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Abstract—In situ imageomics is a new approach to study
ecological, biological and evolutionary systems wherein large
image and video data sets are captured in the wild and machine
learning methods are used to infer biological traits of individ-
ual organisms, animal social groups, species, and even whole
ecosystems. Monitoring biological traits over large spaces and
long periods of time could enable new, data-driven approaches
to wildlife conservation, biodiversity, and sustainable ecosystem
management. However, to accurately infer biological traits, ma-
chine learning methods for images require voluminous and high
quality data. Adaptive, data-driven approaches are hamstrung
by the speed at which data can be captured and processed.
Camera traps and unmanned aerial vehicles (UAVs) produce
voluminous data, but lose track of individuals over large areas,
fail to capture social dynamics, and waste time and storage on
images with poor lighting and view angles. In this vision paper,
we make the case for a research agenda for in situ imageomics
that depends on significant advances in autonomic and self-aware
computing. Precisely, we seek autonomous data collection that
manages camera angles, aircraft positioning, conflicting actions
for multiple traits of interest, energy availability, and cost factors.
Given the tools to detect object and identify individuals, we
propose a research challenge: Which optimization model should
the data collection system employ to accurately identify, character-
ize, and draw inferences from biological traits while respecting a
budget? Using zebra and giraffe behavioral data collected over
three weeks at the Mpala Research Centre in Laikipia County,
Kenya, we quantify the volume and quality of data collected
using existing approaches. Our proposed autonomic navigation
policy for in situ imageomics collection has an F1 score of
82% compared to an expert pilot, and provides greater safety
and consistency, suggesting great potential for state-of-the-art
autonomic approaches if they can be scaled up to fully address
the problem.

Index Terms—autonomous flight, UAVs, ecology, machine
learning, computer vision, imageomics

I. INTRODUCTION

Many disciplines within the field of biology– colloquially,

those ending with ‘omics’– seek to characterize biological

structure, function, and dynamics via observation [1]. Ima-
geomics is a new scientific field that seeks to extract biological

traits of individual organisms, species, populations, and whole

ecosystems from images using computational approaches [2].

Large sub-fields of biology, particularly ecology and conser-

vation science, focus on studying organisms in the context

of their environment, in situ. Recent sensing and imaging

technology developments have accelerated the ability to gather

biological data in the field at scale and machine learning

techniques can extract insights from this data, also at scale.

However, existing systems are not yet matching the needs of

in situ scientific inference at large ecosystem scales and high

resolutions down to the individual organism simultaneously.

For example, understanding the collective dynamics of be-

havior of individual animals and groups and their response

to the habitat and environmental conditions requires fine

grain individual to population scale observations over seconds

to hours of time, moving over potentially large distances

and changing habitats. Here, we propose a framework for

behavioral biological trait observations and inference (called

behavioral in situ imageomics) that matches such biological

need in the field.

The remainder of the paper is organized as follows. We

provide the necessary biological background and relevant

related work in Section II. Section III provides the motivation

for in situ imageomics and the questions and challenges it

raises. Section IV details in situ imageomics computational

workloads and the technical challenges that our framework

proposes. Section V presents an in situ behavioral imageomics

case study of Kenyan animal behavior data collection with

UAVs. Finally, Section VI contains a road map to pursue the

research agenda laid out in this vision paper which we hope

the community will be interested in addressing.

II. BACKGROUND AND RELATED WORK

Biologists are interested in collecting a variety of data about

the phenotype and functioning of organisms, particularly trait

data, ranging from morphology (physical characteristics) to

behavior, in the environmental context, in situ. The massive

amount of biological data captured by experts and citizen

scientists (e.g., iNaturalist [3]), can provide new insight into

the continuing evolution of species and habitats as well as the

actions of individuals over time [4]. Modern machine learning
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and computer vision techniques are required to process the

vast amount of biological data available and these methods

demand massive volumes and quality of data beyond what

is typically curated for biological analysis. Adaptive, data-

driven approaches to collect such datasets are hamstrung by the

speed at which data can be captured and processed, especially

behavioral data. Existing field data collection techniques are

time-consuming and expensive, or infeasible for a human

observer. Even images and videos collected in the field require

labor-intensive manual labeling and pre-processing before they

can be analyzed using machine learning and computer vision

tools [5]–[7]. Emerging technology, including camera traps

(motion or heat activated stationary cameras) and UAVs can

produce voluminous data of animals in their natural habitat.

Camera traps mitigate observer bias and disturbance from

human presence, but are constrained to data from a fixed

location. Small unmanned aerial systems (sUAS) consisting

of one or more UAVs and their control systems, such as

those available commercially from manufacturers such as DJI

and Parrot, can track animals dynamically and can traverse

remote terrain more quickly and with less disturbance to

wildlife than heavy-duty sport utility vehicles (SUVs) typically

used in field work that requires off-roading in remote terrain.

Such sUAS missions can capture fine-grained details, such

as animal behaviors within their social and environmental

context, previously unavailable to researchers. These missions

require trained pilots who can manually conduct missions

tailored to the geographic region and species. Replacing man-

ually controlled sUAS with an autonomously controlled sUAS

would significantly reduce the barriers for ecological research.

Yet, current sUAS technology may lose track of individuals

over large areas, fail to capture social dynamics, and waste

time and storage on images with poor lighting and viewing

angles. Noisy datasets require more memory to store, are

more cumbersome transport, and require more pre-processing

and cleaning before they can be analyzed. Edge computing

techniques that allow for more precise data collection and pre-

processing at the data source can overcome these challenges.

Identifying common and disparate behaviors between indi-

viduals, demographic classes, and species within their com-

mon social and environmental contexts is a challenging bi-

ological problem because it requires repeated, fine-grained

observations of behavior across multiple settings. Collecting

behavior data in situ allows animal ecologists to capture the

behavior and social interactions of all members of a group of

individuals using sUAS, thus providing the data for each indi-

vidual in order to compare similarities and differences among

group members. Recording videos or images using UAVs

provides the fine-grained detail of focal sampling with the

breath of scan sampling, giving researchers the advantages of

both techniques [5], [8]. As commercial UAVs become cheaper

and more readily available, efforts have been made to use

them to automatically capture video and photo data for animal

ecology, conservation, and agriculture applications. Computer

vision techniques can automatically track the location and

postures of wildlife from the nadir-angle (i.e. bird’s eye view)

and even classify individuals by species and age-sex class

from this data [9]. This approach can successfully reconstruct

detailed models of the landscape, which can aid biologists in

understanding how animals’ movement and decision-making

is shaped by their environment and social context. UAVs have

been used to fight poaching of endangered species, especially

if UAVs are equipped with long wave thermal infrared cameras

to identify poachers and animals at night [7]. In [10], UAVs

were used to count and individually identify animals based

on their unique morphology. The animals of interest in this

study could be individually identified using photos collected

from the nadir-angle. This approach is not suitable for all

species, such as zebras and giraffes, but demonstrates the

effectiveness of pairing UAVs with computer vision techniques

to detect and identify individual animals. Several computer

vision algorithms have been proposed to automatically detect

and track objects with sUAS. However, industry and academia

have primarily focused on automatically tracking individual

humans or vehicles. In [11], a convolutional neural network

is used to detect objects in real-time, and adjust the UAV’s

movements and position to keep the focal object in view. A

method utilizing inertial measurement unit data, GPS data, and

the moving object detector to calculate the distance between

the UAV and the object of interest to adjust the position of

the UAV is proposed in [12]. A multi-agent approach for co-

operative object localization and tracking is described in [13].

Finally, [14] proposes a design for UAVs to simultaneously

complete real-time target tracking and path planning.

III. MOTIVATION FOR IN SITU IMAGEOMICS

Recent research has explored in situ imageomics, i.e., gath-

ering images in the field and linking them to knowledge bases

to characterize wildlife populations. For example, Wildbook

harvests photos taken by citizen scientists to identify individual

animals [15] to accurately estimate species’ population levels.

Obtaining accurate census information is crucial to secure

legal protections and funding to preserve at-risk species [16],

such as the highly endangered Grevy’s zebra. Biologists be-

lieve that in situ imageomics could provide individual identi-

fication for a wider range of animal species, provide insight

into individual and social behavior, intra- and inter-species

dynamics, and deeper understanding of ecological processes.

In situ data can provide environmental and social context, and

capture traits that morph over time and biogeographic contexts,

providing an opportunity for new, data-driven approaches to

scientific insight, conservation, and sustainable biodiversity

management [4], [17], [18]. We quantify the volume and qual-

ity of in situ imageomics computational workloads, including

the data and autonomous navigation models, by describing

a recent in situ imageomics data collection project at the

Mpala Research Centre in Laikipia County, Kenya in January

2023. We collected behavioral data under a variety of social

and environmental contexts of three species: Plains zebra

(Equus quagga,), Grevy’s zebra (Equus grevyi), and reticulated

giraffes (Giraffa reticulata) [5]. We conducted manual UAV

missions to capture video footage of these species, along with
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scan and focal sampling of their behavior in the field [8],

employing current state-of-the-art data collection techniques.

Using this dataset, we present initial steps in deploying au-

tonomic computing system for in situ imageomics: (1) We

propose a novel navigation methodology to collect animal be-

havior data autonomously, and demonstrate how this approach

can be used to collect additional in situ imageomics datasets.

(2) We convert real-world UAV video datasets to flexible data

structures that can be used to train and test new autonomous

navigation models.

IV. IN SITU IMAGEOMICS COMPUTATIONAL WORKLOADS:

DATA & AUTONOMOUS NAVIGATION MODELS

A. In situ imageomics sUAS data collection missions

The most useful animal ecology data from sUAS is obtained

from off-nadir views, where the UAV is high enough to

avoid surface-level obstructions, such as vegetation shown in

Fig. 1, but still able to capture fine details, such as behavior

and unique morphological markings, as shown in Fig. 3.

Table I summarizes the results produced by the different data

collection angles shown in Figs 1, 2, 3. Several techniques are

available to researchers to collect animal behavior data from

a non-nadir angle. The first technique is to simply manually

pilot the UAV to collect photos and videos. A manual approach

does not require any computationally complex navigation

models and allows the pilot to tailor their mission to collect

specific animal behavior or individually identifiable markings.

A manual approach produces a high percentage of flight time

capturing usable data. For animal ecology applications, usable

data is defined as frames containing images of animals with

sufficient resolution to detect behavior, observe markings for

individual identification or both. State of the art computer

vision techniques used to process video and images typically

require at least 30 pixels for object detection, and 700 pixels

for individual detection [19]. However, manual approaches

require an expert pilot which are expensive to hire and may

not be available in all areas. It also introduces human error

and makes consistent data collection difficult. Automating

UAV missions resolves several problems associated with a

manual approach. Previous work has found that automatic

missions are 3x less expensive, are safer, and produce better

spatial accuracy than manually piloted flights [20]. Many

commercially available sUAS offer built-in waypoint mission

planning, sometimes referred to as ’lawn-mower missions’

in which the UAV automatically flies a grid-based pattern.

These automatic flights visit waypoints to collect videos or

photos from a nadir angle, which can capture data faster

and with greater accuracy than manually piloted missions

[21]. Such missions have been successfully implemented in

agriculture applications [20], [22], forestry [23], [24], and

animal ecology [9], [10]. This approach may not always be

suitable for animal ecology applications since as noted above,

it is often difficult to detect behavior from a nadir-angle. For

some species, such as zebras and giraffes, the individually

identifiable morphological features are not visible from above.

Object detection algorithms are typically trained on images

TABLE I
COMPARISON OF PHOTO AND VIDEO COLLECTION ANGLES

Evaluation Criteria Data Collection Angle
Ground Nadir Non-nadir

Occlusion by vegetation? Yes No No
Biometric markings visible? At times No Yes
Behavior visible? At times At times Yes

Fig. 1. Ground-level view, animals’ distinguishing markings and behaviors
obscured by foliage.

of animals taken from the ground-level, like iNaturalist [3],

and require extensive retraining to detect and classify animals

from above [9], [10]. One solution is to automate non-nadir

flights by instructing the UAV to fly to a waypoint, and rotate

about the vertical axis 360 degrees while gathering photos or

videos. However, it is difficult to pre-plan waypoint missions

to capture sufficient usable data since animals’ movements are

unpredictable. Pausing the UAV at each waypoint to capture

data reduces the area that can be covered in one battery charge

thus reducing the mission throughput. Rotational maneuvers

generate extra noise which may cause the animals to move

out of the pre-planned mission coverage.

Commercially available UAVs equipped with ’follow-me’

technology, in which the UAV ’locks-in’ on an object of

interest and adjusts its actions to keep the focal object in

view, can be modified to track individuals animals and, by

doing so, track that individual’s interactions in a herd from a

non-nadir angle. Problems arise when an individual separates

itself from the herd. For example, if the UAV is ’locked

in’ on that individual, it will lose sight the main group

and not be able to collect the social interactions and behav-

iors of the other individuals. As another problem, an object

trackers can accidentally switch focal animals, especially in

tight groups, leading to inconsistent data collection. These

challenges necessitate a novel approach to object tracking

with sUAS, in which the group as a whole is the priority for

tracking. The group ’follow-me’ navigation model optimizes

for the best view of all individuals in the group, not one

individual. Prioritizing the center of mass for the group allows

for individuals to deviate their behavior without negatively

impacting the navigation policy for the group. Tracking groups

from the non-nadir angle produces more usable data than

tracking and collecting photos and videos from the nadir-angle,

but requires addition computation to translate images taken

from this angle to navigation. The computation required to

detect each individual in the group increases as the number of

animals in the group increases, which increases task execution

time. Increased execution time will degrade throughput, and in

the worst case, may cause the UAV to lose sight of the group.

This challenge is an opportunity for autonomic and adaptive

computing to allocate resources intelligently to scale compute
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Fig. 2. Nadir-view, animals’ distinguishing markings on hip & shoulder not
visible and behavior difficult to identify

Fig. 3. Off-Nadir View, not obscured by foliage; behavior and distinguishing
markings easily seen.

to meet the demands of this application.

B. System for autonomous in situ imageomics data collection

We propose a navigation algorithm to allow sUAS to

autonomously track groups of individuals, and a data-driven

approach to test the performance of the navigation algorithm.

1) Autonomous navigation policy: The group ’follow-me’

functionality uses an object detector to identify an object of

interest–a herd of zebras or a tower of giraffes–and automati-

cally adjusts the UAV’s movements to keep that object within

its field of view. This navigation policy, shown in Fig. 4,

is optimized to identify and track zebras for behavioral data

collection and individual identification, but this approach has

broad applicability across different animal ecology applica-

tions, stealth tracking, and search and rescue UAV missions.

Similar to existing ’follow-me’ policies, this navigation policy

assumes the human pilot is able to navigate the UAV towards

the object of interest, in this case, a herd of zebras, until the

UAV is sufficiently close to detect the animals of interest,

at which point of the autonomous navigation policy takes

control with human supervision. This approach uses YOLO

pre-trained on the COCO dataset for object detection and

classification [25]. Fig. 5 shows the calculations performed by

the autonomous navigation policy in steps 3 and 4 of Fig. 4.

If the centroid of the herd is sufficiently far from the centroid

of the camera, or passes into the outer region of the frame, the

UAV will adjust its position left or right, and forward or back,

to return the herd centroid to the center region of the camera.

The proposed navigation policy in Fig. 4 is the first step in the

development of a sequence of maneuvers for sUAS to gather in

situ imageomics data autonomously. Algorithm IV-B1 shows

how a generic in situ imageomics data collection mission will

be executed end-to-end, with Fig. 4 giving a flow chart of

steps 3-6 of the algorithm. With Algorithm IV-B1 as a starting

point, the autonomous navigation policy can be augmented

with additional maneuvers tailored to each biological question.

Algorithm 1 In situ imageomics data collection mission

1: while sUAS has sufficient return-to-home (RTH) battery do
2: Execute scanning pattern to locate small local herds
3: if Herd is identified then
4: Approach herd and reduce altitude
5: Detect individual animals
6: for All detected instances do
7: Acquire individual ID photo
8: end for
9: end if

10: Return to wider view of herd to record behavior
11: end while
12: Return to home to recharge

Fig. 4. Autonomous navigation policy for individual ID

2) In situ imageomics autonomy cubes: To test the nav-

igation policy proposed here, as well as future autonomous

maneuvers, we propose a novel methodology to simulate off-

nadir view missions using real-world UAV footage. Auton-

omy cubes are a specialized data structure containing all

UAV-sensable points in a discretized environment as an n-

dimensional hypercube, introduced in [26]. The path of an

autonomous sUAS cannot be predicted prior to the mission

execution in a real environment which makes such systems

difficult to build. To test these systems, simulations or traces

are commonly used. However, simulations are synthetic and

traces can only provide a single path of execution. Autonomy

cubes allow the autonomous sUAS to query for real sensed

data that would result from an action taken by the sUAS in

a real environment. As shown in Table II, in situ imageomics

autonomy cubes include a temporal element, since the state

of the environment changes quickly over time and location as

the animals move throughout the landscape. These autonomy

cubes also include a heading descriptor–the direction the UAV

is facing, since the sensed data will be different depending on

the heading of the UAV at a non-nadir angle. The images

collected during the real-world mission are manipulated using

cropping and zoom to simulate sensed data from a 12-meter

radius around the original flight path. For example, if the

model recommended a deviation from the original flight path

that was 3 meters forward and 3 feet to the left, the model

would receive a zoomed in version of the original image with

the right third cropped out. The wide-angled UAV camera
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Fig. 5. Centroids and right, left, top, and bottom ranges of frame

TABLE II
IN SITU IMAGEOMICS AUTONOMY CUBE

Element Description
Lat GPS location, latitude
Long GPS location, longitude
Altitude Height above launch point in meters
Heading Degrees, generalized to 8 cardinal directions
Time Time elapsed since mission start in seconds
Photo Video frame at location, altitude, heading, & time

lens generated a large image allowing for this manipulation

while maintaining data integrity. If the model recommended

an action that placed the UAV outside the 12-meter radius of

sensed data, or facing the away from the animals, the model

would receive an image of an empty savanna landscape.

C. Edge network requirements for in situ imageomics

Autonomous navigation and data management for in situ

imageomics applications require autonomic computing solu-

tions to manage the resources across the edge network. For

sUAS, the edge network includes UAVs as sensors, as well

as mobile devices, laptops, and remote controllers. In situ

imageomics applications are characterized by resource-scarce,

remote environments. Under such resource constraints, the

edge network should make efficient use of edge and sensor

power and compute resources while minimizing latency. Our

proposed system makes use of the limited compute resources

available on UAVs by running a light-weight object detector

model locally. In addition to efficient use of edge resources,

the system must conduct near real-time analysis of image data.

This is required for the computer vision-driven autonomous

navigation, and to make decisions about what data to send to

the cloud for further analysis. Our proposed Algorithm IV-B1

allows for more precise data collection by positioning the UAV

optimally depending on the mission phase: individual ID or

behavior data collection. This approach produces a cleaner raw

dataset compared to existing methods, which speeds up data

transportation and analysis.

V. IN SITU IMAGEOMICS CASE STUDY: KENYAN ANIMAL

BEHAVIOR DATA COLLECTION WITH SUAS

A. In situ imageomics autonomy cube

Using a manually piloted DJI Air 2S UAV, we collected

behavioral video data of three species: Plains zebra (Equus

quagga), Grevy’s zebra (Equus grevyi), and reticulated giraffes

(Giraffa reticulata) over a period of three weeks at the Mpala

Research Center in Laikipia, Kenya. We collected over 17

hours of video footage in 4K or 5.4K resolution which resulted

in a raw dataset of 1.1 terabytes. Using this raw footage,

we curated the raw data to create a dataset that serves as

an initial benchmark for autonomic computing workloads for

in situ imageomics, i.e. the computational and performance

of self-adaptive systems for this application. We selected a

subset of the raw video footage to create in situ imageomics

autonomy cubes that can be utilized to design, train, and test

new navigation policies. We ran experiments to determine the

computational overhead required to create autonomy cubes

using a single CPU on the Ohio Supercomputer. The CPU is an

Intel Xeon E5-2680 V4 (Broadwell), with 28 cores per nodes,

128 GB memory, and 1.5 TB local disk space. For a three

minute manually piloted UAV mission, it takes 109 seconds

to create a corresponding autonomy cube. Each battery charge

for a DJI Air 2S has a flight time of approximately 15-20

minutes for each in situ imageomics mission, so each will

require approximately 9-12 minutes to create the cube.

B. Computer vision autonomous navigation for data collection

The navigation model described in Fig. 4 was tested on

several in situ imageomics autonomy cubes described above.

We tested the performance of the navigation policy using

three pre-trained YOLO models: version 5 (YOLOv5su), and

version 8 nano (YOLOv8n) and medium (YOLOv8m) [25].

The image data was pre-processed by cropping the images to

eliminate the extra background generated by the wide-angle

view. As shown in Table III, all three models performed well

in identifying frames that contained zebras. YOLOv5su and

YOLOv8m were able to detect approximately 80% of the herd

on average, while YOLOv5n detected 66% of the herd on

average. Next, we conducted an experiment to examine the

impact of the YOLO object detector’s output on the decisions

made by the navigation model on where to fly next. All three

models performed the same actions as the original mission

more than two-thirds of the time as shown in Table IV. Despite

having the highest levels of accuracy in detecting zebras,

YOLO5su performed the worst in determining next steps to

take. All models performed similarly in regards to precision

and accuracy with an F1-score of approximately 80%. Inter-

estingly, despite detecting 11% fewer animals compared to

YOLOv8m, YOLOv8n had the highest level of accuracy in

determining the next action to take. This suggests that our

proposed navigation model is effective in tracking the herd

as a whole, even when the object detector may miss some

individuals in the group. These results suggest that smaller,

lightweight object detection and classification models are well

suited for conditions with limited resources.

VI. FUTURE RESEARCH AGENDA AND ROAD MAP

In situ imageomics depends on significant advances in au-

tonomic and self-aware computing. We present the following

challenges to the community:
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TABLE III
YOLO OBJECT DETECTION PERFORMANCE

yolov5su yolov8n yolov8m
% of frames with zebras detected 98.7 95.9 99.0
% of avg total animals detected 78.1 66.4 77.6

TABLE IV
AUTONOMOUS NAVIGATION POLICY RESULTS

yolov5su yolov8n yolov8m
# of actions that differ 43 39 41
% of actions matching original flight 66.4 68.8 68.0
F1 Score 81.0 82.1 82.5

• Can self-aware sUAS avoid disturbing wildlife? As

sUAS approach, herds move away. Self-aware systems

can now learn and adapt to internal constraints, e.g.,

mission goals and power with reinforcement learning, but

learning herd-specific sensitivities to noise and movement

introduces a challenging stochastic element to the prob-

lem.

• Can we develop what-if models for dynamic scenes?
Self-aware sUAS may employ multiple maneuvers to

approach wildlife. Choosing the right model may require

simulations that infer wildlife behaviors.

• Can autonomic computing systems adapt process-
ing and storage capabilities quickly enough? In the

presence and absence of predators, herds disperse and

reassemble rapidly. Herd size corresponds with computa-

tional demand for object detection and individual identifi-

cation. In addition, many social behaviors emerge in large

herds, further increasing computational load and memory

requirements for complex models of social behaviors.

Future research must explore adaptive edge architecture,

possibly with cloud offload, for in situ imageomics.
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