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ABSTRACT. Robots and machines have helped farmers with many repetitive and physically demanding tasks such as plowing,
spraying pesticides, irrigation, land monitoring, and harvesting. Efficient allocation or scheduling of robots and machines
in agricultural field operations is crucial for modern farming to achieve a high profit margin. This article provides a
comprehensive review of the problems and methods published in the open literature for scheduling and task allocation of
agricultural robots and autonomous machines, to support the future improvement and implementation of these techniques.
The review is divided into the following categories: i) types of scheduling problems, ii) different scheduling methods, and
iii) validation environment of algorithms. This review also provides insights into future research questions that need to be
answered.

Keywords. Scheduling methods, agricultural robotics, task allocation

I. Introduction

The agricultural industry has faced difficulties throughout the years, such as drastic environmental changes, labor
shortages, land limitations, and regulations (Syngenta, n.d.; AgAmerica, 2020). Pests and plant diseases in crops severely
affect this industry with an estimated combined loss of up to 290 billion USD to the world economy (Gula, 2023). The
increase in the average age of farm workers, currently at 41 years old in the USA (NCFH, 2022), is also a concerning issue
as workers may experience declining health or productivity due to the extended physical demands of the job, which in turn
may reduce their ability to work, exacerbating the already existing problem of lack of manual labor. These challenges,
together with the increase in world population, which amounted 8.04 billion in 2023 (USA Census Bureau, 2023), has forced
farmers, scientists, and engineers to find alternatives or solutions to increase agricultural production in a sustainable,
efficient, and cost-effective manner (Gao et al., 2018; Defterli et al., 2016).
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Agricultural robots and machinery have already aided growers in labor-intensive and repetitive operations such as
pruning, water irrigation, and harvesting, lowering labor dependency, and reducing production costs (Zimmer et al., 2021).
Using robotics and machinery relieves farmers’ physical stress to a certain degree, but also comes with great challenges
(Javaid et al.,2022). Factors that must be considered in automated agricultural operations include navigation throughout
uneven terrains, obstacle avoidance, and adaptability to changing farm conditions (Xaud et al., 2019; Li and Xu, 2022).

In open-field environments, it is desired that robots and machinery are adaptable to different crops, cultivation methods,
and unstructured layouts (Bechar and Vigneault, 2016). Sometimes, different terrain conditions will give robots and
machinery different challenges in field operations (Badgujar et al., 2023). Most robotics in open fields are limited in their
ability to adapt to variations in their hardware, equipment, or field conditions, making them less robust and flexible in certain
scenarios (Bechar and Vigneault, 2016).

For greenhouse operations, farmers control and regulate the environment, such as light exposure, water irrigation,
temperature, and humidity, creating the appropriate conditions for crops to grow and achieve a desired quality. To maintain
these conditions, farmers incur expensive production costs which means higher sale prices (Ghani et al., 2019). Greenhouses
contain multiple obstacles, such as plants, support structures, and equipment that robots need to navigate around (Jiang et
al., 2022). Challenges and improvements still need to be made, considering that the conditions can be modified in the
greenhouse environment.

To enhance operation efficiency, increase operation adaptability, and reduce the probabilities of single-point-of-failure,
teams of robots or machinery are expected to perform more agricultural operations, such as harvesting and phenotyping
(Mapes et al., 2022; Gao et al., 2018). Therefore, there is an urgent need to find an efficient way to organize farming tasks
and/or coordinate autonomous vehicles. To date, research has been done on using different scheduling methods to adapt to
different farming models, methods, and situations. For example, the integration of blockchain technology has been proposed
to enhance transparency and resource utilization in agricultural machinery scheduling (Yang et al., 2020). A multi-objective
algorithm has been used to allocate appropriate agricultural machinery to specific farmland operations and plan appropriate
driving routing for each agricultural machine considering uncertainties (Liang, 2022).

In this paper, we conduct a detailed survey about recent developments in solving scheduling problems in agricultural
field operations and their proposed solutions or algorithms. It is worth mentioning that there are many review papers that
exist discussing current development and future research directions in agricultural machinery and robotics in field
operations. For example, Thayer et al., (2018) outline the challenges and limitations of ground robotics in diverse
agricultural environments providing insight into different agricultural robotics configurations. In the work of Lytridis et al.,
(2021), cooperative robotics in agriculture fields was surveyed, identifying challenges and state-of-the-art of the field.
Kulbacki, et al. (2018) provided a review of using drones in remote sensing and their application in smart farming for
productivity and yield increases. Furthermore, Gu et al., (2020) present a review of scheduling methods to improve irrigation
efficiency. Karampelia et al., (2023) provide a review of unmanned aerial vehicles (UAV) task allocation to improve energy
efficiency and their use in precision agriculture. Bochtis et al., (2014) presented an overview of advancements in agricultural
machinery management from the point of view of capacity, task times, route planning, scheduling, and performance
evaluation. Defterli et al., (2016) reviewed robotic technologies used for strawberry fields and discussed their different
operations, electrical and mechanical systems. Lastly, Carpin, (2022) provides an overview of scheduling problems for
mobile robots, focusing on the orienteering problem and its variations. Different algorithms developed by their research
group are also reviewed addressing the single-agent, multi-agent, and stochastic versions of the problem (Carpin, 2022).

The present study focuses on robotic and machinery task allocation and scheduling, covering a wide range of topics that
appeared in papers published by researchers worldwide. For instance, we include a summary of scheduling papers from
different geographic regions and different agricultural products, an analysis of various scheduling algorithms
(centralized/decentralized, auction-based, heuristic approaches, etc.), and their integration with agricultural machinery and
robots, considering communication protocols and real-time decision-making. Specific operations such as planting,
harvesting, and irrigation are highlighted, alongside strategies for resource optimization and reducing operational costs.

The paper will be organized into the following four sections. In Section II, "Types of Scheduling Problems" will be
discussed. In Section III, "Scheduling Methods," we will discuss different scheduling methods used in agricultural
scheduling operations and their implementations. In Section IV, "Validation Environment of Algorithms", we will review
those algorithms tested in simulated environments with or without real farm settings and configurations. Lastly, in Section
V, "Future Directions", research directions are suggested to encourage more efforts to investigate this area.



I1. Types of Scheduling Problems

Modern agricultural operations require complex tasks such as plowing, sowing, irrigation, spraying, and/or harvesting
while relying on information collected from different sensing platforms (Fountas et al., 2020). Although most of single robot
implementations are still not mature enough to be widely adopted by growers, many researchers have already started thinking
about a frontier question: how to effectively schedule robots or autonomous machinery to achieve common objectives under
different resource or physical constraints. This section discusses the specific challenges associated with different regions,
agricultural products, and operations.

I1. 1 Regions

The papers reviewed in this study comprise several regions of the world, where 21 correspond to Asia, 12 to Europe,
and 7 to North America as shown in Fig. 1. Please note that, if a paper is written by authors from more than one continent,
all related continents will be added by 1.

Others 4.7%

Figure 1. Publicly accessible papers were written by authors worldwide, and about 50% of the papers reviewed in this study come from Asia.

Unique challenges arise due to region-specific topologies and resources that shape and bring forward a variety of
scheduling problems. In Asia for example, with 59.1% of the world’s population (Worldometer, n.d.) and about 35% of the
planet's arable lands (FAO, 2023), the rapid increase in urbanization and the decrease of natural resources, fertile lands, and
other factors have driven the use of fragmental farmlands as a common farming practice (Tan et al., 2006). This inhibits the
mechanization of different agricultural practices making harvesting one of the biggest challenges within agricultural
scheduling, where precision and timing are important for minimizing losses and ensuring a successful harvesting period
(Ritchie and Roser, 2019). In (He et al., 2018), they consider this land topology in their algorithm and apply it for the case
of rural areas in the Anhui province of China, where traditional wheat harvesting methods (designed for large-scale arable
lands) cannot be implemented.

In Europe and North America, small to large scales of arable lands and diverse planting patterns (USDA, 2019; European
Commission, 2020) pose different challenges in agricultural task scheduling compared to Asia's fragmented farmland
practices. In Europe, one of the scheduling problems arises in vineyards, where precisely timed collaboration between
humans and robots for the cultivation of grapes demands for an efficient management method of agricultural tasks such as
serving, harvesting, box filling, and product transportation (Lippi et al., 2023a). In the Netherlands, irrigation and fertilizer
delivery for root crops represent an important objective in scheduling applications where time and location impact their
health, nutrient management, and disease prevention while optimizing the use of water (Cobbenhagen et al., 2018).
Moreover, American agricultural products are diverse (USDA, 2019), which demands agricultural scheduling solutions to
each unique problem. In the case of grapes, the scheduling problem focuses on the coordination of multiple robot operations
within a time and budget constraint in a vineyard for precision irrigation (Thayer et al., 2020).

I1. 2 Agricultural Products

It is necessary to develop a specific scheduling method targeting challenges associated with different agricultural products
since each may pose specific challenges in farm management. However, we noted that most surveyed papers are for generic
products, not customized for a particular type of crop.

As shown in Table 1, specialty crops demand labor-intensive operations in fields such as irrigation, disease detection, and
harvesting. To reduce labor dependance, many researchers have studied cooperative robots in conducting those operations
and correspondingly different scheduling algorithms have been investigated for specialty crops such as strawberries (Mapes
etal., 2022; Lytridis et al., 2021; Peng et al., 2020) and grapes (Lippi et al., 2023a, Thayer et al., 2020; Carpin, 2022; Hizatate
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and Noguchi, 2023). In vineyards, grapes destined for wine production require a certain amount of water to promote flavor
and sugar content; thus, an appropriate irrigation scheduling is needed to prevent vine health deterioration and product yield
losses (Thayer et al., 2020).

Other scheduling algorithms that consider the use of relatively large size autonomous machines or robots have been
researched for crops such as wheat (He et al., 2018), beans (Karampelia et al., 2023), and sugar beet (Anokic et al., 2020).

I1. 3 Operations

For different farming operations, it is important to consider the diverse scheduling problems present such as harvesting,
irrigation, and phenotyping. Also, this provides us with an understanding of problems and solutions that can impact time
consumption and reduction, operational costs, and yield increase of agricultural products and operations (Fountas, 2020).

As shown in Table 1, scheduling algorithms have been investigated for simulated operations such as harvesting (Mapes
et al., 2022; Lippi et al., 2023a; Dai et al., 2023), harvesting transportation aid (Peng et al., 2020), machine maintenance (Hu
et al., 2020), weeding (Guo et al., 2024), irrigation (Cobbenhagen et al., 2018; Kan et al., 2021), ploughing (Chen et al.,
2021), and pesticide spraying (Sun et al., 2019; Hizatate and Noguchi 2023).

Table 1. Products and Operations in Agricultural Robotic and Machinery Scheduling Problems

Authors Year Agricultural Products Operations
Wang, M. et al. 2023 / Static sensor network for monitoring
Hu et al. 2020 / Maintenance service for harvesting
Guo et al. 2024 Crops (not specific) Weeding
Lippi et al. 2023a, 2023b Table grapes, vine Reaching & transportation aid
Peng et al. 2020 Strawberry Harvesting & transportation/aid
Conesa-Mufioz et al. 2015 / Multipath planning
Edmonds et al. 2021 Row crops (not specific) Data collection/row crop inspection
Cobbenhagen et al. 2018 Root crops (e.g. spring wheat) Trrigation
Anoki¢ et al. 2020 Sugar beet Resource transportation
Dai et al. 2023 / Harvesting
Thayer et al. 2020 Vineyard Irrigation
Zuniga Vazquez et al. 2021 Cotton, guayule, guar Production planning, machinery scheduling
Li, Y. etal. 2022 / Pesticide application route planning
Chen et al. 2021 Crops Ploughing
Sun et al. 2019 / Watering, sowing, and pesticide spraying
Barrientos et al. 2011 Vineyard Aerial imaging/area partitioning
Thayer et al. 2018 Vineyard grapes Irrigation
Mapes and Xu 2022 Strawberry Harvesting
Cao et al. 2021 Crops Harvesting & transport
Kan et al. 2021 Vineyard grapes Irrigation
Sun et al. 2020 / Pesticide spraying
He et al. 2018 Wheat Harvesting
Hizatate et al. 2023 Vineyard Pesticide spraying

II1. Scheduling Methods

We have identified three main categories that cover the different approaches to scheduling methods that have been applied
in agricultural operations using robots or autonomous machinery. Scheduling methods consider in one way or another the
level of authority in the planning and execution process (centralized/decentralized), the variety of tasks and the types of
agents that can perform them (homogeneous/heterogeneous), and the solution method of the proposed scheduling problem
(heuristic/"exact"). It is worth noting that most of the methods have been tested in simulated environments and not with
actual robots on farms. We attribute this to the fact that teams of autonomous robots haven’t been widely adopted to work
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on farms.

II1. 1 Centralized vs Decentralized Methods

A centralized scheduling method for task assignment involves a central station for the coordination of robots and
machinery coordination. The central station, e.g. a leading robot, collects information from the group, makes scheduling
decisions, and sends the commands to the team. Correspondingly, in decentralized approaches, robots or autonomous
machinery share information with each other and have authority over their resources and decisions. Typically, centralized
approaches generate optimal solutions and are relatively easy to implement. However, as the complexity of the scheduling
problem grows (more robots, constraints, and tasks), centralized approaches become intractable, and decentralized methods
are preferred due to their flexibility, computational efficiency, and scalability at the expense of optimality.

As shown in Fig. 2, most of the papers we surveyed employed centralized methods. For example, Santilli et al., (2021)
used a centralized greedy algorithm to arrange tasks among robots and humans for their H2020 PANTHEON project, in
which precedence constraints were addressed by a Petri net. As another example, Lippi et al., (2023b) tackled the problem
of assigning robots to assist human operators using a mixed integer programming algorithm in a centralized fashion.
Additionally, for cooperative unmanned ground vehicles (UGV), Souza et al., (2022) presented a mixed integer linear
programming scheduling model for a fleet of homogeneous autonomous electric agricultural vehicles that considers the
equipment and availability of the robots. The decision aspect of the algorithm is not distributed between the vehicles since
they are controlled by a central authority that processes all the information and provides the actions to the robots (Souza et
al., 2022). A collaborative product innovation system is presented by Luo and Zhang, (2016), focusing on centralized
machinery scheduling to improve operations in numerous farmlands.

" Centralized

Santilli et al. 2021, Souza et al. 2022
Huang et al. 2023, Noer et al. 2022 ___________

Ve Wang, M. et al. 2023, Guo et al. 2024,

// Uyeh etal. 2021, Zhao et al. 2023 h S
/ T . .\
f Lippi et al. 2023a, Thayer et al. 2020 Dece n trallzed N
f Lippi et al. 2023b Both \ N\

\"‘ Wang, N. et al. 2023, Peng et al. 2020 Hu et al. 2020

[ Ma et al. 2022, Li, Y. et al. 2022, Liang et al. 2022 Yang et al. 2020
|\ Thayer et al. 2018,  Chen et al. 2021 Cobbenhagen et al. 2018  Arbanas et al. 2021
\ Dai et al. 2023, Luetal. 2023 Anokic et al. 2020 | Barrientos et al. 2011 y
\ Edmonds et al. 2021  He etal. 2018 Mapes et al. 2022 /
\ Sun et al. 2019, Hizatate et al. 2023 S
\\ Seo et al. 2018, Cao et al. 2021 P ~
Kan et al. 2021, Sun et al. 2020 _—
Luo et al. 2016, Zuniga Vazquez et al, 2021 B
\%saMuﬁnz etal. 2015 /
~ //

Figure 2. Scheduling algorithms are either centralized, decentralized, or both.

There are only a handful of papers using decentralized scheduling methods in autonomous operations in agricultural
fields. For instance, in (Yang et al., 2020), the blockchain concept is introduced in a simulated agricultural machinery
scheduling problem.

It is interesting to see that there is a similar low number of papers that use a mix of both methods, where the algorithms
have centralized and decentralized layers. For instance, in the algorithm in (Mapes et al., 2022), two layers use negotiation
strategies between neighbors (decentralized), while a third layer provides a centralized solution in case the negotiation
method fails. As another example, Hu et al., (2020) proposed a dynamic covering model with particle swarm optimization
(PSO) that involves a two-stage methodology for agricultural machinery maintenance for dynamic planning capacity.

It is worth noting that it does not matter if an algorithm is centralized or decentralized, the robots in the system should be
equipped with communication systems and compatible interfaces allowing smooth coordination and cooperation between
them. This permits cooperation and the use of their diverse abilities in tasks like planting, spraying, irrigation, and harvesting
improving efficiency and output.

I11. 2 Homogeneous vs Heterogeneous

Agricultural machinery is often designed to address a specific task; hence, several types of machines are needed in
complex farm operations. These vehicles vary in size, functionality, flexibility, level of autonomy, and can operate in
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different environments such as air, ground, or underwater, as shown in Fig. 3. During the formulation of a scheduling
problem, the type of machine used to perform the tasks is a crucial design parameter that is almost exclusive to each proposed
algorithm. Robots and machinery with identical characteristics (homogeneous) can simplify the solution of the problem
while addressing a very limited number of tasks (like a sprayer robot could be used for irrigation and pesticide delivery but
not for harvesting). On the other hand, considering multiple machines with different characteristics (heterogeneous) for
various tasks increases the complexity of the problem but addresses a more general and dynamic scenario for scheduling in
farms.

As an example of homogeneous robots/machines in agricultural fields, Mapes et al., (2022) assumed all harvesting robots
in a strawberry field are the same, leading to the same constraints for convenience in developing the scheduling algorithm.
Many agricultural robots are electrically powered, and their charging sequence needs to be scheduled as done in (Uyeh et
al., 2021), where all involved robots have the same settings. Also, a team of homogeneous unmanned aerial vehicles (UAVs)
were used in plant protection activities where both path planning and task allocation were considered (Li, Y. et al. 2022).

Many papers designed their scheduling algorithms considering autonomous heterogeneous robotics. A very clear
example is the design of scheduling algorithms where UAVs, ground robots, and human operators carry out their tasks in a
working farm environment (Santilli et al., 2021). Some studies like (Liang, 2022) proposed a heuristic algorithm which
works for autonomous agents that have different characteristics although no specific agricultural operations or vehicles were
referred to.

Homogenous UAVS Heterogeneous UGVs/UAVs

Lietal. 2022 Santilli et al. 2021, Arbanas et al. 2021
Sun et al. 2019, 2020

g Conesa-Muiioz et al. 2015,  Edmonds et al. 2021
eo et al. 2018
Barrientos et al. 2011 Lippi et al. 2023a
Homogenous UGVS Heterogeneous UGVs
Guo et al. 2024, Uyeh et al. 2021 (Sizes, Products, and Operations)
Peng et al. 2020, Anokic et al. 2020
Dai et al. 2023, Lu et al. 2023 il B e el IR
Ma et al. 2022, Luoetal. 2016

Thayer et al. 2020,  Chen et al. 2021
Thayer et al. 2018,  Mapes et al. 2022
Hizatate et al. 2023, Kan etal. 2021
Lippi et al. 2023b, Hu et al. 2020
Zhao et al. 2023, Wang, N. et al. 2023
Cao et al. 2021, He et al. 2018,

Zuniga Vazquez et al. 2021
Liang et al. 2022 Souza et al. 2022
Cobbenhagen et al. 2018,  Huang et al. 2023

Figure 3. Homogeneous and heterogeneous robots and/or machinery have been the subject of study for scheduling algorithm development.

III. 3 Heuristic vs “Exact”

The largest difference between those scheduling methods in the surveyed papers is if a method is “heuristic” or “exact”.
Here we will say a method is “exact” if they have a rigorous analysis of the algorithm’s convergence and optimality, or if a
solution is guaranteed.

In the category of “exact” methods, a non-exclusive list of example papers includes auction-based (Mapes et al., 2022),
mixed integer linear program (MILP) (Souza et al., 2022), integer linear program (Noer et al., 2022), Dijkstra’s algorithm
(Wang, N. et al., 2023), greedy method (Seo et al., 2018), and branch and bound search (Peng et al., 2020), as well as bidding
method (Cobbenhagen et al., 2018) and evolutionary algorithm (Arbanas et al., 2021) combined with MILP. Furthermore,
(Zuniga Vazquez et al., 2021) introduce an integer linear optimization for identifying optimal scheduling decisions for crops
to maximize farmers' profits. The proposed model integrates multi-crop and machinery planning into a single model and
also allows crop rotation in defined period sets (Zuniga Vazquez et al., 2021). The model differentiates between crops and
considers irrigation water requirements (Zuniga Vazquez et al., 2021). As can be seen in Fig. 4, many scheduling problems
in agricultural operations have been formulated in the MILP framework, where objective function and constraints are all
assumed to be linear. However, most of those papers using MILP are validated in simulation that does not have many real
farm setting considerations.



Heuristic
Yang et al. 2020, Santilli et al. 2021
Huang et al. 2023, Hu et al. 2020
Guo et al. 2024, Uyeh et al. 2021
Zhao et al. 2023, Ma et al. 2022
Liang et al. 2022, Dai et al. 2023
Luetal 2023, Thayer et al. 2020
Thayer et al. 2018
Chen et al. 2021, Sun et al. 2019
Cao etal. 2021, Luo etal. 2016
He et al. 2018, Hizatate et al. 2023
Conesa-Muiioz et al. 2015
Wang, M. et al. 2023

“Exact”
Both Cobbenhagen et al. 2018

Mapes et al. 2022
Souza et al. 2022
Noer et al. 2022
Edmonds et al. 2021
Lippi et al. 2023a

Lippi et al. 2023b
Sun et al. 2020 Seo et al. 2018

Wang, N. et al. 2023 Kan et al. 2021

Zuniga Vazquez et al. 2021
Barrientos et al. 2011

Peng et al. 2020
Arbanas et al. 2021
Anokic et al. 2020
Lietal 2022

Figure 4. There are different heuristic and “exact” methods for robotic and machine scheduling problems in agricultural fields, and some of
them are a mixture of them.

Heuristic methods, unlike "exact” methods, focus more on finding suboptimal or feasible solutions than finding the
optimal one, however, they can effectively handle nonlinear dynamics and constraints. These kinds of approaches use
strategies inspired by nature phenomena or stem from practical experiences. Many of these heuristic methods can be scalable
or applied to real-world scenarios, but generally, they don’t guarantee the optimal solution to their presented problem. Some
example heuristic algorithms include hybrid particle swarm optimization (Huang et al., 2023), a greedy algorithm with Petri
net (Santilli et al., 2021), evolutionary algorithm (Uyeh et al., 2021), and genetic algorithm and its variations, such as the
implementation of a blockchain structure (Yang et al., 2020), multilayer structure (Hizatate and Noguchi, 2023), a modified
fuzzy hybrid (Luo et al., 2016), simulated annealing method (Chen et al., 2021) and metropolis criterion with an ant colony
algorithm (Zhao et al., 2023). It is interesting to see in (Ma et al., 2022) that a multi-population co-evolutionary genetic
algorithm is used for solving a formulated mixed-integer programming problem of dynamically scheduling shared
agricultural machinery satisfying the requirements of farming services on demand. A method put forward for farmland
machinery task assignment was the combination of a dynamic and static assignment model based on an ant colony and an
improved ant colony algorithm (Cao et al., 2021). (Sun et al., 2020) suggested a heuristic rule inspired by a dragonfly's
behavior using a mixed integer linear program for task coordination within an agricultural environment through centralized
homogeneous cooperative UAV systems.

We have seen papers propose algorithms that include both heuristic and “exact” approaches to solve the scheduling
problem in a hierarchical structure. In (Anoki¢ et al., 2020), a heuristic approach based on neighboring variable search is
used when the size of the cooperative robots is large, while an “exact” method solving a MILP is used for a small-scale
system. To reduce task time in a teamwork approach, Lu et al., (2023) use a multiple-objective multiple traveling-salesman
problem (MO-MTSP) for multiple robot task allocation using a collaborative discrete artificial bee colony (CDABC)
algorithm.

IV. Validation Environment of Algorithms

Scheduling problems in autonomous agricultural robots/machines have not been a hot topic until recently; as can be seen
in the reference list, most papers discussed herein were published in the last five years. Correspondingly, most of the
scheduling problems we surveyed are validated in a simulated environment and not in real agricultural fields. Simulated
models, to a certain extent, allow researchers to test, visualize, and enhance their scheduling algorithm performance before
hardware experiments become available. This section examines those papers in the following two categories as shown in
Table 2, validation in simulation environments without specific farm settings, and environments with detailed or real farm
settings.

IV. 1 Validation in Simulation without Specific Farm Settings

As can be seen in Table 2, a significant percentage of the reviewed papers validated their scheduling algorithms in
simulation settings without considering specific field settings. Those studies focused on their theoretical contributions of
algorithms or applying mathematical tools from other domains in agricultural robotic or machinery problems. For example,



Souza et al., (2022) applied a mixed integer programming (MIP) algorithm to a scheduling problem for a fleet of
heterogeneous electric robots, in which the simulation environment is generic and does not have many specific settings of
agricultural fields or operations.

IV. 2 Validations in Simulation with Real Farm Settings

Real farming settings are used in some studies to create an environment with a certain degree of fidelity to test their
proposed scheduling algorithms. For example, both Peng et al., (2020) and Mapes et al., (2022) constructed their simulation
validation environment considering the semi-structure layout of commercial strawberry fields, where robots cannot cross
beds in any row and only one or two robots can exist in a row. Monte Carlo runs were used in these papers to either validate
its branch and search algorithm in scheduling robots to transport harvested strawberries by human pickers (Peng et al., 2020)
or a distributed, negotiation-based tri-layer algorithm to schedule robotic harvesters when certain events arise (Mapes et al.,
2022).

In some other studies, the simulation environment is not set up for a specific product, instead, it is constructed considering
a certain type of operation. For example, Hu et al., (2020) tested their agricultural machinery maintenance scheduling
algorithm in a simulation based on real data about farm topologies, vehicle speed, maintenance requirements, constraints
between response time and task starting time, etc. Hizatate and Noguchi, (2023) and Thayer et al., (2018), tested their
respective pesticide application and irrigation scheduling algorithms in simulated orchards considering their real-farm
settings. In (Hizatate and Noguchi, 2023), the amount of pesticide consumed and the need to replenish a robot were
considered as constraints. In the case of (Ma et al., 2022), they analyzed rice harvesting operations and compared the results
with production data from three companies in an open field simulation environment with real data for agricultural machinery
scheduling.

Also, we have seen papers talking about utilizing robots to collect real field data that is used to construct high-fidelity
simulations for validating their scheduling algorithms. In (Kan et al., 2021), they use a combination of simulated data and
real-world experimental datasets to validate their algorithm. To obtain simulated data for the comparison, they used a
controlled environment with a predefined number of rows and columns (Kan et al., 2021). A portable emitter actuation
device was mounted in a robotic arm on a robot moving through a vineyard for required emitter adjustments (Kan et al.,
2021).

There are a few studies that are neither for specific products nor for specific farm operations. For example, in (Uyeh et
al., 2021), a scheduling algorithm was developed for battery charging scheduling problems, in which many constraints
coming from batteries are considered, while not many considerations of the field or operations are in the simulation
environment.

Table 2. Algorithms have been tested in different simulation environments.

Validation Environment

No Specific Farm Settings Real Farm Settings

Yang, et al. 2020

Thayer, et al. 2020

Peng, et al. 2020

Santilli, et al. 2021

Seo, et al. 2018

Ma, et al. 2022

Souza, et al. 2022

Sun, et al. 2020

Edmonds, et al. 2021

Huang, et al. 2023

Luo, et al. 2016

Cao, et al. 2021

Noer, et al. 2022

Anokig¢, et al. 2020

He, etal. 2018

Hu, et al. 2020

Wang, M. et al. 2023

Hizatate, et al. 2023

Guo, et al. 2024

Arbanas, et al. 2021

Kan, et al. 2021

Uyeh, et al. 2021

Liang, et al. 2022

Zhao, et al. 2023

Lippi, et al. 2023a

Li, Y. et al. 2022

Zuniga Vazquez, et al. 2021

Dai, et al. 2023

Sun, et al. 2019

Chen, et al. 2021

Lu, et al. 2023

Wang, N. et al. 2023

Thayer, et al. 2018, 2020

Cobbenhagen, et al. 2018

Mapes, M. et al. 2022

V. Future Research Directions

As can be seen, most of the papers surveyed in this study were published within the last five years, and there are very
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few or almost none scheduling studies that were published more than 15 years ago. Scheduling algorithm research will go
on an uptrend along with the development and the progressive adoption of robotics and/or autonomous machines in
agricultural field operations and management. Here are a few research directions based on the authors’ point of view.

(i) When validating or simulating a proposed scheduling algorithm, high-fidelity models should be used including actual
farm layout (e.g., geometry, weather conditions, and terrain conditions), real plant parameters (e.g. geometry and growth
pattern), accurate sensing and actuation capabilities (e.g. field of view in vision and range in the communication), etc. This
is one crucial research gap between theoretical study/algorithm development and hardware demonstration. Furthermore,
realistic constraints will affect the development of scheduling algorithms.

(i) As we have shown in this study, there are very little (almost none) studies that included real hardware (robots or
machines) in validation or demonstration. It will significantly increase growers’ adoption rate of scheduling solutions after
seeing successful hardware demonstrations.

(i) It will be beneficial to researchers and designers if reliable, plug-and-play type wireless communication
software/firmware is available. It is time-consuming to program such reliable software so robots in a team can communicate
with each other, significantly lowering the challenges in hardware implementation of robot/machine scheduling.

(iv) The inclusion of machine learning or artificial intelligence methods for scheduling problems in agriculture is an area
that needs to be investigated. Artificial intelligence can help obtain insights that are data-driven, especially when the problem
domain is large, and many domain parameters are uncertain.

VI. Conclusion

The progressive adoption of robots and machines in agricultural operations has allowed farmers to tackle issues related
to labor shortages, ever-increasing labor costs, and to manage larger areas of land while producing higher yields. The use of
single large-sized robots/machines becomes ineffective for these purposes as the complexity of farm operations increases,
and teams of smaller robots/machines are preferred due to their flexibility and adaptability, avoiding single-point-of-failure
problems. This has introduced the need for strategies to efficiently manage the diverse types of machines and allocate
resources to successfully address a wide variety of tasks on a farm. In contrast to other technologies used in robotic platforms
or an ensemble of machines, scheduling problems have attracted relatively less attention. This review article summarizes
the up-to-date scheduling and task allocation research and development in agricultural field robotic operations. All the
surveyed papers (not exclusive), found via Google Scholar, are included in the categorized discussion: problems, methods,
and validation environment. With this survey, we expect to shed light on emerging challenges that need to be addressed to
fully exploit the efficiency and profitability of multi-robot/machines in the current agricultural industry revolution.
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