𝑥𝑥𝑟𝑟 = [5.4, 2] 𝑚𝑚, and the maximum values of control are 
set to be |𝑢𝑢1𝑚𝑚𝑎𝑎𝑥𝑥| ≤ 1 and |𝑢𝑢2𝑚𝑚𝑎𝑎𝑥𝑥| ≤ 135°. The obstacles are 
circles with radii of 1 m and 0.6 m whose centers are located 
at [3.5, 3.5] 𝑚𝑚 and [5.3, 4.4] 𝑚𝑚, respectively. The penalty 
values for those four inequality constraints are 𝛽𝛽1 = 𝛽𝛽2 = 30 
for touching the obstacles, and 𝛽𝛽3 = 𝛽𝛽4 = 3.5 for surpassing 
the maximum control. For this problem, the learning rate was 
0.01 for the PCPs and 0.4 for 𝑥𝑥𝑟𝑟 , respectively. 

Figure 4 illustrates how the VMC-NN solves the 
optimization problem. The network produces a control where 
the boundary and obstacle constraints are all met. However, 
the propagated dynamics do not match exactly with the actual 
propagated trajectory due to the assumption explained in 
Section 2.4. Table 1 shows a comparison between four metrics 
to assess the performance of the VMC-NN and the FC-NN. 
Both networks produced a similar trajectory that avoids the 
obstacles and meets the terminal state constraint within an 
error tolerance of 5 × 10−3. Due to the use of the motion rule, 
the VMC-NN contains only 21 optimizable parameters and 
manages to converge to an optimal solution in 4.03 s, while the 
FC-NN, with 1722 parameters, requires 8.56 s to solve the 
problem. However, the reduced time comes at the expense of 

optimality. The VMC-NN reaches a performance index of 
1.0327 with an RMSE of 0.00395, which are only a little bit 
higher than their FC-NN counterparts of 1.0138 and 0.00124, 
respectively. Nevertheless, the propagated dynamics closely 
follow the optimized trajectory using the generated control. 
The better performance of the FC-NN is expected as its search 
space is encompassed by the whole domain of the real 
numbers, which also explains the almost two times longer time 
it takes to train. 

The comparison of training results using the LBFGS and 
Adam optimizers for the VMC-NN is shown in Table 2. The 
LBFGS optimizer, with a learning rate of 0.5 and history size 
of 5, can reach a performance index of 1.0114, which is 
slightly better than the value of 1.0327 achieved using the 
training strategy mentioned at the beginning of this section. 
However, LBFGS is a very memory expensive algorithm and 
requires longer to converge, 6.67 s versus 4.03 s when using 
Adam. These results show how our network can be 
implemented with already existing training algorithms, and 
how it can be easily adapted to a custom update rule that 
considers the reduced dimension nature of its structure. 

4.2 Asymmetric rigid spacecraft 

In this example, the objective is to stop the rotation motion 
of an asymmetric rigid spacecraft, whose dynamics and 
constraints are given in Jaddu, (2002).  The initial and final 
states are 𝑥𝑥(0) = [0.01, 0.005, 0.001] 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠 and 𝑥𝑥(100) =
[0, 0, 0] 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠. The initially guessed trajectory for the angular 
velocity follows a concave quadratic function, whose vertex is 

 
Figure 4. Trajectories in the x-y plane of the optimized, 

initially guessed, and propagated dynamics. 

 

Table 1. Performance comparison for the two-wheel robot 
simulation example. 
 FC-NN VMC-NN 
Performance index 1.0138 1.0327 
Convergence time (s) 8.56 4.03 
RMSE 0.00124 0.00395 
# of optimizable parameters 1722 21 

 

Table 2. Comparison of the VMC-NN optimization using LBFGS 
and Adam as optimizers for the two-wheel robot example. 

Optimizer Performance 
index 

Convergence 
time (s) 

LBFGS 1.0114 6.67 
Adam 1.0327 4.03 

 



	 Luis Tituaña  et al. / IFAC PapersOnLine 56-3 (2023) 37–42	 41

Runge-Kutta method (RK4) to verify that constraints have 
been met using the predicted control. 

The VMC-NN is implemented using Pytorch 2.0 with 
Python 3.8 in a laptop with an Intel i7-11800H @ 2.0 GHz 
processor and 16 GB of RAM. The reference point 𝑥𝑥𝑟𝑟  was 
considered an optimizable parameter. Changing the reference 
point changes the search space, but modifying the PCP 
explores it. This is the reason why 𝑥𝑥𝑟𝑟  was optimized later after 
the first 150 iterations (epochs) with a different learning rate. 
The training stops after the moving average of the loss 
function, with a window of 30, has reached a change rate of 
less than 5 × 10−5 (convergence). The number of collocation 
points is 21 (i.e., N=20). To measure how different the 
propagated trajectory is from the optimized trajectory, we use 
RMSE.  

The input layer of the FC-NN contains the same points as 
that of VMC-NN. The number of hidden nodes is also 21, 
which is the same size the VMC-NN is composed of, and their 
activation is the hyperbolic tangent function. The derivative 
and inverse dynamics operations are in the output layer. To 
meet the initial and terminal conditions, like the VMC-NN, the 
first and last nodes in the output layer are fixed to match such 
points. The network weights and biases are updated using the 
Adam optimizer. The learning rate is set to 0.001 for the first 
4000 iterations, following a decrease to 0.0001 for the 
remaining of the training. The same stop condition is 
considered only after the FC-NN has surpassed the average 
performance of the VMC-NN. 

4.1 Two-wheel robot 

The dynamic model of the system is given in Laumond et 
al., (1998), and the objective is to drive the robot in a planar 
motion from the initial point 𝑥𝑥(0) = [1, 1] 𝑚𝑚 to the terminal 
state 𝑥𝑥(10) = [6, 6] 𝑚𝑚. The initially guessed motion, for each 
of the ith components, is assumed to follow a convex quadratic 
function. The initial guess for the reference point is assumed 
to be 𝑥𝑥𝑟𝑟 = [5.4, 2] 𝑚𝑚, and the maximum values of control are 
set to be |𝑢𝑢1𝑚𝑚𝑎𝑎𝑥𝑥| ≤ 1 and |𝑢𝑢2𝑚𝑚𝑎𝑎𝑥𝑥| ≤ 135°. The obstacles are 
circles with radii of 1 m and 0.6 m whose centers are located 
at [3.5, 3.5] 𝑚𝑚 and [5.3, 4.4] 𝑚𝑚, respectively. The penalty 
values for those four inequality constraints are 𝛽𝛽1 = 𝛽𝛽2 = 30 
for touching the obstacles, and 𝛽𝛽3 = 𝛽𝛽4 = 3.5 for surpassing 
the maximum control. For this problem, the learning rate was 
0.01 for the PCPs and 0.4 for 𝑥𝑥𝑟𝑟 , respectively. 

Figure 4 illustrates how the VMC-NN solves the 
optimization problem. The network produces a control where 
the boundary and obstacle constraints are all met. However, 
the propagated dynamics do not match exactly with the actual 
propagated trajectory due to the assumption explained in 
Section 2.4. Table 1 shows a comparison between four metrics 
to assess the performance of the VMC-NN and the FC-NN. 
Both networks produced a similar trajectory that avoids the 
obstacles and meets the terminal state constraint within an 
error tolerance of 5 × 10−3. Due to the use of the motion rule, 
the VMC-NN contains only 21 optimizable parameters and 
manages to converge to an optimal solution in 4.03 s, while the 
FC-NN, with 1722 parameters, requires 8.56 s to solve the 
problem. However, the reduced time comes at the expense of 

optimality. The VMC-NN reaches a performance index of 
1.0327 with an RMSE of 0.00395, which are only a little bit 
higher than their FC-NN counterparts of 1.0138 and 0.00124, 
respectively. Nevertheless, the propagated dynamics closely 
follow the optimized trajectory using the generated control. 
The better performance of the FC-NN is expected as its search 
space is encompassed by the whole domain of the real 
numbers, which also explains the almost two times longer time 
it takes to train. 

The comparison of training results using the LBFGS and 
Adam optimizers for the VMC-NN is shown in Table 2. The 
LBFGS optimizer, with a learning rate of 0.5 and history size 
of 5, can reach a performance index of 1.0114, which is 
slightly better than the value of 1.0327 achieved using the 
training strategy mentioned at the beginning of this section. 
However, LBFGS is a very memory expensive algorithm and 
requires longer to converge, 6.67 s versus 4.03 s when using 
Adam. These results show how our network can be 
implemented with already existing training algorithms, and 
how it can be easily adapted to a custom update rule that 
considers the reduced dimension nature of its structure. 

4.2 Asymmetric rigid spacecraft 

In this example, the objective is to stop the rotation motion 
of an asymmetric rigid spacecraft, whose dynamics and 
constraints are given in Jaddu, (2002).  The initial and final 
states are 𝑥𝑥(0) = [0.01, 0.005, 0.001] 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠 and 𝑥𝑥(100) =
[0, 0, 0] 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠. The initially guessed trajectory for the angular 
velocity follows a concave quadratic function, whose vertex is 

 
Figure 4. Trajectories in the x-y plane of the optimized, 

initially guessed, and propagated dynamics. 

 

Table 1. Performance comparison for the two-wheel robot 
simulation example. 
 FC-NN VMC-NN 
Performance index 1.0138 1.0327 
Convergence time (s) 8.56 4.03 
RMSE 0.00124 0.00395 
# of optimizable parameters 1722 21 

 

Table 2. Comparison of the VMC-NN optimization using LBFGS 
and Adam as optimizers for the two-wheel robot example. 

Optimizer Performance 
index 

Convergence 
time (s) 

LBFGS 1.0114 6.67 
Adam 1.0327 4.03 

 

at the initial point and passes through the final point. The initial 
guess for the reference point is 𝑥𝑥𝑟𝑟 = [0.9, 3.1, 0.07] 𝑟𝑟𝑑𝑑𝑑𝑑/𝑠𝑠, 
and all control torques are bounded by |𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥| ≤ 0.01 𝑁𝑁𝑚𝑚. An 
inequality constraint in (Jaddu, 2002) is adopted here for the 
first angular velocity as 

𝜔𝜔1 ≤ 5 × 10−6𝑡𝑡2 − 5 × 10−4𝑡𝑡 + 0.016.        (12) 

The penalty values for the four constraints are 𝛽𝛽1 = 6 for 
violating the constraint in (12), and 𝛽𝛽2 = 𝛽𝛽3 = 𝛽𝛽4 = 1.5 for 
exceeding the maximum control. For this problem, we used a 
learning rate of 0.001 for the PCPs and 0.1 for 𝑥𝑥𝑟𝑟 . In Fig. 5, 
the trajectories of the angular velocities are shown. Like the 
previous example, our network successfully finds a solution 
that meets the constraints, and the terminal condition is met 
with an RMSE of 0.0156. The performance index converges 
to an average value of 0.033 in about 0.86 s. The propagated 
dynamics match well with the optimized one with an overall 
RMSE of 0.0073, and are not visibly different in Fig. 5. 

It is worth noting that the solutions found are suboptimal 
as the search space is restricted by the motion rule. This is 
explained since changing the value of the PCPs modifies, at 
the same time, the trajectories of all the states in the problems. 
Nevertheless, this limitation is compensated for by the reduced 
number of optimizable parameters needed to train. Moreover, 
considering the reference point 𝑥𝑥𝑟𝑟  an optimizable parameter 
played a big role in finding a solution to the optimization 
problems. In our experience, when the network got stuck in a 
local minimum, changing the reference created a different path 
for which a solution could be found. Thus, updating the 
reference point with a higher learning rate than that of PCPs 
will allow the network to explore more areas of the domain. 

On a separate note, since the initially guessed trajectory is 
a virtual one, it is not restricted to follow any physical or 

dynamical law. Thus, manually selected points could be used 
to create a trajectory that already meets the constraints. This 
characteristic can also be exploited to expand the domain of 
the solution. 

Future direction 1: A second network can be developed 
to address the numerical mismatch introduced by the 
discretization method and other noise or uncertainties. This 
network could act as a “critic” and learn to compensate for the 
discrepancy in the calculation of the derivatives. 

Future direction 2: The proposed VMC-NN can be 
integrated into a receding horizon framework to enable its real-
time usage. 

Future direction 3: The stability of the closed-loop system 
will be analyzed for the feedforward network, and the 
robustness will be analyzed after the critic network is added to 
handle noise and uncertainties. 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, we presented the VMC-NN, an artificial 
neural network whose perceptron structure is modified using a 
bio-inspired motion rule.  The network benefits from the 
reduced dimension of the varying subspace to find an optimal 
control by optimizing a vector of weights instead of a dense 
matrix as in regular ANNs. The network’s forward pass 
employs a numerical differentiation method followed by an 
inverse dynamics operation. The network is shown to find an 
optimal solution while meeting a set of constraints. Future 
work will be focused on increasing the accuracy of the 
prediction by propagating the system dynamics in the forward 
pass and using low-order numerical differentiation methods to 
speed up training. This network can be regarded as a policy 
generation function, similar to an actor-critic based agent in 
the context of reinforcement learning. 

ACKNOWLEDGMENTS 

This work was partially supported by the National Science 
Foundation under Grants No.1924622. 

REFERENCES 

Abramowitz, M. and Stegan, I. A. (1970). Handbook of 
mathematical functions with formulas, graphs, and 
mathematical tables. NY: Dover Publications. 

Belkin, M. and Niyogi, P. (2003). Laplacian Eigenmaps for 
Dimensionality Reduction and Data Representation, 
Neural Computation, 15(6), 1373-1396. 

Bellman, R. (1961). Adaptive Control Processes: A Guided 
Tour. Princeton, Princeton University Press. 

Benson, D. A., Huntington, G. T., Thorvaldsen, T. P. and Rao, 
A. V. (2006). Direct trajectory optimization and costate 
estimation via an orthogonal collocation method, 
Journal of Guidance, Control, and Dynamics, 26(6), 
1435-1440. 

Bertsekas, D.P. (1996). Constrained optimization and 
Lagrange multiplier methods, Athena Scientific. 

 
Figure 5. Trajectories of the angular velocities versus time. 



42	 Luis Tituaña  et al. / IFAC PapersOnLine 56-3 (2023) 37–42

Bertsekas, D. P. (2020). Rollout, Policy Iteration, and 
Distributed Reinforcement Learning, Athena Scientific. 

Bryson, A. E. (1975). Applied optimal control: optimization, 
estimation and control, CRC Press. 

Busoniu, L., Babuska, R., De Schutter, B. and & Ernst, D. 
(2010). Reinforcement learning and dynamic 
programming using function approximators, CRC Press. 

Butcher, J. C. (2003). Numerical Methods for Ordinary 
Differential Equations, New York: John Wiley & Sons. 

Fahroo, F. and Ross, I. M. (2001). Costate Estimation by a 
Legendre Pseudospectral Method. Journal of Guidance, 
Control and Dynamics. 24(2), 370-275. 

Fahroo, F. and Ross, I. M. (2002). Direct trajectory 
optimization by a Chebyshev pseudospectral method, 
Journal of Guidance, Control, and Dynamics, 25(1), 
160-166. 

Fujimoto, S., van Hoof, H. and Meger, D. (2018). Addressing 
Function Approximation Error in Actor-Critic Methods, 
Proceedings of the 35th International Conference on 
Mahcine Learning (ICML), 80, 1582-1591. 

Garg, D. (2011). Direct trajectory optimization and costate 
estimation of finite-horizon and infinite-horizon optimal 
control problems using a Radau pseudospectral method, 
Computational Optimization, and Applications, 49(2), 
335-358. 

Gros, S. and Schild, A. (2017). Real-time economic nonlinear 
model predictive control for wind turbine control. 
International Journal of Control, 90(12), 2799-2812. 

Hornik, K. (1989). Multilayer Feedforward Networks are 
Universal Approximators. Neural Neworks, 2, 359-366. 

Janner, M., Fu, J., Zhang, M. and Levine, S. (2019). When to 
Trust your model: Model-based policy optimization, 
Neural Information Processing Systems (NeurIPS). 

Jaddu, H. (2002) Direct solution of nonlinear optimal control 
problems using quasilinearization and Chebyshev 
polynomials, Journal of the Franklin Institute, 339, 479-
498. 

Junkins, K. L. and Turner, J. D. (1986). Optimal Spacecraft 
Rotational Maneuvers, Elsevier, Amsterdam. 

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic 
optimization, arXiv:1412.6980. 

Kurenkov, A. et al. (2019). AC-Teach: A Bayesian Actor-
Critic Method for Policy Learning with an Ensemble of 
Suboptimal Teachers, 3rd Conference on Robot 
Learning (CoRL). 

Laumond, J. P., Sekhavat, S. and Lamiraux, F. (1998). 
Guidelines in nonholonomic motion planning for mobile 
robots. Robot Motion Planning and Control. Lecture 
Notes in Control and Information Sciences, vol 229, 
Springer, Berlin, Heidelberg. 

Lewis, F. L., Vrabie, D. and Syrmos V. L. (2012). Optimal 
control, John Wiley & Sons. 

Li, N., Remeikas, C., Xu, Y., Jayasuriya, S. and Ehsani, R. 
(2015). Task Assignment and trajectory planning 
algorithm for a class of cooperative agricultural robots. 
Journal of Dynamic Systems, Measurements and 
Control, 137(5), 051004. 

Li, Q. and Xu, Y. (2022). Dimension reduction based adaptive 
dynamic programming for optimal control of discrete-
time nonlinear control-affine systems, International 
Journal of Control, 1-13. 

Liu, X., Wen, Z. and Ya-Xiang, Y. (2021). Subspace Methods 
for Nonlinear Optimization, CSIAM Transactions on 
Applied Mathematics, 2(4), 585-651 

Ng, A. G. et al. (2006). Autonomous inverted helicopter flight 
via reinforcement learning, Experimental Robotics IX, 
363–372. 

Omondi, A. and Rajapackse, J. (2006). FPGA 
Implementations of Neural Networks, Springer. 

Powell, W. (2007). Approximate Dynamic Programming: 
Solving the Curses of Dimensionality. John Wiley & 
Sons. 

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and 
Klimov, O. (2017). Proximal Policy Optimization 
Algorithms, arXiv:1707.06347. 

Smith, N.E., Arendt, C. D., Cobb, R.G. and Reeger, J. A. 
(2017). Implementing conditional inequality constraints 
for optimal collision avoidance, Journal of Aeronautics 
& Aerospace Engineering, 6(195). 

Srinivasan, M. and Davey, M. (1995). Strategies for active 
camouflage of motion, Proceedings of the Royal Society 
of London. Series B: Biological Sciences, 259(1354), 
19–25. 

Sutton, R. and Barto, A. (2018) Reinforcement Learning: An 
Introduction (2nd ed.), The MIT Press. 

Xim, M., Pan, H. (2009). Integrated nonlinear optimal control 
of spacecraft in proximity operations. International 
Journal of Control. 83(2), 347-363. 

Xu, Y. and Basset, G. (2012). Sequential virtual motion 
camouflage method for optimal nonlinear constrained 
optimal trajectory control. Automatica. 48(7), 1273-
1285. 

Xu, Y. and Li, N. (2014). Bio-inspired varying subspace based 
computational framework for a class of nonlinear 
constrained optimal trajectory planning problems. 
Bioinspiration & Biomimetics. 9, 036010. 

Zhang, Z. and Scaramuzza, D. (1018). A Tutorial on 
Quantitative Trajectory Evaluation for Visual(-Inertial) 
Odometry, 2018 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), 7244-7251. 


