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1. Introduction and main results

Let H be the Hilbert transform, which is defined as

i =T [

|z—y|>e

Hunt—Muckenhoupt—Wheeden [9] proved that if 1 < p < oo, then H is bounded from
LP(w) to LP(w) if and only if w € A,. Here LP(w) is the Lebesgue space of measurable
functions defined on R that are p-integrable with respect to the measure w(z)dx and A,
denotes the Muckenhoupt class of weights on R.

Applications in Partial Differential Equations (see Fefferman—Kenig—Pipher [5]) led
to a profound study of sharp bounds for the operator norm of the Hilbert transform in
terms of the A, constant of the weight, denoted [w]4, (see Section 2.1 for its definition).
In particular, the As-conjecture for the Hilbert transform consisted in proving that the
Hilbert transform satisfies analogous estimates to those by the Hardy-Littlewood maxi-
mal operator, that is,

1H flle2w) S [wlaslIfllczw) V€ L2 (w). (L.1)

This conjecture was solved by Petermichl [16] in 2007 and numerous other related re-
sults followed concerning its extension to singular integral operators and other classical
operators, including Petermichl [17], Hytonen [10], Hytonen et al. [12,11], Lerner [15]
and Cruz-Uribe-Martell-Pérez [3].

General necessary and sufficient conditions on the weights for the boundedness of the
Hilbert transform on weighted L? spaces were first obtained by Helson-Szegd [8] in 1960
using complex variable techniques. More precisely, they proved that

H:L*(w) — L*(w) <= w=etREf fe L®R), ||follre < /2,

where K is a version of the Hilbert transform for L*°-functions (see Section 2.1). As a
consequence, we have

we A = w=e K2 £ e L®R), ||faollpe < 7/2. (1.2)
It is worth mentioning that the implication to the left is easy to prove, but no direct
proof of the implication to the right is presently known; the reader is directed to the
work Garcia-Cuerva [6] for an interesting survey on the topic. In particular, it is proved

in [6] that, if || fo||Le < /2, then

[€"72] 4, < sec? || fo| o (1.3)
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Given w € Ay, define the Helson-Szegd constant of w, [w]a,ms), as
[0l 1) = 0 sec? | o 1.
where osc f; = sup f; — inf f; and
Dy = {(f1, f2) 1w = " ™KP with f1, f» € L(R) and || fo||r= < 7/2}.

The inequality [w]a, < [w]}, ) follows from (1.3) and, along with (1.1), leads to

H fl 22wy S [0, qaasy 11 22 ) -

One of the results in this article improves the dependence on the Helson-Szegd constant
of the weight in the above inequality; indeed, we show that the dependence is linear in
[w] 4, (us)- More precisely, we have the following estimate:

Theorem 1.1. For every w € Ay and f € L?(w) real-valued, it holds that

H flL2w) S [wlayms)l1f]]z2w)- (1.4)

The dependence of [w] a,us) in (1.4) is sharp.

The estimate (1.4) is sharp in the sense that the norm of the operator H as a bounded
operator on L?(w) is comparable to [w] 4,us) for some w € A. We hope that (1.4) may
lead to a new proof of (1.1) by showing that [w]a,ms) < [w]a,, which at the moment is
an open question.

The estimate (1.4) along with other new L?-weighted estimates for the Hilbert trans-
form proved in this article are consequences of our main result on Rellich-type iden-
tities for the Hilbert transform. Such identities involve a conformal map ® such that
Q= @(Ri) is a graph Lipschitz domain, that is, the upper part of the graph of a real-
valued Lipschitz function; the map ® extends as a homeomorphism from ﬂ onto Q and
®'(z) exists and is non-zero for almost every x € R (see details in Section 2.2). Our main
result is the following theorem.

Theorem 1.2. Let ® be a conformal map as described in Section 2.2 and f € L?(|®'|71)
be real-valued. Then

/(Hf)2Re(¢),)d:c_/ﬂRe(@/)dx—Q/foIm((;,)dm, (1.5)
R R

and

forn () (o frum(3 )

R
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We remark that there is a strong connection between the Helson-Szego result (1.2)
and conformal maps ® as in the statement of Theorem 1.2. As proved in Kenig [14,
Theorem 1.10 and Lemma 1.11], it holds that

|‘b/| € Ay

and a converse result is true in the sense that if w € A then there exists ® such
that |®'| ~ w. Indeed, the latter is a consequence of (1.2): Let w = e/ttK/2 with
(f1, f2) € Dy, then it is proved in [14] that there exists a conformal map ® from R%
onto a graph Lipschitz domain so that

P’ (z) = K@) 50 g€ R; (1.7)

therefore, |®'| = e~ /1w and it follows that |®'| ~ w.

The main ingredients in the proof of Theorem 1.2 are the following tools: (a) the
theory of solutions of the Neumann problem in a graph Lipschitz domain with data
in L? through the use of conformal maps as developed in Carro-Naibo-Ortiz [2] and,
(b) Rellich’s identity, which gives that if ® is as in the statement of Theorem 1.2, then
for every harmonic function v in Q = ®(R3) so that M(Vu) € L*(0Q) and for every
constant vector e € R2,

/ |Vu|? (e-v)do =2 /((’m) (e - Vu)do, (1.8)
o0

o0

where M is the non-tangential maximal operator and do denotes integration with respect
to arc-length. The integral identity (1.8) is due to Rellich [18] (see also Escauriaza—
Mitrea [4, (2.35)]); this identity and related versions play fundamental roles in questions
on elliptic partial differential equations, inverse problems, acoustic scattering, and the
multiplier method; see Agrawal-Alazard [1] and references therein.

We note that the proof of [9, Lemma 10] shows that for an infinitely differentiable
function f with compact support in R, it holds that

oo

/ (f +iHf)*® dz =0, (1.9)

—00

where ® is a conformal map from ]Rﬁ_ onto a graph Lipschitz domain such that ® =
X979 for some g satisfying [|g||r~ < 5. Instances of (1.5) and (1.6) with ®' instead
of 1/®’ can then be deduced by taking the real and imaginary parts of (1.9). However,
(1.5) and (1.6) are not explicitly shown in [9] and the proof of (1.9) is based on complex
variable techniques that are different from the novel approach we use in the proof of
Theorem 1.2, which holds for more general conformal maps ®.
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The paper is organized as follows. In Section 2, we present preliminaries regarding
weights, the Hilbert transform, conformal mappings and the solution of the Neumann
problem in a graph Lipschitz domain in the plane with data in L2. In Section 3, we
prove the Rellich’s identity versions for the Hilbert transform presented in Theorem 1.2
as well as L?-weighted estimates for H that follow from them, including (1.4). Other
applications of Theorem 1.2 concerning Hilbert transform identities with power weights
are discussed in Section 4. Finally, we present in Section 5 versions of Rellich identities
for the Hilbert transform in weighted LP spaces.

2. Preliminaries

In this section we present preliminaries regarding weights, the Hilbert transform,
conformal mappings and the solution of the Neumann problem in a graph Lipschitz
domain in the plane with data in L2.

2.1. Muckenhoupt weights and the Hilbert transform for L functions

Let w be a weight on R, i.e. a non-negative locally integrable function defined in R,
and 1 < p < co. We will denote by LP(w) the space of measurable functions f : R — C
such that

1 ) = / F@)Pu()dz | < oo,
R

with the corresponding changes for p = co. If w = 1, we will use the notation LP(R)
instead of LP(w).
For 1 < p < 00, a weight w defined on R belongs to the Muckenhoupt class A, if

p—1

L L =" gy %)
[w]a, = sup F/w(x)dm —/w(m) d < o0, (2.1)

ICR |I|
I

where the supremum is taken over all intervals contained in R. We recall that w € A, if
and only if w'? € A, , where p’ is the conjugate exponent of p (ie. 1/p+1/p’ = 1);
also, A, C A, if p < g and for every w € A, there exist € > 0 such that w € A,_..

We define the operator K as

K f(x) :fhm / fly < ! +Xy>1(y)) dy,

T e—0 =Yy Yy
lz—y|>e

which allows to extend the definition of the Hilbert transform to L>(R).
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For brevity we will use the notation A < B to mean that A < ¢ B, where ¢ is a
constant that may only depend on some of the parameters but not on the functions or
weights involved.

2.2. Conformal maps and the Neumann problem in a graph Lipchitz domain in the
plane

In this section we define the conformal maps that will be considered throughout this
work and recall results from [2] on the solution of the Neumann problem in a graph
Lipschitz domain with data in L2, which is obtained via the use of conformal maps and
the solution of the Neumann problem in the upper-half plane.

Let A be a curve in the complex plane given parametrically by &(z) = z + iy(z) for
x € R, where v is a real-valued Lipschitz function with constant k, and consider the
graph Lipschitz domain

Q={z+izneC:2>v(z)} (2.2)

We have A = 09 and, since ) is simply connected, then there exists a conformal map
P : R2 — Q such that ®(c0) = oo and ®(i) = iy for some yo > v(0). The map ¢
extends as a homeomorphism from R2 onto Q and ®(z), z € R, is absolutely continuous
when restricted to any finite interval; this implies that ®'(x) exists for almost every
x € R and is locally integrable. It also holds that ®'(x) # 0 for almost every x € R,
lim,_,, ®’'(z) = ®'(x) in the non-tangential sense for almost every z € R and |®'| € As.
If ®'(z) exists and is not zero, then it is a vector tangent to 9§ at ®(z). See Kenig [14,
Theorems 1.1 and 1.10] for the proof of those properties. The inverse of ® will be denoted
v,
Given a measurable function g defined in 0€), let Tg be given by

Tog(x) = |2 (z)|g(®(z)), x€R.

Denote by L?(992) the Lebesgue space of measurable functions defined on 99 that are
square-integrable with respect to arc-length. We note that T is a bijection from L?(99)
onto L?(|®’|~!) and we have [|g||r200) = |Togll L2(a/-1)-

For g € L?(09), consider the classical Neumann problem in Q:

Av =0 on Q, d,v=ygondQ and M, (Vv) € L*(99Q). (2.3)

Here A is the Laplace operator, v denotes the outward unit normal vector to 02, d,v =
Vv - v and the equality 0,v = g is meant in the non-tangential convergence sense. For
0 < a < arctan(1/k), M, denotes the non-tangential maximal operator given by

Mo (F)(§) = esrurzg) |F(2)], &€o9,
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for a complex-valued function F defined in £ and
Ta(€) ={z1 +iz0 € C: 23 > Im(&) and |Re(§) — 21| < tan(a)|z2 — Im(§)]}.

Inspired by tools and techniques from Kenig [13,14], it was proved in [2, Theorem 1.4]
that for every g € L?*(99), v = ur, 40 ¥ is a solution of the Neumann problem (2.3) and

Ma(VV)llz200) S l9llz200),

where, for f: R — C, uy is defined by

1 T—1)24 42
ug(w,y) = —;/log (M) st (@) € RE. (2.4)
R

We note that the integral on the right-hand side of (2.4) is absolutely convergent for
all f satisfying f]R ‘lf -ﬁzl‘ dt < oo; in particular, it is well defined for any f € L?(w) with
w € Ag. Asshown in [2], uy is a solution of the Neumann problem in the upper half plane:
More precisely, if w € Ay and f € L?(w), then uy is harmonic in R%, Vu - (0,-1) = f

on R in the sense of non-tangential convergence and

[Ma(Vup)llz2w) S IF1 22 w)-
It follows that
dpup(z,y) = —(Qy* f)(z) and  Jyus(z,y) = —(Py = f)(x),

where, for y > 0, P, is the Poisson kernel and @), is the conjugate of the Poisson kernel.
As a consequence,

Opufp(z,0) =—Hf(z) and OJyus(z,0)=—f(x), (2.5)
for almost every x € R in the non-tangential convergence sense.
For easier referencing, we state as a theorem the following result mentioned in Sec-
tion 1.
Theorem A (see proof of Lemma 1.11 in [1/]). If w € Ay and w = /K P2 with (f1, f2) €

D,,, then there exists a conformal map ®,, from ]Ra_ onto a graph Lipschitz domain so
that

P! () = Kf2@emif2(®) g0z e R. (2.6)

In particular |®),| = e=w = X2 Arg®! = —fo and |}, | ~ w.
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3. Rellich’s identities and new LZ?-weighted estimates for H

In this section we prove the Rellich’s identity versions for the Hilbert transform stated
in Theorem 1.2 and new L2-weighted estimates for H that follow from them. We start
with some preliminaries in Section 3.1, give the proof of Theorem 1.2 in Section 3.2 and
present the L2-weighted estimates for H in Section 3.3.

3.1. Preliminaries

Let Q, ® and ¥ be as in Section 2.2. We can parametrize the curve 02 using the
conformal map &, that is,

N={z€C:z=3o(x) for some z € R}.

We write ® = &1 + i®,, where &1 = Re(®) and &3 = Im(P), and analogously, ¥ =
WUy + ¢Ws. For convenience, we will sometimes denote a complex number z = 21 + iz
using vector notation, i.e., z = (z1, 22). Let v(z) be the outward unit normal vector to
0%); then,

(25((2)), ~21(¥(=)))

v(z) = (3.1)
|2(¥(2))|
Since V¥ is also a conformal map, it satisfies the Cauchy—Riemann equations:
81‘111 = (92\112 and 32\111 = —81\112, (32)

where 07 and 0y denote the partial derivatives with respect to the first and second
variable, respectively. The following lemma will be useful in the proof of Theorem 1.2.

Lemma 3.1. For almost every x € R, it holds that

|§<S§| - (@f@) |

Proof. Since ¥(®(z,y)) = (z,y), we have

@)@ = it =R ()
1

(02W1)(2(x)) =

Uy (®(z,y)) =z, forall (z,y) € @
Differentiating with respect to x, we get

(O1V1)(D(2,9))0:P1 (2, y) + (0291)(D(7, 1)) 02 Pa(,y) = 1,
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and similarly, differentiating with respect to y, we have

(0101)(2(2,9))0y @1 (2, y) + (02V1)(P(,y)) 0y P2 (2, y) = 0.

Furthermore, since ® satisfies the Cauchy-Riemann equations, 0,®, = 0,®2 and 9,®; =
—0,P3. Set y = 0, and denote ®}(z) = 9,P1(x,0), P4(z) = 9,P2(x,0), and P’
@) + i®4. Recall that ®'(z) exists and is non-zero for almost every = € R. Then

(0101)(®(2)) P () + (02W1)(®(2)) () =1 (3-3)
(O ) (B ()@ () + (0 01)(B(2)) B} () = 0. (3.0
Multiplying (3.3) by ®5(z) and (3.4) by ®/(z), and adding both equations, we see that

(001)(P(x)) = %, for a.e. z € R.

Finally, substituting this expression into (3.4) when ®4(x) # 0, we get

@ ()

1) (®(z)) = —2-L for ace. z € R.
(0191)(D(x)) TR or a.e. x €

If ®(x) = 0, then (3.3) gives (A 01)(®(x)) = g7z = hess: O

3.2. Proof of Theorem 1.2

Let f € L?(|®’|~!) be real-valued; since Ty : L?(9Q) — L*(|®’|~!) is invertible, there
exists a unique g € L?(9N) such that f = Tyg. As explained in Section 2.2, a solution
v of the Neumann problem (2.3) with datum ¢ can be represented by v = u o ¥, where
u = uy as given in (2.4) and (2.5) holds. Then the solution v satisfies Rellich’s identity

(1.8):

/|Vv|2(e~u)dcr:2/g(e~Vv)dU,
o0

o0

for any constant vector e = (e, e3).

Our goal is to derive a Rellich’s type identity for the function w. To this end, we need
to compute the partial derivatives of v in terms of u. Let z € 99, with z = ®(z), for
some z € R. Using Lemma 3.1, (2.5) and (3.2), we obtain

@) (@) = ~H(Tag)o)Re (5 ) - Taslo) i (=) 69

(020)(®(2)) = H(T9pg)(z) Im <¢)/t$)> —Tsg(z)Re (‘1)/155)) . (3.6)
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From (3.5) and (3.6), it follows that

1

[Vo(@(2)* = (H(Tag)(x))” + (Teg(x)*) iz (3.7)

@' (z)*
Making the change of variables z = ®(z), and using (3.7) and (3.1), we see that

6£Vv| (e-v)d /((H(T<I>9)) + (Ta9)?) (( 1,€2) |D/[2 )d

R

=—e /((H(Tq,g))2 + (Tsg)?) Im <%> dx
R
o R/ (((T29)? + (Tag?) Re (3, )

Similarly, we get

2/9 (e-Vv)do = —2¢e; /Tq;.gH(Tq)g) Re (%) dx — 2e; ‘/(T@g)2 Im <%) dx
R

o0 R

1 1
—|—2€2/T¢>9H(Tq)g) Im <a) dx — 2eq /(Tq>g)2 Re (@) dx.
R

R

Therefore, Rellich’s identity yields

2er [ Tog H(Tag) Re () do = en [((T20)) - (Tag)) o (3, ) da
R R

—er R/ (((T29))* = (Tag)) ;) do + 262 HZ Tug H(Tag)m (3 ) .

Recalling that Teg = f, (1.5) and (1.6) immediately follow from the above identity,

taking e = (0,1) and e = (1,0), respectively. O

Remark 3.2. Observe that for Q = R?, we have ®(z,y) = (z,y). If y = 0, then ®'(z) =1,
and noting that [p fH fdx =0, (1.5) recovers the well-known identity ||H f| 2 = || f| z2

for the Hilbert transform in L?(R).

3.8. L?-weighted estimates for the Hilbert transform

In this section we prove new LZ-weighted estimates for the Hilbert transform that

are consequences of Theorem 1.2. In what follows ® is a conformal map as described in

Section 2.2.
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We first state and prove Theorem 3.3, which gives L?-weighted estimates for H with
constants in terms of p(72), where 7 = tan || Arg ®'|| .~ and

o(s) := inf ets =1+2s+2vs2+s, s>0.

o<e<1 (1 —¢e)e

We then prove Theorem 1.1, which follows from Theorem 3.3 and gives sharp L2-weighted
estimates for H in terms of the Helson-Szegd constant of the weight as discussed in
Section 1.

We end the section with Corollary 3.4, which gives an identity for the norm of H as
a bounded operator on L?(Re (4)), and Corollary 3.5, which gives a uniform bound for
the norm of H as a bounded operator on L?(|®'|~!) when ®(R?%) is a monotone Lipschitz
domain.

Theorem 3.3. Let ® be a conformal map as described in Section 2.2 and T =
tan || Arg @' || L. Then for all f € L*(|®'|71) real-valued, we have

/(Hf)2Re (é) dz < o(7?) /f2 Re (%) de, (3.8)
R

/(Hf) || 7Y da < (24 V3)( /f2|<I>’| Lde. (3.9)

R

Proof. Proof of (3.8): We first estimate the last term on the right-hand side of (1.5).
Since Im (7,) = Re (&) tan(Arg &) = — Re (3 ) tan(Arg @) and Re (4 ) = R&(—,‘i";) >0,

it follows that -
/fo’Im( )’dm<7/foRe( >dx
R

Therefore, using the Cauchy-Schwarz inequality and (1.5), we get

£<Hf)2Re (%) da < (1+ )/fﬁ%(qy) dm—f—aR/(Hf) <%) d.

Equivalently,

1 e+ 12 1
/(Hf)2 Re (@) dr < 1—9: /f2 Re (a) dz,
R R

and the result follows by taking the infimum in 0 < e < 1.

Proof of (3.9): Using (3.8) and again that Im(z;) = —Re(g)tan(Arg®’) and
Re (27) > 0, we have



12 M.J. Carro et al. / Journal of Functional Analysis 286 (2024) 110271

e ae < o) [ Poas s [nrre(g) .
R R

R

We next use (1.5) and the Cauchy-Schwarz inequality to control the second term on the
right-hand side:

T/(Hf)QRe( >dx<7/f2Re< )dm+ /f2|1m(¢)/>|dx
R
+€T]R/(Hf) |Im< >|d:17

< (T+£>/f2|¢/|_ld$+ET/Hf )2|®' |7t da
R R

1
( J;T>/f2|<1>'|ldx—l—ET/Hf |®| 7! du,
R R

where € > 0 is such that 0 < e7 < 1. Combining both estimates, we see that

(—en) s an < (o) + 50 [ Pea
R R

IN

Setting § = &7, we obtain

[ o < o) SEEIAT) [ et
R R

Taking the infimum over all 0 < § < 1 leads to
[P do < oo+ D7/l / 7@ dr.
R

Since (1 + 7)7/p(7%) < 1/2, we have ¢((1 + 7)7/¢(72)) < p(1/2) = 2 + /3; therefore,
it follows that

/(Hf) |/ " de < (24 V3)p /f2|<1>| Ldz,

R

as desired. O

We next present the proof of Theorem 1.1.
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Proof of Theorem 1.1. Since w € Ay, we have w™! = e~ /1= K2 with (f1, f2) € Dy Let
® = &, 1 be as given in Theorem A; then |®'| = e %/2 and Arg @' = f5.
By (3.9) and using that ¢(s) ~ 1+ s for s > 0, we have

/(Hf)gwdx = /(Hf)26f1+Kf2 dx

R R

<ewh [P s
R

S e pftand | folu=) [ £10/] da
R
< e%c1(1 + tan? ||f2||Loo)/f2wdw.
R

Taking infimum over all pairs (f1, f2) € D,,, we obtain (1.4).
The fact that the dependence of [w]a,ms) in (1.4) is sharp follows from Re-
mark 4.4. O

The next corollary is a direct consequence of (1.5).

Corollary 3.4. If ® is a conformal map as described in Section 2.2, then

[H|]?, N 2(re(L)) = sup 1 —Q/foIm <i/> dz (3.10)
(el () T [T z
f real-valued

It is worth noting that for the integrals on the right hand side of (3.10), only the
values H f(x) for  in the support of f are needed.

A monotone graph Lipschitz domain is a graph Lipschitz domain € as described in
Section 2.2 for which the function v is monotone. Note that if ® is a conformal map
associated to {2 as given in Section 2.2, then {2 is a monotone graph Lipschitz domain if
and only if Im (®’) > 0 almost everywhere or Im (®’) < 0 almost everywhere. We have
the following result for conformal maps associated to monotone graph Lipschitz domains:

Corollary 3.5. Let ® be a conformal map as described in Section 2.2 such that @(]Rﬁ_) 18
a monotone graph Lipschitz domain. If f € L*(|®'|~!) is real-valued, then

||Hf||L2(‘¢./‘—l) < \/\/§ (1 + 2\/5 +2¢/2+ \/§> ||f||L2(‘q>/‘—1). (3.11)

Proof. Since @(Ri) is a monotone graph Lipschitz domain, then Im (%) > 0 almost
( 1

—) < 0 almost everywhere.

everywhere or Im 57
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Assume first that Im () > 0 almost everywhere. Adding (1.5) and (1.6), we have

R/(Hf)2|<1>|1da:§R/(Hf)2 (Re(é,) +Im<£/))dx
<[ (e (@) v () oo [ (e ()

<VE [ P 4 2vE [ I H) e
R R

()

Letting 0 < ¢ < 1/4/2 and applying the Cauchy-Schwarz inequality, the second term in
the last line is controlled by

2 [Irmse < 2 [ e s vae e
R R

R

Setting § = V2 ¢, we then obtain

[erriorae < Va2t /f2\<1>| e =va gtV [ et
R R

Taking infimum over 0 < § < 1, it follows that

/ (H )28 de < V3 p(v2) / 19|
R

R

=2 <1+2\/§+2\/2+\/5) /fZI‘I”\_ldw-
R

The case Im (3) < 0 follows analogously by subtracting (1.5) and (1.6). O
4. Hilbert transform identities with power weights

In this section we investigate further the identities (1.5) and (1.6) when ®(R2) is
a cone, and obtain Hilbert transform identities with power weights. We will consider
two types of cones: Symmetric cones about the imaginary axis and monotone cones (i.e.
cones that are monotone graph Lipschitz domains).

4.1. Symmetric cones

Let Q be a cone with aperture am, with o € (0,2), which is symmetric about the
imaginary axis (see Fig. 1). Consider the conformal map ® : R — € such that
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(I)(Z) — ei@ﬂza _ iefi%ﬂ”eoe(log|z|—|—iArg(z))7 (41)

. . . . 2
where we chose the branch cut {iy : y < 0}, so that ® is analytic on R7.

S

Fig. 1. Symmetric cone with aperture am.

We have the following result.

Theorem 4.1. Fiz 3 € (—1,1). For any f € L?(|z|?) real-valued, it holds that

/(Hf) |x|ﬁdx—/f2\x|5dx+2cot ((7)/fong (z)|z]? dz.

R

Remark 4.2. Note that cot (U_Tﬁ)”> blows up when 8 = —1 and 8 = 1. This is consistent
with the well-known fact that |z|® € A if and only if 3 € (—1,1).

Proof. Fix g € (—=1,1). Let a =1 — 3 € (0,2), and consider the conformal map ® given
n (4.1). We need to compute Re (7,) and Im (&) on R. If z > 0, then ®(z) = e 2T,
Differentiating with respect to x, we get

®'(x) = asin (a—;) 297! + iacos (%) o

Q

Similarly, if < 0, then ®(x) = ie’2™(—z)®, and thus,

®'(x) = asin (%) (=)' —iacos (%) (—z)> L

Note that |®(z)|? = a?|z|?(®~1). Therefore,

L 1
Re (<I>’> =a 'sin (a_;r) |z['7* and Im (5> = —a tcos (%) sgn(z)|z|' .

Substituting these expressions into (1.5), and using that f = 1 — «, we obtain the
result. O

Corollary 4.3. If 5 € (—1,1), it holds that

o0
21+ 8 1-B)r L
Vo o gy 21— 2 2 )C0t<( s ) >/|x| 2-8log |1 — z| da.
1
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Proof. By Theorem 4.1, with f. = x (o, and H(f,) = log Tamr] 2l we get that

z—r|’

2,18 1. — e 2 (1—p)m f B ||
lR/(H(fr)) || dx1+ﬂ+7rCOt< 5 0/|x| 10g|a:—r|dx

8 9 1- 7
" — Zcot <#) rith / ly| 7> Plog |1 —y| dy
1

2(1+5 1-8)w T o
1y (1= 25 cor (U527 [l gt~ vl
1

Therefore,

V2 g

A

=1- 2(1:@ cot ((1 _2B)7T> /|$\727ﬁ log |1 —z[dz. O
1

2
IHNZ2(018) = 22(2)) 2

Remark 4.4. We observe that the right-hand side behaves as (1 + )2 when 3 — —17.
s
Furthermore, |z|? = efloglel = eP2KEene) — chi+Kf: with f; = 0 and fo = %sgnx.

Hence,

212 sy < sec?(Z5) ~ (14 8)2 as B — 1.
Therefore, the dependence of [w]4,ms) in Theorem 1.1 is sharp.
4.2. Monotone cones

Let Q be a monotone cone of aperture am (see Fig. 2); then we must have o €
(1/2,3/2). Here the definition of ® changes according to o € (1/2,1) or « € [1,3/2).
We will only study the first case, since results from the second case can be deduced

analogously.
Let o € (1/2,1); for each 6 € [1 — o, 1/2], we define ® : R2 —  such that

(I)(Z) — ei@-rrza — ei@wea(log\z\—H Arg(z)), (42)

where we chose the branch cut {iy : y < 0}.

We next present several identities that follow from (1.5) and (1.6). Although it is
possible that some of these identities may be known, we were unable to find them in the
literature.
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T

LA | — |

Fig. 2. Monotone cone with aperture am.

Theorem 4.5. Fiz 3 € (0,1/2) and 0 € [8,1/2]. For any f € L*(|z|?) real-valued, it holds
that

/(Hf)2 al(sgnx)|x|5dx = /f2 al(sgnac)kr\ﬁdac + 2/fo ag(sgnm)|x|ﬂ dz,
R R

R
/(Hf)2 ag(sgnx)|x|5dx = /f2 ag(sgna:)|x\5da: — Z/fo al(sgnx)|a:|’3 dz,
R R R

where a1 and as are the functions given by

22 | cos((0 - pym)

1—s
2 b

a1(s) = cos(fr)

as(s) = sin(@w)% +sin((0 — B)7)
for any s in R.
Remark 4.6. Note that if 8 € (0,1/2) and 0 € [8,1/2], then 0 < 6 — 8 < 1/2, and
min { cos(#),sin(fr), cos((§ — B)m),sin((6 — B))} > 0.
Therefore, a1 (sgnx) > 0 and as(sgnz) > 0 for all x € R.

Proof. Fix g € (0,1/2) and 6 € [5,1/2]. Let « = 1 — 8 € (1/2,1), and consider the
conformal map given in (4.2). We proceed as in the previous proof. If > 0, then
®(x) = 972 Differentiating with respect to x, we get

@' (2) = acos(Im)z® ! +iasin(fr)zL.
Similarly, if < 0, then ®(x) = e{@+)7(—g)*. Therefore,
' (2) = —acos((a + 0)7)(—z)* ! —iasin((a + 0)7)(—z)* .

Since |®’(z)|? = o2|z|?(@~Y, and 8 = 1 — a, it follows that

1
Re (@) =t (cos(@w)—H'Sanx —cos((a + e)ﬂ)—l_San$) ||t

= (1= p) ax(sgn)|a|’
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and

1 : )
Im (a) =—a! (sin(ﬁw)lﬂ% —sin((a + G)W)H%) ||
= —(1—p)az(sgna)|z|?,

where a; and ag are defined as in the statement. Substituting in (1.5) and (1.6) we
conclude the desired results. O

When 5 = 6, Theorem 4.5 gives the following result:

Corollary 4.7. If 8 € (0,1/2) and f € L*(|x|?) is real-valued, it holds that

0

(H1P |ol? do+ [ (HPJal? do

—00

cos(f)

[} 0 [e'e]
=cos(fm) | f2lx|Pdx+ [ f2|x)Pdx + 2sin(Br) | fHSf |x|’ dz, (4.3)
[rere] /

sin(f8)

(HF)? |]? dac:sin(ﬁﬂ)/fQ 12|? da
0

oo 0
— 2cos(fm) /fo 2| dx — 2 / fHf |z|P de. (4.4)
0 —0o0

Several interesting identities follow as particular cases of Corollary 4.7:
Identity (4.3) and supp(f) C (0,00): If 3 € (0,1/2) and f € L%(|z|?) is real-valued,
then

0
(Hf)?|o]? da + / (Hf)2]2l’ da

— 00

cos(f)

oo

= cos(fm) /f2 || dx + 2sin(ﬁﬂ')/fo |z|? da.
0

0
As 8 — 1/2 we obtain

0

/(Hf)2|x|%dm:2/fo|x|%dx.
0

— 00
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Identity (4.3) and supp(f) C (—o00,0): If 3 € (0,1/2) and f € L?(|z|") is real-valued,
then

0 0
cos(f) / (Hf)?|z|? dz + /(Hf) 2| dx = / f2z|? da.
0 —o0
As 8 — 1/2, we have
0 0
[sieltde= [ £1alt o

Identity (4.4) and supp(f) C (0,00): If B € (0,1/2) and f € L?(|z|?) is real-valued,
then

sin(f) /(Hf)2 |z|? dx = sin(ﬁﬂ')/f2 2| dx — 2 cos(B) /fo || de.
0 0 0

As B — 1/2, we get

/Hf \x|2dx—/f2|x|2dx
0

Identity (4.4) and supp(f) C (—o00,0): If 3 € (0,1/2) and f € L?(|z|") is real-valued,
then

o) 0
sin(Br) [ (Hf)?|z|Pde=—-2 [ fHf|z|’ da.
/ /

As 8 — 1/2, it follows that

b/Hf \sr:|2d:v——2/fo|:c|2dx

5. Rellich identities for the Hilbert transform in LP

Theorem 1.2 states Rellich’s identities for the Hilbert transform for functions in
weighted L2-spaces. In this section we present versions of such identities for pairs of
functions on weighted Lebesgue spaces. Our main result is the following theorem.
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Theorem 5.1. Let ® be a conformal map as described in Section 2.2 such that |®'| €
A, N Ay for somel < p<oco. If f € LP(|®'['"P) and g € L¥ (|®'|'7") are real-valued,
then

/ HfHg - fg) Re< 1)d:c——/(ng+ng> Im (%) dz, (5.1)
R R
R/ Hng fg) Im( 1)dx—R/(ng+ng) Re (%) dz. (5.2)

Proof. We first prove (5.1) for f and g continuous with compact support. Using (1.5)
and the identity (see [7, (5.1.23), p. 320])

(Hf)? = f*=2H(fH), (5.3)

we have that

/H(fo)Re (%) dm——/foIm( )dm
R R

Applying this equality to the functions f + g, f and g, it follows that

[t ) (o= | (eons) () e

Using (5.3) for the function f + g, f and g, we obtain

HfHg~ fg=H(fHg+gH]).

These last two equalities give (5.1).

The identity (5.2) for f and g continuous with compact support is proved similarly
using (1.6).

The general case can be obtained by density once it is shown that the integrals in
(5.1) and (5.2) are absolutely convergent for f € LP(|®'|'~?) and g € L (|®'|'~*"). For
such functions, using Holder’s inequality, we obtain

1
'Y

/|nge( ) ds < /Ifl”\@ll rac | [l @) <o
R

We also have

Tl=
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-

1
Y

]. ! !
/|Hng| Re (<I>’> dr < /|Hf|p|q>/|1fpdz /|Hg|17 |<1>/|17p dx
R R R

Il

’

:
/ 17|17 da / g |9 P de | < oo,
R R

N

where in the last inequality we have used the boundedness of the Hilbert transform
noting that |®'|'~P € A, since |®'| € A, and |®'|'"* € A, since || € A,. A similar
reasoning is applied for the integrals on the right hand side of (5.1) and (5.2). O

As an application, we next present examples of the identities of Theorem 5.1 associated
to power weights. The next corollary follows by considering the conformal map ® given
in (4.1) and the corresponding computations done in Section 4.1.

Corollary 5.2. Let 1 < p < oo and B € (=1,1). If f € LP(|z|®~V) and g €
L' (|2]P® =1 are real-valued then

/ (HfHg ~ f9)lzdz = cot (“‘Tﬁ)”> / (fHg+ gH]) sgn(w)le) dz,

R R

/ (Hng — fg) sgn(z)|z|’dr = — tan ((1—25)7r> / (ng +ng>|x|de.
R

R
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