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ABSTRACT. Robots and machines have helped farmers with many repetitive and physically demanding tasks such as plowing, 

spraying pesticides, irrigation, land monitoring, and harvesting. Efficient allocation or scheduling of robots and machines 

in agricultural field operations is crucial for modern farming to achieve a high profit margin. This article provides a 

comprehensive review of the problems and methods published in the open literature for scheduling and task allocation of 

agricultural robots and autonomous machines, to support the future improvement and implementation of these techniques. 

The review is divided into the following categories: i) types of scheduling problems, ii) different scheduling methods, and 

iii) validation environment of algorithms. This review also provides insights into future research questions that need to be 

answered. 

Keywords. Scheduling methods, agricultural robotics, task allocation 

I. Introduction  

  

The agricultural industry has faced difficulties throughout the years, such as drastic environmental changes, labor 

shortages, land limitations, and regulations (Syngenta, n.d.; AgAmerica, 2020). Pests and plant diseases in crops severely 

affect this industry with an estimated combined loss of up to 290 billion USD to the world economy (Gula, 2023). The 

increase in the average age of farm workers, currently at 41 years old in the USA (NCFH, 2022), is also a concerning issue 

as workers may experience declining health or productivity due to the extended physical demands of the job, which in turn 

may reduce their ability to work, exacerbating the already existing problem of lack of manual labor. These challenges, 

together with the increase in world population, which amounted 8.04 billion in 2023 (USA Census Bureau, 2023), has forced 

farmers, scientists, and engineers to find alternatives or solutions to increase agricultural production in a sustainable, 

efficient, and cost-effective manner (Gao et al., 2018; Defterli et al., 2016).  
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Agricultural robots and machinery have already aided growers in labor-intensive and repetitive operations such as 

pruning, water irrigation, and harvesting, lowering labor dependency, and reducing production costs (Zimmer et al., 2021). 

Using robotics and machinery relieves farmers’ physical stress to a certain degree, but also comes with great challenges 

(Javaid et al.,2022). Factors that must be considered in automated agricultural operations include navigation throughout 

uneven terrains, obstacle avoidance, and adaptability to changing farm conditions (Xaud et al., 2019; Li and Xu, 2022).  

In open-field environments, it is desired that robots and machinery are adaptable to different crops, cultivation methods, 

and unstructured layouts (Bechar and Vigneault, 2016). Sometimes, different terrain conditions will give robots and 

machinery different challenges in field operations (Badgujar et al., 2023). Most robotics in open fields are limited in their 

ability to adapt to variations in their hardware, equipment, or field conditions, making them less robust and flexible in certain 

scenarios (Bechar and Vigneault, 2016).   

For greenhouse operations, farmers control and regulate the environment, such as light exposure, water irrigation, 

temperature, and humidity, creating the appropriate conditions for crops to grow and achieve a desired quality. To maintain 

these conditions, farmers incur expensive production costs which means higher sale prices (Ghani et al., 2019). Greenhouses 

contain multiple obstacles, such as plants, support structures, and equipment that robots need to navigate around (Jiang et 

al., 2022). Challenges and improvements still need to be made, considering that the conditions can be modified in the 

greenhouse environment.  

To enhance operation efficiency, increase operation adaptability, and reduce the probabilities of single-point-of-failure, 

teams of robots or machinery are expected to perform more agricultural operations, such as harvesting and phenotyping 

(Mapes et al., 2022; Gao et al., 2018). Therefore, there is an urgent need to find an efficient way to organize farming tasks 

and/or coordinate autonomous vehicles. To date, research has been done on using different scheduling methods to adapt to 

different farming models, methods, and situations. For example, the integration of blockchain technology has been proposed 

to enhance transparency and resource utilization in agricultural machinery scheduling (Yang et al., 2020). A multi-objective 

algorithm has been used to allocate appropriate agricultural machinery to specific farmland operations and plan appropriate 

driving routing for each agricultural machine considering uncertainties (Liang, 2022).   

In this paper, we conduct a detailed survey about recent developments in solving scheduling problems in agricultural 

field operations and their proposed solutions or algorithms.  It is worth mentioning that there are many review papers that 

exist discussing current development and future research directions in agricultural machinery and robotics in field 

operations.  For example, Thayer et al., (2018) outline the challenges and limitations of ground robotics in diverse 

agricultural environments providing insight into different agricultural robotics configurations. In the work of Lytridis et al., 

(2021), cooperative robotics in agriculture fields was surveyed, identifying challenges and state-of-the-art of the field. 

Kulbacki, et al. (2018) provided a review of using drones in remote sensing and their application in smart farming for 

productivity and yield increases. Furthermore, Gu et al., (2020) present a review of scheduling methods to improve irrigation 

efficiency. Karampelia et al., (2023) provide a review of unmanned aerial vehicles (UAV) task allocation to improve energy 

efficiency and their use in precision agriculture. Bochtis et al., (2014) presented an overview of advancements in agricultural 

machinery management from the point of view of capacity, task times, route planning, scheduling, and performance 

evaluation. Defterli et al., (2016) reviewed robotic technologies used for strawberry fields and discussed their different 

operations, electrical and mechanical systems. Lastly, Carpin, (2022) provides an overview of scheduling problems for 

mobile robots, focusing on the orienteering problem and its variations. Different algorithms developed by their research 

group are also reviewed addressing the single-agent, multi-agent, and stochastic versions of the problem (Carpin, 2022). 

The present study focuses on robotic and machinery task allocation and scheduling, covering a wide range of topics that 

appeared in papers published by researchers worldwide. For instance, we include a summary of scheduling papers from 

different geographic regions and different agricultural products, an analysis of various scheduling algorithms 

(centralized/decentralized, auction-based, heuristic approaches, etc.), and their integration with agricultural machinery and 

robots, considering communication protocols and real-time decision-making. Specific operations such as planting, 

harvesting, and irrigation are highlighted, alongside strategies for resource optimization and reducing operational costs. 

The paper will be organized into the following four sections. In Section II, "Types of Scheduling Problems" will be 

discussed. In Section III, "Scheduling Methods," we will discuss different scheduling methods used in agricultural 

scheduling operations and their implementations. In Section IV, "Validation Environment of Algorithms", we will review 

those algorithms tested in simulated environments with or without real farm settings and configurations. Lastly, in Section 

V, "Future Directions", research directions are suggested to encourage more efforts to investigate this area. 
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II. Types of Scheduling Problems  

Modern agricultural operations require complex tasks such as plowing, sowing, irrigation, spraying, and/or harvesting 

while relying on information collected from different sensing platforms (Fountas et al., 2020). Although most of single robot 

implementations are still not mature enough to be widely adopted by growers, many researchers have already started thinking 

about a frontier question: how to effectively schedule robots or autonomous machinery to achieve common objectives under 

different resource or physical constraints. This section discusses the specific challenges associated with different regions, 

agricultural products, and operations. 

II. 1 Regions 

The papers reviewed in this study comprise several regions of the world, where 21 correspond to Asia, 12 to Europe, 

and 7 to North America as shown in Fig. 1. Please note that, if a paper is written by authors from more than one continent, 

all related continents will be added by 1. 

 
Figure 1. Publicly accessible papers were written by authors worldwide, and about 50% of the papers reviewed in this study come from Asia. 

Unique challenges arise due to region-specific topologies and resources that shape and bring forward a variety of 

scheduling problems. In Asia for example, with 59.1% of the world’s population (Worldometer,  n.d.) and about 35% of the 

planet's arable lands (FAO, 2023), the rapid increase in urbanization and the decrease of natural resources, fertile lands, and 

other factors have driven the use of fragmental farmlands as a common farming practice (Tan et al., 2006). This inhibits the 

mechanization of different agricultural practices making harvesting one of the biggest challenges within agricultural 

scheduling, where precision and timing are important for minimizing losses and ensuring a successful harvesting period 

(Ritchie and Roser, 2019). In (He et al., 2018), they consider this land topology in their algorithm and apply it for the case 

of rural areas in the Anhui province of China, where traditional wheat harvesting methods (designed for large-scale arable 

lands) cannot be implemented. 

In Europe and North America, small to large scales of arable lands and diverse planting patterns (USDA, 2019; European 

Commission, 2020) pose different challenges in agricultural task scheduling compared to Asia's fragmented farmland 

practices. In Europe, one of the scheduling problems arises in vineyards, where precisely timed collaboration between 

humans and robots for the cultivation of grapes demands for an efficient management method of agricultural tasks such as 

serving, harvesting, box filling, and product transportation (Lippi et al., 2023a). In the Netherlands, irrigation and fertilizer 

delivery for root crops represent an important objective in scheduling applications where time and location impact their 

health, nutrient management, and disease prevention while optimizing the use of water (Cobbenhagen et al., 2018). 

Moreover, American agricultural products are diverse (USDA, 2019), which demands agricultural scheduling solutions to 

each unique problem. In the case of grapes, the scheduling problem focuses on the coordination of multiple robot operations 

within a time and budget constraint in a vineyard for precision irrigation (Thayer et al., 2020). 

II. 2 Agricultural Products 

It is necessary to develop a specific scheduling method targeting challenges associated with different agricultural products 

since each may pose specific challenges in farm management. However, we noted that most surveyed papers are for generic 

products, not customized for a particular type of crop. 

As shown in Table 1, specialty crops demand labor-intensive operations in fields such as irrigation, disease detection, and 

harvesting. To reduce labor dependance, many researchers have studied cooperative robots in conducting those operations 

and correspondingly different scheduling algorithms have been investigated for specialty crops such as strawberries (Mapes 

et al., 2022; Lytridis et al., 2021; Peng et al., 2020) and grapes (Lippi et al., 2023a, Thayer et al., 2020; Carpin, 2022; Hizatate 
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and Noguchi, 2023). In vineyards, grapes destined for wine production require a certain amount of water to promote flavor 

and sugar content; thus, an appropriate irrigation scheduling is needed to prevent vine health deterioration and product yield 

losses (Thayer et al., 2020). 

Other scheduling algorithms that consider the use of relatively large size autonomous machines or robots have been 

researched for crops such as wheat (He et al., 2018), beans (Karampelia et al., 2023), and sugar beet (Anokić et al., 2020). 

II. 3 Operations 

For different farming operations, it is important to consider the diverse scheduling problems present such as harvesting, 

irrigation, and phenotyping. Also, this provides us with an understanding of problems and solutions that can impact time 

consumption and reduction, operational costs, and yield increase of agricultural products and operations (Fountas, 2020). 

As shown in Table 1, scheduling algorithms have been investigated for simulated operations such as harvesting (Mapes 

et al., 2022; Lippi et al., 2023a; Dai et al., 2023), harvesting transportation aid (Peng et al., 2020), machine maintenance (Hu 

et al., 2020), weeding (Guo et al., 2024), irrigation (Cobbenhagen et al., 2018; Kan et al., 2021), ploughing (Chen et al., 

2021), and pesticide spraying (Sun et al., 2019; Hizatate and Noguchi 2023). 

Table 1. Products and Operations in Agricultural Robotic and Machinery Scheduling Problems 

Authors Year Agricultural Products Operations 

Wang, M. et al. 2023 / Static sensor network for monitoring 

Hu et al. 2020 / Maintenance service for harvesting 

Guo et al. 2024 Crops (not specific) Weeding 

Lippi et al. 2023a, 2023b Table grapes, vine Reaching & transportation aid 

Peng et al. 2020 Strawberry Harvesting & transportation/aid 

Conesa-Muñoz et al.  2015 / Multipath planning 

Edmonds et al. 2021 Row crops (not specific) Data collection/row crop inspection 

Cobbenhagen et al. 2018 Root crops (e.g. spring wheat) Irrigation 

Anokić et al. 2020 Sugar beet Resource transportation 

Dai et al. 2023 / Harvesting 

Thayer et al. 2020 Vineyard Irrigation 

Zuniga Vazquez et al. 2021 Cotton, guayule, guar Production planning, machinery scheduling 

Li, Y. et al. 2022 / Pesticide application route planning 

Chen et al. 2021 Crops Ploughing 

Sun et al. 2019 / Watering, sowing, and pesticide spraying 

Barrientos et al. 2011 Vineyard Aerial imaging/area partitioning 

Thayer et al. 2018 Vineyard grapes Irrigation 

Mapes and Xu 2022 Strawberry Harvesting 

Cao et al. 2021 Crops Harvesting & transport 

Kan et al. 2021 Vineyard grapes Irrigation 

Sun et al. 2020 / Pesticide spraying 

He et al. 2018 Wheat Harvesting 

Hizatate et al. 2023 Vineyard Pesticide spraying 

III. Scheduling Methods  

We have identified three main categories that cover the different approaches to scheduling methods that have been applied 

in agricultural operations using robots or autonomous machinery. Scheduling methods consider in one way or another the 

level of authority in the planning and execution process (centralized/decentralized), the variety of tasks and the types of 

agents that can perform them (homogeneous/heterogeneous), and the solution method of the proposed scheduling problem 

(heuristic/"exact"). It is worth noting that most of the methods have been tested in simulated environments and not with 

actual robots on farms. We attribute this to the fact that teams of autonomous robots haven’t been widely adopted to work 
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on farms. 

III. 1 Centralized vs Decentralized Methods 

A centralized scheduling method for task assignment involves a central station for the coordination of robots and 

machinery coordination.  The central station, e.g. a leading robot, collects information from the group, makes scheduling 

decisions, and sends the commands to the team.  Correspondingly, in decentralized approaches, robots or autonomous 

machinery share information with each other and have authority over their resources and decisions. Typically, centralized 

approaches generate optimal solutions and are relatively easy to implement. However, as the complexity of the scheduling 

problem grows (more robots, constraints, and tasks), centralized approaches become intractable, and decentralized methods 

are preferred due to their flexibility, computational efficiency, and scalability at the expense of optimality. 

As shown in Fig. 2, most of the papers we surveyed employed centralized methods.  For example, Santilli et al., (2021) 

used a centralized greedy algorithm to arrange tasks among robots and humans for their H2020 PANTHEON project, in 

which precedence constraints were addressed by a Petri net. As another example, Lippi et al., (2023b) tackled the problem 

of assigning robots to assist human operators using a mixed integer programming algorithm in a centralized fashion. 

Additionally, for cooperative unmanned ground vehicles (UGV), Souza et al., (2022) presented a mixed integer linear 

programming scheduling model for a fleet of homogeneous autonomous electric agricultural vehicles that considers the 

equipment and availability of the robots. The decision aspect of the algorithm is not distributed between the vehicles since 

they are controlled by a central authority that processes all the information and provides the actions to the robots (Souza et 

al., 2022). A collaborative product innovation system is presented by Luo and Zhang, (2016), focusing on centralized 

machinery scheduling to improve operations in numerous farmlands. 

 

Figure 2. Scheduling algorithms are either centralized, decentralized, or both. 

There are only a handful of papers using decentralized scheduling methods in autonomous operations in agricultural 

fields. For instance, in (Yang et al., 2020), the blockchain concept is introduced in a simulated agricultural machinery 

scheduling problem.    

It is interesting to see that there is a similar low number of papers that use a mix of both methods, where the algorithms 

have centralized and decentralized layers. For instance, in the algorithm in (Mapes et al., 2022), two layers use negotiation 

strategies between neighbors (decentralized), while a third layer provides a centralized solution in case the negotiation 

method fails. As another example, Hu et al., (2020) proposed a dynamic covering model with particle swarm optimization 

(PSO) that involves a two-stage methodology for agricultural machinery maintenance for dynamic planning capacity. 

It is worth noting that it does not matter if an algorithm is centralized or decentralized, the robots in the system should be 

equipped with communication systems and compatible interfaces allowing smooth coordination and cooperation between 

them. This permits cooperation and the use of their diverse abilities in tasks like planting, spraying, irrigation, and harvesting 

improving efficiency and output. 

III. 2 Homogeneous vs Heterogeneous 

Agricultural machinery is often designed to address a specific task; hence, several types of machines are needed in 

complex farm operations. These vehicles vary in size, functionality, flexibility, level of autonomy, and can operate in 
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different environments such as air, ground, or underwater, as shown in Fig. 3. During the formulation of a scheduling 

problem, the type of machine used to perform the tasks is a crucial design parameter that is almost exclusive to each proposed 

algorithm. Robots and machinery with identical characteristics (homogeneous) can simplify the solution of the problem 

while addressing a very limited number of tasks (like a sprayer robot could be used for irrigation and pesticide delivery but 

not for harvesting). On the other hand, considering multiple machines with different characteristics (heterogeneous) for 

various tasks increases the complexity of the problem but addresses a more general and dynamic scenario for scheduling in 

farms. 

As an example of homogeneous robots/machines in agricultural fields, Mapes et al., (2022) assumed all harvesting robots 

in a strawberry field are the same, leading to the same constraints for convenience in developing the scheduling algorithm. 

Many agricultural robots are electrically powered, and their charging sequence needs to be scheduled as done in (Uyeh et 

al., 2021), where all involved robots have the same settings. Also, a team of homogeneous unmanned aerial vehicles (UAVs) 

were used in plant protection activities where both path planning and task allocation were considered (Li, Y. et al. 2022).  

Many papers designed their scheduling algorithms considering autonomous heterogeneous robotics.  A very clear 

example is the design of scheduling algorithms where UAVs, ground robots, and human operators carry out their tasks in a 

working farm environment (Santilli et al., 2021). Some studies like (Liang, 2022) proposed a heuristic algorithm which 

works for autonomous agents that have different characteristics although no specific agricultural operations or vehicles were 

referred to. 

 

Figure 3. Homogeneous and heterogeneous robots and/or machinery have been the subject of study for scheduling algorithm development. 

III. 3 Heuristic vs “Exact” 

The largest difference between those scheduling methods in the surveyed papers is if a method is “heuristic” or “exact”.  

Here we will say a method is “exact” if they have a rigorous analysis of the algorithm’s convergence and optimality, or if a 

solution is guaranteed.   

In the category of “exact” methods, a non-exclusive list of example papers includes auction-based (Mapes et al., 2022), 

mixed integer linear program (MILP) (Souza et al., 2022), integer linear program (Noer et al., 2022), Dijkstra’s algorithm 

(Wang, N. et al., 2023), greedy method (Seo et al., 2018), and branch and bound search (Peng et al., 2020), as well as bidding 

method (Cobbenhagen et al., 2018) and evolutionary algorithm (Arbanas et al., 2021) combined with MILP.  Furthermore, 

(Zuniga Vazquez et al., 2021) introduce an integer linear optimization for identifying optimal scheduling decisions for crops 

to maximize farmers' profits. The proposed model integrates multi-crop and machinery planning into a single model and 

also allows crop rotation in defined period sets (Zuniga Vazquez et al., 2021). The model differentiates between crops and 

considers irrigation water requirements (Zuniga Vazquez et al., 2021). As can be seen in Fig. 4, many scheduling problems 

in agricultural operations have been formulated in the MILP framework, where objective function and constraints are all 

assumed to be linear.  However, most of those papers using MILP are validated in simulation that does not have many real 

farm setting considerations. 
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Figure 4. There are different heuristic and “exact” methods for robotic and machine scheduling problems in agricultural fields, and some of 

them are a mixture of them. 

Heuristic methods, unlike "exact” methods, focus more on finding suboptimal or feasible solutions than finding the 

optimal one, however, they can effectively handle nonlinear dynamics and constraints. These kinds of approaches use 

strategies inspired by nature phenomena or stem from practical experiences. Many of these heuristic methods can be scalable 

or applied to real-world scenarios, but generally, they don’t guarantee the optimal solution to their presented problem. Some 

example heuristic algorithms include hybrid particle swarm optimization (Huang et al., 2023), a greedy algorithm with Petri 

net (Santilli et al., 2021), evolutionary algorithm (Uyeh et al., 2021), and genetic algorithm and its variations, such as the 

implementation of a blockchain structure (Yang et al., 2020), multilayer structure (Hizatate and Noguchi, 2023), a modified 

fuzzy hybrid (Luo et al., 2016), simulated annealing method (Chen et al., 2021) and metropolis criterion with an ant colony 

algorithm (Zhao et al., 2023).  It is interesting to see in (Ma et al., 2022) that a multi-population co-evolutionary genetic 

algorithm is used for solving a formulated mixed-integer programming problem of dynamically scheduling shared 

agricultural machinery satisfying the requirements of farming services on demand. A method put forward for farmland 

machinery task assignment was the combination of a dynamic and static assignment model based on an ant colony and an 

improved ant colony algorithm (Cao et al., 2021). (Sun et al., 2020) suggested a heuristic rule inspired by a dragonfly's 

behavior using a mixed integer linear program for task coordination within an agricultural environment through centralized 

homogeneous cooperative UAV systems. 

We have seen papers propose algorithms that include both heuristic and “exact” approaches to solve the scheduling 

problem in a hierarchical structure.  In (Anokić et al., 2020), a heuristic approach based on neighboring variable search is 

used when the size of the cooperative robots is large, while an “exact” method solving a MILP is used for a small-scale 

system. To reduce task time in a teamwork approach, Lu et al., (2023) use a multiple-objective multiple traveling-salesman 

problem (MO-MTSP) for multiple robot task allocation using a collaborative discrete artificial bee colony (CDABC) 

algorithm. 

IV. Validation Environment of Algorithms   

Scheduling problems in autonomous agricultural robots/machines have not been a hot topic until recently; as can be seen 

in the reference list, most papers discussed herein were published in the last five years. Correspondingly, most of the 

scheduling problems we surveyed are validated in a simulated environment and not in real agricultural fields. Simulated 

models, to a certain extent, allow researchers to test, visualize, and enhance their scheduling algorithm performance before 

hardware experiments become available. This section examines those papers in the following two categories as shown in 

Table 2, validation in simulation environments without specific farm settings, and environments with detailed or real farm 

settings. 

IV. 1 Validation in Simulation without Specific Farm Settings 

As can be seen in Table 2, a significant percentage of the reviewed papers validated their scheduling algorithms in 

simulation settings without considering specific field settings. Those studies focused on their theoretical contributions of 

algorithms or applying mathematical tools from other domains in agricultural robotic or machinery problems. For example, 
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Souza et al., (2022) applied a mixed integer programming (MIP) algorithm to a scheduling problem for a fleet of 

heterogeneous electric robots, in which the simulation environment is generic and does not have many specific settings of 

agricultural fields or operations.  

IV. 2 Validations in Simulation with Real Farm Settings 

Real farming settings are used in some studies to create an environment with a certain degree of fidelity to test their 

proposed scheduling algorithms. For example, both Peng et al., (2020) and Mapes et al., (2022) constructed their simulation 

validation environment considering the semi-structure layout of commercial strawberry fields, where robots cannot cross 

beds in any row and only one or two robots can exist in a row. Monte Carlo runs were used in these papers to either validate 

its branch and search algorithm in scheduling robots to transport harvested strawberries by human pickers (Peng et al., 2020) 

or a distributed, negotiation-based tri-layer algorithm to schedule robotic harvesters when certain events arise (Mapes et al., 

2022).  

In some other studies, the simulation environment is not set up for a specific product, instead, it is constructed considering 

a certain type of operation.  For example, Hu et al., (2020) tested their agricultural machinery maintenance scheduling 

algorithm in a simulation based on real data about farm topologies, vehicle speed, maintenance requirements, constraints 

between response time and task starting time, etc.  Hizatate and Noguchi, (2023) and Thayer et al., (2018), tested their 

respective pesticide application and irrigation scheduling algorithms in simulated orchards considering their real-farm 

settings. In (Hizatate and Noguchi, 2023), the amount of pesticide consumed and the need to replenish a robot were 

considered as constraints. In the case of (Ma et al., 2022), they analyzed rice harvesting operations and compared the results 

with production data from three companies in an open field simulation environment with real data for agricultural machinery 

scheduling. 

Also, we have seen papers talking about utilizing robots to collect real field data that is used to construct high-fidelity 

simulations for validating their scheduling algorithms.  In (Kan et al., 2021), they use a combination of simulated data and 

real-world experimental datasets to validate their algorithm. To obtain simulated data for the comparison, they used a 

controlled environment with a predefined number of rows and columns (Kan et al., 2021). A portable emitter actuation 

device was mounted in a robotic arm on a robot moving through a vineyard for required emitter adjustments (Kan et al., 

2021). 

There are a few studies that are neither for specific products nor for specific farm operations. For example, in (Uyeh et 

al., 2021), a scheduling algorithm was developed for battery charging scheduling problems, in which many constraints 

coming from batteries are considered, while not many considerations of the field or operations are in the simulation 

environment. 

Table 2. Algorithms have been tested in different simulation environments. 

Validation Environment 

No Specific Farm Settings  Real Farm Settings 

Yang, et al. 2020 Thayer, et al. 2020 Peng, et al. 2020 

Santilli, et al. 2021 Seo, et al. 2018 Ma, et al. 2022 

Souza, et al. 2022 Sun, et al. 2020 Edmonds, et al. 2021 

Huang, et al. 2023 Luo, et al. 2016 Cao, et al. 2021 

Noer, et al. 2022 Anokić, et al. 2020 He, et al. 2018 

Hu, et al. 2020 Wang, M. et al. 2023 Hizatate, et al. 2023 

Guo, et al. 2024 Arbanas, et al. 2021 Kan, et al. 2021 

Uyeh, et al. 2021 Liang, et al. 2022 Zhao, et al. 2023 

Lippi, et al. 2023a Li, Y. et al. 2022 Zuniga Vazquez, et al. 2021 

Dai, et al. 2023 Sun, et al. 2019 Chen, et al. 2021 

Lu, et al. 2023 Wang, N. et al. 2023 Thayer, et al. 2018, 2020 

Cobbenhagen, et al. 2018  Mapes, M. et al. 2022 

V. Future Research Directions 

As can be seen, most of the papers surveyed in this study were published within the last five years, and there are very 
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few or almost none scheduling studies that were published more than 15 years ago. Scheduling algorithm research will go 

on an uptrend along with the development and the progressive adoption of robotics and/or autonomous machines in 

agricultural field operations and management.  Here are a few research directions based on the authors’ point of view. 

(i) When validating or simulating a proposed scheduling algorithm, high-fidelity models should be used including actual 

farm layout (e.g., geometry, weather conditions, and terrain conditions), real plant parameters (e.g. geometry and growth 

pattern), accurate sensing and actuation capabilities (e.g. field of view in vision and range in the communication), etc. This 

is one crucial research gap between theoretical study/algorithm development and hardware demonstration. Furthermore, 

realistic constraints will affect the development of scheduling algorithms. 

(ii) As we have shown in this study, there are very little (almost none) studies that included real hardware (robots or 

machines) in validation or demonstration. It will significantly increase growers’ adoption rate of scheduling solutions after 

seeing successful hardware demonstrations. 

(iii) It will be beneficial to researchers and designers if reliable, plug-and-play type wireless communication 

software/firmware is available. It is time-consuming to program such reliable software so robots in a team can communicate 

with each other, significantly lowering the challenges in hardware implementation of robot/machine scheduling. 

(iv) The inclusion of machine learning or artificial intelligence methods for scheduling problems in agriculture is an area 

that needs to be investigated. Artificial intelligence can help obtain insights that are data-driven, especially when the problem 

domain is large, and many domain parameters are uncertain. 

VI. Conclusion 

The progressive adoption of robots and machines in agricultural operations has allowed farmers to tackle issues related 

to labor shortages, ever-increasing labor costs, and to manage larger areas of land while producing higher yields. The use of 

single large-sized robots/machines becomes ineffective for these purposes as the complexity of farm operations increases, 

and teams of smaller robots/machines are preferred due to their flexibility and adaptability, avoiding single-point-of-failure 

problems. This has introduced the need for strategies to efficiently manage the diverse types of machines and allocate 

resources to successfully address a wide variety of tasks on a farm. In contrast to other technologies used in robotic platforms 

or an ensemble of machines, scheduling problems have attracted relatively less attention. This review article summarizes 

the up-to-date scheduling and task allocation research and development in agricultural field robotic operations. All the 

surveyed papers (not exclusive), found via Google Scholar, are included in the categorized discussion: problems, methods, 

and validation environment. With this survey, we expect to shed light on emerging challenges that need to be addressed to 

fully exploit the efficiency and profitability of multi-robot/machines in the current agricultural industry revolution. 
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