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Abstract: In this study, finite horizon constrained trajectory optimization is tackled by using Artificial
Neural Network with an embedded subspace manifold. The resulting network takes advantage of the
reduced dimension search space guided by a bio-inspired motion rule. The input nodes of the network are
interpreted as collocation points over the time domain transcribed by a pseudospectral discretization
method. The activation function for each node is the inverse of the dynamical system. The weights and
biases to be optimized in the network are analogous to the parameters of the motion rule. The network is
optimized during training by minimizing an augmented loss function where the constraints are considered
penalties. The proposed method is simulated in a collision avoidance trajectory planning problem of a
mobile robot with two driving wheels and an attitude slewing maneuver problem of an asymmetric rigid

body spacecraft.
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1. INTRODUCTION

Nonlinear constrained optimal trajectory design problems
have been studied for decades, and they have been extensively
applied in autonomous vehicles or robotics, manufacturing,
precision agriculture, space exploration, biomechanics, etc.
(Xin and Pan, 2009; Li et al., 2015; Gros and Schild, 2017).

An abundance of optimization theories and algorithms
have been suggested with effective implementations to tackle
various practical problems. Those methods include, but are
not limited to, indirect approaches (Bryson, 1975; Lewis et al.,
2012), direct approaches (Fahroo et al., 2002; Benson et al.,
2006), adaptive dynamic programming (Bellman, 1961;
Bertsekas, 2020; Ng et al.,, 2006), subspace approaches
(Kurenkov et al., 2019), and learning based algorithms (Sutton
and Barto, 1998). To date, real-time implementation of many
existing algorithms is still challenging for problems with high
nonlinearities and needing to consider stringent and/or pop-up
constraints due to issues related to the curse of dimensionality
(Powel, 2007). Thus, there is an uptrend of emerging
approximation solutions (Busoniu et al., 2010), finding
optimal solutions in carefully selected subspaces (Belkin and
Niyogi, 2003; Liu et al.,, 2021), or along certain solution
manifolds (Xu and Li, 2014).

As one of the motion phenomena observed in insects, the
virtual motion camouflage (VMC) rule (Srinivasan and Davey,
2005; Xu and Li, 2014) has been used to iteratively select a
subspace, in which an optimal solution is searched for in
nonlinear constrained optimal control problems. Two
variances of the algorithms have been investigated, one in the
category of direct collocation (Xu and Basset, 2012; Xu and
Li, 2014), while the other in the category of adaptive dynamic
programming (Qiang and Xu. 2022). Both have shown
satisfactory performance in terms of computational speed and
optimality.

Meanwhile, with the development of methods and tools
that facilitate the implementation of different kinds of artificial
neural networks (ANNSs), optimal control problems have been
addressed from the machine learning perspective. After all, the
training of an ANN is itself an optimization problem. Several
efforts have used ANNs to create optimal control policies by
approximating the objective function, system dynamics, or
both (Janner et al., 2019). Good results have been obtained by
using ANNs in approximate dynamic programming, which has
resulted in the development of reinforcement learning
algorithms (Schulman et al. 2017; Fujimoto et al., 2018), just
as one example.

There are similarities between ANN approaches and bio-
inspired subspace-based methods. The structure of an artificial
neuron (perceptron unit) (Omondi and Rajapackse, 2006), the
fundamental part of an ANN, is shown in Fig. 1(a). During a
forward pass (Omondi and Rajapackse, 2006), the output y is
determined by an input vector of features x, a dense matrix of
weights W, a vector of biases b, and an activation function f
as

y(W,b) = f(b + Wx). (1)

The weights and biases are updated during a training process
by minimizing a loss function L(W, b). Similarly, the structure
of a VMC unit reorganized from (Xu and Basset, 2012) is
shown in Fig. 1(b). This model shares some similarities with
the structure of the perceptron if we consider W = diag{v},
X =Xp, —X;, and b = x,1, in which 1 is a vector with all
elements being 1. During a forward pass, the output y, seen as
the control u, is

u(v,x,) = Z(xa(v, xr)) =z (xr + v(xp - xr)), 2)

where z is a function to compute control commands, which
involves the derivative calculation of the trajectory of x,
(actual or aggressor trajectory) and dynamic inversion.
Updating v (PCP) and possibly x, (reference point), during the
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training process, is similar to solving the trajectory
optimization problem by minimizing the loss function
L(u(v,x,.)) as in (Xu and Basset, 2012). One obvious
difference between the models lies in that their weighting
matrices are dense and diagonal, respectively, whereas the
channels between the output of summation operations and the
activation are single and fully connected, respectively, for the
regular perceptron model (Fig. 1a) and the VMC network unit
(Fig. 1b).
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Figure 1. Similarities between, (a) a regular perceptron unit and,
(b) the VMC unit.

In this study, we take advantage of the potential of neural
networks as universal approximators (Abramowitz and
Stegan, 1970), and use this concept to approximate the solution
of a discretized finite-horizon nonlinear constrained optimal
trajectory problem. We construct an ANN perceptron model
using the VMC rule at its core, limiting the optimization
process to happen in an iteratively selected subspace. The
input to the VMC unit is the initial guess of the problem’s
solution and its output is the control command of the system.
The shallow network has only one hidden layer consisting of
three sequential stages. The first stage calculates the candidate
trajectory x,, the second stage approximates the derivative of
this trajectory, and the third stage outputs the system’s control
commands by means of an inverse dynamics (ID) function.
Each node of the network represents a collocation point from
a discretized trajectory using the Legendre-Gauss-Lobatto
(LGL) pseudospectral method (Fahroo and Ross, 2002).

The implementation of the VMC equation as the
perceptron unit in NN reduces drastically the quantity of
parameters requiring optimization, as well as the time
complexity when compared to standard perceptron models. At
the same time, formulating the direct collocation type VMC
problems in a NN structure can utilize the backpropagation
mechanism in NN aiming to increase the convergence speed,
as well as different optimization algorithms therein.

The structure of the rest of the paper is as follows. Section
2 presents some preliminary concepts used in the study
including optimal control problem formulation, numerical
differentiation, and the VMC rule. In Section 3 we show the

structure of our VMC-based neural network (VMC-NN), and
explain its training and constraints inclusion. Section 4 shows
the simulation results of two dynamical systems and shows
their performance. Finally, in Section 5 we draw some
conclusions based on simulation results and propose
extensions of the concepts presented here.

2. PRELIMINARIES

2.1 Nonlinear constrained optimal trajectory design problems

In a classic finite horizon optimal trajectory control
problem (Bryson, 1975), the goal is to find appropriate control
commands u(t) that minimize the loss function

tr
J = o(x(tf) tr) + ft Lx(®),u(®),t)dt,  (3)

subject to the inequality constraints

glx(@®),u(®),t) <0, (4)

the equality constraints

h(x(t), u(®), t)

and the system’s dynamical equation
x(t) = f(x) + Bu(®). (6)

We assume that the control command can be explicitly
computed by inverting the dynamics in Eq. (6). For example,
this assumption can be satisfied if matrix B is square and
invertible or the system can be written in a control canonical
form.

0, 6))

2.2 Discretization method

The Legendre-Gauss-Lobatto (LGL) based
pseudospectral method (Fahroo and Ross, 2002) is used to
discretize the trajectory, approximate the time derivatives, and
integral of the loss function. It is worth mentioning that other
discretization methods can also be used. The discretized
functions are polynomial approximations at the LGL points.
The original time domain, t € [to, tf], is transformed to lie in
the interval T € [1y, Ty] = [—1,1], with Ty = —1, and T = 1.
The remaining LGL points are situated at the solutions of
Ly(t) = 0, that is when the time derivative of the Legendre
polynomial of degree N is equal to zero (Fahroo and Ross,
2002). In the original time scale t, the nth-order derivative is
calculated by

d™"x 2 Dy .

4 (=t 7
where D is a (N+1)x (N + 1) differentiation matrix
(Fahroo and Ross, 2002). The calculation of the values of the
matrix can be found in Fahroo and Ross, (2002). The vector x

consists of (N + 1) discretized nodes of the state component
x. The integral part of Eq. (3) is approximated with

tf_to

fff(x(t))dt= 5

N
Y fa@)we  ®
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2 1
NN+ (Ly(1p))°
Ly(7y) is the Legendre polynomial of degree N evaluated at
the LGL point t;, (Fahroo and Ross, 2002).

where w), are weights given by w;, = and

2.3 Virtual motion camouflage equation

In the observed motion camouflage phenomenon, an
aggressor conceals its motion by appearing to be in the same
direction with respect to a prey and a reference point
(Srinivasan and Davey, 1995; Xu and Basset, 2012) as

xq(t) = x +v(0) (xp ) - xr)' ©)

where x,(t) is the aggressor’s trajectory, x, is the reference
point, x,(t) is the prey’s trajectory, and v(t) is the path
control parameter (PCP) that modifies the curvature and
velocity of the prey’s trajectory (Xu and Basset, 2012).

2.4 Dynamical constraints in the network

Similar to augmented Lagrangian or penalty methods
(Bertsekas, 1996), we redefine the initial optimization problem
and convert it into an unconstrained one by adding the
constraint functions to the loss function and setting their
relative importance by using weights. Equality constraints,
defined for the initial and terminal states, are eliminated by
construction of the optimization problem in the VMC
subspace. Inequality constraints are naturally discontinuous at
their boundary. Thus, they are approximated by a continuous
function and treated as soft constraints, i.e., violating them
does mnot incur an infinite penalty. The continuous
approximation is done using the sigmoid function (Smith et al.,
2017) as
(10)

cCw ) ¥ T sty
where y controls the steepness of the function and is chosen to
be large enough to improve the approximation. Thus, the
augmented performance index is

tr
J= | R@wo+ ) peGuwold
to 5
where f; is a positive penalty value for the jth inequality
constraint.

3. VMC SUBSPACE NN ARCHITECTURE

Figure 2 shows the information flow in a forward pass of
the network as well as the backpropagation operation. The
VMC-NN is a shallow network with the same number of nodes
(artificial neurons) as the number of discretization points. In a
forward pass, the input (initially guessed trajectory) passes
through the hidden layer and is mapped into the actual
trajectory by the transformation of the VMC rule with the
weights of the network (PCPs) and the reference point x,.. This
trajectory goes through a nonlinear activation that consists of
a numerical differentiation operation and inverse dynamics to
produce the control commands. The loss of the network is then
calculated by evaluating the control effort and the penalties
related to the constraints of the system. The network is

optimized, and thus the original optimization problem is
solved during the backpropagation process.

It is worth mentioning that the dynamics of the system are
not propagated (forward propagation) during training since it
is assumed that the inverse dynamics will produce the
necessary control to drive the system to match the actual
trajectory and satisfy the boundary constraints. This means that
the dynamics, with the predicted control from the network, are
not propagated to verify if the constraints have been met.
Simulation results in Section 4 show the effect of this
mismatch due to numerical errors in discretization in terms of
a root mean square average error (RMSE) (Zhang and
Scaramuzza, 2018) between the predicted and propagated
trajectories. Nevertheless, dynamics propagation can be
included during the forward pass to increase accuracy at the
expense of increasing the training time. This could allow the
use of low-order discretization methods to compensate for the
added time.
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Figure 2. Data flow in the VMC-NN.

Figure 3 shows the structure of the studied VMC-NN
layers. All the points of the trajectory are used, making it a
fully connected layer with high accuracy when calculating the
derivatives. Note that the network can be customized to fit
other discretization methods and the order of accuracy can be
regarded as a new hyperparameter.
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Figure 3. VMC-NN structure with the LGL discretization
method.

4. SIMULATION RESULTS

The proposed VMC-NN structure is compared against a
regular fully connected (FC) neural network, with one hidden
layer, trying to solve the same optimization problem in the first
simulation example. The results are used to show the
advantages of the proposed subspace NN-based optimization
structure in terms of the loss function, time to convergence,
error between the optimized trajectory and the propagated
dynamics, and number of optimizable parameters.
Additionally, in the first simulation example, we compare the
results when optimizing VMC-NN using two readily available
optimizers: LBFGS and Adam (Kingma and Ba, 2014). After
training, the dynamics are propagated using a fourth-order
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Runge-Kutta method (RK4) to verify that constraints have
been met using the predicted control.

The VMC-NN is implemented using Pytorch 2.0 with
Python 3.8 in a laptop with an Intel i7-11800H @ 2.0 GHz
processor and 16 GB of RAM. The reference point x, was
considered an optimizable parameter. Changing the reference
point changes the search space, but modifying the PCP
explores it. This is the reason why x,. was optimized later after
the first 150 iterations (epochs) with a different learning rate.
The training stops after the moving average of the loss
function, with a window of 30, has reached a change rate of
less than 5 X 10™° (convergence). The number of collocation
points is 21 (i.e., N=20). To measure how different the
propagated trajectory is from the optimized trajectory, we use
RMSE.

The input layer of the FC-NN contains the same points as
that of VMC-NN. The number of hidden nodes is also 21,
which is the same size the VMC-NN is composed of, and their
activation is the hyperbolic tangent function. The derivative
and inverse dynamics operations are in the output layer. To
meet the initial and terminal conditions, like the VMC-NN, the
first and last nodes in the output layer are fixed to match such
points. The network weights and biases are updated using the
Adam optimizer. The learning rate is set to 0.001 for the first
4000 iterations, following a decrease to 0.0001 for the
remaining of the training. The same stop condition is
considered only after the FC-NN has surpassed the average
performance of the VMC-NN.

4.1 Two-wheel robot

The dynamic model of the system is given in Laumond et
al., (1998), and the objective is to drive the robot in a planar
motion from the initial point x(0) = [1,1] m to the terminal
state x(10) = [6, 6] m. The initially guessed motion, for each
of the ith components, is assumed to follow a convex quadratic
function. The initial guess for the reference point is assumed
to be x,, = [5.4, 2] m, and the maximum values of control are
set to be |u1max| < 1and |u2max| < 135°. The obstacles are
circles with radii of 1 m and 0.6 m whose centers are located
at [3.5, 3.5] m and [5.3, 4.4] m, respectively. The penalty
values for those four inequality constraints are 8; = 8, = 30
for touching the obstacles, and f; = 8, = 3.5 for surpassing
the maximum control. For this problem, the learning rate was
0.01 for the PCPs and 0.4 for x,, respectively.

Figure 4 illustrates how the VMC-NN solves the
optimization problem. The network produces a control where
the boundary and obstacle constraints are all met. However,
the propagated dynamics do not match exactly with the actual
propagated trajectory due to the assumption explained in
Section 2.4. Table 1 shows a comparison between four metrics
to assess the performance of the VMC-NN and the FC-NN.
Both networks produced a similar trajectory that avoids the
obstacles and meets the terminal state constraint within an
error tolerance of 5 X 1073. Due to the use of the motion rule,
the VMC-NN contains only 21 optimizable parameters and
manages to converge to an optimal solution in 4.03 s, while the
FC-NN, with 1722 parameters, requires 8.56 s to solve the
problem. However, the reduced time comes at the expense of
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Figure 4. Trajectories in the x-y plane of the optimized,
initially guessed, and propagated dynamics.

optimality. The VMC-NN reaches a performance index of
1.0327 with an RMSE of 0.00395, which are only a little bit
higher than their FC-NN counterparts of 1.0138 and 0.00124,
respectively. Nevertheless, the propagated dynamics closely
follow the optimized trajectory using the generated control.
The better performance of the FC-NN is expected as its search
space is encompassed by the whole domain of the real
numbers, which also explains the almost two times longer time
it takes to train.

Table 1. Performance comparison for the two-wheel robot
simulation example.
FC-NN | VMC-NN
Performance index 1.0138 1.0327
Convergence time (s) 8.56 4.03
RMSE 0.00124 0.00395
# of optimizable parameters 1722 21

The comparison of training results using the LBFGS and
Adam optimizers for the VMC-NN is shown in Table 2. The
LBFGS optimizer, with a learning rate of 0.5 and history size
of 5, can reach a performance index of 1.0114, which is
slightly better than the value of 1.0327 achieved using the
training strategy mentioned at the beginning of this section.
However, LBFGS is a very memory expensive algorithm and
requires longer to converge, 6.67 s versus 4.03 s when using
Adam. These results show how our network can be
implemented with already existing training algorithms, and
how it can be easily adapted to a custom update rule that
considers the reduced dimension nature of its structure.

Table 2. Comparison of the VMC-NN optimization using LBFGS
and Adam as optimizers for the two-wheel robot example.

Optimizer Perfprmance Coqvergence
index time (s)
LBFGS 1.0114 6.67
Adam 1.0327 4.03

4.2 Asymmetric rigid spacecraft

In this example, the objective is to stop the rotation motion
of an asymmetric rigid spacecraft, whose dynamics and
constraints are given in Jaddu, (2002). The initial and final
states are x(0) = [0.01,0.005,0.001] rad/s and x(100) =
[0,0,0] rad/s. The initially guessed trajectory for the angular
velocity follows a concave quadratic function, whose vertex is
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at the initial point and passes through the final point. The initial
guess for the reference point is x,. = [0.9, 3.1,0.07] rad/s,
and all control torques are bounded by [u,;4,] < 0.01 Nm. An
inequality constraint in (Jaddu, 2002) is adopted here for the
first angular velocity as

w; 5% 10762 — 5 x 1074t + 0.016. (12)

The penalty values for the four constraints are f; = 6 for
violating the constraint in (12), and S, = 3 = 5, = 1.5 for
exceeding the maximum control. For this problem, we used a
learning rate of 0.001 for the PCPs and 0.1 for x,. In Fig. 5,
the trajectories of the angular velocities are shown. Like the
previous example, our network successfully finds a solution
that meets the constraints, and the terminal condition is met
with an RMSE of 0.0156. The performance index converges
to an average value of 0.033 in about 0.86 s. The propagated
dynamics match well with the optimized one with an overall
RMSE of 0.0073, and are not visibly different in Fig. 5.
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Figure 5. Trajectories of the angular velocities versus time.

It is worth noting that the solutions found are suboptimal
as the search space is restricted by the motion rule. This is
explained since changing the value of the PCPs modifies, at
the same time, the trajectories of all the states in the problems.
Nevertheless, this limitation is compensated for by the reduced
number of optimizable parameters needed to train. Moreover,
considering the reference point x, an optimizable parameter
played a big role in finding a solution to the optimization
problems. In our experience, when the network got stuck in a
local minimum, changing the reference created a different path
for which a solution could be found. Thus, updating the
reference point with a higher learning rate than that of PCPs
will allow the network to explore more areas of the domain.

On a separate note, since the initially guessed trajectory is
a virtual one, it is not restricted to follow any physical or

dynamical law. Thus, manually selected points could be used
to create a trajectory that already meets the constraints. This
characteristic can also be exploited to expand the domain of
the solution.

Future direction 1: A second network can be developed
to address the numerical mismatch introduced by the
discretization method and other noise or uncertainties. This
network could act as a “critic” and learn to compensate for the
discrepancy in the calculation of the derivatives.

Future direction 2: The proposed VMC-NN can be
integrated into a receding horizon framework to enable its real-
time usage.

Future direction 3: The stability of the closed-loop system
will be analyzed for the feedforward network, and the
robustness will be analyzed after the critic network is added to
handle noise and uncertainties.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we presented the VMC-NN, an artificial
neural network whose perceptron structure is modified using a
bio-inspired motion rule. The network benefits from the
reduced dimension of the varying subspace to find an optimal
control by optimizing a vector of weights instead of a dense
matrix as in regular ANNs. The network’s forward pass
employs a numerical differentiation method followed by an
inverse dynamics operation. The network is shown to find an
optimal solution while meeting a set of constraints. Future
work will be focused on increasing the accuracy of the
prediction by propagating the system dynamics in the forward
pass and using low-order numerical differentiation methods to
speed up training. This network can be regarded as a policy
generation function, similar to an actor-critic based agent in
the context of reinforcement learning.
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