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ABSTRACT

GitHub workflows or GitHub CI is a popular continuous integra-
tion platform that enables developers to automate various software
engineering tasks by specifying them as workflows, i.e., YAML files
with a list of jobs. However, engineering valid workflows is tedious.
They are also prone to severe security issues, which can result in
supply chain vulnerabilities. Recent advancements in Large Lan-
guage Models (LLMs) have demonstrated their effectiveness in
various software development tasks. However, GitHub workflows
differ from regular programs in both structure and semantics. We
perform the first comprehensive study to understand the effective-
ness of LLMs on five workflow-related tasks with different levels
of prompts. We curated a set of ~400K workflows and generated
prompts with varying detail. We also fine-tuned LLMs on GitHub
workflow tasks. Our evaluation of three state-of-the-art LLMs and
their fine-tuned variants revealed various interesting findings on
the current effectiveness and drawbacks of LLMs.

CCS CONCEPTS

« Security and privacy — Vulnerability scanners; « Software and
its engineering — Automatic programming.
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1 INTRODUCTION

Continuous Integration (CI) or Continuous Integration and Devel-
opment (CI/CD) systems [17] play a crucial role in modern software
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development practices, automating the integration and testing of
code to ensure its reliability and security. Among the plethora of
CI platforms'?3, GitHub workflows or GitHub CI 4 emerges as a
front-runner due to its seamless integration within the GitHub
ecosystem, the ability to use third-party modules (i.e., Actions),
and flexibility in triggering mechanisms. Developers use GitHub
workflows by defining a pipeline or workflow, which is a YAML file
that specifies all the details (Listing 1 shows an example).

However, unlike traditional code, workflows contain a unique
blend of configuration and programming logic and can incorporate
snippets of multiple programming languages. Valenzuela-Toledo et
al. [49] demonstrated that despite the popularity of GitHub work-
flows, the process of engineering these workflows lacks tool support,
leading to a high incidence of errors during their development. Fur-
thermore, developers are known to use insecure practices, leading
to security vulnerabilities unique to workflows. This underscores
the complexity of generating workflows and the need for techniques
that can produce syntactically valid and secure workflows.

LLMs [26, 32] are igniting a revolution in the heart of the soft-
ware development realm, automating various software engineering
tasks such as coding [40], crafting test cases [51], and enriching
code with documentation [28]. Companies are embracing LLMs
at an unparalleled pace [48], making artificial intelligence-guided
development the standard in the industry. Significant research has
been conducted to assess the effectiveness of LLMs for code gen-
eration tasks and to delve into the security aspects [13, 35] of the
code they produce. The findings from these studies on effectiveness
of LLMs in generating code from a given prompt and the strategies
to engineer effective prompts have practical implications for soft-
ware development. They provide insights into how LLMs can be
harnessed effectively in real-world scenarios.

GitHub workflows, although similar in their intent, vary in struc-
ture, semantics, and format (§ 2.1) from traditional code written us-
ing various programming languages. Also, vulnerabilities in GitHub
workflows differ from regular code-level vulnerabilities because of
the difference in the desired security properties of GitHub work-
flows [21]. OWASP has even created a new list for the Top 10 CI/CD
security risks [33] to raise awareness of CI/CD vulnerabilities. Pre-
vious studies [5, 15, 21, 27] have meticulously examined the security
Uhttps://travis-ci.org/

Zhttps://circleci.com/

3https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
*https://github.com/features/actions
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characteristics of the GitHub CI platform, enumerating potential
weaknesses inherent in GitHub workflows.

With the increase in their adoption, it is imperative to under-
stand the effectiveness of LLMs for workflow-related tasks. Prior
works have explored the effectiveness of LLMs on software devel-
opment. However, the difference in the structure, semantics, and
security properties of workflows raises concerns regarding the gen-
eralizability of observations made by prior works for workflows.

In this paper, we tackle this problem by evaluating the effective-
ness of LLMs on workflow-related tasks. Specifically, we intend to
evaluate the effectiveness of LLMs for:

e RQ1: Workflow Generation (§ 4.1). How effective are
LLMs in generating workflows? How secure are these gen-
erated workflows?

e RQ2: Defect Detection in workflows (§ 4.2). How ef-
fective are LLMs in finding different classes of defects in
workflows?

e RQ3: Defect Repair in workflows (§ 4.3). How effective
are LLMs in repairing defective workflows?

We selected (our selection criteria in § 3.1) three state-of-the-art
LLMs as our subjects, i.e., GPT-3.5 [31], CodeLlama [40], and Star-
Chat [47]. We curated a large (~400K) workflow dataset by en-
hancing an existing dataset (provided by ArGus [27]) with various
prompts and syntactic defects. We created fine-tuned variants of
all our LLMs by using a small subset of our dataset. We evaluated
both off-the-shelf and fine-tuned variants for each LLM along dif-
ferent modes (i.e., 0-shot, 1-shot, etc). We organized each research
question into various tasks (details in Table 3). For each task, we
designed prompts with varying levels of detail and contextual in-
formation. For a given LLM variant (i.e., off-the-shelf or fine-tuned)
and a task, we first perform calibration on a small subset of data, i.e.,
to identify the temperature value and prompt that performs the best.
Second, we perform the final evaluation using the best-performing
configuration on the large dataset.

Our study revealed various interesting findings, such as, unlike
regular code generation tasks, LLMs requires detailed prompts to
generate desired workflows. However, LLMs have a high likelihood
of producing invalid (i.e., with syntactic errors) workflows with
detailed prompts. Also, LLMs can produce workflows with code
injection vulnerabilities. There is a significant difference in the
performance of LLMs in detecting different types of defects. Also,
fine-tuning reduced the effectiveness of StarChat for detecting syn-
tactic errors. Currently, LLMs are ineffective at repairing workflow
defects, eliciting the need for novel LLMs assisted techniques.

In summary, our contributions are as follows:

o A systematic evaluation of the capabilities of three state-of-
the-art LLMs to generate GitHub workflows and detect, and
repair different classes of defects.

e Various prompt engineering techniques aimed at optimiz-
ing the performance of LLMs across various tasks related
to GitHub workflows.

o Insights about the current state and limits of LLMs when
applied to engineering and security of GitHub workflows.

e A curated set of ~400K workflows with various prompts
enabling future LLM research on GitHub workflows.

Our code is available at purs3lab/LLMs4GitHubWorkflows.
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name: Deployment
on(@:
# dummy_pull:
pull_request:
branches: [main]

jobs@:
build®:
steps:
- name: Checkout Code
uses®: actions/checkout@v?2
- name: Build the code
run@: make
test@:
needs®: build
steps:

- name: Log tests
run: |
echo "Running_tests"
echo "Commit - ${{_github.event.pull_request.head.sha.

1"®
¥ echo "Branch - ${{_github.event.pull_request.head.
ref.}3}"@
# echo "Branch - $BRANCH_NAME"
# env:
# BRANCH_NAME: ${{ github.event.pull_request.head.ref

33

Listing 1: Example of a workflow file which is triggered
upon the creation of a pull request. The workflow builds
the submitted code and runs the existing test-suite.

2 BACKGROUND AND RELATED WORK

In this section, we will provide the necessary background on GitHub
workflows, LLMs, and discuss related work.

2.1 GitHub workflows

GitHub workflows can be created by adding a YAML file (i.e., work-
flow file) to the . github/workflows folder in the target GitHub
repository. The Listing 1 shows an example of a workflow file
with markings representing different components. A workflow file
needs to have event triggers (which trigger the execution of work-
flow, i.e., @ in Listing 1), jobs () to be executed (e.g., ®, @),
where each job is a sequence of steps (e.g., @), @). A job can be
dependent on other jobs, e.g., the job test depends on build as
indicated by (. Each step represents a unit of work, which can be
performed either through running shell commands (e.g., ®, @),
programs (e.g., @), invoking other modules (i.e., Actions) e.g., ®.
A workflow starts execution when one of the triggers occurs. Each
job is independent, and all jobs execute in parallel unless there is a
dependency where a job waits for all its dependents. Within each
job, steps are executed sequentially in the order specified in the
workflow.

Several works studied GitHub workflows along various aspects,
such as most common automation practices [8], common patterns to
perform various tasks [20], and changes made by developers over
time [49]. Valenzuela-Toledo et al. [49] highlighted the absence
of robust tools that could support GitHub workflows and detect
syntactic and functional errors at an early stage in the development
process. None of these works involve LLMs or have specifically
addressed their use for GitHub workflows.
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2.1.1 Defects in workflows. Similar to traditional programs, work-
flows can also have defects. We focus on two classes of defects: syn-
tactic errors and security vulnerabilities, specifically code injection
vulnerabilities.

Syntactic errors prevent the workflow from being executed. How-
ever, identifying syntactic errors in workflows requires complete
knowledge of workflow structure and valid values. The mere va-
lidity of YAML file does not guarantee correct workflow syntax.
For instance, in the workflow in Listing 1, changing the trigger
(i.e., pull_request) to an invalid name (say dummy_pull as indi-
cated by ¥¥) produces a valid YAML but syntactically invalid work-
flow.

Security vulnerabilities could be exploited by attackers to per-
form various malicious activities (e.g., exfiltrating repository se-
crets), leveraging the permissions assigned to the workflow causing
broader supply chain attacks [18, 45]. For instance, in Listing 1, one
of the steps (indicated by (D)) prints the source branch name of a pull
request and is prone to code injection vulnerability (indicated by ¥).
Note that the branch name (github.event.pull_request.head.
ref) is determined by the creator of the pull request rather than
the repository owner. An attacker can craft a branch name that
includes the desired shell command and raise a pull request. The
print command will interpret the branch name as a shell command
and execute the attacker-provided command. The v marker shows
the correct way to print, i.e., using an intermediate environment
variable for the branch.

Security aspects of the GitHub CI platform have also been ex-
plored during prior research [16, 21, 27]. These works primarily
focus on designing static analysis tools to detect different classes
of security vulnerabilities in GitHub workflows. For instance, Mu-
ralee et al. [27] developed ARGUS, a static taint tracking tool aimed at
identifying command injection vulnerabilities in GitHub workflows.
However, no work tries to use LLMs for security tasks in GitHub
workflows.

2.2 Large Language Models (LLMs)

LLMs have emerged as transformative tools capable of understand-
ing and generating human-like text based on vast amounts of data
they have been trained on. To elicit better responses from LLMs,
various strategies have been formulated. Among these, instruction
fine-tuning [24, 36, 53, 55] stands out as a notable approach. This
method involves augmenting existing pre-trained models by further
training them on smaller, domain-specific, and multi-task datasets
and providing detailed instructions. Another effective strategy to
elicit better responses involves the engineering of more refined
prompts [10], i.e., prompt engineering, provided to the models. The
usage of LLMs can be broadly classified into the following three
modes [6] based on the amount of task-specific information pro-
vided:

o Zero-shot mode involves presenting the LLM with no task spe-
cific information. The expectation is that the model, leveraging its
extensive pre-training, will generate relevant outputs for entirely
novel problems.

e One-shot mode: Here, we provide a single example of the
prompt and the desired outcome. The example serves to guide
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the model’s response by providing a context or template for the
task at hand.

e Few-shot mode extends the concept of one-shot mode by pro-
viding multiple labeled examples.

It is crucial to understand that the above prompting strategies are
Tuning-free prompting [23], i.e., we do not change the parame-
ters of the pre-trained LLMs.

2.2.1 Using LLMs for Automated Code Generation. Driven by the
effectiveness of LLMs, there has been significant interest in design-
ing LLMs for code-related tasks. For instance, close-source GPT-
3.5 [31] and GPT-4 [32], inheriting the capabilities of Codex [7]
designed specifically for programming tasks, have been exten-
sively utilized. Other open-source code LLMs including CodeT5[52],
CodeGen[30], StarCoder[22], CodeLlama[40], etc., have been suc-
cessively introduced, and have demonstrated remarkable perfor-
mance in software development tasks.

One of the important tasks is the text-to-code generation (i.e.,
generating code based on the natural language description). How-
ever, most works focus on programming languages such as Java,
C/C++, and Python. As mentioned in § 2.1, GitHub workflows are
engineered in YAML files. Only few works [37, 56] focus on us-
ing LLMs for generating YAML files. Pujar et al[37] fine-tuned the
CodeGen LLM, and evaluated its performance in generating YAML
scripts for Ansible. Although GitHub workflows follow the YAML
syntax, they differ significantly from Ansible scripts (§ 2.1).

2.2.2 Using LLMs for Automated Defect Detection. Many works
investigated the effectiveness of LLMs in defect detection in regular
programs. Thapa et al. [46] fine-tuned various transformer-based
language models (e.g., BERT [9], GPT-2 [38], DistilBERT [42], etc.)
on binary and multi-classification tasks using software vulnera-
bility datasets from C/C++ applications. Similarly, Gao et al. [14]
evaluated defect detection capabilities in CTF (Capture-the-Flag)
challenges and real-world applications. Fu et al. [12] introduced
LineVul, a line-level vulnerability predictor leveraging BERT to
predict the presence of vulnerabilities in a dataset composed of
C/C++ applications.

All these works focus on vulnerabilities in regular programs.
However, as we explained in § 2.1.1, defects in GitHub workflows
differ from those in regular programs. Furthermore, none of the
existing works try to evaluate the accuracy of the detection, i.e.,
line number of the defect. In this work, we focus on holistically
assessing LLMs capabilities to detect workflow defects.

2.2.3  Using LLMs for Automated Program Repair (APR). Sobania
et al. [44] performed a comparative evaluation of Python program
repair effectiveness of ChatGPT [31], Codex and CoCoNuT [25].
Ahmad et al. [2] employed an ensemble of LLMs, specifically Codex
and CodeGen, to automatically rectify hardware security vulnera-
bilities in Verilog. Wu et al. [54] studied the capabilities of LLMs in
Java vulnerability repair and compared them with those of deep-
learning-based APR models. However, no studies focus on CI/CD
platforms, specifically GitHub workflows, which contain a blend of
configuration steps (potentially) involving various programming
languages.
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Figure 1: Overview of Our Study.

3 STUDY DESIGN

The Figure 1 shows the overview of our study. We created three
GitHub workflow datasets, D1, D2, and D3 to investigate our re-
search questions. We selected three state-of-the-art LLMs and fine-
tuned them with a mixed subset of our datasets. We performed
our investigation with both off-the-shelf LLMs and their fine-tuned
versions.

3.1 LLMs Selection

We aim to select state-of-the-art LLMs that are specifically designed
for programming tasks (e.g., code completion, code generation,
defect detection, etc.). We focus on instruction-following LLMs, i.e.,
which perform a task based on provided instructions. Finally, we
should also be able to fine-tune the models, e.g., we exclude GPT-
4 [32] as we have no access to fine-tune it. Based on the above
criteria, we selected three LLMs, i.e., GPT-3.5 Turbo [31], StarChat-
B [47], and CodeLlama-7B-Instruct [40] as summarized in Table 1.

Table 1: Models considered in our studies

1D ‘ Model ‘ Model Version ‘ Parameters ‘ Context Length ‘ Provider
M1 ‘ GPT-3.5 ‘ GPT-3.5 Turbo ‘ ‘ 4,096 tokens ‘ OpenAl
M2 ‘ StarChat ‘ StarChat-f§ ‘ 16B ‘ 8,192 tokens ‘ Hugging Face
M3 ‘ CodeLlama ‘ CodeLlama-7B-Instruct ‘ 7B ‘ 16,384 tokens ‘ Meta

3.2 Dataset Collection

We used the GitHub workflow dataset from ARrRGus [27], a re-

cent work that tries to find vulnerabilities in GitHub workflows.

The dataset has 2,778,483 GitHub workflows, collated over a pe-

riod from November to December 2022. The dataset also includes

7,640 GitHub workflows with manually confirmed vulnerabilities.

We split the dataset into three mutually exclusive sets:

e Dataset II (D2): This set contains an equal number of GitHub
workflows with one syntax error and workflows with no syntax
errors. Specifically, we ran actionlint [1], a syntax checker
tool to find workflows with syntax errors, and picked the same
number of syntactically valid workflows to create D2.
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e Dataset III (D3): Similarly, this set contains an equal number
of GitHub workflows with at least one vulnerability and work-
flows with no vulnerabilities. We used the vulnerable work-
flows from ARGUs dataset and collected the same number of
non-vulnerable workflows to create D3.

e Dataset I (D1): All the remaining workflows, i.e., syntactically
valid and contain no vulnerabilities, are collected to form D1.

3.2.1 De-duplication and Filtering. We deduplicated ArRGUs dataset
and ignored workflows with more than 1,024 tokens (2,048 tokens 5
for vulnerable workflows) considering the context length supported
by the selected LLMs and our designed prompts. Also, for D1, we
performed the following two additional filtering steps to ensure that
it contains mostly representative and realistic workflows. First, we
ignored workflows that lack names or have steps without names.
As we will discuss in § 3.4.1, these names are needed to create
prompts and are important to understand the objectives of work-
flows. Second, we classified workflows using structural complexity
metrics and filtered out outliers as they are not representative of
realistic workflows. We provide the details of this in our extended
report [58].

3.2.2  Fine-Tuning Dataset. We also created a fine-tuning split for
each dataset by randomly picking the same number (3,200) of work-
flows from the corresponding dataset. We capped at 3,200 as we
did not find any significant increase in effectiveness with a larger
number of workflows. For D2 and D3, we picked 1,600 positive
and negative workflows. As we will discuss in § 4, we used the
fine-tuning split for each dataset to create fine-tuned LLMs.

The Table 2 shows the summary of different datasets and statis-
tics of the corresponding workflows.

Table 2: Summary of the different datasets used in our study.

Num Size (Bytes)
Datasets
Workflows Min/Mean/Median/Max

FT (D1F) 3,200 155/1,388/1,212/4,060

D1 Dataset I
Test (D1T) 287,876 84/1,247/1,068/4,450
FT (D2F) 3,200 55/1,362/1,147/4,338

D2 Dataset I
Test (D2T) 122,640 20/1,352/1,126/4,751
FT (D3F) 3,200 203/2,017/1,709/8,711

D3 Dataset III
Test (D3T) 2,006 194/2,049/1,748/7,854

3.3 Instruction Fine-Tuning

Several works[19, 46] show the effectiveness of fine-tuning LLMs
and demonstrate that they perform better than original models. We
also used fine-tuned models as part of our study.

Fine-tuning requires a dataset of input and expected output
pairs. Specifically, for instruction fine-tuning, we need (instruction,
output) pairs, i.e., natural language instruction to perform a task
and the expected output. We created the fine-tuning dataset for
three of our tasks, i.e., Workflow Generation (T1), Syntactic Error
Identification (T2), and Code Injection Vulnerability Detection (T3)
by using the corresponding fine-tuning splits (§ 3.2.2), i.e., D1F,
D2F, and D3F, respectively. For each task, we use the expected user

5The number of vulnerable workflows is limited.
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Table 3: Workflow-related tasks and corresponding prompts (§ 3.4.1), and metrics (§ 3.4.2) that are evaluated as a part of the

study.
Prompt Engineering (§ 3.4.1) Evaluation
Research
Task System Prompt User Prompt Metrics
Question
Persona Output format ID Description (§3.4.2)
P1 | workflow-level information and all job IDs
Accuracy@K
Workflow P2 | workflow-level information, all job IDs and all step names
software | . . BLEU score
RQ1 Generation yaml <Workflow> P3 | workflow-level information, all job IDs, all step names and all dependencies that can be used
engineer - Manual valid-
(T1) P4 | workflow-level information, all job IDs, job-level information and all step names
ation
P5 | workflow-level information, all job IDs, job-level information and step-level information
Syntactic Error | software P1 | Is there a syntactic error in the following GitHub workflow? * * * yaml <Workflow="""*
<Yes or No> | line number: ...
Identification (T2) | engineer P2 | Is there <syntactic error type> in the following GitHub workflow? " * yaml <Workflow>"""
Accuracy@K
RQ2 Code Injection No or P1 | Is there any code injection vulnerability in the following GitHub workflow? * * * yaml <Workflow>" .
securit; 1 score
Vulnerability ) ¥ | Yes | line number: ... | tainted | P2 | Is there any <vulnerability type> in the following GitHub workflow? **  yaml <Workflow=""*
engineer
Detection (T3) ¢ variable: ... | taint source: .. | P3 | Is there any code injection vulnerability in the following GitHub workflow? <hint message>. * * * yaml <Workflow>""*"
P1 | Please fix syntactic errors in the following GitHub workflow. * * * yaml <Workflow>"""
Syntactic Error software e o
yaml <Workflow> P2 | Please fix syntactic errors in the following GitHub workflow. <location>. * * * yaml <Workflow>"**
Fixing (T4) engineer
RQ3 P3 | Please fix syntactic errors in the following GitHub workflow. <location>. <error message>. * * * yaml <Workflow=>"""
Code Injection P1 | Please repair code injection vulnerabilities in the following GitHub workflow. * * * yaml <Workflow>""* T
security
Vulnerability ~ 7| yaml <Workflow=""" | P2 | Please repair code injection vulnerabilities in the following GitHub workflow. <location >. *** yaml <Workflow>""*
engineer N NS N
Repair (T5) P3 | Please repair code injection vulnerabilities in the following GitHub workflow. <location>. <fix strategy>. * * * yaml <Workflow>

prompt (Table 3) as its instruction and the corresponding workflow
(T1) or defect location (T2 and T3) as the output. We use the suffix F
to indicate the fine-tuned variant of the model. For instance, GPT-
3.5F indicates fine-tuned variant of GPT-3.5 (Table 1). Note that
we used three generation tasks (instead of all five tasks) for fine-
tuning. This is because generating expected output for repair tasks
(T4 and T5) is tedious, especially when there can be multiple valid
but semantically equivalent repairs for a given defect. Nonetheless,
as shown by the recent work [53, 55], the fine-tuned models on
generation tasks will also perform better on other related but unseen
tasks. Based on this, our fine-tuned models are expected to perform
better even on unseen defect repair tasks.

3.3.1 Implementation Details. We use OpenAI’s APIs to fine-tune
the GPT-3.5. As for StarChat and CodeLlama, we utilize the Hugging
Face implementation version of the models and fine-tune each
model using the PyTorch framework with the parameter-efficient
fine-tuning (PEFT) method. The fine-tuning processes for StarChat
and CodeLlama are executed on a single NVIDIA A100 GPU with
80GB memory and on a cluster node running CentOS 7, utilizing
Slurm (Simple Linux Utility for Resource Management) as the batch
scheduler for resource and job management. Each model is fine-
tuned for 5 epochs. We mixed D1F, D2F, and D3F as the training
set and randomly selected 8,00 samples from each of D1T, D2T, and
D3T for testing, maintaining a train-to-test ratio of 8:2.

3.4 Methodology

The aim of our study is to evaluate the effectiveness of LLMs in
performing various tasks related to GitHub workflows. Our study
is organized into the following three research questions:

o RQ1: Workflow Generation: What is the effectiveness of LLMs
in generating GitHub workflows (T1)? How secure and valid are
the generated workflows?

o RQ2: Defect Detection: How effectively can LLMs detect de-
fects? Both syntactic errors (T2) and code injection vulnerabilities
(T3)?

e RQ3: Defect Repair: What is the effectiveness of LLMs in re-
pairing defects? Both syntactic errors (T4) and code injection
vulnerabilities (T5)?

The Table 3 summarizes tasks associated with each research ques-
tion. We followed the same methodology to investigate all our
research questions. Specifically, for each task and workflow, we
provide a prompt to LLMs and compare their outputs with the
expected output using various metrics (§ 3.4.2).

3.4.1  Prompt Engineering. Several works [3, 50] show that prompts
greatly influence the effectiveness of LLMs. For each task, we cre-
ated prompts (mimicking user instructions) with varying levels of
detail describing the desired output from a LLM.

Salewski et al. [41] demonstrated that assigning a specific per-
sona (e.g., domain expert) to LLMs will result in better results. Based
on this, we create a persona prompt or system prompt for each task
that sets up the desired persona of a LLM. We prepend the system
prompt to the user prompt to create the final prompt, which we pro-
vide to LLMs. The details of the prompts are depicted in Table 3.
Our extended report [58] provides examples of the prompts and
explains every definition (e.g., vulnerability type, error message,
fix strategy, etc.) in user prompts.

User Prompts for Workflow Generation (T1). In this task, we evaluate
the capability of LLMs in generating well-formatted workflows
from a natural language description. As described in § 2.1, a work-
flow has a name, trigger, and set of jobs, each with a sequence of
steps. In addition, Job and Step have a name field describing its func-
tionality, e.g., “Build the project”. We create five types of prompts
(P1-P5) for this task, with each prompt providing more description
about the target workflow. P1 has the minimal description needed
to create the workflow, i.e., name, trigger, and the set of job IDs.
However, it does not provide any details about the steps in each
job. Meanwhile, P2 (in addition to information from P1) provides
information about the steps. Similarly, P3-P5 provides an increasing
level of detail.

User Prompts for Syntactic Error (T2) and Code Injection Vulnerability
(T3) Identification. Here, we evaluate the defect detection capability
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of LLMs. We create prompts, each of which provides more infor-
mation about the target defect. The corresponding rows in Table 3
provide more details. The basic prompt asks for the existence of the
desired defect (i.e., syntactic error or code injection vulnerability).
Other prompts provide more details about the target defect, i.e.,
specific type or hint message.

User Prompts for Syntactic Error (T4) and Code Injection Vulnerability
(T5) Repair. Here, we evaluate the defect repair capabilities of LLMs.
We provide LLMs with varying degrees of information related to
the target defect. Indicative information ranges from minimal in-
formation (i.e., defect type) to comprehensive hints, encompassing
details such as defect locations, error messages, or fix strategies.

3.4.2  Evaluation Metrics. We used the following three evaluation
metrics to assess the output produced by LLMs across various tasks.
BLEU (Bilingual Evaluation Understudy) score [34] is a value
ranging from 0 to 1, indicating how similar the candidate text is to
the reference text, with values closer to 1 representing higher simi-
larity. We use BLEU-4 (i.e., the geometric average of 1-gram, 2-gram,
3-gram, and 4-gram precision) to compare the generated workflow
with the expected workflow because of the need to preserve the
ordering of tokens.
Accuracy@K [57] enables measuring accuracy of results when
multiple (i.e., K) responses are provided. Specifically, given a test ¢
(or a sample s), we consider the responses of a LLM as a match (i.e.,
score 1) when any one of the K responses satisfies t (or matches s),
else we consider it as no match (i.e., score 0). We use K = 5 in all
our experiments. For n tests (or samples), we average the matching
score (i.e., 1 or 0) across all the n samples to get Accuracy@K.
F1-Score [43] is calculated as a harmonic mean of precision and
recall. This score (ranging from 0-1) provides a single metric to eval-
uate binary classification. We use this to evaluate defect detection
effectiveness.

The last column of Table 3 shows the summary of metrics used
to evaluate each task.
Workflow Generation Task (T1): Here, we want to evaluate whether
the workflow generated by a LLM performs the functionality as
the expected workflow. However, precisely accessing this requires
semantic equivalence checking [29] — infeasible in the general case.
Instead, (i) we utilize actionlint to check that the generated work-
flow is valid (i.e., no syntactic errors), and calculate Accuracy@K to
measure correctness; and (ii) compare how similar (content-wise)
the generated workflow is to the expected workflow by comput-
ing BLEU score; and (iii) manually validate 270 randomly sampled
workflows.
Defect Detection Tasks (T2 and T3): Here, we verify two aspects:
detection capability and accuracy of the detection. Specifically, we
use FI1-Score to measure detection capability and measure detection
accuracy (i.e., line number for T2, line number, tainted value and
taint source for T3) using Accuracy@K.
Defect Repair Tasks (T4 and T5): Here, we want to evaluate whether
aLLM correctly repaired a workflow. However, automatically check-
ing whether LLMs produced the correct repaired workflow re-
quires semantic checking — similar to the workflow generation
task (T1). Instead, we check whether the generated workflow is
non-vulnerable and use Accuracy@K to measure the repair capabil-
ities of LLMs.
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3.4.3 LLMs Configuration and Experimental Setup. As mentioned
in § 2.2, there are three basic modes (i.e., zero-shot, one-shot, and
few-shot) of using a LLM model. However, during our experiments
with off-the-shelf variants, we found no difference in effectiveness
between the one-shot mode and the few-shot mode. We will only
present the results of zero-shot and one-shot modes for off-the-shelf
variants. For Defect Repair Tasks, we used both zero-shot mode and
one-shot mode for fine-tuned variants, as these tasks are unseen to
the fine-tuned models. (§ 2.2). For a given mode, the performance of
a LLM model might vary with different configurations. For every
task, we want to assess a LLM mode using its best-performing
configuration and the most effective prompt.

LLMs have a temperature parameter, indicating the desired level

of randomness. Specifically, higher temperature values indicate
a higher degree of non-determinism. The values from 0 to 1 are
recommended to prompt a LLM to produce responses that are ac-
ceptable to humans. For example, the temperature range of GPT-3.5
is from 0 to 2. However, temperature values above 0.9 make the
responses technically useless. Also, as mentioned in § 3.4.1, we
generate several prompts for each task.
Calibration (Identifying Effective Configuration): For a given LLM
and task, we use a small but representative subset (i.e., calibration
set (CAsET)) of samples to identify which temperature and prompt
combination gives the best result. Specifically, we use 0.1, 0.3, 0.5,
0.7, and 0.9 as our temperature values and combine them with
prompts with varying levels of detail (Table 3). The best-performing
temperature value and prompt will be used to evaluate the final set of
samples.

For T1, we collected 266 workflows as our CASET. We performed
a random sampling and collected two workflows each for 133 ef-
fective combinations of complexity metrics [58], ensuring that
our CASET is representative. Also, given the large number (0.28
million) of workflows in D1T, we picked 20 workflows along each of
the 133 complexity metrics combinations as our evaluation dataset.

For T2, we randomly selected 200 workflows (100 syntactically
valid, 100 syntactically invalid) to construct our CASET and sampled
5,000 GitHub workflows (2,500 syntactically valid, 2,500 syntacti-
cally invalid) to form a larger evaluation dataset. Similarly, for T3,
we randomly selected 80 vulnerable workflows (with a total of
108 vulnerabilities), and then sampled 80 non-vulnerable GitHub
workflows to construct CASET. We utilized all remaining vulnera-
ble GitHub workflows (923 GitHub workflows with 1,586 vulnera-
bilities) and 923 non-vulnerable GitHub workflows to form a larger
evaluation dataset.

For T4, we randomly chose 200 GitHub workflows with syntac-
tic errors as our CASET and sampled an additional syntactically
invalid 2,500 GitHub workflows to constitute a larger evaluation
dataset. For T5, we randomly selected 100 and 375 GitHub work-
flows containing code injection vulnerabilities that can be fixed
within workflows to form our CASET and larger evaluation dataset,
respectively.

4 RESULTS

In this section, we present the results of the study along with our
three research questions. For each task (under a research question),
we first present the calibration results, aiming to identify the most
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Table 4: BLEU scores of workflow generation on CASET.

0.9

effective configuration for each LLM variant in each mode, i.e., (i)
off-the-shelf variants in zero-shot mode, (ii) off-the-shelf variants
in one-shot mode, and (iii) fine-tuned variants. An exception is for
T4 and T5, unseen tasks for fine-tuned variants, where we seek
the optimal configuration for fine-tuned variants in both zero-shot
and one-shot modes. Second, we present the final assessment of
each LLM mode using its most effective configuration.

4.1 RQ1: Workflow Generation

Here, we evaluate the effectiveness of LLMs in generating work-
flows. As shown in Table 3 and described in § 3.4.2, this research
question has one task, and we use three evaluation metrics.

4.1.1 Calibration. We use BLEU (Table 4) and Accuracy@K (Ta-
ble 5) scores for calibration.

BLEU Scores. The Table 4 shows that across all temperature (¢) val-
ues and LLMs modes. The trend of BLEU scores across different
temperature values changes across different LLMs. For GPT-3.5, the
largest temperature value of 0.9 (i.e., greater non-determinism) is
better. Whereas for CodeLlama and StarChat, temperature values of
0.5 and 0.7, respectively, are the best. Interestingly, the BLEU score
increases with more detailed prompts. This indicates that users
should provide detailed prompts to get the expected workflow. This
differs from the standard code generation tasks, where LLMs are
shown to perform well even with a very simple prompt [11]. This
is because a simple prompt can precisely describe the desired code
generation task, e.g., “generate sort function”. Whereas workflows

off-the-shelf
Model t 0-shot ‘ 1-shot fine-tuned
P1 [ P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 [ P3 P4
01 | 13.60 3557 | 40.87 | 40.56 25.69 | 46.20 | 5431 5426 2583 | 47.25 5364 | 5333
03 | 1521 3692 | 42.10 | 41.63 27.77 | 47.76 | 5590 5587 2751 | 49.05 5443 | 5472
GPT-35 | 05 | 1600 3804 | 43.00 | 42.58 28.84 | 4857 | 56.61 5647 27.46 | 49.05 5460 | 55.04
0.7 | 1639 3808 | 4335 | 43.17 2895 | 49.49 | 57.23 57.22 2669 | 47.79 5375 | 55.13
09 | 1684 3839 | 43.69 | 43.22 2021 | 49.67 | 5715 5731 2436 | 4643 5254 | 52.80
01 | 1559 3532 | 4038 | 41.98 36.14 | 5122 | 5581 57.15 2538 | 4554 51.06 | 53.92
03 | 1712 37.84 | 4256 | 44.98 3742 | 5268 | 57.34 5850 2743 | 4838 53.12 | 5629
CodeLlama | 05 | 17.91 3756 | 43.15 | 4535 37.77 | 5320 | 57.81 59.48 2742 | 4860 5290 | 5654
0.7 | 17.65 37.61 | 42.65 | 44.43 3842 | 5341 | 57.72 5886 2671 | 47.08 53.16 | 5558
0.9 | 1643 3618 | 4038 | 41.65 37.84 | 51.83 | 5599 57.64 25.08 | 4537 5119 | 5353
01| 17.22 3687 | 40.21 | 41.07 3461 | 49.72 | 53.91 5553 2698 | 4872 5357 | 5447
03 | 1854 3821 | 41.82 | 4338 3651 | 5138 | 5530 57.36 2007 | 50.67 5575 | 5743
StarChat | 0.5 | 1946 39.10 | 42.93 | 43.81 3736 | 5233 | 5658 58.10 2945 | 50.74 5620 | 5839
0.7 | 1934 39.04 | 42.69 | 43.81 37.36 | 5230 | 5586 = 5840 2872 | 50.12 5542 | 57.15
0.9 | 1891  39.03 | 42.46 | 43.68 37.14 | 51.98 | 5627  58.00 26.09 | 47.88 5335 | 5578
Table 5: Accuracy @K of workflow generation on CASET.
off-the-shelf
Model t 0-shot 1-shot fine-tuned
Pl | P2 | P35 | P4 | P5 P1I | P2 P4 | P5 Pl | P2 | P3 | P4
03
GPT-3.5 | 05
0.7
0.9
0.1
03
CodeLlama | 0.5
0.7
0.9
0.1 | 56.06 | 57.58 5455 58.33
03 58.33 59.47
StarChat | 0.5 60.23
0.7

(as explained in § 2.1) are sequences of steps and are hard to de-
scribe in a simple prompt. Furthermore, even for a single step, the
appropriate way to perform it depends on the target project. For
instance, a step to build a project depends on the target project, i.e.,
C/C++ (make/cmake), python (setup.py), java (ant build), etc.
More contextual information is needed to generate appropriate
steps and workflows.

Finding 1.1: Unlike for regular code generation tasks, LLMs
require detailed prompts to generate desired workflows.

Accuracy@K Scores. The Table 5 shows the trend of Accuracy@K
scores. It is interesting to see that detailed prompts do not always
improve the Accuracy@K scores. In fact, detailed prompts reduce
the Accuracy@K scores, as shown by the decrease in scores across
the P2 and P3 columns. In other words, detailed prompts result
in LLMs producing defective workflows.

Interestingly, Accuracy@K score follows a inverse bell curve
for GPT-3.5 and CodeLlama. Specifically, for low-detail prompts,
the Accuracy@K score decreases as the prompt becomes more
detailed (till P3). However, the Accuracy@K slowly rises as the
prompt becomes increasingly detailed (P4 and P5). The case is
slightly different for StarChat, where Accuracy@K always decreases
with the increase in the details of the prompt.

The trend is different for BLEU score where detailed prompts
provide better results. Upon investigation, we found that LLMs gen-
erate smaller workflows with simpler prompts and consequently



ARES 2024, July 30-August 02, 2024, Vienna, Austria

reduces the chances of having defects resulting in higher Accu-
racy@K score. However, simpler prompts are unlikely to generate
the desired workflows, as shown by the lower BLEU scores (Table 4).
On the other hand, detailed prompts to LLMs produce workflows
closer to the desired workflows, but the generated workflows might
have defects. Listing 2 shows two GitHub workflows generated by
fine-tuned CodeLlama. A detailed prompt (P5) produces the left
workflow, which is closer to the desired workflow® but contains a
syntactic error (), while a simple prompt (P1) generates the right
one which is syntactically valid but incorrect.

name: Generate Docs name: Generate Docs
on: on:
push:
jobs: branches:
build: - main
runs-on: ubuntu-latest jobs:
steps: build:
- name: Checkout sources runs-on: ubuntu-latest
uses: actions/checkout@v2 steps:
- name: Install stable toolchain - name: Checkout
uses: actions-rs/toolchain@vl uses: actions/checkout@v2
with: - name: Set up Rust
profile: minimal uses: actions-rs/toolchain@vil
target: wasm32-wasi with:

toolchain: stable profile: minimal
toolchain: stable

override: true

override: true
- name: Run cargo build

uses: actions-rs/cargo@vl components: clippy

with: target: x86_64-unknown-linux-gnu
command: doc - name: Cargo packages
args: --workspace --no-deps uses: actions-rs/cargo@vi
- name: Prepare docs folder with:
run: | command: build
sudo chown -R $(whoami) target args: --all
/doc - name: Publish to gh-pages
touch target/doc/.nojekyll uses: crazy-max/ghaction-github-
- name: Deploy documentation pages@v2
branch with:

target_branch: gh-pages
build_dir: target/doc

uses: JamesIves/github-pages-
deploy-action@3.7.1
with:
GITHUB_TOKEN: ${{ secrets.
GITHUB_TOKEN }}
BRANCH: gh-pages
FOLDER: target/doc

Listing 2: Two GitHub workflows generated by fine-
tuned CodeLlama with 0-shot prompting at temperature 0.9.
The left workflow was generated using P5, whereas the right
one was generated by P1. The expected (i.e., ground truth)
workflow is docs.yaml® in the neoeinstein/cj4-fadec repo.

Finding 1.2: LLMs have a high likelihood of producing invalid
(i.e., with syntactic errors) workflows with detailed prompts.

4.1.2  Final Evaluation. We selected the best configuration of each
LLM across different modes and performed our final evaluation.
The Figure 2 shows the cumulative results across different modes.

Finding 1.3: For all LLMs, the fine-tuned variant (i.e., with F suf-
fix) performs better than the corresponding off-the-shelf variant.
For all LLMs, except for StarChat, one-shot mode performs better
than zero-shot.

Effectiveness in generating expected workflows: Higher BLEU score
indicates greater similarity between the generated and expected
workflow. For off-the-shelf variants, GPT-3.5 achieves the best BLEU

Shttps://github.com/neoeinstein/cj4-fadec/blob/main/.github/workflows/docs.yaml
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Figure 2: Final evaluation for workflow generation

score across all the modes. For fine-tuned variants, CodeLlama has
the best BLEU scores. The left subfigure of Figure 3 shows the trend
of BLEU scores against the size (in KB) of expected workflows.
As we show in Table 2, most of the workflows are less than 4KB.
Specifically, the majority (> 85%) of workflows are less than 3KB.
For our size-related comparisons (i.e., Figure 3), we only considered
workflows up to 3KB. We can see from Figure 3 (left subfigure)
that as the workflow size increases, BLEU score initially increases
rapidly and then remains unchanged.

Finding 1.4: The ability of LLMs to generate expected workflows
does not vary much with the size of workflows.

09 F 3
1 |- .
0.8 | = b
0.95 3
0.7 | b
0.9 N b
0.6 1 | 0.85 | \.\' :
0.5 I B 0'8 |- .
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—a— GPT-3.5 0-shot —— GPT-3.5 1-shot GPT-3.5F
—e— StarChat 0-shot —e— StarChat 1-shot StarChatF
—+— CodeLlama 0-shot —— CodeLlama 1-shot CodeLlamaF

Figure 3: BLEU score (left) and Accuracy@K (right) against
the size (in KB) of expected workflows.

Ability to generate valid (i.e., syntactically correct) workflows: Higher
Accuracy@K score indicates a greater chance of generating valid
workflows. For off-the-shelf and fine-tuned variants, CodeLlama
achieves the best Accuracy@K score across all the modes. Un-
like BLEU scores, the Accuracy@K scores slowly decrease as work-
flow size becomes larger (right subfigure of Figure 3). This is ex-
pected as workflow size increases, LLMs need to generate more
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tokens, increasing the likelihood of generating syntactic errors
resulting in lower Accuracy@K scores.

Summary of RQ1: Although GPT-3.5 is highly likely to pro-
duce expected workflows. It might produce invalid or defective
workflows. On the other hand, CodeLlama has a lesser likelihood
of generating expected workflows but has a high probability of

generating valid workflows.
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Table 7: The number of syntactically valid workflows con-
taining security issues.

off-the-shelf
Model fine-tuned Total
0-shot 1-shot
GPT-3.5 21 10 66 97
CodeLlama 26 35 213 274
StarChat 42 51 252 345

Effectiveness in generating semantically correct workflows: We want
to assess the LLMs’ capability to generate semantically correct
workflows. However, automatically determining semantic correct-
ness is impossible. We decided to perform a manual validation
by randomly sampling 30 valid workflows for each model and
mode’s best-performing BLEU configurations. In total, we manu-
ally checked 270 (30*9) workflows and determined the correctness
of each workflow, i.e., a workflow is semantically correct when all
the generated steps are semantically correct. The Table 6 shows
the percentage of generated workflows with semantic correctness
for each model. 30 samples generated by GPT-3.5 across all the
modes and CodeLlama in 1-shot mode are all semantically cor-
rect workflows. Other models also reach a high percentage. The
results indicate that generated workflows have a high semantic
correctness.

Table 6: The percentage of semantically correct workflows
among all the syntactically valid samples.

off-the-shelf
Model fine-tuned
0-shot 1-shot
GPT-3.5 100% 100% 100%
CodeLlama 97.67% 100% 86.67%
StarChat 86.67% 93.33% 96.66%

How Secure are the Generated Workflows? Here, we want to evaluate
how secure the workflows generated by LLMs are. Specifically,
we run ARGUs on each of the workflows to assess the number
of syntactically valid workflows generated by LLMs that contain
security issues. The Table 7 shows the results. StarChat produced
the most number of insecure workflows while GPT-3.5 produced
the least. The Listing 3 shows an example of a workflow generated
by GPT-3.5 that has a code injection vulnerability.

name: Receive PR
on:

jobs:
test-pr:
runs-on: ubuntu-latest

- name: Set Outputs
id: set-outputs
run: ¥¥: echo ""::set-output name=is_valid::${{ steps.check-
pr.outputs.VALID }}\n::set-output name=MSG::${{ steps.
check-pr.outputs.MSG }}""
save-pr-number:
needs: test-pr

Listing 3: Example of a workflow generated by GPT-3.5
that has a code injection vulnerability. The output check-
pr.outputs.MSG is tainted (i.e., controlled by non-repository
owner).

Finding 1.5: LLMs can produce workflows with code injection
vulnerabilities. Developers should be careful while using work-
flows generated by LLMs.

4.2 RQ2: Defect Detection

As mentioned before, we are interested in LLMs’ capability to detect
two types of defects: syntactic errors and code injection vulnera-
bilities. As mentioned in § 2.1, detecting syntactic errors requires
reasoning about the format of workflows. In other words, a well-
formatted and syntactically valid yaml can be an invalid workflow.
As mentioned in § 3.4.2, we use FI-Score to measure detection ca-
pability and Accuracy@K to measure detection accuracy (i.e., line
number).

4.2.1 Syntactic Error Identification (T2). We evaluate this task using
two prompts with varying details (Table 3).

Calibration: Table 8 shows the F1-Score and Accuracy@K of different
models and their variants across different modes. Unlike Workflow
Generation Task (T1), detailed prompts (P1 v/s P2) seem to have
less effect on syntactic error detection.

F1-Score: In 0-shot mode, GPT-3.5 performs the best in detect-
ing syntactic errors with the highest F1-Score of 72.25%. The per-
formance of GPT-3.5 and CodeLlama dropped in 1-shot mode —
contrary to previous works [4, 39] which show that 1-shot mode
provides better performance than 0-shot mode. As expected, in GPT-
3.5 and CodeLlama, the fine-tuned variants performed better than
off-the-shelf variants. The case is different for StarChat, where the
1-shot mode of the off-the-shelf variant performs the best, even
better than the fine-tuned variant.

Accuracy@K: The detection accuracy of off-the-shelf variants fol-
lows the same trend as the detection capability. In other words, GPT-
3.5 performs the best in 0-shot mode, and 1-shot mode hurts the per-
formance of GPT-3.5 and CodeLlama but improves that of StarChat.
As expected, fine-tuned variants perform better than off-the-shelf
variants.

Final Evaluation: The Figure 4 shows the evaluation of the best-
performing configuration on the final large dataset. Overall, Star-
Chat 1-shot mode is the best at detecting syntactic errors as indi-
cated by the highest F1-Score, i.e., 100%. However, fine-tuned GPT-
3.5 has the highest accuracy. In other words, StarChat is good at
detecting whether a workflow has a syntactic error or not. But,
fine-tuned GPT-3.5 is good at detecting where (i.e., line number)
the syntactic error is. Listing 4 in our extended report [58] shows
an example where StarChat correctly identified a syntactic error
but GPT-3.5 failed.
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Table 8: Effectiveness of syntactic error detection on CASET.

F1-Score Accuracy @K
Model t off-the-shelf fine-tuned off-the-shelf fine-tuned
0-shot ‘ 1-shot 0-shot 1-shot
P1 P2 P1 P2 P1 P2
0.1 27.00 39.00 3.000 1.000
0.3 37.00 | 41.00 | 4.000 3.000
GPT-3.5 0.5 39.00 | 42.00 5.000 5.000
0.7 46.00 | 44.00 | 7.000 | 8.000
0.9 42.00 | 43.00 6.000 6.000
0.1 1.000 6.000 1.000 | 0.000
0.3 1.000 8.000 2.000 2.000
CodeLlama | 0.5 4.000 | 11.00 | 8.000 | 5.000
0.7 3.000 | 11.00 | 6.000 3.000
0.9 2.000 10.00 | 8.000 | 5.000
0.1 6.000 12.00 12.00 10.00
0.3 10.00 13.00 17.00 14.00
StarChat 0.5 15.00 | 14.00 13.00 20.00
0.7 10.00 14.00 14.00 | 29.00
0.9 7.000 14.00 21.00 14.00

Table 9: Effectiveness of code injection vulnerability detection on CASET.

Finding 2.1: Contrary to the observations for other applications,
for GPT-3.5 and CodeLlama, the 1-shot mode is less effective
than 0-shot in identifying syntactic errors in workflows. StarChat
is best at detecting syntactic errors but GPT-3.5 can accurately
identify the location of syntactic error.

StarChatF

CodeLlamaF —

GPT-3.5F

StarChat
1-shot
CodeLlama
1-shot
GPT-3.5
1-shot
StarChat
0-shot
CodeLlama
0-shot
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Figure 4: Final evaluation for syntactic error detection
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F1-Score Accuracy @K
Model t off-the-shelf fine-tuned off-the-shelf fine-tuned
0-shot ‘ 1-shot 0-shot 1-shot
P1 P2 P1 P2 P3 P1 P3 P1 P2 P3 P1 P2 P3

0.1 | 7.140 | 17.98 0.000 0.000 | 0.000 | 8.570 | 0.000 | 0.000 | 3.850
0.3 | 7.140 | 20.00 0.000 0.000 | 0.000 | 9.520 | 0.950 | 0.000 | 9.620
GPT-3.5 0.5 | 9.410 | 21.98 0.000 0.000 | 0.000 | 12.38 | 0.950 | 0.000 | 12.50
0.7 | 2.440 | 17.78 6.520 0.000 | 0.000 | 9.520 | 0.000 | 0.000 | 12.50
0.9 17.78 0.000 0.000 | 0.950 | 12.38 | 0.950 | 0.000 | 12.50

0.1 0.950 | 0.950 | 3.810 | 0.000 | 0.000 | 0.000 55.24 5333

0.3 0.950 | 0.000 | 2.860 | 0.000 | 0.000 | 0.000 58.10
CodeLlama | 0.5 0.000 | 0.000 | 3.810 | 0.000 | 0.000 | 0.000
0.7 0.950 | 0.000 1.900 | 0.000 | 0.000 | 0.000
0.9 0.000 | 0.950 | 0.000 | 0.000 | 0.000 | 0.000
0.1 0.000 | 0.000 | 1.900 | 12.38 | 17.14 | 20.95
0.3 0.000 | 0.000 | 0.950 | 18.10 | 19.05 | 25.71
StarChat 0.5 0.000 | 0.000 | 2.860 | 12.38 | 22.86 | 28.57
0.7 0.000 | 0.000 | 2.860 | 12.38 | 16.19 | 25.71
0.9 0.000 | 0.000 | 1.900 | 6.670 | 10.48 | 26.67

4.2.2  Code Injection Vulnerability Detection (T3). As shown in Ta-
ble 3, we use three prompts to evaluate this task.
Calibration: The left part of Table 9 shows the F1-Score of code injec-
tion vulnerability detection of different models and their variants
across different modes. The fine-tuned variants perform best for
all LLMs and a given prompt. For off-the-shelf variants of CodeL-
lama and StarChat, simpler prompts (i.e., P1 and P2) provide the
best F1-Score. However, for GPT-3.5, the detailed prompt (i.e., P3)
provides the best FI-Score. For off-the-shelf variants of CodeL-
lama and StarChat, smaller temperature values (i.e., low non-
determinism) provide the best F1-Score. In contrast, higher tem-
perature (i.e., higher non-determinism) works well for GPT-3.5.
The right part of Table 9 shows the Accuracy@K of code injection
vulnerability detection of different models and their variants across
different modes on CASET. The off-the-shelf variant performs better
when receiving detailed prompts, but it has a poor performance
in pinpointing vulnerabilities across all modes. On the contrary,
the fine-tuned variant does not benefit from detailed prompts and
performs much better than the corresponding off-the-shelf variant.
Final Evaluation: The Figure 5 shows the evaluation of the best-
performing configuration on the final large dataset. Overall, fine-
tuned variants perform better, demonstrating the importance of fine-
tuning in detecting code injection vulnerabilities. The fine-tuned
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Figure 5: Final evaluation for code injection vulnerability
detection.

variant of GPT-3.5 (i.e.,GPT-3.5F) performs the best. Interestingly,
off-the-shelf GPT-3.5 performs the worst in 1-shot mode. Listing 5 in
our extended report [58] shows an example where GPT-3.5 correctly
identified a code injection vulnerability missed by other LLMs.

Summary of RQ2: Across the tested LLMs, there is a significant
difference in the effectiveness of syntactic error detection and
code injection vulnerability detection. Off-the-shelf StarChat in
1-shot mode is best at detecting syntactic errors, whereas fine-
tuned GPT-3.5 is best at detecting code injection vulnerabilities.

We also discuss the effectiveness of detection against the size of
workflows in the extended report [58].

4.3 ROQ3: Defect Repair

Similar to defect detection, we focus on repairing two kinds of de-
fects: syntactic errors and code injection vulnerabilities. We use Ac-
curacy@K to assess the effectiveness of defect repair. As described
in § 3.3, we do not include repair examples in our fine-tuning dataset.
Hence defect repairs (T4 and T5) can be considered as unseen (but
related) tasks for LLMs.

4.3.1 Syntactic Error Repair (T4). We evaluate this task using three
prompts (P1, P2, P3) with increasing detail (Table 3).
Calibration: The Table 10 shows the Accuracy@K of different LLMs
on our calibration dataset (CASET). Across all prompts, higher tem-
peratures yield better results. This is expected as higher temperature
value allows LLMs to be more creative, consequently increasing
the likelihood of generating repaired workflow. Listing 6 in our
extended report [58] shows an example of a syntactically invalid
workflow due to the use of an invalid step name (¥¥). In this in-
stance, setting a higher temperature value successfully corrected
the syntactic error, whereas a lower temperature setting failed to
do so.

Also, detailed prompts provide better results, as indicated by the
increasing trend across P1 to P3. For simpler prompts, i.e., P1 and
P2, fine-tuned variant of GPT-3.5 perform better on syntactic error
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repair tasks (unseen tasks) than the off-the-shelf variant. However,
the case is different with CodeLlama and StarChat, where the fine-
tuned variant performed poorly. These results demonstrate that fine-
tuning GPT-3.5 on certain tasks helps in improving its effectiveness
on other unseen but related tasks. However, this is not the case
with other LLMs, where fine-tuned variants can perform poorly on
unseen (but related) tasks. Intuitively, this makes sense as GPT-3.5 is
trained on diverse datasets and has higher generalization capability.
Whereas specialized LLMs (i.e., CodeLlama and StarChat) have less
generalization capability. Our observations are in line with prior
work [53], which showed that fine-tuned large models (e.g., GPT-
3.5) generalize to unseen (but related) tasks. In contrast, smaller
models (e.g., CodeLlama and StarChat) suffer as all model capacity
is used for tasks used in fine-tuning.

Final Evaluation: The Figure 6 shows Accuracy@K of syntactic error
fixing on the large dataset. We did not include the results for fine-
tuned variants of CodeLlama and StarChat as they are extremely
poor (i.e., < 40%). GPT-3.5 in 1-shot mode performs the best across
all LLMs and their variants.

GPT-3.5F | ] 64.6 |
1-shot ] 84.87

GPT-3.5F ] 71.2

0-shot 1 86.72 |

StarChat |
1-shot ] 50.44

CodeLlama ] 73.6
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Figure 6: Final evaluation for defect repair.

4.3.2 Code Injection Vulnerability Repair (T5). We evaluate this
task using three prompts (P1, P2, P3) with increasing detail (Table 3).
Calibration: The Table 11 shows the Accuracy@K of different LLMs
on our calibration dataset (CASET). It follows a similar pattern as re-
pairing syntactic errors, i.e., higher temperatures yield better results
across all prompts. Also, detailed prompts provide better results, as
indicated by the increasing trend across P1 to P3. Fine-tuned variant
of GPT-3.5 performs better on code injection vulnerability tasks
(unseen tasks) than the off-the-shelf variant. However, the case
is different with CodeLlama and StarChat, where the fine-tuned
variant performs poorly.

Final Evaluation: Figure 6 shows the evaluation on the final large
dataset. We did not include the results for StarChat in 1-shot mode
and fine-tuned variants of CodeLlama and StarChat since they are
extremely poor. CodeLlama in 1-shot mode performs the best across
all LLMs and their variants.
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Table 10: Accuracy @K of syntax error fixing on CASET.

Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

off-the-shelf fine-tuned
Model t 0-shot 1-shot 0-shot ‘ 1-shot
P1 P2 | P3 P1 P2 P1 P2 P3 P1 P2 P3

0.1 | 4650 | 50.00 | 80.50 | 51.27 | 56.85 65.00 | 65.50 7053 | 59.26 | 80.65

0.3 | 4750 | 52.50 52.79 | 57.87 67.00 | 69.50 72.63 | 65.08

GPT-3.5 | 0.5 | 48.50 | 52.50 5431 | 59.90 67.50 | 71.00 7421 | 68.78

0.7 | 50.00 | 57.00 5533 | 61.42 6850 | 75.50 7121 | 7143

0.9 | 53.00 | 58.00 56.85 | 66.50 73.00 | 75.50 7632 | 73.54
0.1 | 4040 | 17.17 | 62.12 | 9.000 | 52.50 0.000 | 0510 | 0.510 | 5.000 | 7.000 | 7.500
0.3 | 3.540 | 36.87 11.50 | 35.00 0.000 | 0510 | 0.000 | 11.50 | 10.50 | 12.00
CodeLlama | 05 | 6.060 | 35.86 14.00 | 33.00 0.000 | 0.000 | 1.520 | 17.50 | 15.00 | 17.00
0.7 | 8590 | 40.91 18.00 | 33.00 2530 | 1.520 | 2.530 | 27.50 | 23.00 | 25.50
0.9 | 15.15 | 36.36 19.00 | 37.00 3.030 | 3.030 | 3.540 | 35.50 | 2550 | 30.00
0.1 | 4444 | 49.49 | 60.10 | 42.00 | 4350 45.00 | 0.000 | 0.000 | 1.010 | 0.000 | 0.500 | 0.000
03 | 44.44 | 5101 | 62.12 | 43.50 | 44.00 ~47.00 | 0.000 | 0510 | 1.010 | 0.000 | 2.500 | 0.000
StarChat | 05 | 44.95 | 52.02 | 64.14 | 43.50 | 44.50 4850 | 0.000 | 0.510 | 1.010 | 0.000 | 5.000 | 0.000
07 | 44.44 | 5354 | 64.65 | 32.50 | 29.50 = 54.00 | 0.000 | 0.510 | 1.520 | 0.500 | 8.000 | 0.000
09 | 42.42 | 52.02 | 64.65 | 42.00 | 36.50 | 55.00 | 1.520 | 0.000 | 2.530 | 1.000 | 9.000 | 0.500

Table 11: Accuracy @K of code injection vulnerability repair on CASET.
off-the-shelf fine-tuned
Model t 0-shot 1-shot 0-shot 1-shot
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

0.1 | 2020 | 2.020 | 2041 | 8.050 | 4600 | 31.40 | 21.21 | 49.49 | 50.00 | 26.67 | 25.68 | 36.99
0.3 | 3.030 | 6.060 | 2653 | 1250 | 5.620 | 41.86 | 38.38 | 52.53 | 56.12 | 42.67 | 31.08 | 49.32
GPT-35 | 05 | 7.070 | 9.090 | 32.65 | 10.11 | 7.870 | 47.62 | 40.40 | 62.63 | 62.24 | 42.67 | 41.89 | 5479
07 | 6.060 | 8.080 | 43.88 | 13.79 | 6.980 | 66.67 | 49.49 | 63.64 | 6939 | 46.67 | 45.95 | 64.38
09 | 14.14 | 2424 | 44.90 | 2069 | 15.12 | 5595 | 5253 | 69.70 | 67.35 | 53.33 | 48.65 | 64.38
0.1 | 36.00 | 48.00 | 26.00 | 33.00 | 62.00 | 41.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
03 | 35.00 | 52.00 | 36.00 | 46.00 | 73.00 | 60.00 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000
CodeLlama | 0.5 | 35.00 | 42.00 | 38.00 | 46.00 | 72.00 | 67.00 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000
0.7 | 32.00 | 44.00 | 50.00 | 47.00 | 59.00 | 67.00 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 3.000
0.9 | 45.00 | 60.00 | 45.00 | 48.00 | 57.00 | 68.00 | 0.000 | 2.000 | 0.000 | 4.000 | 4.000 | 7.000
0.1 | 1.000 | 4.000 | 11.00 | 2.000 | 2.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.3 | 2.000 | 8.000 | 17.00 | 3.000 | 3.000 | 5.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
StarChat | 0.5 | 7.000 | 10.00 | 20.00 | 3.000 | 6.000 | 11.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.7 | 9.000 | 20.00 | 29.00 | 7.000 | 5.000 | 13.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.9 | 21.00 | 19.00 | 37.00 | 10.00 | 10.00 | 19.00 | 0.000 | 0.000 | 0.000 | 2.000 | 0.000 | 0.000

Summary of RQ3: LLMs perform well (at higher temperatures)
in repairing syntactic errors but suffers at repairing code injection
vulnerabilities. Fine-tuning CodeLlama and StarChat hurts their
performance on unseen (but related) workflow tasks.

5 THREATS TO VALIDITY

We identified the following potential (generalizability) threats to
the validity of our study.

o Generalizability to Other Tasks: We investigated three cate-
gories of tasks. However, there could be other related tasks (e.g.,
refactoring) on which the effectiveness of LLMs might differ. We
tried to handle this in RQ3 (§ 4.3), where all the tasks are unseen
but related.

o Generalizability to Other LLMs: We have investigated three
LLMs, and the observations may not generalize to other LLMs
that are architected differently. Our datasets and experimentation
scripts will enable easy evaluation of any given LLM and compare
against our results.

o Generalizability to Other CI platforms: We anticipate that our
observations will generalize to other CI platforms as well because
most of the CI platforms follow the same syntax (i.e., YAML) and
have a similar structure [21].

6 CONCLUSION

We perform the first large-scale study to investigate the effective-
ness of three state-of-the-art LLMs and their fine-tuned variants on
five tasks related to GitHub workflows. We curated a set of ~400K
workflows with various prompts with varying details across differ-
ent tasks. Our study revealed various interesting findings and open
problems in using LLMs for workflows. For instance, LLMs suffer
at generating large and valid workflows. LLMs are not effective at
repairing code injection vulnerabilities.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foun-
dation (NSF) under Grants CNS-2247686, Amazon Research Award
(ARA) on “Security Verification and Hardening of CI Workflows”
and Defense Advanced Research Projects Agency (DARPA) under
contract numbers N6600120C4031 and N660012224037. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF, Amazon, or the United
States Government.



On the Effectiveness of Large Language Models for GitHub Workflows

REFERENCES

[1] 2023. actionlint. https://github.com/rhysd/actionlint.
[2] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

8

[10

[11

[12

(13

[14

[15

[16

(17

=

=

]

]

Pearce. 2024. On Hardware Security Bug Code Fixes by Prompting Large Lan-
guage Models. IEEE Transactions on Information Forensics and Security 19 (2024),
4043-4057. https://doi.org/10.1109/TIFS.2024.3374558

Simon Arvidsson and Johan Axell. 2023. Prompt engineering guidelines for LLMs
in Requirements Engineering. (2023).

Weiheng Bai, Qiushi Wu, Kefu Wu, and Kangjie Lu. 2024. Exploring the Influ-
ence of Prompts in LLMs for Security-Related Tasks. In Workshop on Artificial
Intelligence System with Confidential Computing (AISCC 2024) (San Diego, CA).
USA. https://dx.doi.org/10.14722/aiscc.2024.23015

Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic Security
Assessment of GitHub Actions Workflows. In Proceedings of the ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem Defenses. 37-45.
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS °20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022.
On the Use of GitHub Actions in Software Development Repositories. In 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME).
235-245. https://doi.org/10.1109/ICSME55016.2022.00029

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171-4186. https://doi.
org/10.18653/v1/N19-1423

Sabit Ekin. 2023. Prompt engineering for ChatGPT: a quick guide to techniques,
tips, and best practices. Authorea Preprints (2023). https://doi.org/10.36227/
techrxiv.22683919.v2

Tonut Daniel Fagadau, Leonardo Mariani, Daniela Micucci, and Oliviero Rig-
anelli. 2024. Analyzing Prompt Influence on Automated Method Generation: An
Empirical Study with Copilot. arXiv preprint arXiv:2402.08430 (2024).

Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
Based Line-Level Vulnerability Prediction. In Proceedings of the 19th International
Conference on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR 22).
Association for Computing Machinery, New York, NY, USA, 608-620. https:
//doi.org/10.1145/3524842.3528452

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Ji-
axin Yu. 2023. Security Weaknesses of Copilot Generated Code in GitHub.
arXiv:2310.02059 [cs.SE]

Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. 2023. How
Far Have We Gone in Vulnerability Detection Using Large Language Models.
arXiv:2311.12420 [cs.Al]

GitHub Security Code Injection Finder [n. d.]. GitHub Security Code Injection
Finder. https://github.com/github/codeql/blob/main/javascript/ql/src/Security/
CWE-094/ExpressionInjection.ql.

Yacong Gu, Lingyun Ying, Huajun Chai, Chu Qiao, Haixin Duan, and Xing
Gao. 2023. Continuous Intrusion: Characterizing the Security of Continuous
Integration Services. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 1561-1577. https://doi.org/10.1109/
SP46215.2023.10179471

Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

(18]

[19

[20

[21

[22

[23

[24

~
2

[26

[27

[28

[29

[30

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Adnan Khan. 2023. One Supply Chain Attack to Rule Them All - Poisoning
GitHub’s Runner Images. https://adnanthekhan.com/2023/12/20/one-supply-
chain-attack-to-rule-them-all/.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and
Mayur Naik. 2023. Understanding the Effectiveness of Large Language Models
in Detecting Security Vulnerabilities. arXiv:2311.16169 [cs.CR]

Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and Christoph Treude.
2021. How Do Software Developers Use GitHub Actions to Automate Their
Workflows?. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). 420-431. https://doi.org/10.1109/MSR52588.2021.00054
Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, Siddharth Muralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Character-
izing the Security of Github CI Workflows. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 2747-2763. https:
//www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries.
2023. StarCoder: may the source be with you! Transactions on Machine Learning
Research (2023). https://openreview.net/forum?id=KoFOg41haE Reproducibility
Certification.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (Jan. 2023), 35 pages. https://doi.org/10.1145/3560815

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay,
Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, and Adam Roberts. 2023. The
Flan Collection: Designing Data and Methods for Effective Instruction Tuning.
In Proceedings of the 40th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.).
PMLR, 22631-22648. https://proceedings.mlr.press/v202/longpre23a.html
Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 101-114.
https://doi.org/10.1145/3395363.3397369

Meta. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv:2307.09288 [cs.CL]

Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl,
Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, and Ar-
avind Machiry. 2023. ARGUS: A Framework for Staged Static Taint Analy-
sis of GitHub Workflows and Actions. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, Anaheim, CA, 6983-7000. https:
//www.usenix.org/conference/usenixsecurity23/presentation/muralee

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering (ICSE "24).
Association for Computing Machinery, New York, NY, USA, Article 97, 13 pages.
https://doi.org/10.1145/3597503.3639187

George C. Necula. 2000. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation (Vancouver, British Columbia, Canada) (PLDI "00).
Association for Computing Machinery, New York, NY, USA, 83-94. https://doi.
org/10.1145/349299.349314

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In The Eleventh Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
iaYcJKpY2B_

OpenAl 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt

OpenAl 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

OWASP. 2022. OWASP Top 10 CI/CD Security Risks. https://owasp.org/www-
project-top-10-ci-cd-security-risks/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics (Philadelphia, Penn-
sylvania) (ACL ’02). Association for Computational Linguistics, USA, 311-318.



ARES 2024, July 30-August 02, 2024, Vienna, Austria

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50

[51

[52

]

]

]

]

]

]

]

]

https://doi.org/10.3115/1073083.1073135

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). 754-768. https://doi.org/10.1109/SP46214.2022.9833571

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023.
Instruction Tuning with GPT-4. arXiv:2304.03277 [cs.CL]

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matt Jones, Alessandro Morari, and Ruchir
Puri. 2023. Invited: Automated Code generation for Information Technology
Tasks in YAML through Large Language Models. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). 1-4.  https://doi.org/10.1109/DAC56929.2023.
10247987

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
EA ’21). Association for Computing Machinery, New York, NY, USA, Article 314,
7 pages. https://doi.org/10.1145/3411763.3451760

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950 [cs.CL]

Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric Schulz, and Zeynep
Akata. 2023. In-Context Impersonation Reveals Large Language Models’
Strengths and Biases. In Thirty-seventh Conference on Neural Information Process-
ing Systems. https://openreview.net/forum?id=CbsJ53LdKc

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In The
5th Workshop on Energy Efficient Machine Learning and Cognitive Computing @
NeurIPS 2019. arXiv:1910.01108 http://arxiv.org/abs/1910.01108

Yutaka Sasaki et al. 2007. The truth of the F-measure. Teach tutor mater 1, 5
(2007), 1-5.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
Analysis of the Automatic Bug Fixing Performance of ChatGPT. In 2023 I[EEE/ACM
International Workshop on Automated Program Repair (APR). IEEE Computer
Society, Los Alamitos, CA, USA, 23-30. https://doi.org/10.1109/APR59189.2023.
00012

John Stawinski. 2023. Playing with Fire - How We Executed a Critical Supply
Chain Attack on PyTorch. https://johnstawinski.com/2024/01/11/playing-with-
fire-how-we- executed- a-critical- supply- chain-attack-on-pytorch/.

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. 2022. Transformer-Based Language Models for
Software Vulnerability Detection. In Proceedings of the 38th Annual Computer
Security Applications Conference (Austin, TX, USA) (ACSAC ’22). Association for
Computing Machinery, New York, NY, USA, 481-496. https://doi.org/10.1145/
3564625.3567985

Lewis Tunstall, Nathan Lambert, Nazneen Rajani, Edward Beeching, Teven
Le Scao, Leandro von Werra, Sheon Han, Philipp Schmid, and Alexander Rush.
2023. Creating a Coding Assistant with StarCoder. Hugging Face Blog (2023).
https://huggingface.co/blog/starchat.

Ashok Urlana, Charaka Vinayak Kumar, Ajeet Kumar Singh, Bala Mallikarju-
narao Garlapati, Srinivasa Rao Chalamala, and Rahul Mishra. 2024. LLMs with
Industrial Lens: Deciphering the Challenges and Prospects—A Survey. arXiv
preprint arXiv:2402.14558 (2024).

Pablo Valenzuela-Toledo and Alexandre Bergel. 2022. Evolution of GitHub Action
Workflows. In 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 123-127. https://doi.org/10.1109/SANER53432.2022.
00026

Juan David Veldsquez-Henao, Carlos Jaime Franco-Cardona, and Lorena Cadavid-
Higuita. 2023. Prompt Engineering: a methodology for optimizing interactions
with Al-Language Models in the field of engineering. DYNA 90, 230 (Nov. 2023),
9-17. https://doi.org/10.15446/dyna.v90n230.111700

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Transactions on Software Engineering 50 (2023), 911-936.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Com-
putational Linguistics, Online and Punta Cana, Dominican Republic, 8696-8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind Machiry

[53] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M. Dai, and Quoc V Le. 2022. Finetuned Language Models
are Zero-Shot Learners. In International Conference on Learning Representations.
https://openreview.net/forum?id=gEZrGCozdqR

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for Fixing
Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 1282-1294. https:
//doi.org/10.1145/3597926.3598135

[55] Xuhai Xu, Bingsheng Yao, Yuanzhe Dong, Saadia Gabriel, Hong Yu, James Hendler,
Marzyeh Ghassemi, Anind K. Dey, and Dakuo Wang. 2024. Mental-LLM: Lever-
aging Large Language Models for Mental Health Prediction via Online Text Data.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies 8, 1, Article 31 (March 2024), 32 pages. https://doi.org/10.1145/3643540
Yifei Xu, Yuning Chen, Xumiao Zhang, Xianshang Lin, Pan Hu, Yunfei Ma,
Songwu Lu, Wan Du, Zhuoqing Mao, Ennan Zhai, and Dennis Cai. 2023.
CloudEval-YAML: A Practical Benchmark for Cloud Configuration Generation.
arXiv:2401.06786 [cs.DC]

Quanjun Zhang, Chunrong Fang, Bowen Yu, Weisong Sun, Tongke Zhang, and
Zhenyu Chen. 2023. Pre-Trained Model-Based Automated Software Vulnerability
Repair: How Far are We? IEEE Transactions on Dependable and Secure Computing
(Aug. 2023), 1-18. https://doi.org/10.1109/TDSC.2023.3308897

Xinyu Zhang, Siddharth Muralee, Sourag Cherupattamoolayil, and Aravind
Machiry. 2024. On the Effectiveness of Large Language Models for GitHub
Workflows.

[54

[56

[57

[58



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 GitHub workflows
	2.2 Large Language Models (LLMs)

	3 Study Design
	3.1 LLM Selection
	3.2 Dataset Collection
	3.3 Instruction Fine-Tuning
	3.4 Methodology

	4 Results
	4.1 RQ1: Workflow Generation
	4.2 RQ2: Defect Detection
	4.3 RQ3: Defect Repair

	5 Threats to Validity
	6 Conclusion
	Acknowledgments
	References

