
On the Effectiveness of Large Language Models for GitHub
Workflows

Xinyu Zhang
Purdue University

West Lafayette, IN, USA
zhan5085@purdue.edu

Siddharth Muralee
Purdue University

West Lafayette, IN, USA
smuralee@purdue.edu

Sourag Cherupattamoolayil
Purdue University

West Lafayette, IN, USA
scherupa@purdue.edu

Aravind Machiry
Purdue University

West Lafayette, IN, USA
amachiry@purdue.edu

ABSTRACT

GitHub workflows or GitHub CI is a popular continuous integra-

tion platform that enables developers to automate various software

engineering tasks by specifying them as workflows, i.e., YAML files

with a list of jobs. However, engineering valid workflows is tedious.

They are also prone to severe security issues, which can result in

supply chain vulnerabilities. Recent advancements in Large Lan-

guage Models (LLMs) have demonstrated their effectiveness in

various software development tasks. However, GitHub workflows

differ from regular programs in both structure and semantics. We

perform the first comprehensive study to understand the effective-

ness of LLMs on five workflow-related tasks with different levels

of prompts. We curated a set of ∼400K workflows and generated

prompts with varying detail. We also fine-tuned LLMs on GitHub

workflow tasks. Our evaluation of three state-of-the-art LLMs and

their fine-tuned variants revealed various interesting findings on

the current effectiveness and drawbacks of LLMs.

CCS CONCEPTS

· Security and privacy→ Vulnerability scanners; · Software and

its engineering→ Automatic programming.

KEYWORDS

GitHub Workflow, Large Language Model, Vulnerability Detection

ACM Reference Format:

Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind

Machiry. 2024. On the Effectiveness of Large Language Models for GitHub

Workflows. In The 19th International Conference on Availability, Reliability

and Security (ARES 2024), July 30śAugust 02, 2024, Vienna, Austria. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3664476.3664497

1 INTRODUCTION

Continuous Integration (CI) or Continuous Integration and Devel-

opment (CI/CD) systems [17] play a crucial role in modern software

This work is licensed under a Creative Commons Attribution International
4.0 License.

ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3664497

development practices, automating the integration and testing of

code to ensure its reliability and security. Among the plethora of

CI platforms123, GitHub workflows or GitHub CI 4 emerges as a

front-runner due to its seamless integration within the GitHub

ecosystem, the ability to use third-party modules (i.e., Actions),

and flexibility in triggering mechanisms. Developers use GitHub

workflows by defining a pipeline or workflow, which is a YAML file

that specifies all the details (Listing 1 shows an example).

However, unlike traditional code, workflows contain a unique

blend of configuration and programming logic and can incorporate

snippets of multiple programming languages. Valenzuela-Toledo et

al. [49] demonstrated that despite the popularity of GitHub work-

flows, the process of engineering theseworkflows lacks tool support,

leading to a high incidence of errors during their development. Fur-

thermore, developers are known to use insecure practices, leading

to security vulnerabilities unique to workflows. This underscores

the complexity of generatingworkflows and the need for techniques

that can produce syntactically valid and secure workflows.

LLMs [26, 32] are igniting a revolution in the heart of the soft-

ware development realm, automating various software engineering

tasks such as coding [40], crafting test cases [51], and enriching

code with documentation [28]. Companies are embracing LLMs

at an unparalleled pace [48], making artificial intelligence-guided

development the standard in the industry. Significant research has

been conducted to assess the effectiveness of LLMs for code gen-

eration tasks and to delve into the security aspects [13, 35] of the

code they produce. The findings from these studies on effectiveness

of LLMs in generating code from a given prompt and the strategies

to engineer effective prompts have practical implications for soft-

ware development. They provide insights into how LLMs can be

harnessed effectively in real-world scenarios.

GitHub workflows, although similar in their intent, vary in struc-

ture, semantics, and format (ğ 2.1) from traditional code written us-

ing various programming languages. Also, vulnerabilities in GitHub

workflows differ from regular code-level vulnerabilities because of

the difference in the desired security properties of GitHub work-

flows [21]. OWASP has even created a new list for the Top 10 CI/CD

security risks [33] to raise awareness of CI/CD vulnerabilities. Pre-

vious studies [5, 15, 21, 27] have meticulously examined the security

1https://travis-ci.org/
2https://circleci.com/
3https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
4https://github.com/features/actions

ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

characteristics of the GitHub CI platform, enumerating potential

weaknesses inherent in GitHub workflows.

With the increase in their adoption, it is imperative to under-

stand the effectiveness of LLMs for workflow-related tasks. Prior

works have explored the effectiveness of LLMs on software devel-

opment. However, the difference in the structure, semantics, and

security properties of workflows raises concerns regarding the gen-

eralizability of observations made by prior works for workflows.

In this paper, we tackle this problem by evaluating the effective-

ness of LLMs on workflow-related tasks. Specifically, we intend to

evaluate the effectiveness of LLMs for:

• RQ1: Workflow Generation (ğ 4.1). How effective are

LLMs in generating workflows? How secure are these gen-

erated workflows?

• RQ2: Defect Detection in workflows (ğ 4.2). How ef-

fective are LLMs in finding different classes of defects in

workflows?

• RQ3: Defect Repair in workflows (ğ 4.3). How effective

are LLMs in repairing defective workflows?

We selected (our selection criteria in ğ 3.1) three state-of-the-art

LLMs as our subjects, i.e., GPT-3.5 [31], CodeLlama [40], and Star-

Chat [47]. We curated a large (∼400K) workflow dataset by en-

hancing an existing dataset (provided by Argus [27]) with various

prompts and syntactic defects. We created fine-tuned variants of

all our LLMs by using a small subset of our dataset. We evaluated

both off-the-shelf and fine-tuned variants for each LLM along dif-

ferent modes (i.e., 0-shot, 1-shot, etc). We organized each research

question into various tasks (details in Table 3). For each task, we

designed prompts with varying levels of detail and contextual in-

formation. For a given LLM variant (i.e., off-the-shelf or fine-tuned)

and a task, we first perform calibration on a small subset of data, i.e.,

to identify the temperature value and prompt that performs the best.

Second, we perform the final evaluation using the best-performing

configuration on the large dataset.

Our study revealed various interesting findings, such as, unlike

regular code generation tasks, LLMs requires detailed prompts to

generate desired workflows. However, LLMs have a high likelihood

of producing invalid (i.e., with syntactic errors) workflows with

detailed prompts. Also, LLMs can produce workflows with code

injection vulnerabilities. There is a significant difference in the

performance of LLMs in detecting different types of defects. Also,

fine-tuning reduced the effectiveness of StarChat for detecting syn-

tactic errors. Currently, LLMs are ineffective at repairing workflow

defects, eliciting the need for novel LLMs assisted techniques.

In summary, our contributions are as follows:

• A systematic evaluation of the capabilities of three state-of-

the-art LLMs to generate GitHub workflows and detect, and

repair different classes of defects.

• Various prompt engineering techniques aimed at optimiz-

ing the performance of LLMs across various tasks related

to GitHub workflows.

• Insights about the current state and limits of LLMs when

applied to engineering and security of GitHub workflows.

• A curated set of ∼400K workflows with various prompts

enabling future LLM research on GitHub workflows.

Our code is available at purs3lab/LLMs4GitHubWorkflows.

name: Deployment

on 1○:

q # dummy_pull:

pull_request:

branches: [main]

jobs 2○:

build 8○:

steps:

- name: Checkout Code

uses 3○: actions/checkout@v2

- name: Build the code

run 4○: make

...

test 9○:

needs 5○: build

steps:

- name: Log tests

run: |

echo "Running␣tests"

echo "Commit - ${{␣github.event.pull_request.head.sha␣

}}" 6○

q echo "Branch - ${{␣github.event.pull_request.head.

ref␣}}" 7○

✓ # echo "Branch - $BRANCH_NAME"

env:

BRANCH_NAME: ${{ github.event.pull_request.head.ref

}}

...

Listing 1: Example of a workflow file which is triggered

upon the creation of a pull request. The workflow builds

the submitted code and runs the existing test-suite.

2 BACKGROUND AND RELATED WORK

In this section, wewill provide the necessary background onGitHub

workflows, LLMs, and discuss related work.

2.1 GitHub workflows

GitHub workflows can be created by adding a YAML file (i.e., work-

flow file) to the .github/workflows folder in the target GitHub

repository. The Listing 1 shows an example of a workflow file

with markings representing different components. A workflow file

needs to have event triggers (which trigger the execution of work-

flow, i.e., 1○ in Listing 1), jobs (2○) to be executed (e.g., 8○, 9○),

where each job is a sequence of steps (e.g., 3○, 4○). A job can be

dependent on other jobs, e.g., the job test depends on build as

indicated by 5○. Each step represents a unit of work, which can be

performed either through running shell commands (e.g., 6○, 7○),

programs (e.g., 4○), invoking other modules (i.e., Actions) e.g., 3○.

A workflow starts execution when one of the triggers occurs. Each

job is independent, and all jobs execute in parallel unless there is a

dependency where a job waits for all its dependents. Within each

job, steps are executed sequentially in the order specified in the

workflow.

Several works studied GitHub workflows along various aspects,

such asmost common automation practices [8], common patterns to

perform various tasks [20], and changes made by developers over

time [49]. Valenzuela-Toledo et al. [49] highlighted the absence

of robust tools that could support GitHub workflows and detect

syntactic and functional errors at an early stage in the development

process. None of these works involve LLMs or have specifically

addressed their use for GitHub workflows.

On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

2.1.1 Defects in workflows. Similar to traditional programs, work-

flows can also have defects. We focus on two classes of defects: syn-

tactic errors and security vulnerabilities, specifically code injection

vulnerabilities.

Syntactic errors prevent the workflow from being executed. How-

ever, identifying syntactic errors in workflows requires complete

knowledge of workflow structure and valid values. The mere va-

lidity of YAML file does not guarantee correct workflow syntax.

For instance, in the workflow in Listing 1, changing the trigger

(i.e., pull_request) to an invalid name (say dummy_pull as indi-

cated by q) produces a valid YAML but syntactically invalid work-

flow.

Security vulnerabilities could be exploited by attackers to per-

form various malicious activities (e.g., exfiltrating repository se-

crets), leveraging the permissions assigned to the workflow causing

broader supply chain attacks [18, 45]. For instance, in Listing 1, one

of the steps (indicated by 7○) prints the source branch name of a pull

request and is prone to code injection vulnerability (indicated byq).

Note that the branch name (github.event.pull_request.head.

ref) is determined by the creator of the pull request rather than

the repository owner. An attacker can craft a branch name that

includes the desired shell command and raise a pull request. The

print command will interpret the branch name as a shell command

and execute the attacker-provided command. The✓marker shows

the correct way to print, i.e., using an intermediate environment

variable for the branch.

Security aspects of the GitHub CI platform have also been ex-

plored during prior research [16, 21, 27]. These works primarily

focus on designing static analysis tools to detect different classes

of security vulnerabilities in GitHub workflows. For instance, Mu-

ralee et al. [27] developedArgus, a static taint tracking tool aimed at

identifying command injection vulnerabilities in GitHub workflows.

However, no work tries to use LLMs for security tasks in GitHub

workflows.

2.2 Large Language Models (LLMs)

LLMs have emerged as transformative tools capable of understand-

ing and generating human-like text based on vast amounts of data

they have been trained on. To elicit better responses from LLMs,

various strategies have been formulated. Among these, instruction

fine-tuning [24, 36, 53, 55] stands out as a notable approach. This

method involves augmenting existing pre-trained models by further

training them on smaller, domain-specific, and multi-task datasets

and providing detailed instructions. Another effective strategy to

elicit better responses involves the engineering of more refined

prompts [10], i.e., prompt engineering, provided to the models. The

usage of LLMs can be broadly classified into the following three

modes [6] based on the amount of task-specific information pro-

vided:

• Zero-shot mode involves presenting the LLM with no task spe-

cific information. The expectation is that the model, leveraging its

extensive pre-training, will generate relevant outputs for entirely

novel problems.

• One-shot mode: Here, we provide a single example of the

prompt and the desired outcome. The example serves to guide

the model’s response by providing a context or template for the

task at hand.

• Few-shot mode extends the concept of one-shot mode by pro-

viding multiple labeled examples.

It is crucial to understand that the above prompting strategies are

Tuning-free prompting [23], i.e., we do not change the parame-

ters of the pre-trained LLMs.

2.2.1 Using LLMs for Automated Code Generation. Driven by the

effectiveness of LLMs, there has been significant interest in design-

ing LLMs for code-related tasks. For instance, close-source GPT-

3.5 [31] and GPT-4 [32], inheriting the capabilities of Codex [7]

designed specifically for programming tasks, have been exten-

sively utilized. Other open-source code LLMs including CodeT5[52],

CodeGen[30], StarCoder[22], CodeLlama[40], etc., have been suc-

cessively introduced, and have demonstrated remarkable perfor-

mance in software development tasks.

One of the important tasks is the text-to-code generation (i.e.,

generating code based on the natural language description). How-

ever, most works focus on programming languages such as Java,

C/C++, and Python. As mentioned in ğ 2.1, GitHub workflows are

engineered in YAML files. Only few works [37, 56] focus on us-

ing LLMs for generating YAML files. Pujar et al.[37] fine-tuned the

CodeGen LLM, and evaluated its performance in generating YAML

scripts for Ansible. Although GitHub workflows follow the YAML

syntax, they differ significantly from Ansible scripts (ğ 2.1).

2.2.2 Using LLMs for Automated Defect Detection. Many works

investigated the effectiveness of LLMs in defect detection in regular

programs. Thapa et al. [46] fine-tuned various transformer-based

language models (e.g., BERT [9], GPT-2 [38], DistilBERT [42], etc.)

on binary and multi-classification tasks using software vulnera-

bility datasets from C/C++ applications. Similarly, Gao et al. [14]

evaluated defect detection capabilities in CTF (Capture-the-Flag)

challenges and real-world applications. Fu et al. [12] introduced

LineVul, a line-level vulnerability predictor leveraging BERT to

predict the presence of vulnerabilities in a dataset composed of

C/C++ applications.

All these works focus on vulnerabilities in regular programs.

However, as we explained in ğ 2.1.1, defects in GitHub workflows

differ from those in regular programs. Furthermore, none of the

existing works try to evaluate the accuracy of the detection, i.e.,

line number of the defect. In this work, we focus on holistically

assessing LLMs capabilities to detect workflow defects.

2.2.3 Using LLMs for Automated Program Repair (APR). Sobania

et al. [44] performed a comparative evaluation of Python program

repair effectiveness of ChatGPT [31], Codex and CoCoNuT [25].

Ahmad et al. [2] employed an ensemble of LLMs, specifically Codex

and CodeGen, to automatically rectify hardware security vulnera-

bilities in Verilog. Wu et al. [54] studied the capabilities of LLMs in

Java vulnerability repair and compared them with those of deep-

learning-based APR models. However, no studies focus on CI/CD

platforms, specifically GitHub workflows, which contain a blend of

configuration steps (potentially) involving various programming

languages.

ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry
A

R
G

U
S

D
at

as
et

Syntactically Valid
and Non-Vulnerable

With Vulnerabilities

Syntactically Invalid

D1T

D2T

D3T

D1F

D2F

D3F

RQ1
(Sec 4.1)

M1 M2 M3

M1F M2F M3F

RQ2
(Sec 4.2)

RQ3
(Sec 4.3)

Dataset Collection (Sec 3.2)
D

e-
du

pl
ic

at
io

n
an

d
Fi

lte
rin

g
(S

ec
 3

.2
.1

)

Instruction Fine
Tuning (Sec 3.3)

Off-the-shelf LLMs

Fine-tuned LLMs

Figure 1: Overview of Our Study.

3 STUDY DESIGN

The Figure 1 shows the overview of our study. We created three

GitHub workflow datasets, 𝐷1, 𝐷2, and 𝐷3 to investigate our re-

search questions. We selected three state-of-the-art LLMs and fine-

tuned them with a mixed subset of our datasets. We performed

our investigation with both off-the-shelf LLMs and their fine-tuned

versions.

3.1 LLMs Selection

We aim to select state-of-the-art LLMs that are specifically designed

for programming tasks (e.g., code completion, code generation,

defect detection, etc.). We focus on instruction-following LLMs, i.e.,

which perform a task based on provided instructions. Finally, we

should also be able to fine-tune the models, e.g., we exclude GPT-

4 [32] as we have no access to fine-tune it. Based on the above

criteria, we selected three LLMs, i.e., GPT-3.5 Turbo [31], StarChat-

𝛽 [47], and CodeLlama-7B-Instruct [40] as summarized in Table 1.

Table 1: Models considered in our studies

ID Model Model Version Parameters Context Length Provider

M1 GPT-3.5 GPT-3.5 Turbo - 4,096 tokens OpenAI

M2 StarChat StarChat-𝛽 16B 8,192 tokens Hugging Face

M3 CodeLlama CodeLlama-7B-Instruct 7B 16,384 tokens Meta

3.2 Dataset Collection

We used the GitHub workflow dataset from Argus [27], a re-

cent work that tries to find vulnerabilities in GitHub workflows.

The dataset has 2,778,483 GitHub workflows, collated over a pe-

riod from November to December 2022. The dataset also includes

7,640 GitHub workflows with manually confirmed vulnerabilities.

We split the dataset into three mutually exclusive sets:

• Dataset II (D2): This set contains an equal number of GitHub

workflows with one syntax error and workflows with no syntax

errors. Specifically, we ran actionlint [1], a syntax checker

tool to find workflows with syntax errors, and picked the same

number of syntactically valid workflows to create 𝐷2.

• Dataset III (D3): Similarly, this set contains an equal number

of GitHub workflows with at least one vulnerability and work-

flows with no vulnerabilities. We used the vulnerable work-

flows from Argus dataset and collected the same number of

non-vulnerable workflows to create 𝐷3.

• Dataset I (D1): All the remaining workflows, i.e., syntactically

valid and contain no vulnerabilities, are collected to form 𝐷1.

3.2.1 De-duplication and Filtering. We deduplicated Argus dataset

and ignored workflows with more than 1,024 tokens (2,048 tokens 5

for vulnerable workflows) considering the context length supported

by the selected LLMs and our designed prompts. Also, for 𝐷1, we

performed the following two additional filtering steps to ensure that

it contains mostly representative and realistic workflows. First, we

ignored workflows that lack names or have steps without names.

As we will discuss in ğ 3.4.1, these names are needed to create

prompts and are important to understand the objectives of work-

flows. Second, we classified workflows using structural complexity

metrics and filtered out outliers as they are not representative of

realistic workflows. We provide the details of this in our extended

report [58].

3.2.2 Fine-Tuning Dataset. We also created a fine-tuning split for

each dataset by randomly picking the same number (3,200) of work-

flows from the corresponding dataset. We capped at 3,200 as we

did not find any significant increase in effectiveness with a larger

number of workflows. For 𝐷2 and 𝐷3, we picked 1,600 positive

and negative workflows. As we will discuss in ğ 4, we used the

fine-tuning split for each dataset to create fine-tuned LLMs.

The Table 2 shows the summary of different datasets and statis-

tics of the corresponding workflows.

Table 2: Summary of the different datasets used in our study.

Datasets
Num

Workflows

Size (Bytes)

Min/Mean/Median/Max

D1 Dataset I
FT (D1F) 3,200 155/1,388/1,212/4,060

Test (D1T) 287,876 84/1,247/1,068/4,450

D2 Dataset II
FT (D2F) 3,200 55/1,362/1,147/4,338

Test (D2T) 122,640 20/1,352/1,126/4,751

D3 Dataset III
FT (D3F) 3,200 203/2,017/1,709/8,711

Test (D3T) 2,006 194/2,049/1,748/7,854

3.3 Instruction Fine-Tuning

Several works[19, 46] show the effectiveness of fine-tuning LLMs

and demonstrate that they perform better than original models. We

also used fine-tuned models as part of our study.

Fine-tuning requires a dataset of input and expected output

pairs. Specifically, for instruction fine-tuning, we need (instruction,

output) pairs, i.e., natural language instruction to perform a task

and the expected output. We created the fine-tuning dataset for

three of our tasks, i.e., Workflow Generation (T1), Syntactic Error

Identification (T2), and Code Injection Vulnerability Detection (T3)

by using the corresponding fine-tuning splits (ğ 3.2.2), i.e., D1F,

D2F, and D3F, respectively. For each task, we use the expected user

5The number of vulnerable workflows is limited.

On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

Table 3: Workflow-related tasks and corresponding prompts (ğ 3.4.1), and metrics (ğ 3.4.2) that are evaluated as a part of the

study.

Research

Question
Task

Prompt Engineering (ğ 3.4.1) Evaluation

Metrics

(ğ 3.4.2)

System Prompt User Prompt

Persona Output format ID Description

RQ1

Workflow

Generation

(T1)

software

engineer
```yaml <Workflow>```

P1 workflow-level information and all job IDs
Accuracy@K

BLEU score

Manual valid-

ation

P2 workflow-level information, all job IDs and all step names

P3 workflow-level information, all job IDs, all step names and all dependencies that can be used

P4 workflow-level information, all job IDs, job-level information and all step names

P5 workflow-level information, all job IDs, job-level information and step-level information

RQ2

Syntactic Error

Identification (T2)

software

engineer
<Yes or No> | line number: ...

P1 Is there a syntactic error in the following GitHub workflow? ```yaml <Workflow>```

Accuracy@K

F1 score

P2 Is there <syntactic error type> in the following GitHub workflow? ```yaml <Workflow>```

Code Injection

Vulnerability

Detection (T3)

security

engineer

No or

Yes | line number: ... | tainted

variable: ... | taint source: ...

P1 Is there any code injection vulnerability in the following GitHub workflow? ```yaml <Workflow>```

P2 Is there any <vulnerability type> in the following GitHub workflow? ```yaml <Workflow>```

P3 Is there any code injection vulnerability in the following GitHub workflow? <hint message>. ```yaml <Workflow>```

RQ3

Syntactic Error

Fixing (T4)

software

engineer
```yaml <Workflow>```

P1 Please fix syntactic errors in the following GitHub workflow. ```yaml <Workflow>```

Accuracy@K

P2 Please fix syntactic errors in the following GitHub workflow. <location>. ```yaml <Workflow>```

P3 Please fix syntactic errors in the following GitHub workflow. <location>. <error message>. ```yaml <Workflow>```

Code Injection

Vulnerability

Repair (T5)

security

engineer
```yaml <Workflow>```

P1 Please repair code injection vulnerabilities in the following GitHub workflow. ```yaml <Workflow>```

P2 Please repair code injection vulnerabilities in the following GitHub workflow. <location >. ```yaml <Workflow>```

P3 Please repair code injection vulnerabilities in the following GitHub workflow. <location>. <fix strategy>. ```yaml <Workflow>```

prompt (Table 3) as its instruction and the corresponding workflow

(T1) or defect location (T2 and T3) as the output. We use the suffix F

to indicate the fine-tuned variant of the model. For instance, GPT-

3.5F indicates fine-tuned variant of GPT-3.5 (Table 1). Note that

we used three generation tasks (instead of all five tasks) for fine-

tuning. This is because generating expected output for repair tasks

(T4 and T5) is tedious, especially when there can be multiple valid

but semantically equivalent repairs for a given defect. Nonetheless,

as shown by the recent work [53, 55], the fine-tuned models on

generation taskswill also perform better on other related but unseen

tasks. Based on this, our fine-tuned models are expected to perform

better even on unseen defect repair tasks.

3.3.1 Implementation Details. We use OpenAI’s APIs to fine-tune

the GPT-3.5. As for StarChat and CodeLlama, we utilize the Hugging

Face implementation version of the models and fine-tune each

model using the PyTorch framework with the parameter-efficient

fine-tuning (PEFT) method. The fine-tuning processes for StarChat

and CodeLlama are executed on a single NVIDIA A100 GPU with

80GB memory and on a cluster node running CentOS 7, utilizing

Slurm (Simple Linux Utility for Resource Management) as the batch

scheduler for resource and job management. Each model is fine-

tuned for 5 epochs. We mixed D1F, D2F, and D3F as the training

set and randomly selected 8,00 samples from each of D1T, D2T, and

D3T for testing, maintaining a train-to-test ratio of 8:2.

3.4 Methodology

The aim of our study is to evaluate the effectiveness of LLMs in

performing various tasks related to GitHub workflows. Our study

is organized into the following three research questions:

• RQ1:Workflow Generation:What is the effectiveness of LLMs

in generating GitHub workflows (T1)? How secure and valid are

the generated workflows?

• RQ2: Defect Detection: How effectively can LLMs detect de-

fects? Both syntactic errors (T2) and code injection vulnerabilities

(T3)?

• RQ3: Defect Repair: What is the effectiveness of LLMs in re-

pairing defects? Both syntactic errors (T4) and code injection

vulnerabilities (T5)?

The Table 3 summarizes tasks associated with each research ques-

tion. We followed the same methodology to investigate all our

research questions. Specifically, for each task and workflow, we

provide a prompt to LLMs and compare their outputs with the

expected output using various metrics (ğ 3.4.2).

3.4.1 Prompt Engineering. Several works [3, 50] show that prompts

greatly influence the effectiveness of LLMs. For each task, we cre-

ated prompts (mimicking user instructions) with varying levels of

detail describing the desired output from a LLM.

Salewski et al. [41] demonstrated that assigning a specific per-

sona (e.g., domain expert) to LLMswill result in better results. Based

on this, we create a persona prompt or system prompt for each task

that sets up the desired persona of a LLM.We prepend the system

prompt to the user prompt to create the final prompt, which we pro-

vide to LLMs. The details of the prompts are depicted in Table 3.

Our extended report [58] provides examples of the prompts and

explains every definition (e.g., vulnerability type, error message,

fix strategy, etc.) in user prompts.

User Prompts for Workflow Generation (T1). In this task, we evaluate

the capability of LLMs in generating well-formatted workflows

from a natural language description. As described in ğ 2.1, a work-

flow has a name, trigger, and set of jobs, each with a sequence of

steps. In addition, Job and Step have a name field describing its func-

tionality, e.g., łBuild the projectž. We create five types of prompts

(P1-P5) for this task, with each prompt providing more description

about the target workflow. P1 has the minimal description needed

to create the workflow, i.e., name, trigger, and the set of job IDs.

However, it does not provide any details about the steps in each

job. Meanwhile, P2 (in addition to information from P1) provides

information about the steps. Similarly, P3-P5 provides an increasing

level of detail.

User Prompts for Syntactic Error (T2) and Code Injection Vulnerability

(T3) Identification. Here, we evaluate the defect detection capability



ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

of LLMs. We create prompts, each of which provides more infor-

mation about the target defect. The corresponding rows in Table 3

provide more details. The basic prompt asks for the existence of the

desired defect (i.e., syntactic error or code injection vulnerability).

Other prompts provide more details about the target defect, i.e.,

specific type or hint message.

User Prompts for Syntactic Error (T4) and Code Injection Vulnerability

(T5) Repair. Here, we evaluate the defect repair capabilities of LLMs.

We provide LLMs with varying degrees of information related to

the target defect. Indicative information ranges from minimal in-

formation (i.e., defect type) to comprehensive hints, encompassing

details such as defect locations, error messages, or fix strategies.

3.4.2 Evaluation Metrics. We used the following three evaluation

metrics to assess the output produced by LLMs across various tasks.

BLEU (Bilingual Evaluation Understudy) score [34] is a value

ranging from 0 to 1, indicating how similar the candidate text is to

the reference text, with values closer to 1 representing higher simi-

larity. We use BLEU-4 (i.e., the geometric average of 1-gram, 2-gram,

3-gram, and 4-gram precision) to compare the generated workflow

with the expected workflow because of the need to preserve the

ordering of tokens.

Accuracy@K [57] enables measuring accuracy of results when

multiple (i.e., 𝐾 ) responses are provided. Specifically, given a test 𝑡

(or a sample 𝑠), we consider the responses of a LLM as a match (i.e.,

score 1) when any one of the 𝐾 responses satisfies 𝑡 (or matches 𝑠),

else we consider it as no match (i.e., score 0). We use 𝐾 = 5 in all

our experiments. For 𝑛 tests (or samples), we average the matching

score (i.e., 1 or 0) across all the 𝑛 samples to get Accuracy@K .

F1-Score [43] is calculated as a harmonic mean of precision and

recall. This score (ranging from 0-1) provides a single metric to eval-

uate binary classification. We use this to evaluate defect detection

effectiveness.

The last column of Table 3 shows the summary of metrics used

to evaluate each task.

Workflow Generation Task (T1): Here, we want to evaluate whether

the workflow generated by a LLM performs the functionality as

the expected workflow. However, precisely accessing this requires

semantic equivalence checking [29] Ð infeasible in the general case.

Instead, (i) we utilize actionlint to check that the generated work-

flow is valid (i.e., no syntactic errors), and calculate Accuracy@K to

measure correctness; and (ii) compare how similar (content-wise)

the generated workflow is to the expected workflow by comput-

ing BLEU score; and (iii) manually validate 270 randomly sampled

workflows.

Defect Detection Tasks (T2 and T3): Here, we verify two aspects:

detection capability and accuracy of the detection. Specifically, we

use F1-Score to measure detection capability and measure detection

accuracy (i.e., line number for T2, line number, tainted value and

taint source for T3) using Accuracy@K .

Defect Repair Tasks (T4 and T5): Here, we want to evaluate whether

a LLM correctly repaired aworkflow. However, automatically check-

ing whether LLMs produced the correct repaired workflow re-

quires semantic checking Ð similar to the workflow generation

task (T1). Instead, we check whether the generated workflow is

non-vulnerable and use Accuracy@K to measure the repair capabil-

ities of LLMs.

3.4.3 LLMs Configuration and Experimental Setup. As mentioned

in ğ 2.2, there are three basic modes (i.e., zero-shot, one-shot, and

few-shot) of using a LLM model. However, during our experiments

with off-the-shelf variants, we found no difference in effectiveness

between the one-shot mode and the few-shot mode.We will only

present the results of zero-shot and one-shot modes for off-the-shelf

variants. For Defect Repair Tasks, we used both zero-shot mode and

one-shot mode for fine-tuned variants, as these tasks are unseen to

the fine-tuned models. (ğ 2.2). For a given mode, the performance of

a LLM model might vary with different configurations. For every

task, we want to assess a LLM mode using its best-performing

configuration and the most effective prompt.

LLMs have a temperature parameter, indicating the desired level

of randomness. Specifically, higher temperature values indicate

a higher degree of non-determinism. The values from 0 to 1 are

recommended to prompt a LLM to produce responses that are ac-

ceptable to humans. For example, the temperature range of GPT-3.5

is from 0 to 2. However, temperature values above 0.9 make the

responses technically useless. Also, as mentioned in ğ 3.4.1, we

generate several prompts for each task.

Calibration (Identifying Effective Configuration): For a given LLM

and task, we use a small but representative subset (i.e., calibration

set (CAset)) of samples to identify which temperature and prompt

combination gives the best result. Specifically, we use 0.1, 0.3, 0.5,

0.7, and 0.9 as our temperature values and combine them with

prompts with varying levels of detail (Table 3). The best-performing

temperature value and prompt will be used to evaluate the final set of

samples.

For T1, we collected 266 workflows as our CAset. We performed

a random sampling and collected two workflows each for 133 ef-

fective combinations of complexity metrics [58], ensuring that

our CAset is representative. Also, given the large number (0.28

million) of workflows in D1T, we picked 20 workflows along each of

the 133 complexity metrics combinations as our evaluation dataset.

For T2, we randomly selected 200 workflows (100 syntactically

valid, 100 syntactically invalid) to construct our CAset and sampled

5,000 GitHub workflows (2,500 syntactically valid, 2,500 syntacti-

cally invalid) to form a larger evaluation dataset. Similarly, for T3,

we randomly selected 80 vulnerable workflows (with a total of

108 vulnerabilities), and then sampled 80 non-vulnerable GitHub

workflows to construct CAset. We utilized all remaining vulnera-

ble GitHub workflows (923 GitHub workflows with 1,586 vulnera-

bilities) and 923 non-vulnerable GitHub workflows to form a larger

evaluation dataset.

For T4, we randomly chose 200 GitHub workflows with syntac-

tic errors as our CAset and sampled an additional syntactically

invalid 2,500 GitHub workflows to constitute a larger evaluation

dataset. For T5, we randomly selected 100 and 375 GitHub work-

flows containing code injection vulnerabilities that can be fixed

within workflows to form our CAset and larger evaluation dataset,

respectively.

4 RESULTS

In this section, we present the results of the study along with our

three research questions. For each task (under a research question),

we first present the calibration results, aiming to identify the most



On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

Table 4: BLEU scores of workflow generation on CAset.

Model t

off-the-shelf
fine-tuned

0-shot 1-shot

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

GPT-3.5

0.1 13.60 35.57 40.87 40.56 74.79 25.69 46.20 54.31 54.26 78.99 25.83 47.25 53.64 53.33 80.84

0.3 15.21 36.92 42.10 41.63 76.00 27.77 47.76 55.90 55.87 79.71 27.51 49.05 54.43 54.72 82.56

0.5 16.00 38.04 43.00 42.58 76.98 28.84 48.57 56.61 56.47 80.49 27.46 49.05 54.60 55.04 83.14

0.7 16.39 38.08 43.35 43.17 76.93 28.95 49.49 57.23 57.22 81.24 26.69 47.79 53.75 55.13 82.97

0.9 16.84 38.39 43.69 43.22 77.45 29.21 49.67 57.15 57.31 81.61 24.36 46.43 52.54 52.80 83.49

CodeLlama

0.1 15.59 35.32 40.38 41.98 74.03 36.14 51.22 55.81 57.15 79.84 25.38 45.54 51.06 53.92 82.15

0.3 17.12 37.84 42.56 44.98 75.47 37.42 52.68 57.34 58.50 81.58 27.43 48.38 53.12 56.29 83.73

0.5 17.91 37.56 43.15 45.35 76.41 37.77 53.20 57.81 59.48 82.53 27.42 48.60 52.90 56.54 84.11

0.7 17.65 37.61 42.65 44.43 75.81 38.42 53.41 57.72 58.86 81.75 26.71 47.08 53.16 55.58 83.85

0.9 16.43 36.18 40.38 41.65 73.31 37.84 51.83 55.99 57.64 81.00 25.08 45.37 51.19 53.53 83.25

StarChat

0.1 17.22 36.87 40.21 41.07 62.75 34.61 49.72 53.91 55.53 75.38 26.98 48.72 53.57 54.47 80.71

0.3 18.54 38.21 41.82 43.38 64.83 36.51 51.38 55.30 57.36 76.89 29.07 50.67 55.75 57.43 81.81

0.5 19.46 39.10 42.93 43.81 66.26 37.36 52.33 56.58 58.10 77.49 29.45 50.74 56.20 58.39 82.79

0.7 19.34 39.04 42.69 43.81 66.45 37.36 52.30 55.86 58.40 77.88 28.72 50.12 55.42 57.15 82.37

0.9 18.91 39.03 42.46 43.68 66.31 37.14 51.98 56.27 58.00 77.48 26.09 47.88 53.35 55.78 82.34

Table 5: Accuracy@K of workflow generation on CAset.

Model t

off-the-shelf
fine-tuned

0-shot 1-shot

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

GPT-3.5

0.1 69.55 66.17 57.89 60.53 78.95 89.10 82.71 70.68 83.46 88.35 92.86 87.22 79.32 85.71 83.83

0.3 77.07 74.06 62.41 67.29 84.21 91.35 84.96 77.82 87.22 88.72 95.49 93.23 86.09 92.11 89.85

0.5 84.59 78.57 66.54 68.80 87.59 90.98 87.97 77.07 87.97 89.47 96.62 94.36 85.71 93.61 88.72

0.7 85.71 82.33 65.79 69.92 87.22 92.86 87.97 79.70 87.97 92.86 94.74 93.98 87.97 93.98 92.86

0.9 89.10 78.95 68.42 76.32 89.85 91.73 90.98 83.46 89.85 93.61 90.98 92.48 84.96 91.73 92.11

CodeLlama

0.1 84.09 78.41 70.83 76.52 73.11 90.91 79.55 75.00 77.65 80.45 96.21 93.18 88.26 90.91 87.12

0.3 92.42 84.85 75.76 83.33 79.17 95.49 88.35 80.08 83.83 87.97 97.73 94.70 92.05 93.94 90.91

0.5 92.80 88.64 78.03 85.23 80.30 95.49 86.47 81.95 85.71 89.47 99.24 96.21 92.05 96.21 90.91

0.7 93.56 88.26 76.14 79.92 82.58 93.98 91.73 79.70 91.35 86.09 97.73 96.97 94.32 96.21 93.18

0.9 83.71 76.52 63.64 71.97 75.76 90.98 83.83 78.20 81.58 87.59 96.97 93.94 92.80 92.80 93.56

StarChat

0.1 74.62 61.74 56.06 57.58 54.55 70.08 62.50 59.09 62.12 60.53 73.11 70.45 64.02 66.29 58.33

0.3 84.85 70.08 62.88 63.26 58.33 77.82 71.80 63.53 65.79 61.65 83.33 79.17 70.45 71.59 59.47

0.5 85.23 74.24 69.70 70.83 61.36 78.95 73.68 66.92 70.30 63.91 88.64 80.30 72.73 76.52 60.23

0.7 87.88 79.92 71.97 74.24 62.50 83.46 74.06 68.80 72.56 64.66 90.15 84.85 76.14 78.03 61.74

0.9 89.77 76.52 75.76 75.00 65.15 89.10 74.44 70.30 73.31 63.53 83.33 79.55 74.62 77.65 64.77

effective configuration for each LLM variant in each mode, i.e., (i)

off-the-shelf variants in zero-shot mode, (ii) off-the-shelf variants

in one-shot mode, and (iii) fine-tuned variants. An exception is for

T4 and T5, unseen tasks for fine-tuned variants, where we seek

the optimal configuration for fine-tuned variants in both zero-shot

and one-shot modes. Second, we present the final assessment of

each LLM mode using its most effective configuration.

4.1 RQ1: Workflow Generation

Here, we evaluate the effectiveness of LLMs in generating work-

flows. As shown in Table 3 and described in ğ 3.4.2, this research

question has one task, and we use three evaluation metrics.

4.1.1 Calibration. We use BLEU (Table 4) and Accuracy@K (Ta-

ble 5) scores for calibration.

BLEU Scores. The Table 4 shows that across all temperature (𝑡 ) val-

ues and LLMs modes. The trend of BLEU scores across different

temperature values changes across different LLMs. For GPT-3.5, the

largest temperature value of 0.9 (i.e., greater non-determinism) is

better. Whereas for CodeLlama and StarChat, temperature values of

0.5 and 0.7, respectively, are the best. Interestingly, the BLEU score

increases with more detailed prompts. This indicates that users

should provide detailed prompts to get the expected workflow. This

differs from the standard code generation tasks, where LLMs are

shown to perform well even with a very simple prompt [11]. This

is because a simple prompt can precisely describe the desired code

generation task, e.g., łgenerate sort functionž. Whereas workflows

(as explained in ğ 2.1) are sequences of steps and are hard to de-

scribe in a simple prompt. Furthermore, even for a single step, the

appropriate way to perform it depends on the target project. For

instance, a step to build a project depends on the target project, i.e.,

C/C++ (make/cmake), python (setup.py), java (ant build), etc.

More contextual information is needed to generate appropriate

steps and workflows.

Finding 1.1: Unlike for regular code generation tasks, LLMs

require detailed prompts to generate desired workflows.

Accuracy@K Scores. The Table 5 shows the trend of Accuracy@K

scores. It is interesting to see that detailed prompts do not always

improve the Accuracy@K scores. In fact, detailed prompts reduce

the Accuracy@K scores, as shown by the decrease in scores across

the P2 and P3 columns. In other words, detailed prompts result

in LLMs producing defective workflows.

Interestingly, Accuracy@K score follows a inverse bell curve

for GPT-3.5 and CodeLlama. Specifically, for low-detail prompts,

the Accuracy@K score decreases as the prompt becomes more

detailed (till P3). However, the Accuracy@K slowly rises as the

prompt becomes increasingly detailed (P4 and P5). The case is

slightly different for StarChat, whereAccuracy@K always decreases

with the increase in the details of the prompt.

The trend is different for BLEU score where detailed prompts

provide better results. Upon investigation, we found that LLMs gen-

erate smaller workflows with simpler prompts and consequently



ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

reduces the chances of having defects resulting in higher Accu-

racy@K score. However, simpler prompts are unlikely to generate

the desired workflows, as shown by the lower BLEU scores (Table 4).

On the other hand, detailed prompts to LLMs produce workflows

closer to the desired workflows, but the generated workflows might

have defects. Listing 2 shows two GitHub workflows generated by

fine-tuned CodeLlama. A detailed prompt (P5) produces the left

workflow, which is closer to the desired workflow6 but contains a

syntactic error (q), while a simple prompt (P1) generates the right

one which is syntactically valid but incorrect.

name: Generate Docs

on:

qpush: {branch: ’main’}

jobs:

build:

runs -on: ubuntu -latest

steps:

- name: Checkout sources

uses: actions/checkout@v2

- name: Install stable toolchain

uses: actions -rs/toolchain@v1

with:

profile: minimal

target: wasm32 -wasi

toolchain: stable

override: true

- name: Run cargo build

uses: actions -rs/cargo@v1

with:

command: doc

args: --workspace --no -deps

- name: Prepare docs folder

run: |

sudo chown -R $(whoami) target

/doc

touch target/doc/. nojekyll

- name: Deploy documentation

branch

uses: JamesIves/github -pages -

deploy -action@3 .7.1

with:

GITHUB_TOKEN: ${{ secrets.

GITHUB_TOKEN }}

BRANCH: gh -pages

FOLDER: target/doc

name: Generate Docs

on:

push:

branches:

- main

jobs:

build:

runs -on: ubuntu -latest

steps:

- name: Checkout

uses: actions/checkout@v2

- name: Set up Rust

uses: actions -rs/toolchain@v1

with:

profile: minimal

toolchain: stable

override: true

components: clippy

target: x86_64 -unknown -linux -gnu

- name: Cargo packages

uses: actions -rs/cargo@v1

with:

command: build

args: --all

- name: Publish to gh -pages

uses: crazy -max/ghaction -github -

pages@v2

with:

target_branch: gh -pages

build_dir: target/doc

Listing 2: Two GitHub workflows generated by fine-

tuned CodeLlama with 0-shot prompting at temperature 0.9.

The left workflow was generated using P5, whereas the right

one was generated by P1. The expected (i.e., ground truth)

workflow is docs.yaml6 in the neoeinstein/cj4-fadec repo.

Finding 1.2: LLMs have a high likelihood of producing invalid

(i.e., with syntactic errors) workflows with detailed prompts.

4.1.2 Final Evaluation. We selected the best configuration of each

LLM across different modes and performed our final evaluation.

The Figure 2 shows the cumulative results across different modes.

Finding 1.3: For all LLMs, the fine-tuned variant (i.e., with F suf-

fix) performs better than the corresponding off-the-shelf variant.

For all LLMs, except for StarChat, one-shot mode performs better

than zero-shot.

Effectiveness in generating expected workflows: Higher BLEU score

indicates greater similarity between the generated and expected

workflow. For off-the-shelf variants, GPT-3.5 achieves the best BLEU

6https://github.com/neoeinstein/cj4-fadec/blob/main/.github/workflows/docs.yaml

50 60 70 80 90 100

GPT-3.5
0-shot

CodeLlama
0-shot

StarChat
0-shot

GPT-3.5
1-shot

CodeLlama
1-shot

StarChat
1-shot

GPT-3.5F

CodeLlamaF

StarChatF

77.57

75.52

67.81

78.91

78.18

74.67

82.42

82.77

81.32

80.68

92.71

90.41

90.34

93.31

87.52

95.38

97.71

90.6

BLEU (%) Accuracy@K (%)

Figure 2: Final evaluation for workflow generation

score across all the modes. For fine-tuned variants, CodeLlama has

the best BLEU scores. The left subfigure of Figure 3 shows the trend

of BLEU scores against the size (in KB) of expected workflows.

As we show in Table 2, most of the workflows are less than 4KB.

Specifically, the majority (> 85%) of workflows are less than 3KB.

For our size-related comparisons (i.e., Figure 3), we only considered

workflows up to 3KB. We can see from Figure 3 (left subfigure)

that as the workflow size increases, BLEU score initially increases

rapidly and then remains unchanged.

Finding 1.4: The ability of LLMs to generate expected workflows

does not vary much with the size of workflows.

0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5 3

0.75

0.8

0.85

0.9

0.95

1

GPT-3.5 0-shot GPT-3.5 1-shot GPT-3.5F

StarChat 0-shot StarChat 1-shot StarChatF

CodeLlama 0-shot CodeLlama 1-shot CodeLlamaF

Figure 3: BLEU score (left) and Accuracy@K (right) against

the size (in KB) of expected workflows.

Ability to generate valid (i.e., syntactically correct) workflows: Higher

Accuracy@K score indicates a greater chance of generating valid

workflows. For off-the-shelf and fine-tuned variants, CodeLlama

achieves the best Accuracy@K score across all the modes. Un-

like BLEU scores, the Accuracy@K scores slowly decrease as work-

flow size becomes larger (right subfigure of Figure 3). This is ex-

pected as workflow size increases, LLMs need to generate more



On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

tokens, increasing the likelihood of generating syntactic errors

resulting in lower Accuracy@K scores.

Summary of RQ1: Although GPT-3.5 is highly likely to pro-

duce expected workflows. It might produce invalid or defective

workflows. On the other hand, CodeLlama has a lesser likelihood

of generating expected workflows but has a high probability of

generating valid workflows.

Effectiveness in generating semantically correct workflows: We want

to assess the LLMs’ capability to generate semantically correct

workflows. However, automatically determining semantic correct-

ness is impossible. We decided to perform a manual validation

by randomly sampling 30 valid workflows for each model and

mode’s best-performing BLEU configurations. In total, we manu-

ally checked 270 (30*9) workflows and determined the correctness

of each workflow, i.e., a workflow is semantically correct when all

the generated steps are semantically correct. The Table 6 shows

the percentage of generated workflows with semantic correctness

for each model. 30 samples generated by GPT-3.5 across all the

modes and CodeLlama in 1-shot mode are all semantically cor-

rect workflows. Other models also reach a high percentage. The

results indicate that generated workflows have a high semantic

correctness.

Table 6: The percentage of semantically correct workflows

among all the syntactically valid samples.

Model
off-the-shelf

fine-tuned
0-shot 1-shot

GPT-3.5 100% 100% 100%

CodeLlama 97.67% 100% 86.67%

StarChat 86.67% 93.33% 96.66%

How Secure are the Generated Workflows? Here, we want to evaluate

how secure the workflows generated by LLMs are. Specifically,

we run Argus on each of the workflows to assess the number

of syntactically valid workflows generated by LLMs that contain

security issues. The Table 7 shows the results. StarChat produced

the most number of insecure workflows while GPT-3.5 produced

the least. The Listing 3 shows an example of a workflow generated

by GPT-3.5 that has a code injection vulnerability.

name: Receive PR

on:

...

jobs:

test -pr:

runs -on: ubuntu -latest

...

- name: Set Outputs

id: set -outputs

run: q: echo ""::set -output name=is_valid::${{ steps.check -

pr.outputs.VALID }}\n::set -output name=MSG::${{ steps.

check -pr.outputs.MSG }}""

save -pr -number:

needs: test -pr

...

Listing 3: Example of a workflow generated by GPT-3.5

that has a code injection vulnerability. The output check-

pr.outputs.MSG is tainted (i.e., controlled by non-repository

owner).

Table 7: The number of syntactically valid workflows con-

taining security issues.

Model
off-the-shelf

fine-tuned Total
0-shot 1-shot

GPT-3.5 21 10 66 97

CodeLlama 26 35 213 274

StarChat 42 51 252 345

Finding 1.5: LLMs can produce workflows with code injection

vulnerabilities. Developers should be careful while using work-

flows generated by LLMs.

4.2 RQ2: Defect Detection

Asmentioned before, we are interested in LLMs’ capability to detect

two types of defects: syntactic errors and code injection vulnera-

bilities. As mentioned in ğ 2.1, detecting syntactic errors requires

reasoning about the format of workflows. In other words, a well-

formatted and syntactically valid yaml can be an invalid workflow.

As mentioned in ğ 3.4.2, we use F1-Score to measure detection ca-

pability and Accuracy@K to measure detection accuracy (i.e., line

number).

4.2.1 Syntactic Error Identification (T2). We evaluate this task using

two prompts with varying details (Table 3).

Calibration: Table 8 shows the F1-Score andAccuracy@K of different

models and their variants across different modes. Unlike Workflow

Generation Task (T1), detailed prompts (P1 v/s P2) seem to have

less effect on syntactic error detection.

F1-Score: In 0-shot mode, GPT-3.5 performs the best in detect-

ing syntactic errors with the highest F1-Score of 72.25%. The per-

formance of GPT-3.5 and CodeLlama dropped in 1-shot mode Ð

contrary to previous works [4, 39] which show that 1-shot mode

provides better performance than 0-shot mode. As expected, in GPT-

3.5 and CodeLlama, the fine-tuned variants performed better than

off-the-shelf variants. The case is different for StarChat, where the

1-shot mode of the off-the-shelf variant performs the best, even

better than the fine-tuned variant.

Accuracy@K: The detection accuracy of off-the-shelf variants fol-

lows the same trend as the detection capability. In other words, GPT-

3.5 performs the best in 0-shot mode, and 1-shot mode hurts the per-

formance of GPT-3.5 and CodeLlama but improves that of StarChat.

As expected, fine-tuned variants perform better than off-the-shelf

variants.

Final Evaluation: The Figure 4 shows the evaluation of the best-

performing configuration on the final large dataset. Overall, Star-

Chat 1-shot mode is the best at detecting syntactic errors as indi-

cated by the highest F1-Score, i.e., 100%. However, fine-tuned GPT-

3.5 has the highest accuracy. In other words, StarChat is good at

detecting whether a workflow has a syntactic error or not. But,

fine-tuned GPT-3.5 is good at detecting where (i.e., line number)

the syntactic error is. Listing 4 in our extended report [58] shows

an example where StarChat correctly identified a syntactic error

but GPT-3.5 failed.



ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

Table 8: Effectiveness of syntactic error detection on CAset.

Model t

F1-Score Accuracy@K

off-the-shelf
fine-tuned

off-the-shelf
fine-tuned

0-shot 1-shot 0-shot 1-shot

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

GPT-3.5

0.1 61.40 72.25 3.170 2.560 87.76 90.45 27.00 39.00 3.000 1.000 81.00 85.00

0.3 56.62 69.43 3.230 1.270 88.21 90.45 37.00 41.00 4.000 3.000 83.00 86.00

0.5 58.56 68.69 4.260 3.730 87.18 90.45 39.00 42.00 5.000 5.000 83.00 86.00

0.7 62.78 70.41 4.320 1.270 88.21 91.46 46.00 44.00 7.000 8.000 86.00 89.00

0.9 54.13 65.98 3.240 3.800 86.87 90.55 42.00 43.00 6.000 6.000 86.00 90.00

CodeLlama

0.1 17.09 31.88 32.00 7.270 71.97 80.37 1.000 6.000 1.000 0.000 48.00 51.00

0.3 33.09 37.42 25.21 3.740 72.80 80.75 1.000 8.000 2.000 2.000 51.00 55.00

0.5 45.16 44.30 25.21 9.090 70.39 79.64 4.000 11.00 8.000 5.000 50.00 59.00

0.7 46.05 40.99 25.81 3.850 70.18 79.82 3.000 11.00 6.000 3.000 54.00 57.00

0.9 40.25 41.51 26.45 7.340 70.94 78.57 2.000 10.00 8.000 5.000 59.00 56.00

StarChat

0.1 67.34 66.67 100.0 100.0 64.20 84.47 6.000 12.00 12.00 10.00 49.00 62.00

0.3 67.34 68.03 100.0 100.0 62.65 84.16 10.00 13.00 17.00 14.00 52.00 63.00

0.5 65.68 69.82 98.49 99.50 68.26 82.76 15.00 14.00 13.00 20.00 55.00 65.00

0.7 51.16 60.68 96.04 97.98 65.90 83.58 10.00 14.00 14.00 29.00 54.00 69.00

0.9 47.13 57.45 89.11 91.98 64.80 80.98 7.000 14.00 21.00 14.00 51.00 65.00

Table 9: Effectiveness of code injection vulnerability detection on CAset.

Model t

F1-Score Accuracy@K

off-the-shelf
fine-tuned

off-the-shelf
fine-tuned

0-shot 1-shot 0-shot 1-shot

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

GPT-3.5

0.1 7.140 17.98 80.00 1.770 0.000 24.14 93.49 92.86 99.38 0.000 0.000 8.570 0.000 0.000 3.850 86.67 89.52 89.52

0.3 7.140 20.00 78.57 0.000 0.000 25.42 92.94 92.40 99.38 0.000 0.000 9.520 0.950 0.000 9.620 86.67 90.48 90.48

0.5 9.410 21.98 79.52 0.000 0.000 24.78 92.94 92.31 99.38 0.000 0.000 12.38 0.950 0.000 12.50 89.52 91.43 91.43

0.7 2.440 17.78 81.93 0.000 6.520 25.86 92.94 92.31 99.38 0.000 0.000 9.520 0.000 0.000 12.50 88.57 93.33 89.52

0.9 11.63 17.78 79.04 5.130 0.000 27.12 93.49 93.49 99.38 0.000 0.950 12.38 0.950 0.000 12.50 90.48 96.19 90.48

CodeLlama

0.1 66.11 68.67 66.67 87.86 74.88 66.67 89.53 89.66 88.34 0.950 0.950 3.810 0.000 0.000 0.000 60.00 55.24 53.33

0.3 66.10 67.54 66.67 85.54 73.89 66.67 89.02 89.02 87.80 0.950 0.000 2.860 0.000 0.000 0.000 64.76 66.67 58.10

0.5 63.72 68.81 66.67 77.50 70.59 67.80 87.78 89.02 88.20 0.000 0.000 3.810 0.000 0.000 0.000 65.71 69.52 60.95

0.7 60.66 59.11 67.56 74.17 67.05 68.09 84.39 87.86 87.80 0.950 0.000 1.900 0.000 0.000 0.000 67.62 71.43 62.86

0.9 63.64 67.01 67.59 69.74 56.18 70.27 86.86 88.24 84.66 0.000 0.950 0.000 0.000 0.000 0.000 63.81 68.57 66.67

StarChat

0.1 66.67 66.67 66.67 72.07 87.43 72.90 94.41 93.83 96.86 0.000 0.000 1.900 12.38 17.14 20.95 68.57 68.57 64.76

0.3 66.67 66.11 66.67 72.07 89.89 72.48 94.41 95.00 96.20 0.000 0.000 0.950 18.10 19.05 25.71 74.29 76.19 65.71

0.5 66.67 67.24 65.25 76.56 84.66 73.49 93.08 93.17 95.54 0.000 0.000 2.860 12.38 22.86 28.57 78.10 75.24 68.57

0.7 66.09 64.55 65.50 77.61 88.89 73.93 93.67 93.83 97.50 0.000 0.000 2.860 12.38 16.19 25.71 73.33 77.14 72.38

0.9 59.81 56.84 60.00 74.40 84.44 75.12 91.82 92.59 97.50 0.000 0.000 1.900 6.670 10.48 26.67 80.95 78.10 74.29

Finding 2.1: Contrary to the observations for other applications,

for GPT-3.5 and CodeLlama, the 1-shot mode is less effective

than 0-shot in identifying syntactic errors in workflows. StarChat

is best at detecting syntactic errors but GPT-3.5 can accurately

identify the location of syntactic error.

0 20 40 60 80 100

GPT-3.5
0-shot

CodeLlama
0-shot

StarChat
0-shot

GPT-3.5
1-shot

CodeLlama
1-shot

StarChat
1-shot

GPT-3.5F

CodeLlamaF

StarChatF

66.18

34.7

66.16

2.41

23.24

100

91.88

81.18

82.67

41.36

7.04

11.28

3.64

3.2

21.04

87.8

63.24

64.55

F1-Score(%) Accuracy@K (%)

Figure 4: Final evaluation for syntactic error detection

4.2.2 Code Injection Vulnerability Detection (T3). As shown in Ta-

ble 3, we use three prompts to evaluate this task.

Calibration: The left part of Table 9 shows the F1-Score of code injec-

tion vulnerability detection of different models and their variants

across different modes. The fine-tuned variants perform best for

all LLMs and a given prompt. For off-the-shelf variants of CodeL-

lama and StarChat, simpler prompts (i.e., P1 and P2) provide the

best F1-Score. However, for GPT-3.5, the detailed prompt (i.e., P3)

provides the best F1-Score. For off-the-shelf variants of CodeL-

lama and StarChat, smaller temperature values (i.e., low non-

determinism) provide the best F1-Score. In contrast, higher tem-

perature (i.e., higher non-determinism) works well for GPT-3.5.

The right part of Table 9 shows theAccuracy@K of code injection

vulnerability detection of different models and their variants across

different modes on CAset. The off-the-shelf variant performs better

when receiving detailed prompts, but it has a poor performance

in pinpointing vulnerabilities across all modes. On the contrary,

the fine-tuned variant does not benefit from detailed prompts and

performs much better than the corresponding off-the-shelf variant.

Final Evaluation: The Figure 5 shows the evaluation of the best-

performing configuration on the final large dataset. Overall, fine-

tuned variants perform better, demonstrating the importance of fine-

tuning in detecting code injection vulnerabilities. The fine-tuned



On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

0 20 40 60 80 100

GPT-3.5
0-shot

CodeLlama
0-shot

StarChat
0-shot

GPT-3.5
1-shot

CodeLlama
1-shot

StarChat
1-shot

GPT-3.5F

CodeLlamaF

StarChatF

76.15

65.54

66.47

29.27

86.52

88.75

98.82

86.93

96.47

8

2.87

0.59

4.63

0

23

82.52

72.15

78.3

F1-Score(%) Accuracy@K (%)

Figure 5: Final evaluation for code injection vulnerability

detection.

variant of GPT-3.5 (i.e.,GPT-3.5F) performs the best. Interestingly,

off-the-shelf GPT-3.5 performs the worst in 1-shot mode. Listing 5 in

our extended report [58] shows an example where GPT-3.5 correctly

identified a code injection vulnerability missed by other LLMs.

Summary of RQ2: Across the tested LLMs, there is a significant

difference in the effectiveness of syntactic error detection and

code injection vulnerability detection. Off-the-shelf StarChat in

1-shot mode is best at detecting syntactic errors, whereas fine-

tuned GPT-3.5 is best at detecting code injection vulnerabilities.

We also discuss the effectiveness of detection against the size of

workflows in the extended report [58].

4.3 RQ3: Defect Repair

Similar to defect detection, we focus on repairing two kinds of de-

fects: syntactic errors and code injection vulnerabilities. We use Ac-

curacy@K to assess the effectiveness of defect repair. As described

in ğ 3.3, we do not include repair examples in our fine-tuning dataset.

Hence defect repairs (T4 and T5) can be considered as unseen (but

related) tasks for LLMs.

4.3.1 Syntactic Error Repair (T4). We evaluate this task using three

prompts (P1, P2, P3) with increasing detail (Table 3).

Calibration: The Table 10 shows the Accuracy@K of different LLMs

on our calibration dataset (CAset). Across all prompts, higher tem-

peratures yield better results. This is expected as higher temperature

value allows LLMs to be more creative, consequently increasing

the likelihood of generating repaired workflow. Listing 6 in our

extended report [58] shows an example of a syntactically invalid

workflow due to the use of an invalid step name (q). In this in-

stance, setting a higher temperature value successfully corrected

the syntactic error, whereas a lower temperature setting failed to

do so.

Also, detailed prompts provide better results, as indicated by the

increasing trend across P1 to P3. For simpler prompts, i.e., P1 and

P2, fine-tuned variant of GPT-3.5 perform better on syntactic error

repair tasks (unseen tasks) than the off-the-shelf variant. However,

the case is different with CodeLlama and StarChat, where the fine-

tuned variant performed poorly. These results demonstrate that fine-

tuning GPT-3.5 on certain tasks helps in improving its effectiveness

on other unseen but related tasks. However, this is not the case

with other LLMs, where fine-tuned variants can perform poorly on

unseen (but related) tasks. Intuitively, this makes sense as GPT-3.5 is

trained on diverse datasets and has higher generalization capability.

Whereas specialized LLMs (i.e., CodeLlama and StarChat) have less

generalization capability. Our observations are in line with prior

work [53], which showed that fine-tuned large models (e.g., GPT-

3.5) generalize to unseen (but related) tasks. In contrast, smaller

models (e.g., CodeLlama and StarChat) suffer as all model capacity

is used for tasks used in fine-tuning.

Final Evaluation: The Figure 6 shows Accuracy@K of syntactic error

fixing on the large dataset. We did not include the results for fine-

tuned variants of CodeLlama and StarChat as they are extremely

poor (i.e., < 40%). GPT-3.5 in 1-shot mode performs the best across

all LLMs and their variants.

0 20 40 60 80 100

GPT-3.5
0-shot

CodeLlama
0-shot

StarChat
0-shot

GPT-3.5
1-shot

CodeLlama
1-shot

StarChat
1-shot

GPT-3.5F
0-shot

GPT-3.5F
1-shot

86.08

84.71

64.55

90.12

85.28

50.44

86.72

84.87

63.73

52.94

39.04

58.67

73.6

71.2

64.6

Accuracy@K of syntactic error repair (%)

Accuracy@K of code injection vulnerability repair (%)

Figure 6: Final evaluation for defect repair.

4.3.2 Code Injection Vulnerability Repair (T5). We evaluate this

task using three prompts (P1, P2, P3) with increasing detail (Table 3).

Calibration: The Table 11 shows the Accuracy@K of different LLMs

on our calibration dataset (CAset). It follows a similar pattern as re-

pairing syntactic errors, i.e., higher temperatures yield better results

across all prompts. Also, detailed prompts provide better results, as

indicated by the increasing trend across P1 to P3. Fine-tuned variant

of GPT-3.5 performs better on code injection vulnerability tasks

(unseen tasks) than the off-the-shelf variant. However, the case

is different with CodeLlama and StarChat, where the fine-tuned

variant performs poorly.

Final Evaluation: Figure 6 shows the evaluation on the final large

dataset. We did not include the results for StarChat in 1-shot mode

and fine-tuned variants of CodeLlama and StarChat since they are

extremely poor. CodeLlama in 1-shot mode performs the best across

all LLMs and their variants.



ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

Table 10: Accuracy@K of syntax error fixing on CAset.

Model t

off-the-shelf fine-tuned

0-shot 1-shot 0-shot 1-shot

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

GPT-3.5

0.1 46.50 50.00 80.50 51.27 56.85 82.23 65.00 65.50 82.50 70.53 59.26 80.65

0.3 47.50 52.50 82.50 52.79 57.87 84.77 67.00 69.50 87.00 72.63 65.08 85.48

0.5 48.50 52.50 86.00 54.31 59.90 90.86 67.50 71.00 89.00 74.21 68.78 86.56

0.7 50.00 57.00 88.50 55.33 61.42 93.40 68.50 75.50 90.00 71.21 71.43 87.63

0.9 53.00 58.00 91.50 56.85 66.50 93.91 73.00 75.50 91.00 76.32 73.54 88.17

CodeLlama

0.1 4.040 17.17 62.12 9.000 52.50 71.50 0.000 0.510 0.510 5.000 7.000 7.500

0.3 3.540 36.87 87.88 11.50 35.00 88.50 0.000 0.510 0.000 11.50 10.50 12.00

0.5 6.060 35.86 87.37 14.00 33.00 86.00 0.000 0.000 1.520 17.50 15.00 17.00

0.7 8.590 40.91 89.39 18.00 33.00 86.50 2.530 1.520 2.530 27.50 23.00 25.50

0.9 15.15 36.36 86.36 19.00 37.00 92.50 3.030 3.030 3.540 35.50 25.50 30.00

StarChat

0.1 44.44 49.49 60.10 42.00 43.50 45.00 0.000 0.000 1.010 0.000 0.500 0.000

0.3 44.44 51.01 62.12 43.50 44.00 47.00 0.000 0.510 1.010 0.000 2.500 0.000

0.5 44.95 52.02 64.14 43.50 44.50 48.50 0.000 0.510 1.010 0.000 5.000 0.000

0.7 44.44 53.54 64.65 32.50 29.50 54.00 0.000 0.510 1.520 0.500 8.000 0.000

0.9 42.42 52.02 64.65 42.00 36.50 55.00 1.520 0.000 2.530 1.000 9.000 0.500

Table 11: Accuracy@K of code injection vulnerability repair on CAset.

Model t

off-the-shelf fine-tuned

0-shot 1-shot 0-shot 1-shot

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

GPT-3.5

0.1 2.020 2.020 20.41 8.050 4.600 31.40 21.21 49.49 50.00 26.67 25.68 36.99

0.3 3.030 6.060 26.53 12.50 5.620 41.86 38.38 52.53 56.12 42.67 31.08 49.32

0.5 7.070 9.090 32.65 10.11 7.870 47.62 40.40 62.63 62.24 42.67 41.89 54.79

0.7 6.060 8.080 43.88 13.79 6.980 66.67 49.49 63.64 69.39 46.67 45.95 64.38

0.9 14.14 24.24 44.90 20.69 15.12 55.95 52.53 69.70 67.35 53.33 48.65 64.38

CodeLlama

0.1 36.00 48.00 26.00 33.00 62.00 41.00 0.000 0.000 0.000 0.000 0.000 1.000

0.3 35.00 52.00 36.00 46.00 73.00 60.00 0.000 0.000 0.000 0.000 1.000 1.000

0.5 35.00 42.00 38.00 46.00 72.00 67.00 0.000 0.000 0.000 0.000 1.000 1.000

0.7 32.00 44.00 50.00 47.00 59.00 67.00 0.000 0.000 0.000 0.000 2.000 3.000

0.9 45.00 60.00 45.00 48.00 57.00 68.00 0.000 2.000 0.000 4.000 4.000 7.000

StarChat

0.1 1.000 4.000 11.00 2.000 2.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000

0.3 2.000 8.000 17.00 3.000 3.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 7.000 10.00 20.00 3.000 6.000 11.00 0.000 0.000 0.000 0.000 0.000 0.000

0.7 9.000 20.00 29.00 7.000 5.000 13.00 0.000 0.000 0.000 0.000 0.000 0.000

0.9 21.00 19.00 37.00 10.00 10.00 19.00 0.000 0.000 0.000 2.000 0.000 0.000

Summary of RQ3: LLMs perform well (at higher temperatures)

in repairing syntactic errors but suffers at repairing code injection

vulnerabilities. Fine-tuning CodeLlama and StarChat hurts their

performance on unseen (but related) workflow tasks.

5 THREATS TO VALIDITY

We identified the following potential (generalizability) threats to

the validity of our study.

• Generalizability to Other Tasks:We investigated three cate-

gories of tasks. However, there could be other related tasks (e.g.,

refactoring) on which the effectiveness of LLMs might differ. We

tried to handle this in RQ3 (ğ 4.3), where all the tasks are unseen

but related.

• Generalizability to Other LLMs:We have investigated three

LLMs, and the observations may not generalize to other LLMs

that are architected differently. Our datasets and experimentation

scripts will enable easy evaluation of any given LLM and compare

against our results.

• Generalizability toOtherCI platforms:We anticipate that our

observations will generalize to other CI platforms as well because

most of the CI platforms follow the same syntax (i.e., YAML) and

have a similar structure [21].

6 CONCLUSION

We perform the first large-scale study to investigate the effective-

ness of three state-of-the-art LLMs and their fine-tuned variants on

five tasks related to GitHub workflows. We curated a set of ∼400K

workflows with various prompts with varying details across differ-

ent tasks. Our study revealed various interesting findings and open

problems in using LLMs for workflows. For instance, LLMs suffer

at generating large and valid workflows. LLMs are not effective at

repairing code injection vulnerabilities.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foun-

dation (NSF) under Grants CNS-2247686, Amazon Research Award

(ARA) on łSecurity Verification and Hardening of CI Workflowsž

and Defense Advanced Research Projects Agency (DARPA) under

contract numbers N6600120C4031 and N660012224037. The U.S.

Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation

thereon. Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the NSF, Amazon, or the United

States Government.



On the Effectiveness of Large Language Models for GitHub Workflows ARES 2024, July 30śAugust 02, 2024, Vienna, Austria

REFERENCES
[1] 2023. actionlint. https://github.com/rhysd/actionlint.
[2] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

Pearce. 2024. On Hardware Security Bug Code Fixes by Prompting Large Lan-
guage Models. IEEE Transactions on Information Forensics and Security 19 (2024),
4043ś4057. https://doi.org/10.1109/TIFS.2024.3374558

[3] Simon Arvidsson and Johan Axell. 2023. Prompt engineering guidelines for LLMs
in Requirements Engineering. (2023).

[4] Weiheng Bai, Qiushi Wu, Kefu Wu, and Kangjie Lu. 2024. Exploring the Influ-
ence of Prompts in LLMs for Security-Related Tasks. InWorkshop on Artificial
Intelligence System with Confidential Computing (AISCC 2024) (San Diego, CA).
USA. https://dx.doi.org/10.14722/aiscc.2024.23015

[5] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic Security
Assessment of GitHub Actions Workflows. In Proceedings of the ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem Defenses. 37ś45.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[8] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022.
On the Use of GitHub Actions in Software Development Repositories. In 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME).
235ś245. https://doi.org/10.1109/ICSME55016.2022.00029

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171ś4186. https://doi.
org/10.18653/v1/N19-1423

[10] Sabit Ekin. 2023. Prompt engineering for ChatGPT: a quick guide to techniques,
tips, and best practices. Authorea Preprints (2023). https://doi.org/10.36227/
techrxiv.22683919.v2

[11] Ionut Daniel Fagadau, Leonardo Mariani, Daniela Micucci, and Oliviero Rig-
anelli. 2024. Analyzing Prompt Influence on Automated Method Generation: An
Empirical Study with Copilot. arXiv preprint arXiv:2402.08430 (2024).

[12] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
Based Line-Level Vulnerability Prediction. In Proceedings of the 19th International
Conference on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22).
Association for Computing Machinery, New York, NY, USA, 608ś620. https:
//doi.org/10.1145/3524842.3528452

[13] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Ji-
axin Yu. 2023. Security Weaknesses of Copilot Generated Code in GitHub.
arXiv:2310.02059 [cs.SE]

[14] Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. 2023. How
Far Have We Gone in Vulnerability Detection Using Large Language Models.
arXiv:2311.12420 [cs.AI]

[15] GitHub Security Code Injection Finder [n. d.]. GitHub Security Code Injection
Finder. https://github.com/github/codeql/blob/main/javascript/ql/src/Security/
CWE-094/ExpressionInjection.ql.

[16] Yacong Gu, Lingyun Ying, Huajun Chai, Chu Qiao, Haixin Duan, and Xing
Gao. 2023. Continuous Intrusion: Characterizing the Security of Continuous
Integration Services. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 1561ś1577. https://doi.org/10.1109/
SP46215.2023.10179471

[17] Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

[18] Adnan Khan. 2023. One Supply Chain Attack to Rule Them All ś Poisoning
GitHub’s Runner Images. https://adnanthekhan.com/2023/12/20/one-supply-
chain-attack-to-rule-them-all/.

[19] Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and
Mayur Naik. 2023. Understanding the Effectiveness of Large Language Models
in Detecting Security Vulnerabilities. arXiv:2311.16169 [cs.CR]

[20] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and Christoph Treude.
2021. How Do Software Developers Use GitHub Actions to Automate Their
Workflows?. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). 420ś431. https://doi.org/10.1109/MSR52588.2021.00054

[21] Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, SiddharthMuralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Character-
izing the Security of Github CI Workflows. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 2747ś2763. https:
//www.usenix.org/conference/usenixsecurity22/presentation/koishybayev

[22] Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries.
2023. StarCoder: may the source be with you! Transactions on Machine Learning
Research (2023). https://openreview.net/forum?id=KoFOg41haE Reproducibility
Certification.

[23] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (Jan. 2023), 35 pages. https://doi.org/10.1145/3560815

[24] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay,
Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, and Adam Roberts. 2023. The
Flan Collection: Designing Data and Methods for Effective Instruction Tuning.
In Proceedings of the 40th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.).
PMLR, 22631ś22648. https://proceedings.mlr.press/v202/longpre23a.html

[25] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 101ś114.
https://doi.org/10.1145/3395363.3397369

[26] Meta. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv:2307.09288 [cs.CL]

[27] Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl,
Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, and Ar-
avind Machiry. 2023. ARGUS: A Framework for Staged Static Taint Analy-
sis of GitHub Workflows and Actions. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, Anaheim, CA, 6983ś7000. https:
//www.usenix.org/conference/usenixsecurity23/presentation/muralee

[28] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 97, 13 pages.
https://doi.org/10.1145/3597503.3639187

[29] George C. Necula. 2000. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation (Vancouver, British Columbia, Canada) (PLDI ’00).
Association for Computing Machinery, New York, NY, USA, 83ś94. https://doi.
org/10.1145/349299.349314

[30] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In The Eleventh Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
iaYcJKpY2B_

[31] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt
[32] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[33] OWASP. 2022. OWASP Top 10 CI/CD Security Risks. https://owasp.org/www-

project-top-10-ci-cd-security-risks/.
[34] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics (Philadelphia, Penn-
sylvania) (ACL ’02). Association for Computational Linguistics, USA, 311ś318.



ARES 2024, July 30śAugust 02, 2024, Vienna, Austria Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

https://doi.org/10.3115/1073083.1073135
[35] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). 754ś768. https://doi.org/10.1109/SP46214.2022.9833571

[36] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023.
Instruction Tuning with GPT-4. arXiv:2304.03277 [cs.CL]

[37] Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matt Jones, Alessandro Morari, and Ruchir
Puri. 2023. Invited: Automated Code generation for Information Technology
Tasks in YAML through Large Language Models. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). 1ś4. https://doi.org/10.1109/DAC56929.2023.
10247987

[38] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

[39] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
EA ’21). Association for Computing Machinery, New York, NY, USA, Article 314,
7 pages. https://doi.org/10.1145/3411763.3451760

[40] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950 [cs.CL]

[41] Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric Schulz, and Zeynep
Akata. 2023. In-Context Impersonation Reveals Large Language Models’
Strengths and Biases. In Thirty-seventh Conference on Neural Information Process-
ing Systems. https://openreview.net/forum?id=CbsJ53LdKc

[42] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In The
5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @
NeurIPS 2019. arXiv:1910.01108 http://arxiv.org/abs/1910.01108

[43] Yutaka Sasaki et al. 2007. The truth of the F-measure. Teach tutor mater 1, 5
(2007), 1ś5.

[44] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
Analysis of the Automatic Bug Fixing Performance of ChatGPT. In 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR). IEEE Computer
Society, Los Alamitos, CA, USA, 23ś30. https://doi.org/10.1109/APR59189.2023.
00012

[45] John Stawinski. 2023. Playing with Fire ś How We Executed a Critical Supply
Chain Attack on PyTorch. https://johnstawinski.com/2024/01/11/playing-with-
fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/.

[46] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. 2022. Transformer-Based Language Models for
Software Vulnerability Detection. In Proceedings of the 38th Annual Computer
Security Applications Conference (Austin, TX, USA) (ACSAC ’22). Association for
Computing Machinery, New York, NY, USA, 481ś496. https://doi.org/10.1145/
3564625.3567985

[47] Lewis Tunstall, Nathan Lambert, Nazneen Rajani, Edward Beeching, Teven
Le Scao, Leandro von Werra, Sheon Han, Philipp Schmid, and Alexander Rush.
2023. Creating a Coding Assistant with StarCoder. Hugging Face Blog (2023).
https://huggingface.co/blog/starchat.

[48] Ashok Urlana, Charaka Vinayak Kumar, Ajeet Kumar Singh, Bala Mallikarju-
narao Garlapati, Srinivasa Rao Chalamala, and Rahul Mishra. 2024. LLMs with
Industrial Lens: Deciphering the Challenges and ProspectsśA Survey. arXiv
preprint arXiv:2402.14558 (2024).

[49] Pablo Valenzuela-Toledo and Alexandre Bergel. 2022. Evolution of GitHub Action
Workflows. In 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 123ś127. https://doi.org/10.1109/SANER53432.2022.
00026

[50] Juan David Velásquez-Henao, Carlos Jaime Franco-Cardona, and Lorena Cadavid-
Higuita. 2023. Prompt Engineering: a methodology for optimizing interactions
with AI-Language Models in the field of engineering. DYNA 90, 230 (Nov. 2023),
9ś17. https://doi.org/10.15446/dyna.v90n230.111700

[51] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Transactions on Software Engineering 50 (2023), 911ś936.

[52] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and ScottWen-tau Yih (Eds.). Association for Com-
putational Linguistics, Online and Punta Cana, Dominican Republic, 8696ś8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

[53] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, AndrewM. Dai, and Quoc V Le. 2022. Finetuned LanguageModels
are Zero-Shot Learners. In International Conference on Learning Representations.
https://openreview.net/forum?id=gEZrGCozdqR

[54] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for Fixing
Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 1282ś1294. https:
//doi.org/10.1145/3597926.3598135

[55] Xuhai Xu, Bingsheng Yao, YuanzheDong, Saadia Gabriel, Hong Yu, JamesHendler,
Marzyeh Ghassemi, Anind K. Dey, and Dakuo Wang. 2024. Mental-LLM: Lever-
aging Large Language Models for Mental Health Prediction via Online Text Data.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 8, 1, Article 31 (March 2024), 32 pages. https://doi.org/10.1145/3643540

[56] Yifei Xu, Yuning Chen, Xumiao Zhang, Xianshang Lin, Pan Hu, Yunfei Ma,
Songwu Lu, Wan Du, Zhuoqing Mao, Ennan Zhai, and Dennis Cai. 2023.
CloudEval-YAML: A Practical Benchmark for Cloud Configuration Generation.
arXiv:2401.06786 [cs.DC]

[57] Quanjun Zhang, Chunrong Fang, Bowen Yu, Weisong Sun, Tongke Zhang, and
Zhenyu Chen. 2023. Pre-Trained Model-Based Automated Software Vulnerability
Repair: How Far are We? IEEE Transactions on Dependable and Secure Computing
(Aug. 2023), 1ś18. https://doi.org/10.1109/TDSC.2023.3308897

[58] Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind
Machiry. 2024. On the Effectiveness of Large Language Models for GitHub
Workflows.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 GitHub workflows
	2.2 Large Language Models (LLMs)

	3 Study Design
	3.1 LLM Selection
	3.2 Dataset Collection
	3.3 Instruction Fine-Tuning
	3.4 Methodology

	4 Results
	4.1 RQ1: Workflow Generation
	4.2 RQ2: Defect Detection
	4.3 RQ3: Defect Repair

	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References

