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1. Introduction and main results

Let H be the Hilbert transform, which is defined as

Hf(x) =
1

π
lim
ε→0

∫

|x−y|>ε

f(y)

x − y
dy;

Hunt–Muckenhoupt–Wheeden [9] proved that if 1 < p < ∞, then H is bounded from 

Lp(w) to Lp(w) if and only if w ∈ Ap. Here Lp(w) is the Lebesgue space of measurable 

functions defined on R that are p-integrable with respect to the measure w(x)dx and Ap

denotes the Muckenhoupt class of weights on R.

Applications in Partial Differential Equations (see Fefferman–Kenig–Pipher [5]) led 

to a profound study of sharp bounds for the operator norm of the Hilbert transform in 

terms of the Ap constant of the weight, denoted [w]Ap
(see Section 2.1 for its definition). 

In particular, the A2-conjecture for the Hilbert transform consisted in proving that the 

Hilbert transform satisfies analogous estimates to those by the Hardy-Littlewood maxi-

mal operator, that is,

||Hf ||L2(w) � [w]A2
||f ||L2(w) ∀f ∈ L2(w). (1.1)

This conjecture was solved by Petermichl [16] in 2007 and numerous other related re-

sults followed concerning its extension to singular integral operators and other classical 

operators, including Petermichl [17], Hytönen [10], Hytönen et al. [12,11], Lerner [15]

and Cruz-Uribe–Martell–Pérez [3].

General necessary and sufficient conditions on the weights for the boundedness of the 

Hilbert transform on weighted L2 spaces were first obtained by Helson-Szegö [8] in 1960 

using complex variable techniques. More precisely, they proved that

H : L2(w) −→ L2(w) ⇐⇒ w = ef1+Kf2 , f1, f2 ∈ L∞(R), ||f2||L∞ < π/2,

where K is a version of the Hilbert transform for L∞-functions (see Section 2.1). As a 

consequence, we have

w ∈ A2 ⇐⇒ w = ef1+Kf2 , f1, f2 ∈ L∞(R), ||f2||L∞ < π/2. (1.2)

It is worth mentioning that the implication to the left is easy to prove, but no direct 

proof of the implication to the right is presently known; the reader is directed to the 

work García-Cuerva [6] for an interesting survey on the topic. In particular, it is proved 

in [6] that, if ||f2||L∞ < π/2, then

[eKf2 ]A2
≤ sec2 ||f2||L∞ . (1.3)
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Given w ∈ A2, define the Helson-Szegö constant of w, [w]A2(HS), as

[w]2A2(HS) := inf
Dw

eosc f1 sec2 ‖f2‖L∞ ,

where osc f1 = sup f1 − inf f1 and

Dw :=
{

(f1, f2) : w = ef1+Kf2 with f1, f2 ∈ L∞(R) and ‖f2‖L∞ < π/2
}

.

The inequality [w]A2
≤ [w]2

A2(HS) follows from (1.3) and, along with (1.1), leads to

||Hf ||L2(w) � [w]2A2(HS)||f ||L2(w).

One of the results in this article improves the dependence on the Helson-Szegö constant 

of the weight in the above inequality; indeed, we show that the dependence is linear in 

[w]A2(HS). More precisely, we have the following estimate:

Theorem 1.1. For every w ∈ A2 and f ∈ L2(w) real-valued, it holds that

||Hf ||L2(w) � [w]A2(HS)||f ||L2(w). (1.4)

The dependence of [w]A2(HS) in (1.4) is sharp.

The estimate (1.4) is sharp in the sense that the norm of the operator H as a bounded 

operator on L2(w) is comparable to [w]A2(HS) for some w ∈ A2. We hope that (1.4) may 

lead to a new proof of (1.1) by showing that [w]A2(HS) � [w]A2
, which at the moment is 

an open question.

The estimate (1.4) along with other new L2-weighted estimates for the Hilbert trans-

form proved in this article are consequences of our main result on Rellich-type iden-

tities for the Hilbert transform. Such identities involve a conformal map Φ such that 

Ω = Φ(R2
+) is a graph Lipschitz domain, that is, the upper part of the graph of a real-

valued Lipschitz function; the map Φ extends as a homeomorphism from R2
+ onto Ω and 

Φ′(x) exists and is non-zero for almost every x ∈ R (see details in Section 2.2). Our main 

result is the following theorem.

Theorem 1.2. Let Φ be a conformal map as described in Section 2.2 and f ∈ L2(|Φ′|−1)

be real-valued. Then

∫

R

(Hf)2 Re

(

1

Φ′

)

dx =

∫

R

f2 Re

(

1

Φ′

)

dx − 2

∫

R

f Hf Im

(

1

Φ′

)

dx, (1.5)

and

∫

R

(Hf)2 Im

(

1

Φ′

)

dx =

∫

R

f2 Im

(

1

Φ′

)

dx + 2

∫

R

f Hf Re

(

1

Φ′

)

dx. (1.6)
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We remark that there is a strong connection between the Helson-Szegö result (1.2)

and conformal maps Φ as in the statement of Theorem 1.2. As proved in Kenig [14, 

Theorem 1.10 and Lemma 1.11], it holds that

|Φ′| ∈ A2

and a converse result is true in the sense that if w ∈ A2 then there exists Φ such 

that |Φ′| ∼ w. Indeed, the latter is a consequence of (1.2): Let w = ef1+Kf2 with 

(f1, f2) ∈ Dw, then it is proved in [14] that there exists a conformal map Φ from R2
+

onto a graph Lipschitz domain so that

Φ′(x) = eKf2(x)e−if2(x) a.e. x ∈ R; (1.7)

therefore, |Φ′| = e−f1w and it follows that |Φ′| ∼ w.

The main ingredients in the proof of Theorem 1.2 are the following tools: (a) the 

theory of solutions of the Neumann problem in a graph Lipschitz domain with data 

in L2 through the use of conformal maps as developed in Carro–Naibo–Ortiz [2] and, 

(b) Rellich’s identity, which gives that if Φ is as in the statement of Theorem 1.2, then 

for every harmonic function u in Ω = Φ(R2
+) so that M(∇u) ∈ L2(∂Ω) and for every 

constant vector e ∈ R
2,

∫

∂Ω

|∇u|2 (e · ν) dσ = 2

∫

∂Ω

(∂νu) (e · ∇u) dσ, (1.8)

where M is the non-tangential maximal operator and dσ denotes integration with respect 

to arc-length. The integral identity (1.8) is due to Rellich [18] (see also Escauriaza–

Mitrea [4, (2.35)]); this identity and related versions play fundamental roles in questions 

on elliptic partial differential equations, inverse problems, acoustic scattering, and the 

multiplier method; see Agrawal–Alazard [1] and references therein.

We note that the proof of [9, Lemma 10] shows that for an infinitely differentiable 

function f with compact support in R, it holds that

∞
∫

−∞

(f + iHf)2Φ′ dx = 0, (1.9)

where Φ is a conformal map from R2
+ onto a graph Lipschitz domain such that Φ′ =

eKge−ig for some g satisfying ‖g‖L∞ < π
2 . Instances of (1.5) and (1.6) with Φ′ instead 

of 1/Φ′ can then be deduced by taking the real and imaginary parts of (1.9). However, 

(1.5) and (1.6) are not explicitly shown in [9] and the proof of (1.9) is based on complex 

variable techniques that are different from the novel approach we use in the proof of 

Theorem 1.2, which holds for more general conformal maps Φ.
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The paper is organized as follows. In Section 2, we present preliminaries regarding 

weights, the Hilbert transform, conformal mappings and the solution of the Neumann 

problem in a graph Lipschitz domain in the plane with data in L2. In Section 3, we 

prove the Rellich’s identity versions for the Hilbert transform presented in Theorem 1.2

as well as L2-weighted estimates for H that follow from them, including (1.4). Other 

applications of Theorem 1.2 concerning Hilbert transform identities with power weights 

are discussed in Section 4. Finally, we present in Section 5 versions of Rellich identities 

for the Hilbert transform in weighted Lp spaces.

2. Preliminaries

In this section we present preliminaries regarding weights, the Hilbert transform, 

conformal mappings and the solution of the Neumann problem in a graph Lipschitz 

domain in the plane with data in L2.

2.1. Muckenhoupt weights and the Hilbert transform for L∞ functions

Let w be a weight on R, i.e. a non-negative locally integrable function defined in R, 

and 1 ≤ p ≤ ∞. We will denote by Lp(w) the space of measurable functions f : R → C

such that

‖f‖Lp(w) =

⎛

⎝

∫

R

|f(x)|pw(x) dx

⎞

⎠

1
p

< ∞,

with the corresponding changes for p = ∞. If w ≡ 1, we will use the notation Lp(R)

instead of Lp(w).

For 1 < p < ∞, a weight w defined on R belongs to the Muckenhoupt class Ap if

[w]Ap
= sup

I⊂R

⎛

⎝

1

|I|

∫

I

w(x)dx

⎞

⎠

⎛

⎝

1

|I|

∫

I

w(x)1−p′

dx

⎞

⎠

p−1

< ∞, (2.1)

where the supremum is taken over all intervals contained in R. We recall that w ∈ Ap if 

and only if w1−p′ ∈ Ap′ , where p′ is the conjugate exponent of p (i.e. 1/p + 1/p′ = 1); 

also, Ap ⊂ Aq if p < q and for every w ∈ Ap there exist ε > 0 such that w ∈ Ap−ε.

We define the operator K as

Kf(x) =
1

π
lim
ε→0

∫

|x−y|>ε

f(y)

(

1

x − y
+

χ|y|>1(y)

y

)

dy,

which allows to extend the definition of the Hilbert transform to L∞(R).
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For brevity we will use the notation A � B to mean that A ≤ c B, where c is a 

constant that may only depend on some of the parameters but not on the functions or 

weights involved.

2.2. Conformal maps and the Neumann problem in a graph Lipchitz domain in the 

plane

In this section we define the conformal maps that will be considered throughout this 

work and recall results from [2] on the solution of the Neumann problem in a graph 

Lipschitz domain with data in L2, which is obtained via the use of conformal maps and 

the solution of the Neumann problem in the upper-half plane.

Let Λ be a curve in the complex plane given parametrically by ξ(x) = x + iγ(x) for 

x ∈ R, where γ is a real-valued Lipschitz function with constant k, and consider the 

graph Lipschitz domain

Ω = {z1 + iz2 ∈ C : z2 > γ(z1)}. (2.2)

We have Λ = ∂Ω and, since Ω is simply connected, then there exists a conformal map 

Φ : R
2
+ −→ Ω such that Φ(∞) = ∞ and Φ(i) = iy0 for some y0 > γ(0). The map Φ

extends as a homeomorphism from R2
+ onto Ω and Φ(x), x ∈ R, is absolutely continuous 

when restricted to any finite interval; this implies that Φ′(x) exists for almost every 

x ∈ R and is locally integrable. It also holds that Φ′(x) �= 0 for almost every x ∈ R, 

limz→x Φ′(z) = Φ′(x) in the non-tangential sense for almost every x ∈ R and |Φ′| ∈ A2. 

If Φ′(x) exists and is not zero, then it is a vector tangent to ∂Ω at Φ(x). See Kenig [14, 

Theorems 1.1 and 1.10] for the proof of those properties. The inverse of Φ will be denoted 

Ψ.

Given a measurable function g defined in ∂Ω, let TΦ be given by

TΦg(x) = |Φ′(x)|g(Φ(x)), x ∈ R.

Denote by L2(∂Ω) the Lebesgue space of measurable functions defined on ∂Ω that are 

square-integrable with respect to arc-length. We note that TΦ is a bijection from L2(∂Ω)

onto L2(|Φ′|−1) and we have ‖g‖L2(∂Ω) = ‖TΦg‖L2(|Φ′|−1).

For g ∈ L2(∂Ω), consider the classical Neumann problem in Ω:

∆v = 0 on Ω, ∂νv = g on ∂Ω and Mα(∇v) ∈ L2(∂Ω). (2.3)

Here ∆ is the Laplace operator, ν denotes the outward unit normal vector to ∂Ω, ∂νv =

∇v · ν and the equality ∂νv = g is meant in the non-tangential convergence sense. For 

0 < α < arctan(1/k), Mα denotes the non-tangential maximal operator given by

Mα(F )(ξ) = sup
z∈Γα(ξ)

|F (z)|, ξ ∈ ∂Ω,
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for a complex-valued function F defined in Ω and

Γα(ξ) = {z1 + iz2 ∈ C : z2 > Im(ξ) and |Re(ξ) − z1| < tan(α)|z2 − Im(ξ)|}.

Inspired by tools and techniques from Kenig [13,14], it was proved in [2, Theorem 1.4]

that for every g ∈ L2(∂Ω), v = uTΦg ◦ Ψ is a solution of the Neumann problem (2.3) and

‖Mα(∇v)‖L2(∂Ω) � ‖g‖L2(∂Ω),

where, for f : R → C, uf is defined by

uf (x, y) := − 1

π

∫

R

log
( √

(x−t)2+y2

1+|t|

)

f(t) dt, (x, y) ∈ R
2
+. (2.4)

We note that the integral on the right-hand side of (2.4) is absolutely convergent for 

all f satisfying 
∫

R

|f(t)|
1+|t| dt < ∞; in particular, it is well defined for any f ∈ L2(w) with 

w ∈ A2. As shown in [2], uf is a solution of the Neumann problem in the upper half plane: 

More precisely, if w ∈ A2 and f ∈ L2(w), then uf is harmonic in R2
+, ∇u · (0, −1) = f

on R in the sense of non-tangential convergence and

‖Mα(∇uf )‖L2(w) � ‖f‖L2(w).

It follows that

∂xuf (x, y) = −(Qy ∗ f)(x) and ∂yuf (x, y) = −(Py ∗ f)(x),

where, for y > 0, Py is the Poisson kernel and Qy is the conjugate of the Poisson kernel. 

As a consequence,

∂xuf (x, 0) = −Hf(x) and ∂yuf (x, 0) = −f(x), (2.5)

for almost every x ∈ R in the non-tangential convergence sense.

For easier referencing, we state as a theorem the following result mentioned in Sec-

tion 1.

Theorem A (see proof of Lemma 1.11 in [14]). If w ∈ A2 and w = ef1+Kf2 with (f1, f2) ∈
Dw, then there exists a conformal map Φw from R2

+ onto a graph Lipschitz domain so 

that

Φ′
w(x) = eKf2(x)e−if2(x) a.e. x ∈ R. (2.6)

In particular |Φ′
w| = e−f1w = eKf2 , Arg Φ′

w = −f2 and |Φ′
w| ∼ w.
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3. Rellich’s identities and new L2-weighted estimates for H

In this section we prove the Rellich’s identity versions for the Hilbert transform stated 

in Theorem 1.2 and new L2-weighted estimates for H that follow from them. We start 

with some preliminaries in Section 3.1, give the proof of Theorem 1.2 in Section 3.2 and 

present the L2-weighted estimates for H in Section 3.3.

3.1. Preliminaries

Let Ω, Φ and Ψ be as in Section 2.2. We can parametrize the curve ∂Ω using the 

conformal map Φ, that is,

∂Ω = {z ∈ C : z = Φ(x) for some x ∈ R}.

We write Φ = Φ1 + iΦ2, where Φ1 = Re(Φ) and Φ2 = Im(Φ), and analogously, Ψ =

Ψ1 + iΨ2. For convenience, we will sometimes denote a complex number z = z1 + iz2

using vector notation, i.e., z = (z1, z2). Let ν(z) be the outward unit normal vector to 

∂Ω; then,

ν(z) =

(

Φ′
2(Ψ(z)), −Φ′

1(Ψ(z))
)

|Φ′(Ψ(z))| . (3.1)

Since Ψ is also a conformal map, it satisfies the Cauchy–Riemann equations:

∂1Ψ1 = ∂2Ψ2 and ∂2Ψ1 = −∂1Ψ2, (3.2)

where ∂1 and ∂2 denote the partial derivatives with respect to the first and second 

variable, respectively. The following lemma will be useful in the proof of Theorem 1.2.

Lemma 3.1. For almost every x ∈ R, it holds that

(∂1Ψ1)(Φ(x)) =
Φ′

1(x)

|Φ′(x)|2 = Re

(

1

Φ′(x)

)

,

(∂2Ψ1)(Φ(x)) =
Φ′

2(x)

|Φ′(x)|2 = − Im

(

1

Φ′(x)

)

.

Proof. Since Ψ(Φ(x, y)) = (x, y), we have

Ψ1(Φ(x, y)) = x, for all (x, y) ∈ R2
+.

Differentiating with respect to x, we get

(∂1Ψ1)(Φ(x, y))∂xΦ1(x, y) + (∂2Ψ1)(Φ(x, y))∂xΦ2(x, y) = 1,
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and similarly, differentiating with respect to y, we have

(∂1Ψ1)(Φ(x, y))∂yΦ1(x, y) + (∂2Ψ1)(Φ(x, y))∂yΦ2(x, y) = 0.

Furthermore, since Φ satisfies the Cauchy–Riemann equations, ∂xΦ1 = ∂yΦ2 and ∂yΦ1 =

−∂xΦ2. Set y = 0, and denote Φ′
1(x) = ∂xΦ1(x, 0), Φ′

2(x) = ∂xΦ2(x, 0), and Φ′ =

Φ′
1 + iΦ′

2. Recall that Φ′(x) exists and is non-zero for almost every x ∈ R. Then

(∂1Ψ1)(Φ(x))Φ′
1(x) + (∂2Ψ1)(Φ(x))Φ′

2(x) = 1 (3.3)

−(∂1Ψ1)(Φ(x))Φ′
2(x) + (∂2Ψ1)(Φ(x))Φ′

1(x) = 0. (3.4)

Multiplying (3.3) by Φ′
2(x) and (3.4) by Φ′

1(x), and adding both equations, we see that

(∂2Ψ1)(Φ(x)) =
Φ′

2(x)

|Φ′(x)|2 , for a.e. x ∈ R.

Finally, substituting this expression into (3.4) when Φ′
2(x) �= 0, we get

(∂1Ψ1)(Φ(x)) =
Φ′

1(x)

|Φ′(x)|2 , for a.e. x ∈ R.

If Φ′
2(x) = 0, then (3.3) gives (∂1Ψ1)(Φ(x)) = 1

Φ′

1(x) =
Φ′

1(x)
|Φ′(x)|2 . �

3.2. Proof of Theorem 1.2

Let f ∈ L2(|Φ′|−1) be real-valued; since TΦ : L2(∂Ω) → L2(|Φ′|−1) is invertible, there 

exists a unique g ∈ L2(∂Ω) such that f = TΦg. As explained in Section 2.2, a solution 

v of the Neumann problem (2.3) with datum g can be represented by v = u ◦ Ψ, where 

u = uf as given in (2.4) and (2.5) holds. Then the solution v satisfies Rellich’s identity 

(1.8):

∫

∂Ω

|∇v|2 (e · ν) dσ = 2

∫

∂Ω

g (e · ∇v) dσ,

for any constant vector e = (e1, e2).

Our goal is to derive a Rellich’s type identity for the function u. To this end, we need 

to compute the partial derivatives of v in terms of u. Let z ∈ ∂Ω, with z = Φ(x), for 

some x ∈ R. Using Lemma 3.1, (2.5) and (3.2), we obtain

(∂1v)(Φ(x)) = −H(TΦg)(x) Re

(

1

Φ′(x)

)

− TΦg(x) Im

(

1

Φ′(x)

)

, (3.5)

(∂2v)(Φ(x)) = H(TΦg)(x) Im

(

1

Φ′(x)

)

− TΦg(x) Re

(

1

Φ′(x)

)

. (3.6)
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From (3.5) and (3.6), it follows that

|∇v(Φ(x))|2 =
(

(H(TΦg)(x))2 + (TΦg(x))2
) 1

|Φ′(x)|2 . (3.7)

Making the change of variables z = Φ(x), and using (3.7) and (3.1), we see that

∫

∂Ω

|∇v|2 (e · ν) dσ =

∫

R

(

(H(TΦg))2 + (TΦg)2
)

(

(e1, e2) · (Φ′
2, −Φ′

1)

|Φ′|2
)

dx

= −e1

∫

R

((H(TΦg))2 + (TΦg)2
)

Im

(

1

Φ′

)

dx

− e2

∫

R

((H(TΦg))2 + (TΦg)2
)

Re

(

1

Φ′

)

dx.

Similarly, we get

2

∫

∂Ω

g (e · ∇v) dσ = −2e1

∫

R

TΦg H(TΦg) Re

(

1

Φ′

)

dx − 2e1

∫

R

(TΦg)2 Im

(

1

Φ′

)

dx

+ 2e2

∫

R

TΦg H(TΦg) Im

(

1

Φ′

)

dx − 2e2

∫

R

(TΦg)2 Re

(

1

Φ′

)

dx.

Therefore, Rellich’s identity yields

2e1

∫

R

TΦg H(TΦg) Re

(

1

Φ′

)

dx − e2

∫

R

((H(TΦg))2 − (TΦg)2
)

Re

(

1

Φ′

)

dx

= e1

∫

R

((H(TΦg))2 − (TΦg)2
)

Im

(

1

Φ′

)

dx + 2e2

∫

R

TΦg H(TΦg) Im

(

1

Φ′

)

dx.

Recalling that TΦg = f , (1.5) and (1.6) immediately follow from the above identity, 

taking e = (0, 1) and e = (1, 0), respectively. �

Remark 3.2. Observe that for Ω = R
2
+, we have Φ(x, y) = (x, y). If y = 0, then Φ′(x) = 1, 

and noting that 
∫

R
fHfdx = 0, (1.5) recovers the well-known identity ‖Hf‖L2 = ‖f‖L2

for the Hilbert transform in L2(R).

3.3. L2-weighted estimates for the Hilbert transform

In this section we prove new L2-weighted estimates for the Hilbert transform that 

are consequences of Theorem 1.2. In what follows Φ is a conformal map as described in 

Section 2.2.
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We first state and prove Theorem 3.3, which gives L2-weighted estimates for H with 

constants in terms of ϕ(τ2), where τ = tan ‖ Arg Φ′‖L∞ and

ϕ(s) := inf
0<ε<1

ε + s

(1 − ε)ε
= 1 + 2s + 2

√

s2 + s, s ≥ 0.

We then prove Theorem 1.1, which follows from Theorem 3.3 and gives sharp L2-weighted 

estimates for H in terms of the Helson-Szegö constant of the weight as discussed in 

Section 1.

We end the section with Corollary 3.4, which gives an identity for the norm of H as 

a bounded operator on L2(Re
(

1
Φ′

)

), and Corollary 3.5, which gives a uniform bound for 

the norm of H as a bounded operator on L2(|Φ′|−1) when Φ(R2
+) is a monotone Lipschitz 

domain.

Theorem 3.3. Let Φ be a conformal map as described in Section 2.2 and τ =

tan ‖ Arg Φ′‖L∞ . Then for all f ∈ L2(|Φ′|−1) real-valued, we have

∫

R

(Hf)2 Re

(

1

Φ′

)

dx ≤ ϕ(τ2)

∫

R

f2 Re

(

1

Φ′

)

dx, (3.8)

∫

R

(Hf)2|Φ′|−1 dx ≤ (2 +
√

3)ϕ(τ2)

∫

R

f2 |Φ′|−1 dx. (3.9)

Proof. Proof of (3.8): We first estimate the last term on the right-hand side of (1.5). 

Since Im
(

1
Φ′

)

= Re
(

1
Φ′

)

tan(Arg 1
Φ′

) = − Re
(

1
Φ′

)

tan(Arg Φ′) and Re
(

1
Φ′

)

= Re(Φ′)
|Φ′|2 ≥ 0, 

it follows that

∫

R

fHf

∣

∣

∣

∣

Im

(

1

Φ′

)∣

∣

∣

∣

dx ≤ τ

∫

R

fHf Re

(

1

Φ′

)

dx.

Therefore, using the Cauchy-Schwarz inequality and (1.5), we get

∫

R

(Hf)2 Re

(

1

Φ′

)

dx ≤
(

1 +
τ2

ε

) ∫

R

f2 Re

(

1

Φ′

)

dx + ε

∫

R

(Hf)2 Re

(

1

Φ′

)

dx.

Equivalently,

∫

R

(Hf)2 Re

(

1

Φ′

)

dx ≤ ε + τ2

(1 − ε)ε

∫

R

f2 Re

(

1

Φ′

)

dx,

and the result follows by taking the infimum in 0 < ε < 1.

Proof of (3.9): Using (3.8) and again that Im
(

1
Φ′

)

= − Re
(

1
Φ′

)

tan(Arg Φ′) and 

Re
(

1
Φ′

)

≥ 0, we have
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∫

R

(Hf)2|Φ′|−1 dx ≤ ϕ(τ2)

∫

R

f2|Φ′|−1 dx + τ

∫

R

(Hf)2 Re

(

1

Φ′

)

dx.

We next use (1.5) and the Cauchy-Schwarz inequality to control the second term on the 

right-hand side:

τ

∫

R

(Hf)2 Re

(

1

Φ′

)

dx ≤ τ

∫

R

f2 Re

(

1

Φ′

)

dx +
τ

ε

∫

R

f2| Im

(

1

Φ′

)

| dx

+ ετ

∫

R

(Hf)2| Im

(

1

Φ′

)

| dx

≤
(

τ +
τ

ε

)

∫

R

f2|Φ′|−1 dx + ετ

∫

R

(Hf)2|Φ′|−1 dx

≤
(

1 + τ

ε

) ∫

R

f2|Φ′|−1 dx + ετ

∫

R

(Hf)2|Φ′|−1 dx,

where ε > 0 is such that 0 < ετ < 1. Combining both estimates, we see that

(1 − ετ)

∫

R

(Hf)2|Φ′|−1 dx ≤
(

ϕ(τ2) +
1 + τ

ε

) ∫

R

f2|Φ′|−1 dx.

Setting δ = ετ , we obtain

∫

R

(Hf)2|Φ′|−1 dx ≤ ϕ(τ2)
δ + (1 + τ)τ/ϕ(τ2)

(1 − δ)δ

∫

R

f2|Φ′|−1 dx.

Taking the infimum over all 0 < δ < 1 leads to

∫

R

(Hf)2|Φ′|−1 dx ≤ ϕ(τ2)ϕ((1 + τ)τ/ϕ(τ2))

∫

R

f2|Φ′|−1 dx.

Since (1 + τ)τ/ϕ(τ2) ≤ 1/2, we have ϕ((1 + τ)τ/ϕ(τ2)) ≤ ϕ(1/2) = 2 +
√

3; therefore, 

it follows that

∫

R

(Hf)2|Φ′|−1 dx ≤ (2 +
√

3)ϕ(τ2)

∫

R

f2|Φ′|−1 dx,

as desired. �

We next present the proof of Theorem 1.1.
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Proof of Theorem 1.1. Since w ∈ A2, we have w−1 = e−f1−Kf2 with (f1, f2) ∈ Dw. Let 

Φ = Φw−1 be as given in Theorem A; then |Φ′| = e−Kf2 and Arg Φ′ = f2.

By (3.9) and using that ϕ(s) ∼ 1 + s for s ≥ 0, we have

∫

R

(Hf)2w dx =

∫

R

(Hf)2ef1+Kf2 dx

≤ esup f1

∫

R

(Hf)2|Φ′|−1 dx

� esup f1ϕ(tan2 ‖f2‖L∞)

∫

R

f2|Φ′|−1 dx

� eosc f1(1 + tan2 ‖f2‖L∞)

∫

R

f2w dx.

Taking infimum over all pairs (f1, f2) ∈ Dw, we obtain (1.4).

The fact that the dependence of [w]A2(HS) in (1.4) is sharp follows from Re-

mark 4.4. �

The next corollary is a direct consequence of (1.5).

Corollary 3.4. If Φ is a conformal map as described in Section 2.2, then

||H||2
L2

(

Re
(

1
Φ′

))

→L2
(

Re
(

1
Φ′

)) = sup
||f ||

L2
(

Re
(

1
Φ′

))

=1

f real-valued

∣

∣

∣

∣

∣

∣

1 − 2

∫

R

fHf Im

(

1

Φ′

)

dx

∣

∣

∣

∣

∣

∣

(3.10)

It is worth noting that for the integrals on the right hand side of (3.10), only the 

values Hf(x) for x in the support of f are needed.

A monotone graph Lipschitz domain is a graph Lipschitz domain Ω as described in 

Section 2.2 for which the function γ is monotone. Note that if Φ is a conformal map 

associated to Ω as given in Section 2.2, then Ω is a monotone graph Lipschitz domain if 

and only if Im (Φ′) ≥ 0 almost everywhere or Im (Φ′) ≤ 0 almost everywhere. We have 

the following result for conformal maps associated to monotone graph Lipschitz domains:

Corollary 3.5. Let Φ be a conformal map as described in Section 2.2 such that Φ(R2
+) is 

a monotone graph Lipschitz domain. If f ∈ L2(|Φ′|−1) is real-valued, then

||Hf ||L2(|Φ′|−1) ≤
√

√
2

(

1 + 2
√

2 + 2

√

2 +
√

2

)

||f ||L2(|Φ′|−1). (3.11)

Proof. Since Φ(R2
+) is a monotone graph Lipschitz domain, then Im

(

1
Φ′

)

≥ 0 almost 

everywhere or Im
(

1
Φ′

)

≤ 0 almost everywhere.



14 M.J. Carro et al. / Journal of Functional Analysis 286 (2024) 110271

Assume first that Im
(

1
Φ′

)

≥ 0 almost everywhere. Adding (1.5) and (1.6), we have

∫

R

(Hf)2|Φ|−1dx ≤
∫

R

(Hf)2

(

Re

(

1

Φ′

)

+ Im

(

1

Φ′

))

dx

=

∫

R

f2

(

Re

(

1

Φ′

)

+ Im

(

1

Φ′

))

dx + 2

∫

R

f Hf

(

Re

(

1

Φ′

)

− Im

(

1

Φ′

))

dx

≤
√

2

∫

R

f2|Φ′|−1dx + 2
√

2

∫

R

|f Hf ||Φ′|−1dx.

Letting 0 < ε < 1/
√

2 and applying the Cauchy-Schwarz inequality, the second term in 

the last line is controlled by

2
√

2

∫

R

|f Hf ||Φ′|−1dx ≤
√

2

ε

∫

R

f2|Φ′|−1dx +
√

2 ε

∫

R

(Hf)2|Φ′|−1dx.

Setting δ =
√

2 ε, we then obtain

∫

R

(Hf)2|Φ|−1dx ≤
√

2
1 + 1

ε

1 −
√

2ε

∫

R

f2|Φ′|−1dx =
√

2
δ +

√
2

δ(1 − δ)

∫

R

f2|Φ′|−1dx.

Taking infimum over 0 < δ < 1, it follows that

∫

R

(Hf)2|Φ|−1dx ≤
√

2 ϕ(
√

2)

∫

R

f2|Φ′|−1dx

=
√

2

(

1 + 2
√

2 + 2

√

2 +
√

2

) ∫

R

f2|Φ′|−1dx.

The case Im
(

1
Φ′

)

≤ 0 follows analogously by subtracting (1.5) and (1.6). �

4. Hilbert transform identities with power weights

In this section we investigate further the identities (1.5) and (1.6) when Φ(R2
+) is 

a cone, and obtain Hilbert transform identities with power weights. We will consider 

two types of cones: Symmetric cones about the imaginary axis and monotone cones (i.e. 

cones that are monotone graph Lipschitz domains).

4.1. Symmetric cones

Let Ω be a cone with aperture απ, with α ∈ (0, 2), which is symmetric about the 

imaginary axis (see Fig. 1). Consider the conformal map Φ : R
2
+ → Ω such that
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Φ(z) = ei
(1−α)

2 πzα = ie−i
α
2 πeα(log |z|+i Arg(z)), (4.1)

where we chose the branch cut {iy : y ≤ 0}, so that Φ is analytic on R2
+.

π

zα

απ

ei
(1−α)

2 π

απ

Ω

Fig. 1. Symmetric cone with aperture απ.

We have the following result.

Theorem 4.1. Fix β ∈ (−1, 1). For any f ∈ L2(|x|β) real-valued, it holds that

∫

R

(Hf)2|x|β dx =

∫

R

f2|x|β dx + 2 cot

(

(1 − β)π

2

) ∫

R

fHf sgn(x)|x|β dx.

Remark 4.2. Note that cot
(

(1−β)π

2

)

blows up when β = −1 and β = 1. This is consistent 

with the well-known fact that |x|β ∈ A2 if and only if β ∈ (−1, 1).

Proof. Fix β ∈ (−1, 1). Let α = 1 − β ∈ (0, 2), and consider the conformal map Φ given 

in (4.1). We need to compute Re
(

1
Φ′

)

and Im
(

1
Φ′

)

on R. If x > 0, then Φ(x) = ie−i
α
2 πxα. 

Differentiating with respect to x, we get

Φ′(x) = α sin
(απ

2

)

xα−1 + iα cos
(απ

2

)

xα−1.

Similarly, if x < 0, then Φ(x) = iei
α
2 π(−x)α, and thus,

Φ′(x) = α sin
(απ

2

)

(−x)α−1 − iα cos
(απ

2

)

(−x)α−1.

Note that |Φ′(x)|2 = α2|x|2(α−1). Therefore,

Re

(

1

Φ′

)

= α−1 sin
(απ

2

)

|x|1−α and Im

(

1

Φ′

)

= −α−1 cos
(απ

2

)

sgn(x)|x|1−α.

Substituting these expressions into (1.5), and using that β = 1 − α, we obtain the 

result. �

Corollary 4.3. If β ∈ (−1, 1), it holds that

‖H‖2
L2(|x|β)→L2(|x|β) ≥ 1 − 2(1 + β)

π
cot

(

(1 − β)π

2

)

∞
∫

1

|x|−2−β log |1 − x| dx.
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Proof. By Theorem 4.1, with fr = χ(0,r) and H(fr) = 1
π

log |x|
|x−r| , we get that

∫

R

(H(fr))2|x|β dx =
r1+β

1 + β
+

2

π
cot

(

(1 − β)π

2

)

r
∫

0

|x|β log
|x|

|x − r| dx

=
r1+β

1 + β
− 2

π
cot

(

(1 − β)π

2

)

r1+β

∞
∫

1

|y|−2−β log |1 − y| dy

= ‖fr‖2
L2(|x|β)

⎛

⎝1 − 2(1+β)

π
cot

(

(1−β)π

2

)

∞
∫

1

|y|−2−β log |1 − y| dy

⎞

⎠ .

Therefore,

‖H‖2
L2(|x|β)→L2(|x|β) ≥

‖H(fr)‖2
L2(|x|β)

‖fr‖2
L2(|x|β)

= 1 − 2(1 + β)

π
cot

(

(1 − β)π

2

)

∞
∫

1

|x|−2−β log |1 − x| dx. �

Remark 4.4. We observe that the right-hand side behaves as (1 + β)−2 when β → −1+. 

Furthermore, |x|β = eβ log |x| = eβ
π
2 K(sgn x) = ef1+Kf2 , with f1 ≡ 0 and f2 = βπ

2 sgn x. 

Hence,

[|x|β ]2A2(HS) ≤ sec2(βπ
2 ) ∼ (1 + β)−2 as β → −1+.

Therefore, the dependence of [w]A2(HS) in Theorem 1.1 is sharp.

4.2. Monotone cones

Let Ω be a monotone cone of aperture απ (see Fig. 2); then we must have α ∈
(1/2, 3/2). Here the definition of Φ changes according to α ∈ (1/2, 1) or α ∈ [1, 3/2). 

We will only study the first case, since results from the second case can be deduced 

analogously.

Let α ∈ (1/2, 1); for each θ ∈ [1 − α, 1/2], we define Φ : R
2
+ → Ω such that

Φ(z) = eiθπzα = eiθπeα(log |z|+i Arg(z)), (4.2)

where we chose the branch cut {iy : y ≤ 0}.

We next present several identities that follow from (1.5) and (1.6). Although it is 

possible that some of these identities may be known, we were unable to find them in the 

literature.
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π

zα

απ

eiθπ

απ θπ

Ω

Fig. 2. Monotone cone with aperture απ.

Theorem 4.5. Fix β ∈ (0, 1/2) and θ ∈ [β, 1/2]. For any f ∈ L2(|x|β) real-valued, it holds 

that
∫

R

(Hf)2 a1(sgn x)|x|β dx =

∫

R

f2 a1(sgn x)|x|β dx + 2

∫

R

fHf a2(sgn x)|x|β dx,

∫

R

(Hf)2 a2(sgn x)|x|β dx =

∫

R

f2 a2(sgn x)|x|β dx − 2

∫

R

fHf a1(sgn x)|x|β dx,

where a1 and a2 are the functions given by

a1(s) = cos(θπ)
1 + s

2
+ cos((θ − β)π)

1 − s

2
,

a2(s) = sin(θπ)
1 + s

2
+ sin((θ − β)π)

1 − s

2
,

for any s in R.

Remark 4.6. Note that if β ∈ (0, 1/2) and θ ∈ [β, 1/2], then 0 ≤ θ − β < 1/2, and

min
{

cos(θπ), sin(θπ), cos((θ − β)π), sin((θ − β)π)
}

≥ 0.

Therefore, a1(sgn x) ≥ 0 and a2(sgn x) ≥ 0 for all x ∈ R.

Proof. Fix β ∈ (0, 1/2) and θ ∈ [β, 1/2]. Let α = 1 − β ∈ (1/2, 1), and consider the 

conformal map given in (4.2). We proceed as in the previous proof. If x > 0, then 

Φ(x) = eiθπxα. Differentiating with respect to x, we get

Φ′(x) = α cos(θπ)xα−1 + iα sin(θπ)xα−1.

Similarly, if x < 0, then Φ(x) = ei(α+θ)π(−x)α. Therefore,

Φ′(x) = −α cos((α + θ)π)(−x)α−1 − iα sin((α + θ)π)(−x)α−1.

Since |Φ′(x)|2 = α2|x|2(α−1), and β = 1 − α, it follows that

Re

(

1

Φ′

)

= α−1
(

cos(θπ)1+sgn x
2 − cos((α + θ)π)1−sgn x

2

)

|x|1−α

= (1 − β)−1a1(sgn x)|x|β
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and

Im

(

1

Φ′

)

= −α−1
(

sin(θπ) 1+sgn x
2 − sin((α + θ)π)1−sgn x

2

)

|x|1−α

= −(1 − β)−1a2(sgn x)|x|β ,

where a1 and a2 are defined as in the statement. Substituting in (1.5) and (1.6) we 

conclude the desired results. �

When β = θ, Theorem 4.5 gives the following result:

Corollary 4.7. If β ∈ (0, 1/2) and f ∈ L2(|x|β) is real-valued, it holds that

cos(βπ)

∞
∫

0

(Hf)2 |x|β dx +

0
∫

−∞

(Hf)2|x|β dx

= cos(βπ)

∞
∫

0

f2 |x|β dx +

0
∫

−∞

f2 |x|β dx + 2 sin(βπ)

∞
∫

0

fHf |x|β dx, (4.3)

sin(βπ)

∞
∫

0

(Hf)2 |x|β dx = sin(βπ)

∞
∫

0

f2 |x|β dx

− 2 cos(βπ)

∞
∫

0

fHf |x|β dx − 2

0
∫

−∞

fHf |x|β dx. (4.4)

Several interesting identities follow as particular cases of Corollary 4.7:

Identity (4.3) and supp(f) ⊂ (0, ∞): If β ∈ (0, 1/2) and f ∈ L2(|x|β) is real-valued, 

then

cos(βπ)

∞
∫

0

(Hf)2 |x|β dx +

0
∫

−∞

(Hf)2|x|β dx

= cos(βπ)

∞
∫

0

f2 |x|β dx + 2 sin(βπ)

∞
∫

0

fHf |x|β dx.

As β → 1/2 we obtain

0
∫

−∞

(Hf)2|x| 1
2 dx = 2

∞
∫

0

fHf |x| 1
2 dx.
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Identity (4.3) and supp(f) ⊂ (−∞, 0): If β ∈ (0, 1/2) and f ∈ L2(|x|β) is real-valued, 

then

cos(βπ)

∞
∫

0

(Hf)2 |x|β dx +

0
∫

−∞

(Hf)2|x|β dx =

0
∫

−∞

f2 |x|β dx.

As β → 1/2, we have

0
∫

−∞

(Hf)2|x| 1
2 dx =

0
∫

−∞

f2 |x| 1
2 dx.

Identity (4.4) and supp(f) ⊂ (0, ∞): If β ∈ (0, 1/2) and f ∈ L2(|x|β) is real-valued, 

then

sin(βπ)

∞
∫

0

(Hf)2 |x|β dx = sin(βπ)

∞
∫

0

f2 |x|β dx − 2 cos(βπ)

∞
∫

0

fHf |x|β dx.

As β → 1/2, we get

∞
∫

0

(Hf)2 |x| 1
2 dx =

∞
∫

0

f2 |x| 1
2 dx.

Identity (4.4) and supp(f) ⊂ (−∞, 0): If β ∈ (0, 1/2) and f ∈ L2(|x|β) is real-valued, 

then

sin(βπ)

∞
∫

0

(Hf)2 |x|β dx = −2

0
∫

−∞

fHf |x|β dx.

As β → 1/2, it follows that

∞
∫

0

(Hf)2 |x| 1
2 dx = −2

0
∫

−∞

fHf |x| 1
2 dx.

5. Rellich identities for the Hilbert transform in Lp

Theorem 1.2 states Rellich’s identities for the Hilbert transform for functions in 

weighted L2-spaces. In this section we present versions of such identities for pairs of 

functions on weighted Lebesgue spaces. Our main result is the following theorem.
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Theorem 5.1. Let Φ be a conformal map as described in Section 2.2 such that |Φ′| ∈
Ap ∩ Ap′ for some 1 < p < ∞. If f ∈ Lp(|Φ′|1−p) and g ∈ Lp′

(|Φ′|1−p′

) are real-valued, 

then

∫

R

(

HfHg − fg
)

Re

(

1

Φ′

)

dx = −
∫

R

(

fHg + gHf
)

Im

(

1

Φ′

)

dx, (5.1)

∫

R

(

HfHg − fg
)

Im

(

1

Φ′

)

dx =

∫

R

(

fHg + gHf
)

Re

(

1

Φ′

)

dx. (5.2)

Proof. We first prove (5.1) for f and g continuous with compact support. Using (1.5)

and the identity (see [7, (5.1.23), p. 320])

(Hf)2 − f2 = 2H(fHf), (5.3)

we have that

∫

R

H(fHf) Re

(

1

Φ′

)

dx = −
∫

R

fHf Im

(

1

Φ′

)

dx.

Applying this equality to the functions f + g, f and g, it follows that

∫

R

H
(

fHg + gHf
)

Re

(

1

Φ′

)

dx = −
∫

R

(

fHg + gHf
)

Im

(

1

Φ′

)

dx.

Using (5.3) for the function f + g, f and g, we obtain

HfHg − fg = H
(

fHg + gHf
)

.

These last two equalities give (5.1).

The identity (5.2) for f and g continuous with compact support is proved similarly 

using (1.6).

The general case can be obtained by density once it is shown that the integrals in 

(5.1) and (5.2) are absolutely convergent for f ∈ Lp(|Φ′|1−p) and g ∈ Lp′

(|Φ′|1−p′

). For 

such functions, using Hölder’s inequality, we obtain

∫

R

|f g| Re

(

1

Φ′

)

dx ≤

⎛

⎝

∫

R

|f |p|Φ′|1−pdx

⎞

⎠

1
p

⎛

⎝

∫

R

|g|p′ |Φ′|1−p′

dx

⎞

⎠

1
p′

< ∞.

We also have
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∫

R

|Hf Hg| Re

(

1

Φ′

)

dx ≤

⎛

⎝

∫

R

|Hf |p|Φ′|1−pdx

⎞

⎠

1
p

⎛

⎝

∫

R

|Hg|p′ |Φ′|1−p′

dx

⎞

⎠

1
p′

�

⎛

⎝

∫

R

|f |p|Φ′|1−pdx

⎞

⎠

1
p

⎛

⎝

∫

R

|g|p′ |Φ′|1−p′

dx

⎞

⎠

1
p′

< ∞,

where in the last inequality we have used the boundedness of the Hilbert transform 

noting that |Φ′|1−p ∈ Ap since |Φ′| ∈ Ap′ and |Φ′|1−p′ ∈ Ap′ since |Φ′| ∈ Ap. A similar 

reasoning is applied for the integrals on the right hand side of (5.1) and (5.2). �

As an application, we next present examples of the identities of Theorem 5.1 associated 

to power weights. The next corollary follows by considering the conformal map Φ given 

in (4.1) and the corresponding computations done in Section 4.1.

Corollary 5.2. Let 1 < p < ∞ and β ∈ (−1, 1). If f ∈ Lp(|x|β(p−1)) and g ∈
Lp′

(|x|β(p′−1)) are real-valued then

∫

R

(

HfHg − fg
)

|x|βdx = cot

(

(1 − β)π

2

) ∫

R

(

fHg + gHf
)

sgn(x)|x|βdx,

(5.4)
∫

R

(

HfHg − fg
)

sgn(x)|x|βdx = − tan

(

(1 − β)π

2

) ∫

R

(

fHg + gHf
)

|x|βdx.

(5.5)
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