STRATEGIES TO INTEGRATE WELLNESS INTO THE ENGINEERING CLASSROOM

SARAH A. WILSON¹ AND KARIN J. JENSEN²

- 1. University of Kentucky Lexington, KY 40506
- 2. University of Michigan Ann Arbor, MI 48109

INTRODUCTION

Indergraduate students report a variety of stressors during their degree programs including, but not limited to, academics, relationships, loneliness, finances, and transitions to university life. [1, 2] As a result of these stressors, students experience high levels of stress during their education. [3] This high stress can negatively impact academics [4] and intention to remain in an academic program. [5] Further, excessive or chronic stress can contribute to physical illness and other mental health challenges, including depression and anxiety. [6] Therefore, reducing stress and helping students identify healthy ways to cope with stress are important in supporting student wellbeing and success.

Studies that have focused on engineering students report high levels of perceived stress compared to other disciplines [7] and high levels of self-reported stress on clinical measures.[8] Further, mental health can differentially impact students who are historically underrepresented in engineering including female, [8-10] first-generation, [8] Hispanic or Latinx, [10] and gender-expansive students. [9] Within chemical engineering, mental health distress has been linked to reduced motivation, autonomy, and competence in a materials and energy balance course, all of which resulted in a reduced final grade.[11] Further, a study found that over 60% of chemical engineering students at one university struggled with anxiety during the academic year, and over 75% struggled with feeling overwhelmed.[12] While mental health distress is not unique to chemical engineering students, these studies highlight the importance of chemical engineering faculty considering how mental health impacts the performance of students in their classroom.

As an engineering discipline, engineering workloads have been described as "horrific" where engineering programs are a "meritocracy of difficulty." [13] Engineering students report high workloads that leave little time for activities outside of academics, including prioritizing wellness. [14-16] Previous work described engineering students' expectations of high stress and poor self-care as necessary for success. [17] This high stress environment may be seen to define engineering education and has been described as engineering stress

culture.^[8] Further, students recognize these norms in engineering and how stress can impact their mental health; this was described by a student in a recent study, "I know a lot of students who are constantly overwhelmed with schoolwork, including myself. A little bit of stress at times is normal and healthy but it's different when that stress becomes anxiety that prevents you from living your life normally."^[17] This "ubiquity of stress"^[18] has been hypothesized to reduce student mental health help-seeking, where students have reported maintaining a "suck it up" mentality until reaching a breaking point.^[19]

We argue that faculty play an important role in co-creating engineering culture and will be critical in dismantling the culture of stress that leads to student views of stress as normal and necessary. In a recent study, 81% of engineering faculty reported discussing difficulties coping with stress with undergraduate students. [20] Despite faculty reporting a willingness to help students and expressing relative confidence in dealing with student stress, [20] not all students feel that engineering faculty are empathetic to their experiences with stress and mental health. For example, recent qualitative studies with engineering students described their views of engineering professors as unsympathetic and unaccommodating to student mental health. [18,21] Taken together,

Sarah A. Wilson, PhD, is an Assistant Professor in Chemical and Materials Engineering at the University of Kentucky. She earned her BS from Rowan University and PhD from the University of Massachusetts. Her research aims to understand and improve mental health in engineering, with a focus on developing and implementing interventions to improve help seeking. Together, Karin and Sarah have co-developed a workshop on supporting student mental health that has been offered to faculty nationally.

Karin J. Jensen, PhD, is an Assistant Professor in Biomedical Engineering and core faculty member in the Engineering Education Research program at the University of Michigan. She earned her BS from Cornell University and PhD from the University of Virginia. Her research interests include mental health and wellness, engaging engineering faculty in engineering education research, and broadening participation in engineering.

these studies describe an engineering environment where students not only feel that high stress is expected, but also mental health is neglected.

In a recent article in Chemical Engineering Education, Wilson and Goldberg provided faculty with guidelines on how to identify and support engineering students who are struggling with their mental health.[22] While we encourage faculty to learn and adopt strategies to support students in mental health distress [22] and complete university and national mental health training programs, we see these as reactive efforts aimed at supporting students who are already struggling. Therefore, this article highlights proactive efforts that faculty can take to disrupt the narrative of "suffering and shared hardship" [13] in engineering that emphasizes norms of high stress and poor self-care. We posit that proactive interventions that emphasize the benefits of wellness in engineering education will support the development of a culture of wellness [23] that will change the narrative of "surviving in engineering" to "thriving in engineering." Based on content presented during our workshop at the Chemical Engineering Summer School in 2022, we discuss ways to integrate wellness into the engineering classroom as a valuable tool to support engineering students. Ultimately, proactive interventions and preparation will help to normalize the prioritization of mental health in engineering and support student well-being and success.

SUPPORTING COMMUNITY

There is significant literature to support the link between sense of belonging and mental health in college students overall, [25-27] as well as students who are traditionally underserved in engineering. [28-30] Additionally, sense of belonging can impact motivation and enjoyment of their studies, factors that can significantly impact student persistence within a program. [31] This sense of belonging can be supported through the development of relationships with peers but also through development of relationships with faculty members in engineering. [32, 33]

Prior studies in engineering have highlighted the importance of students developing a support network of peers within their courses and major. [13, 16, 34] Faculty can help facilitate these relationships, especially in early level engineering courses, by explaining to students the importance of developing these support networks. Relationship development can be further supported through encouraging the creation of informal workgroups within a course or through formal integration of team-based homework or projects. When integrating group assignments, it can be helpful to provide students with guidance on how to effectively work in teams and talk to them about how they can use their work in teams to help improve their knowledge of the course content. Importantly, research shows that development of relation-

ships that are more than just informational (i.e., sharing of course knowledge) results in better outcomes for students.^[35] Therefore, providing more sustained opportunities for student interactions can help students develop beneficial social relationships with their peers that go beyond the classroom. Further, faculty can encourage students to advocate for the students in their peer groups by understanding symptoms of mental health distress and the resources available to support students who might be struggling. Studies within engineering show that students would be more likely to seek help for their mental health if referred by a friend or peer. "I'd almost certainly be more likely to admit, 'yeah, I've got [something] going on...,' and then get help, especially if the friend specifically recommends seeking help." [19] Therefore, encouraging students to advocate not only for themselves, but for their peers can be especially important to improving help seeking within the engineering student population.

In engineering, faculty can be seen as unsympathetic or difficult to approach.[18, 21] As a result, faculty who are intentional about combatting these negative expectations are often recognized by students as being supportive of their mental health. For instance, one study shared the experience of a student: "You can tell that she cares about her students as more than just students...she has been a very big advocate for being very mentally healthy and making sure that she acknowledges that this is not an easy major and that this class is not going to be easy." [21] Faculty-to-student relationships can be supported by increasing the quality of interactions with students through communicating that you are approachable and available, as well as showing students respect and empathy. [36] Faculty can achieve this by sharing more about themselves in class and also working to get to know their students. One easy way to do this is through student surveys at the start of a course, where students are asked to share information about not only their career goals and course concerns, but also their interests and goals outside of class. This is a good way to get to know students and their motivations for taking a course and could allow faculty to highlight connections between student career goals and the content being covered in class. Faculty can also complete the survey themselves and share it with students. In doing this, students can start to see shared motivation, concerns, and interests that help them to build a relationship with their instructors.

MODELING WELLNESS THROUGH BEHAVIOR AND POLICIES

Stress has been described as "ubiquitous" in engineering. ^[18] As a result, faculty can work to actively dismantle this engineering norm through modeling positive mental health in the classroom. This can be through the development of supportive relationships with students, as described previously, but also through showing students that faculty themselves

also prioritize their own mental wellbeing. For instance, setting boundaries around hours of communication up front for the course can reduce frustration around not receiving an immediate response to an off-hours email. When communicating these boundaries, we recommend that faculty explain why they are setting these limits (e.g., "It is important for me to prioritize my time with my family, so I am setting these boundaries up front"). By sharing with students how they are working to establish their own work-life balance, students can recognize that this is something they should work toward as well. This could lead to an opportunity for students to have time in class or on a homework assignment to establish their own boundaries that help them to prioritize time for self-care, sleep, and other healthy behaviors.

In addition to modeling wellness, faculty can share their own personal experiences, challenges, and perhaps even failures (where they feel comfortable) to help break down the expectation of perfectionism within engineering. Through showing students the challenges that they have faced in their journey through engineering, faculty can convey empathy and help to promote a growth mindset in students, which has been linked to positive outcomes related to academic achievement and mental health.^[37] Further interventions to increase growth mindset in engineers can be found in a recent scoping review by Campbell et al.^[38]

While modeling positive mental health in the classroom can help dismantle engineering norms, it is important that faculty also show prioritization of the mental health of their students. This can be done through showing empathy for students and the challenges that they face outside of the classroom, as well as incorporating inclusive classroom policies into their courses. There is significant literature on inclusive course design that works to remove barriers to success for all students. [39] One way to integrate inclusive teaching practices that can support students who struggle with their mental health is through integration of flexible deadline policies. In doing this, faculty can provide students with a responsible way to extend deadlines to meet their needs as they navigate the semester. This allows students to exercise personal agency in making decisions around deadlines and has been shown to increase students' perceived quality of work while decreasing stress.[40] It has also been argued that flexible deadline policies are more representative of a work environment and help to reduce inequity associated with only offering extensions to those who ask.[40] Further, while mental health concerns that are not associated with a diagnosis can impact course performance, they often do not meet the requirements necessary for obtaining accommodations from the university. As a result, students might not feel that they are able to ask for course flexibility because their mental health is not a "good enough" or a "real" excuse. [18, 21] One strategy for integrating flexible deadlines into a course is through offering a specific number of extensions that will be offered without question or penalty. For instance, in a course with ten homework assignments, an instructor could provide two "free" 48-hour extensions as long as they request the extension prior to the deadline. This helps to teach students the importance of clear communication and planning while also providing them with the personal agency to prioritize other aspects of their lives over an assignment deadline.

CLASSROOM WELLNESS ACTIVITIES

In addition to course policies, instructors can also communicate their support for student mental health and wellness by including syllabus statements and sharing campus resources. We encourage instructors to discuss the syllabus statement in the course introduction as well as throughout the semester. By highlighting and revisiting the statement, instructors demonstrate their support for student mental health and wellness, instead of students viewing the statement as a "boilerplate" statement added without thought or support from the instructor. In a recent study, one student described their experiences with college level implementation of syllabus statements: "I feel like only a few - estimating roughly 30% - would have a sort of human, character driven, response in saying those words. A lot of it is just policy and memorization..."[21] This highlights the importance of ensuring that resources are shared with compassion and in alignment with other course policies. Further recommendations for syllabus statements and creating a syllabus that is supportive of mental health can be found in the literature. [41, 42]

Studies have shown that the stress response can be contagious, where individuals can exhibit stress symptoms based solely upon interactions with those who are in distress.^[43] In fact, shared social identity (e.g., belonging to the same major/course/team, etc.) has been shown to increase the transfer of stress symptoms across individuals.[44] Therefore, encouraging the use of activities that help to reduce distress, in particular around high stress deadlines or exams, can be especially important. Many universities offer wellness activities for students such as drop-in mindfulness sessions through a university counseling center. We see these resources as extremely valuable to students but also propose that there is value in bringing wellness activities into the classroom. Wellness activities in class may increase student accessibility (particularly for students who cite lack of time as a primary reason for not engaging with these resources)[14] and demonstrate instructor care. [45] Integrating these activities in class may counter engineering cultural narratives of "suffering and shared hardship"[13] that lead to both the normalization and potential transfer of stress among students.^[46]

The time commitment for both preparation and implementation of classroom wellness activities can be small. Instructors do not need to be experts and can rely on existing resources such as mindfulness recordings offered by a variety of apps (e.g., Headspace, Calm). For example, short

Vol. 57, No. 4, Fall 2023

stretch breaks, breathing exercises, or mindfulness could be added at the start, middle, or end of class for 1-5 minutes. Classroom wellness activities could also be connected to the course content. For example, Miller et al. developed a course design project where students learned about the physiology of stress and tested the impact of wellness activities using commercially available biometric devices. [47] Students then proposed new designs of the biometric devices using design heuristics. A scoping literature review of interventions to support engineering student mental health has recently been published and provides insight into additional strategies that have been proven effective in the engineering classroom. [48]

CONCLUSION

High stress and poor self-care have become normalized within engineering. As a result, faculty must take an active role in dismantling these norms and driving change towards an engineering education culture that is supportive of mental wellbeing. Integration of mental health and wellness in the classroom can take different forms, such as supporting the development of relationships, adopting inclusive teaching practices, and integrating wellness activities in the classroom. Through adoption of these practices, faculty showcase their support for student wellbeing, which can lead to positive impacts on student mental health, academic outcomes, and retention.

OPPORTUNITIES FOR DEVELOPMENT

While working to change the norms around mental health in engineering is important, faculty should also be prepared to support students who might be struggling with their mental health. Through taking advantage of campus, regional, and national training opportunities, faculty can learn the signs and symptoms of students who are in mental health distress. Training programs such as Mental Health First Aid and QPR (Question, Persuade, Refer) provide guidance for responding to students in distress and have been shown to improve mental health literacy on college campuses. Through these trainings, faculty can become better advocates and referral agents for students, helping to connect them to professional resources on campus. This preparation combined with proactive interventions can help support the overall success and wellbeing of students in engineering.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Award # 1943541 and Award # 2024393. Any opinions, findings, or suggestions expressed in this work are those of the authors and do not necessarily represent those of

the National Science Foundation. Content from this article was originally presented as a workshop in the 2022 Chemical Engineering Summer School by the authors. The authors thank the workshop participants for the engaging discussions and the organizers of the 2022 Chemical Engineering Summer School for providing this opportunity.

REFERENCES

- Hurst CS, Baranik LE, and Daniel F (2013) College student stressors: A review of the qualitative research. Stress and Health. 29(4):275-285. DOI: 10.1002/smi.2465
- Bulo JG and Sanchez MG (2014) Sources of stress among college students. CVCITC Research Journal. 1(1):16-25.
- Ganesan Y, Talwar P, Fauzan N, and Oon Y (2018) A study on stress level and coping strategies among undergraduate students. *Journal* of Cognitive Sciences and Human Development. 3(2):37-47.
- Pritchard ME and Wilson GS (2003) Using emotional and social factors to predict student success. *Journal of College Student Devel*opment. 44(1):18-28. DOI: 10.1353/csd.2003.0008
- Harris P, Campbell Casey S, Westbury T, and Florida-James G (2016) Assessing the link between stress and retention and the existence of barriers to support service use within HE. *Journal of Further and Higher Education*. 40(6):824-845. DOI: 10.1080/0309877X.2015.1014316
- Pascoe MC, Hetrick SE, and Parker AG (2020) The impact of stress on students in secondary school and higher education. *Inter*national Journal of Adolescence and Youth. 25(1):104-112. DOI: 10.1080/02673843.2019.1596823
- Sanchez-Pena ML and Otis C (2021) Comparing wellbeing indicators, perception of stress, competition, and achievement between undergraduate engineering, other STEM, and non-STEM majors.
 Proceedings ASEE Annual Conference. DOI: 10.18260/1-2--36819
- Jensen KJ and Cross KJ (2021) Engineering stress culture: Relationships among mental health, engineering identity, and sense of inclusion. *Journal of Engineering Education*. 110(2):371-392. DOI: 10.1002/jee.20391.
- Hargis LE, Wright CJ, Usher EL, Hammer JH, Wilson SA, and Miller ME (2021) Relationship between mental health distress and help-seeking behaviors among engineering students. *Proceedings ASEE Annual Conference*. https://peer.asee.org/37657
- Danowitz A and Beddoes K (2022) Mental health in engineering education: Identifying population and intersectional variation. *IEEE Transactions on Education*. 65(3):257-266. DOI: 10.1109/ TE 2022.3182626
- Adaramola A, Godwin A, and Boudouris B (2022) Student outcomes related to academic performance, motivation, and mental health in an online materials and energy balances course during the COVID-19 pandemic. *Chemical Engineering Education*. 56(1):36-46. DOI:10.18260/2-1-370.660-125278
- Maxson A and Tomasko DL (2020) Supporting the mental health and wellness of chemical engineering students at the department and college levels. *Proceedings ASEE Annual Conference*. DOI: 10.18260/1-2--35257
- Godfrey E and Parker L (2010) Mapping the cultural landscape in engineering education. *Journal of Engineering Education*. 99(1):5-22. DOI: 10.1002/j.2168-9830.2010.tb01038.x.
- Miller I, Golecki HM, and Jensen KJ (2023) Understanding incoming bioengineering student perceptions about mental health and wellness. Proceedings ASEE Annual Conference. DOI:
- Jensen KJ, Mirabelli JF, Kunze AJ, Romanchek TE, and Cross KJ (2023) Undergraduate student perceptions of stress and mental health in engineering culture. *International Journal of STEM Edu*cation. 10(1): 30. DOI: 10.1186/s40594-023-00419-6
- Ban N, Shannon H, Wright CJ, Miller ME, Hargis LE, Usher EL, Hammer JH, and Wilson SA (2022) Identifying common perceived

- stressors and stress-relief strategies among undergraduate engineering students. *Proceedings ASEE Annual Conference*. https://peer.asee.org/identifying-common-perceived-stressors-and-stress-relief-strategies-among-undergraduate-engineering-students.pdf
- Jensen K and Cross KJ (2019) Board 73: Student perceptions of engineering stress culture. *Proceedings ASEE Annual Conference*. DOI: 10.18260/1-2--32418
- Beddoes K and Danowitz A (2022) In their own words: How aspects of engineering education undermine students' mental health, *Proceedings ASEE Annual Conference*. DOI: https://peer.asee.org/40378
- Wright CJ, Miller ME, Hargis LE, Usher EL, Hammer JH, and Wilson SA (2021) Identifying engineering students' beliefs about seeking help for mental health concerns. *Proceedings ASEE Annual Conference*. https://peer.asee.org/37269
- Wilson SA, Hammer JH, and Usher EL (2021) Faculty experiences with undergraduate engineering student mental health. *Proceedings ASEE Annual Conference*. DOI: https://peer.asee.org/37180
- 21. Ban N, Medina L, Whitwer M, Wright CJ, Hargis LE, Hammer JH, and Wilson SA (2023) "It's very important to my professors...at least most of them": How messages from engineering faculty and staff influence student beliefs around seeking help for their mental health. Proceedings ASEE Annual Conference. DOI:
- Wilson SA and Goldberg DS (2023) Strategies for supporting engineering student mental health. *Chemical Engineering Education*. 57(2): DOI: 10.18260/2-1-370.660-132290
- Jensen K (2021) The time is now to build a culture of wellness in engineering. Studies in Engineering Education. 2(2). DOI: 10.21061/see.67
- Gesun JS, Major JC, Berger E, Godwin A, Jensen KJ, Chen J, and Froiland JM (2021) A scoping literature review of engineering thriving to redefine student success. Studies in Engineering Education. 2(2). DOI: 0.21061/see.9
- O'Keeffe P (2013) A sense of belonging: Improving student retention. College Student Journal. 47(4):605-613.
- Thomas NS, Barr PB, Hottell DL, Adkins AE, and Dick DM (2021) Longitudinal influence of behavioral health, emotional health, and student involvement on college student retention. *Journal of College* Student Development. 62(1):2-18. DOI: 10.1353/csd.2021.0001
- Gopalan M and Brady ST (2019) College Students' Sense of Belonging: A National Perspective. *Educational Researcher*. 49(2):134-137. DOI: 10.3102/0013189X19897622.
- Patterson Silver Wolf DA, Taylor F, Maguin E, and Asher Black-Deer A (2021) You are college material—You belong: An underrepresented minority student retention intervention without deception. *Journal of College Student Retention: Research, Theory & Practice*. 23(3):507-522. DOI: 10.1177/1521025119848749
- Wilson D, Jones D, Bocell F, Crawford J, Kim MJ, Veilleux N, Floyd-Smith T, Bates R, and Plett M (2015) Belonging and academic engagement among undergraduate STEM students: A multi-institutional study. *Research in Higher Education*. 56(7):750-776. DOI: 10.1007/s11162-015-9367-x
- Murphy MC, Gopalan M, Carter ER, Emerson KTU, Bottoms BL, and Walton GM (2020) A customized belonging intervention improves retention of socially disadvantaged students at a broad-access university. Science Advances. 6(29):eaba4677. DOI: 10.1126/ science.ade4420
- Pedler ML, Willis R, and Nieuwoudt JE (2022) A sense of belonging at university: Student retention, motivation and enjoyment. Journal of Further and Higher Education. 46(3):397-408. DOI: 10.1080/0309877X.2021.1955844.
- 32. Guzzardo MT, Khosla N, Adams AL, Bussmann JD, Engelman A, Ingraham N, Gamba R, Jones-Bey A, Moore MD, and Toosi NR (2021) "The ones that care make all the difference": Perspectives on student-faculty relationships. *Innovative Higher Education*. 46(1):41-58. DOI: 10.1007/s10755-020-09522-w
- Trolian TL, Archibald GC, and Jach EA (2022) Well-being and student-faculty interactions in higher education. *High*er Education Research & Development. 41(2):562-576. DOI: 10.1080/07294360.2020.1839023

- Davis SC, Cheon N, Moise EC, and Nolen SB (2018) Investigating student perceptions of an engineering department's climate: The role of peer relations, *Proceedings ASEE Annual Conference*. DOI: 10.18260/1-2--30723
- Myers SA, Shimotsu S, Byrnes K, Frisby BN, Durbin J, and Loy BN (2010) Assessing the role of peer relationships in the small group communication course. *Communication Teacher*. 24(1):43-57. DOI: 10.1080/17404620903468214
- Komarraju M, Musulkin S, and Bhattacharya G (2010) Role of student–faculty interactions in developing college students' academic self-concept, motivation, and achievement. *Journal of College Student Development*. 51(3):332-342. DOI: 10.1353/csd.0.0137
- Burnette JL, Billingsley J, Banks GC, Knouse LE, Hoyt CL, Pollack JM, and Simon S (2022) A systematic review and meta-analysis of growth mindset interventions: For whom, how, and why might such interventions work? *Psychological Bulletin*. DOI: 10.1037/bul0000368
- Campbell AL, Direito I, and Mokhithi M (2021) Developing growth mindsets in engineering students: a systematic literature review of interventions. *European Journal of Engineering Education*. 46(4):503-527. DOI: 10.1080/03043797.2021.1903835
- 39. Addy TM, Dube D, Mitchell KA, and SoRelle M (2021) What inclusive instructors do: Principles and practices for excellence in college teaching. Stylus Publishing, LLC:
- Hills M and Peacock K (2022) Replacing power with flexible structure: Implementing flexible deadlines to improve student learning experiences. *Teaching and Learning Inquiry*. 10. DOI: 10.20343/teachlearninqu.10.26
- Finley D (2021) Inclusive syllabus: Suggestions for creating a syllabus that is respectful, welcoming, and inclusive. *Psychology Teacher Network*. https://qubeshub.org/app/site/collections/33043/ Inclusive_syllabus.pdf
- Gurung RA and Galardi NR (2022) Syllabus tone, more than mental health statements, influence intentions to seek help. *Teaching of Psy*chology. 49(3):218-223. DOI: 10.1177/0098628321994632
- White CN and Buchanan TW (2016) Empathy for the stressed. Adaptive Human Behavior and Physiology. 2:311-324. DOI: 10.1007/s40750-016-0049-5
- Schury VA, Nater UM, and Häusser JA (2020) The social curse: Evidence for a moderating effect of shared social identity on contagious stress reactions. *Psychoneuroendocrinology*. 122:104896. DOI: 10.1016/j.psyneuen.2020.104896.
- Miller I and Jensen K (2020) Introduction of mindfulness in an online engineering core course during the COVID-19 pandemic. Advances in Engineering Education. 8(4).
- Mirabelli J, Kunze A, Ge J, Cross K, and Jensen K (2020) Work in progress: Identifying factors that impact student experience of engineering stress culture. Work in Progress: Identifying Factors that Impact Student Experience of Engineering Stress Culture. DOI: 10.18260/1-2--35645
- Miller I, Lamer S, Brougham-Cook A, Jensen KJ, and Golecki HM (2022) Development and implementation of a biometrics device design project in an introductory BME course to support student wellness. *Biomedical Engineering Education*. 2(1):75-82. DOI: 10.1007/s43683-021-00060-1
- Tait J-AE, Hancock E, and Bisset J (2022) Interventions to support the mental health and wellbeing of engineering students: A scoping review. DOI: 10.35542/osf.io/msvqt
- Aldrich RS, Wilde J, and Miller E (2018) The effectiveness of QPR suicide prevention training. *Health Education Journal*. 77(8):964-977. DOI: 10.1177/0017896918786009
- Mitchell SL, Kader M, Darrow SA, Haggerty MZ, and Keating NL (2013) Evaluating question, persuade, refer (QPR) suicide prevention training in a college setting. *Journal of College Student Psychotherapy*. 27(2):138-148. DOI: 10.1080/87568225.2013.766109
- 51. Liang M, Chen Q, Guo J, Mei Z, Wang J, Zhang Y, He L, and Li Y (2021) Mental health first aid improves mental health literacy among college students: A meta-analysis. *Journal of American College Health*.1-10. DOI: 10.1080/07448481.2021.1925286 □

Vol. 57, No. 4, Fall 2023 5