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HERMITE BESOV AND TRIEBEL-LIZORKIN SPACES
AND APPLICATIONS

FU KEN LY AND VIRGINIA NAIBO

In memory of Eleonor Harboure

ABSTRACT. We present an overview of Besov and Triebel-Lizorkin spaces in
the Hermite setting and applications on boundedness properties of Hermite
pseudo-multipliers and fractional Leibniz rules in such spaces. We also give a
new weighted estimate for Hermite multipliers for weights related to Hermite
operators.

1. INTRODUCTION

In this survey, we give an overview of some recent work on function spaces and
pseudo-differential type operators in the context of Hermite expansions. These
expansions belong to the family of classical orthogonal expansions that include
Laguerre, Jacobi and Chebyshev to name a few, and have been well studied as far
back as the 18th century.

In one dimension, the Hermite function of degree k € Ny = NU {0} is given by

he(t) = 2FkIVm) "V 2H (e /2 VEeR,

where Hy(t) = (—1)%¢!” 9% (e=*") is the kth Hermite polynomial. In higher dimen-
sions the Hermite functions he are defined over the multi-indices { = (&1,...,&,) €
Np as

he(x) =[] he,(z;) Vo eR™
j=1

These functions form an orthonormal basis for L?(R") and also arise naturally as
eigenfunctions of the harmonic oscillator £ = —A + |z|? in the sense that

L(he) = (2] + n)he,

where, for a multi-index £ = (&1,...,&,) € Nj, [§| = & + -+ + &,. As such
the Hermite functions have an important connection with mathematical physics.
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244 FU KEN LY AND VIRGINIA NAIBO

Partly for this reason, and partly due to their remarkable properties, they continue
to possess an enduring role in various fields of mathematics.

The interest in Hermite expansions from the harmonic analysis viewpoint may
perhaps be traced back to Stein and Muckenhoupt in the 1960s [34, 35, 36], who
began exploring analogues of Fourier analytic results for orthogonal expansions in-
cluding topics spanning conjugate functions, Hardy spaces, Littlewood—Paley the-
ory, and multiplier theory, amongst other things. In the ensuing decades, the de-
velopment of harmonic analysis for Hermite functions experienced several phases
of activity and innovation, and Thangavelu’s 1993 volume [43] marks a kind of
capstone and state of the art for that period.

Since then there has been further progress and we shall now mention two partic-
ular themes of development that underpin the work in this survey, both of which
have their roots in the work of Epperson from the mid 90s [17, 18, 19].

The first concerns the extension of the classical theory of function spaces in the
spirit of Frazier—Jawerth [20, 21] to the Hermite context. As is well known, the
p-transform of Frazier—Jawerth provides a powerful way to represent functions or
distributions (a so-called ‘frame decomposition’) via translates and dilations of a
fixed Schwartz function ¢, leading to a host of useful consequences and applica-
tions. In [17, 19] Epperson introduced the notion of a Triebel-Lizorkin space for
Hermite expansions in dimension one and provided a frame decomposition. This
was extended and generalised to higher dimensions and to the Besov scale a decade
later by Petrushev and Xu [37].

The second theme concerns mapping properties of spectrally defined operators
in the Hermite setting. For a bounded and measurable function o : N — C one
can define the Hermite multiplier on L?(R") by

Taf: Z U(§)<f7h§>hf

£eNg

These operators have been well studied (see [43]) and, in honor of Eleonor Harboure,
we wish to especially highlight her work [22, 25] on the weighted LP boundedness
of T,. In [18], Epperson extended multiplier results from L? to the Hermite—
Triebel-Lizorkin spaces, and in the same work, introduced the notion of a new
Hermite ‘pseudo-multiplier’, which is defined like a multiplier, but whose ‘symbol’
o is allowed to also depend on the spatial variable. In this way these operators can
be considered Hermite analogues of the classical pseudodifferential operators. Two
decades later these objects were reinvestigated in [2], and has since sparked several
new results, some of which will be described below.

These twin themes provide fertile ground for further exploration and, in the
remainder of this survey, we describe some results and contributions to this growing
area of investigation. We shall give a tour of some of the main features and results,
omitting the proofs but providing references where appropriate. We will also, in
the final section, give a new result that draws together several lines of research that
Harboure was engaged with.
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This article is organized as follows. In Section 2, we define Hermite Besov
and Hermite Triebel-Lizorkin spaces and outline some respective decompositions
including frame and new molecular decompositions. In Section 3, we describe some
applications, including mapping properties of operators such as the multipliers,
pseudo-multipliers and their bilinear counterparts, and other related consequences.
Finally, in Section 4, we conclude our survey by giving a new result on Hermite
multipliers and weights.

2. HERMITE FUNCTION SPACES AND THEIR DECOMPOSITIONS

In this section, we define Hermite Besov and Hermite Triebel-Lizorkin spaces
and describe two decompositions, one through frames and one through smooth
molecules. The full details and background can be found in [14, 30, 37] (see also
[9, 12, 13]).

The definition of the Hermite Besov and Hermite Triebel-Lizorkin spaces that
we employ utilises a Littlewood—Paley type construction. We say that ¢ is an
admissible function if o € C*°(R,) and

suppp C [5,1], [¢]>c>0 on [277/4 27 1/4) (2.1)

for some ¢ > 0. Given an admissible function ¢, we set ¢;(\) = ¢(277)) if j € Np
and call the resulting collection {¢;};en, an admissible system. Since the Hermite
functions he with £ € Nij are members of .#(R™), then given any admissible system
{¢;}ien, we may define the operators ¢;(vL) on .#/(R™) by

P (VL) f(x) = > @i(V2IE[+n) ([ he)he(w) V[ e S (R"),x € R"(2.2)
£ENT

where (f,¢) = f(¢) for f € S'(R") and ¢ € L (R").
Let « € R and 0 < g < oco. We say that a tempered distribution f belongs to
the Hermite Besov space B2? = BP(L) for 0 < p < oo if

, 1/a
1fllsze = (3 @°lles(VEIs)") < oo
Jj€No
and to the Hermite Triebel-Lizorkin space FP1 = FP4(L) for 0 < p < oo if

£z = [ (2 @ lesvDir)?) |

J€Ng

< 00,
Lp

with the appropriate sup-norm replacement when p or ¢ take the value of infinity.
It turns out that these spaces are independent of the choice of p; they are also in
general different from the classical Triebel-Lizorkin and Besov spaces associated
to the Laplacian operator in R™. For the details (as well as other related facts)
see [8, 14, 30, 37] and earlier works cited there.

Throughout the rest of this article we will adopt the following notational con-
ventions. We use AR9(L) (or AP7) to refer to BR4(L) or FP9(L), with the under-
standing that « e R, 0 < ¢ < 00,0 <p< 0 if A=Band0<p<xif A=F.
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We also denote

™ ifAPA(L) = P
iy AR = FLUD),
n =
M) i Ara(r) = Bra(r).
min{1, p}

It is perhaps interesting to note that there is no notion of ‘homogeneous’ space
AP:(L) in the Hermite context (through taking summation over j € Z in place of
j € Ny in the above definitions). This is due the fact that £ = —A + |z|? has a
spectral gap; that is, the eigenvalues of £, being 2|¢| + n, lie away from zero. This
implies that ¢;(v/£) = 0 for all j < 0 and thus it holds that

AR(L) = A (L).

It is well known that the classical Triebel-Lizorkin and Besov scales yield char-
acterizations of many standard function spaces from analysis, such as the Lebesgue,
Hardy, and Sobolev spaces. In an analogous way, we have the following identifica-
tions:

LP(R™) ~ FP2(L), 1<p<oo, (2.3)

WP(L) ~ FP2(L), 0<p<1, (2.4)

W*P(L) ~ FP2(L), l<p<oo, seR, (2.5)
RSP (L) ~ FP2(L), 0<p<l1, seR,

all with equivalent norms. The identification with LP(R™) was obtained in (8, 17,
37]. The spaces h?(L) are the atomic Hardy spaces associated to the Hermite oper-
ator introduced in [16] (see also [13]); the identification with the Triebel scale can
be seen in [13, 24]. The spaces W*P (L) and h®P(L) are the Hermite Sobolev and
Hermite Hardy—Sobolev spaces respectively; they are defined, for s € R, through

[fllweriey = IDz(Aer and [ fllnorey = IPZ(Hllne ey,
for f € #'(R™), where D% is the Hermite fractional differential operator

Dz(f) = D (gl +n)**(f, hedhe,
£eNn
(see [6, 26, 42]). Note that D} is well defined on .’/ (R™) since it preserves .7’ (R").
The Hermite Sobolev spaces are strictly contained in the classical Sobolev spaces
for s > 0 and, when s is a positive integer, W*P(L£) turns out to be the space
of functions with ‘Hermite derivatives up to order s’ in LP(R™) (see [6, 42]). The
identification above can be seen via the ‘lifting property’ (see [31, Proposition 2.1])

£

2.1. Hermite sequence spaces and a frame decomposition. In this section
we describe how the frame decomposition of Frazier—Jawerth [20, 21] for classical
function spaces has been adapted to the Hermite setting. The Frazier-Jawerth’s
setup utilises several key ingredients and we outline their analogues in the Hermite

rra ~ [ DE(f)llpra 0<p,qg<oo,aseR
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setting before providing the main result of this section (Theorem 2.1), a frame
characterisation for Hermite Besov and Hermite Triebel-Lizorkin spaces.

2.1.1. Hermite tiles. A crucial ingredient in the classical setup is the family of
dyadic cubes Q of R™. In the Hermite context the standard dyadic cubes are
replaced by a notion of ‘tiles’ or ‘rectangles’. They are constructed from the zeros
of Hermite polynomials and we provide a brief description of their geometry here.
Further details can be found in [14, 30, 37].

For each ‘level’ j € Ny there exists a number N; ~ 47 and a collection X; of
nodes, defined as the set of n-tuples of zeros of the Hermite polynomial Hay,. To
each node in X;, we associate a tile R with sides parallel to the axes, so that each
such tile contains precisely one node and any two different tiles with nodes in &
have disjoint interiors. We set &£; to be the collection of all jth level tiles and
define & := (J;5 &; to be the collection of all tiles. It turns out that through this
construction, &; contains a finite number of tiles (approximately 4/™), although
every point in R™ is eventually contained in some tile in £.

These tiles obey important properties, some of which we describe here. Roughly
speaking the tiles are approximately cubes along the diagonals of R™, and are
rectangular boxes off the diagonal. In fact there exists 2 < ¢, < 4 such that

|R| ~ 279" if |xg| <27,
and
279" <R[ <2793 i |xg| > ¢,20.
Here z i denotes the ‘node’ of R. The diagrams below give a visual depiction of
our tile construction.

Nodes from X; Tiles from &;
#Xj ~ 4j" #53 ~ 4jn

2.1.2. Needlets. Another key ingredient of Frazier—Jawerth’s theory is the system
of ‘canonical’ frames {¢ g }geg, which are translates and dilates of a fixed Schwartz
function ¢. Frames in the Hermite context are formed using the admissible function
from (2.1), and in the literature they have been coined ‘needlets’ (see [37]).
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If {¢;}jen, is an admissible system, then one can see from (2.2) that the kernels
of the operators ij(\/Z) are

;i (VL =Y 0 (V20 +n) he(x)he(y)  w,y €R™
EeNy

Then for each tile R € £; we define the needlet pr by
er(r) = 7 ;(VE) (@, 2r).

Here zp is the node of R and 7g = 7., is a structural constant that satisfies
TR ~ |R|. For more details concerning the numbers {75} ree see [30, 37].

Crucial for the development of the subsequent theory outlined in this exposition
are the following estimates on the needlets:

2jn|R|71/2
14 27|z — xg|)"

‘@R(x)‘ S ( Ceqi (93)664]' (IR)7 (26)
where ey (z) := e=°*° for some ¢ > 0 if |z|2 < N, and ex(x) := 1 otherwise. For
further details and related estimates see [30, Lemma A.1] and [14, Propostion 2.2].

2.1.3. Hermite sequence spaces. The final key ingredient in Frazier—Jawerth theory
is the notion of ‘sequence spaces’ a??, which are sequences defined over the set of
all dyadic cubes. The Hermite analogues are as follows. Let « € R and 0 < g < oo.
For 0 < p < oo, the Hermite Besov sequence space b2:? = bP:9(L) is defined as the
set of all complex sequences s = {sg}res such that

1/
HSHbf;q = { Z 2jaq( Z (R|1/P1/2|8R|)p)q/p} q o

7€Np Reé'j

for 0 < p < oo, the Hermite Triebel-Lizorkin sequence space fP9 = fP9(L) is the
set of all complex sequences s = {sg}ree such that

. 1/q
sl = | (30 2% X (iR~ 2lsal))

j€Ng ReE;

< 0.
Lr

Analogously to the function spaces A29(L), we use a®?(L) (or just a®?) to refer
to b2:9(L) or b29(L), as appropriate to the context.

2.1.4. Frame decomposition for Hermite function paces. We are now ready to give
the frame decomposition of Hermite function spaces. This essentially says that
given a suitable pair of admissible functions ¢ and v, one can form maps S, and
Ty between functions and sequences such that the following diagram commutes:

ab

N

p,q p,q
Aa’ _— Aa7

Id
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In particular, the maps are continuous and one has that

flazaccy ~ 11Spfllazac)-
More precisely we have the following result.

Theorem 2.1 (Frame decomposition; [14, 37]). Let « € R, 0 < ¢ < oo, and
0<p<ooif ARI(L) = FPIL) or 0 < p < oo if ARY(L) = BP(L). Given
any two admissible systems {¢;}jen, and {¥;}jen, the ‘analysis’ operator S, :
[ {{f,¢r)} ree and ‘synthesis’ operator Ty : {sr}ree — > pece SRYR act as
bounded maps between
Ty : aB(L) — ARY(L) and Syt ARA(L) = aB(L).
Moreover, if
> iNei(A) =1 VYA>
j>0
then Ty 0 S, =1 on ARA(L) (with convergence in /' (R™)).

)

N

Theorem 2.1 was proved in [37] (see also [14, Theorem 3.1]). An essential ingre-
dient in the proof are the kernel and needlet estimates such as those in (2.6).

2.2. Smooth molecular characterization. Another cornerstone of the Frazier—
Jawerth theory is the notion of smooth molecules, which provides an important
tool in the study of operators between function spaces (see [21, 45]). In this section
we present smooth molecules for function spaces in the Hermite context; they are
used in obtaining some of our results in Section 3.

Molecules encode the intrinsic smoothness and cancellation properties of the
function space scales. One important difference between the Hermite context with
the classical situation relates to the required moment conditions on the molecules.
Recall that the standard requirement is of the form,

/ ¥m(z)dx =0, Vv € Nj such that |y| < M, (2.7)

where M is some positive number. This cancellation is satisfied, for example, by
the canonical functions g used in the frame decomposition (which are prototypical
examples of molecules), and follows from the fact that ¢ is supported away from
the origin.

Since [, he # 0 in general, one should not expect (2.7) to hold for our needlets,
pr. However the following property (see [40, Lemma 1.2])

| / x(@)he() da| = O(IE[™),  x € C(R™),

hints at some form of inherent cancellation for the Hermite functions; this translates
to a kind of ‘approximate cancellation’ for needlets, and forms the basis for the
moment conditions of our Hermite molecules below (see [30, Lemma 3.3 and Lemma
Ald]).

We now present the definition of smooth molecules for the Hermite setting, which
was introduced in [30, Section 3]. Let (M,0) € {No x (0,1)} U{(-1,1)}, N € Ny,
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0<d<1landp > 1. A function m € CV(R") is said to be a smooth Hermite
(M, 6, N,6, u)-molecule associated with a tile R € &; for some j € Ny if

(i) for each multi-index vy with 0 < |y| < N we have

. . —N-§
|07m(z)| < |R|7Y?2(1 + 27|z — xg|)™* (1 + |2i]|) Vo € R™,

(ii) for each multi-index v with |y] = N we have

e/l —y\® , _
om(z) - 7my)] < B2 (LY (1 e )
for every x,y € R™ with |z —y| <277,
(iii) for each multi-index v with 0 < |y| < M we have

120 jtntiyl) (Lt TR\ M=
’/,l(y—wR)”m(y)dy\ < |R|71/2274( +M>($) .

If (M,0) = (—1,1), part (iii) is taken to be void. Note also that property (i) for
any N, implies (ii) for N —1 (modulo a constant); see [30, Remark 3.2]. As already
mentioned above, needlets pgr are basic examples of smooth molecules (see [30,
Lemma 3.3]).

The important fact here is that the Hermite function spaces can be characterised
by smooth molecules. The following was obtained in [30] (see Theorems 3.5, 3.6
and Remark 3.7 (i) therein).

Theorem 2.2 (Molecular characterization; [30]). Let « € R, 0 < ¢ < oo, and
0<p<ooif ALYUL)=FPI(L) or0<p<oo if ALY(L) = BLI(L).

Ifu>1, (M0) e {Ngx(0,1)}U{(=1,1)}, N € Ng and 0 < § < 1 then there
exists a family of (M, 0, N, 8, u)-molecules {mpr} ree such that, for any f € ALI(L),
there is a sequence of scalars {Sr}ree satisfying f =3 psrmp in ' (R") and
Isllat < 1 lLager

Conversely if {mr}ree s a collection of (M,0, N, J, u)-molecules satisfying

N+do>a, n+M+0+a>n,, p>max{n,gn+M+0},

then for any compler sequence s = {sgp}rce € al¥(L), ’ZRGS SRmRHAQ‘? <

I8llaza-

It may be of interest to note that the proof requires an almost orthogonality
type estimate:

—-1/2
|¢j(ﬁ)mR(x)| < - +2j|-ka/ : Dn27(n+M+6)[(kfj)\/o]f(N+6)[(jfk)v0]
— 4R

for some n < p, and all x € R™, j,k € Ny and R € & ([30, Lemma 3.4]).

3. HERMITE MULTIPLIERS AND PSEUDO-MULTIPLIERS

In this section we consider operators related to the Hermite operator derived
through functions of its spectrum. These are analogues of the Fourier multipliers
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and pseudo-differential operators which, the reader may recall, can be defined for
suitable functions f as operators of the form

F e F (),

where F is the Fourier transform, and o is a function depending on frequency or
spatial variables.

In the Hermite context, one can study analogues using the Hermite-Fourier
transform Fz @ f = {(f,h¢)}eeny, and the inverse Hermite-Fourier transform
Fol {se}eeny = deN{; s¢h¢. When o : Ng — C is a bounded function we obtain
the Hermite multiplier

FHoF(H) =Y (21l +n)(f, he)he. (3.1)

£ENT

The L?(R"™) boundedness of such operators is immediate by invoking Parseval’s
identity. For the LP(R™) boundedness with p # 2 (and on other function spaces)
satisfying answers have been given by [18, 22, 25, 32, 41, 43] to name a few. In Sec-
tion 4 we will discuss an extension of one of Harboure et al’s multiplier results; for
now we turn to a new kind of operator that has recently been garnering increasing
interest.

Consider again operators of the form (3.1) but where the symbol o can also
depend on the spatial variable. In this sense these are analogues of the usual
pseudo-differential operators, and will be the main objects of study in the rest of
this section. More precisely we will be considering the following linear and bilinear
operators.

Pseudo-multipliers: Given o : R” x Ny — C, we define the Hermite pseudo-
multiplier by

T, f(x) = Y o(,2(¢] +n)(f, he)he(w). (3.2)

£eNy

Bilinear pseudo-multipliers: Given o : R" x Ny x Ng — C, we define the
bilinear Hermite pseudo-multiplier by

To(f.9)(@) = Y ol(w 20+ n, 20l + n){f, he)(g, hyhe(x)hy (). (3.3)
&neNg

The operators (3.2) were introduced and first studied by Epperson [18], and their
research has continued in [1, 2, 9, 15, 30, 29]; the operators (3.3) were introduced
and investigated in [31]. Questions that have been tackled in these works include
sufficient conditions for boundedness on LP(R™) and also for more general function
spaces (which are more delicate than for the multiplier scenario (3.1)), investigating
suitable analogues of the Hérmander symbols, and (in the bilinear case) establishing
algebra properties and fractional Leibniz rules in the setting of Hermite function
spaces.

In the remainder of this section we survey some of the results in this developing
area, drawing mostly from [30, 31]. We will first discuss results for linear pseudo-
multipliers (3.2) in Section 3.1, before presenting results for bilinear operators (3.3)
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in Section 3.2. Almost all proofs will be omitted but sketches are provided for the
main results in Section 3.3; for everything else, relevant references will be given.

3.1. Results for pseudo-multipliers. Here we consider operators of the form

(3.2). The main symbols we will consider are the following Hérmander-type sym-
bols.

Definition 3.1 (Smooth symbols). Let m € R, p,d > 0, and N',K € Ny U {cc}.
The symbol o : R™ xNo — C belongs to S, SN ifo(-,7) € CN(R™) for each j € Ny
and there exists C,, . > 0 such that for each (z,7) € R™ x Ny we have

|0 050 (, §)] < Cppe (14 ) FPIHEIY]
for v € N§ and k € Ny satisfying 0 < |v| <N and 0 < k < K.

When NV = K = oo we just write 7> = S7";. Note that here and in what
follows the symbol A denotes the forward dlfference operator, that is, for a function
[ defined over the integers, A; f(j) = f(j +1) — f(j) and A f(5) = AL f)(H)
for k > 2, k € N.

It is worth mentioning that many of the results below are also true when the
symbols are allowed to have additional growth conditions and we direct the inter-
ested reader to [30] for further details.

We have the following result for spaces with smoothness index a > 0.

Theorem 3.2 ([30]). Let me R, 0<§<1, N,KeNando € Sfé’c’N. Assume
aeR,0<g<o00,0<p< oo for Triebel-Lizorkin spaces or 0 < p < oo for Besov
spaces satisfy

Npg—n<a<N and  ny, . < K.

Then the operator T, extends to a bounded operator from AV (L) to AL4(L).

a+m

Theorem 3.2 furnishes an analogue of the classical results for pseudo-differential
operators on Lipschitz and Sobolev spaces (see for example [39, Chapter 7, Sections
1.3 and 5.6]) and more generally on classical Besov and Triebel-Lizorkin spaces
(see [38, 44]). For related results in the Hermite context see [9, 23].

Our next main result allows for function spaces with smoothness index a < 0.
It provides an avenue for considering questions of boundedness on, for instance,
the LP(R™) scale. Before stating the result, let us define a new class of symbols.

Definition 3.3 (Cancellation class). Let m € R, M € Ng U {oo} and o(z) =
(1+ |z))~t. The symbol o : R™ x Ny — C belongs to C™M if

N 1/2 N\ m — . n
(£ (ool ay) " s @+ Fel@) " Viog) € R x N
B(z,0())

for v € Ni satisfying 0 < |y| < 2[(n+ M)/2] + 2 and where the implicit constant
may depend on .
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As is well known, there exist pseudo-differential operators with symbols from
the corresponding Hormander class for S?; that are unbounded on L?(R™) (the
so-called ‘forbidden class’; see [39, Ch. 7, Proposition 2]). The class of symbols in
Definition 3.3 enable us to consider the endpoint (p,d) = (1,1).

We are now ready to state our second main result.

Theorem 3.4 ([30]). Let m € R, M € Ny and N,K € N. Assume that o :
R"™ x Ny — C satisfies one of the following conditions:

(a) o € ST nemM,

(b) o€ ST&K’N for some 0 <§ <1 and N > 2[’;"(’1]\{;')11.

Suppose a« € R, 0 < ¢ < 00, 0 < p < oo for Triebel-Lizorkin spaces or 0 < p < 0o
for Besov spaces satisfy

Npg—n—M—-1<a<N  and max{ng,q,n+ M} < K.
Then the operator T, extends to a bounded operator from AV (L) to AP1(L).

a+m
It is worth pointing out that the ‘approximate cancellation’ property of our
smooth molecules from Section 2.2 plays an important role in the proof of Theo-
rem 3.4.
When A = K = oo, one can summarise Theorems 3.2 and 3.4 more simply as
follows.

Corollary 3.5 ([30]). Let m e R, a € R, 0 < ¢ < 00, 0 < p < o0 for Triebel-
Lizorkin spaces or 0 < p < oo for Besov spaces. Assume that 0 : R™ x Ng — C
satisfies one of the following conditions:

(a) o€ SfyNCm™e,

(b) o € S for some 0 <6 <1,

(c) o €S for some 0 <0 <1 anda>n,,—n.

Then the operator T, extends to a bounded operator from AV (L) to AP1(L).

a+m

3.1.1. Applications to boundedness on LP and Sobolev scales. In this section we
give some applications of Theorems 3.2 and 3.4 to the boundedness of pseudo-
multipliers on particular function spaces. We only focus on certain cases, aiming
to be indicative rather than exhaustive.

We first discuss the question of LP boundedness. The earliest result in this
direction is due to Epperson [18], who studied the case p < 2 in dimension 1 under
the condition

”A;J(J)”L“’ 5(1+j)7na 0<kr<5,

and assuming a-priori boundedness in L?(R). Epperson showed that under these
conditions, T, is of weak type (1,1) and hence preserves LP(R) for all 1 < p < 2.
Bagchi-Thangavelu, [2], extended this to dimension n > 2 assuming || < n + 1.
The case p > 2 can be obtained by assuming additional regularity in the spatial
variable: it was shown in [2, Theorem 1.4]) that if 7, is bounded on L?(R") and
o€ S(l),’gﬂ’l then T, is bounded on LP(R™) for 1 < p < oc.
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The reader will observe that the a-priori L2(R™) boundedness was assumed in the
results above. While the L?(R") boundedness for multipliers (3.1) is immediate,
the situation is far from clear for pseudo-multipliers. The question of sufficient
conditions ensuring L?(R"™) boundedness of pseudo-multipliers was raised in [2]
along with the possibility of a Calderén—Vaillencourt type theorem for the Hermite
context. The result below, which is a consequence of Theorem 3.4 and (2.3),
provides one answer to this question.

Corollary 3.6 (LP boundedness; [30]). Assume that o : R™ x Ng — C satisfies one
of the following conditions:

(a) o€ ST NCO0,
(b) o S’?’;H-l/\f for some 0 < § < 1 and N > 2[5fEs .
Then T, extends to a bounded operator on LP(R™) for all 1 < p < oc.

Additional answers are given in [1, 15, 29] under various interesting conditions
on the symbols. We will not give an account here but refer the reader to the
relevant works for the details. It is however worth pointing out here that under
the hypotheses of Corollary 3.6, the operators T, are in fact Calderén—Zygmund
operators ([29, Theorem 1.5]). This parallels the situation for pseudo-differential
operators with the Hérmander class SR s (see [39, p. 322]), and as a by-product,
also extends the results for multipliers on weighted L? ([22, 43]) to the case of
pseudo-multipliers.

In passing, let us conclude this section with some additional consequences of
Theorems 3.2 and 3.4 for Hardy and Sobolev spaces. From Theorem 3.4 and (2.4)
we have the following result.

Corollary 3.7 (h? boundedness). Let 0 <p<1,0<6 <1 and N > 2[L/2lH17

2(1-9)
If o : R" x Ny — C satisfies 0 € 51’5L A

on hP(L).

then T, extends to a bounded operator

From Theorem 3.2 and (2.5) we have the following result.

Corollary 3.8 (Boundedness on Sobolev spaces). Let s > 0 and 1 < p < oo. If
o0 :R™ x Ny — C satisfies o € S?:?+1’LSJ+1 then T, extends to a bounded operator
on W*P(L).

3.1.2. Applications to properties of function spaces. In this section we present some
properties of Hermite function spaces that follow as consequences of Theorems 3.2
and 3.4. The first fact is that Hermite Besov spaces and Hermite Triebel-Lizorkin
spaces are closed under non-linearities.

Theorem 3.9 (Closure under non-linearities; [30]). Assume 0 < p < 00, 0 < ¢ <
00, a>npq—n and H € C*(R) is such that H(0) = 0. If f € ADY(L) N L>(R")
is real-valued, then H(f) € AR9(L) N L>(R").

This result uses ideas from Bony [7] and Meyer [33], and can be obtained from
Theorem 3.2 together with the following linearization formula from [30]: Let H €
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C>(R) be such that H(0) = 0. If f € #(R"™) is real-valued, there exists o5 €
S?:i’o’oo such that H(f) = Ty, (f).

Note that Theorem 3.9 implies that Hermite spaces form an algebra under point-
wise products. More precisely, if 0 < p < 00, 0 < ¢ < 00, @« > n,, —n and
frg € ARA(L)YNL>®(R™), then fg € AR2(L)NL>(R™) (see [30, Remark 5.14]). For
a different approach to this fact that also yields ‘Leibniz rules’, see Corollary 3.13
below.

The final property we wish to highlight is that the Hermite spaces admit the
so-called ‘lifting property’; this follows from Corollary 3.5.

Theorem 3.10 (Lifting property for Hermite function spaces; [31]). Assume 0 <
p < oo for Triebel-Lizorkin spaces or 0 < p < oo for Besov spaces, 0 < g < oo and
a,s € R. Then the operator D maps AL:1(L) isomorphically onto ALY (L) and

[fllaza ~ [I1DZ ()l ara-
This result will be important in Section 3.2 below.

3.2. Results for bilinear pseudo-multipliers. In this section we consider op-
erators of the form (3.3) and the symbols we will consider are the following bilinear
Hoérmander-type symbols.

Definition 3.11 (Smooth bilinear symbols). Let m € R, p,d > 0, and N,K €
No U {oo}. The symbol o : R™ x Ny x Ng — C belongs to BSZT(;N’K if o(-,4,¢) €
CN(R”) for all j,¢ € No, and there exists Cy 9 > 0 such that for each (x,j,¢) €
R™ x Ng x Ny we have

102 AFAY 0 (1, §,0)] < Cupeg (14 + 0)F P+ +5 1
for v € NI and x,9 € Ny satisfying 0 < [v] <N and 0 < k,9 < K.

As before when N = K = 0o we just write BS)';™™ = BS}";.
The main result of this section is the following generalized Leibniz-type rules.

Theorem 3.12 (Fractional Leibniz-type rules for bilinear Hermite pseudo-mul-
tipliers; [31]). Let m € R, 0 < 0 < 1 and 0 € BS{. Assume 0 < p < oo
for Triebel-Lizorkin spaces or 0 < p < oo for Besov spaces, 0 < q¢ < oo and
o> npq—mn. Then it holds that

ITo(f, Dl azs S N fllarg, Nlgllze + 1 fllzee gl ars

a+m a+m
3.2.1. Applications to properties of function spaces. Let us highlight two main con-
sequences of Theorem 3.12. The first concerns pointwise products and algebra
properties of our function spaces. Taking ¢ = 1, Theorem 3.12 yields the follow-
ing.

Corollary 3.13 (Algebra property for AP:?; [31]). Assume 0 < p < oo for Triebel-
Lizorkin spaces or 0 < p < oo for Besov spaces, 0 < ¢ < 00 and a > np 4 — n.
Then AZ9(L) N L>*(R™) is a quasi-Banach algebra and

1fgllazs < W flagallglioe + 1 fllzeellgllazs- (34)

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



256 FU KEN LY AND VIRGINIA NAIBO

Note that as alluded earlier, closure under pointwise products can also be ob-
tained through Theorem 3.9. However that approach does not seem to yield (3.4).

The second consequence concerns extensions to the Hermite setting of the well
known fractional Leibniz rules on R™, namely,

(=2 (fDllr S N(=A)(Dllcellgllze + 1 f L= l(=2)* (@, (3.5)

for 1 < p < oo and s > 0. Here (—A)® is the homogeneous fractional differential

~

operator given by (—/A?f(f) = |£]°f(§). The ‘lifting property’ of Theorem 3.10
and the estimates in Corollary 3.13 along with (2.3) and (2.4) give the following
Hermite analogues of (3.5).

Corollary 3.14 (Hermite fractional Leibniz rules; [31]). Let 0 < p < 0o and s > 0.
(a) If1 <p<oo ands >0, it holds that

DD e S NPz(Hlleellgllze + 1 flle=DZ(g)l| -

(b) If0<p<1ands>n(l/p—1), it holds that

IDZU D e ey S NP2 neeylgllie + [1f Lo IPZ(9)re (c)-

3.3. Sketch of proofs of the results for pseudo-multipliers. In this section
we outline some of the main steps in the proofs of Theorems 3.2, 3.4 and 3.12.

3.3.1. Steps in the proofs of Theorems 3.2 and 3.4. Let {p;}jen, and {¢;};en, be
admissible systems satisfying Zj>0 Pi(A)@;(A) =1 for A > 0. Under the hypoth-
esis of Theorems 3.2 and 3.4 it follows that if R € &;, then 277 T, ¢ satisfies (i)
and (ii) in the definition of molecule (smoothness conditions), with appropriate pa-
rameters. This requires the following size, smoothness and cancellation estimates
on the action of T, on needlets: for |[y| <N, 1< N<Kand 8>0

00T or(x)| S

|R|~1/23(m+1v) 2\ 7
(1+ 2|2 —agp|)N ( 23) ’
and

Lt logly o

| [ 0= any Topntu) dy]  |RI2mn o (]

for j € No, R € &j,z € R™. Using the frame characterization (Theorem 2.1) we can
write

Tof =Y 2™ (f,0r)2 7" T, (¢R);

Re&

then use molecular and frame characterization again (Section 2) to obtain

||Tgf||A1;‘<1 5 H{2j7n<f7 (PR>}R€5Hag,q = ||{<f7 @R>}R€5Haiﬁm S ||f||Aqu

a+m
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3.3.2. Steps in the proof of Theorem 3.12. Besides the frame and molecular char-
acterizations from Section 2, the proof of Theorem 3.12 requires a certain decom-
position of the bilinear pseudo-multiplier T, = T,1 + T,2 (with o',02 € BS{%)
along with suitable molecular estimates of the following form: for any family of
needlets {¢r}r, 1, 8 > 0 and v € Nj,

102 o1 (YR, 9) ()] + 10; T2 (9, Yr) (2))]
_ |R|~1/294(m+Iv]) L Lt )\ ~” 1ol
~ (1+2J|SC*IL'R|)'U’ 2] gllLe=,

where the implicit constant is independent of x € R", j € Ng, R € £ and g €
S(R™). In particular this shows that the functions 27T, (vg, 9)/||gllz~ and
29T 2(g,%Rr)/|lgllL~ are multiples of smooth (—1,1, N, e, u)-molecules for any
N, e.

Then using linearity and the frame decomposition we may write

To(f7 g) =T5 (fa g) + T2 (fa g) = Z<fa ()OR>T01 (IZJR,Q) + Z<f7 SDR>TG’2 (971/’1%)

Re€& Re&

Finally, molecular characterization and frame decomposition give us

ITor (F, 9)llaza S IH27™(f, or) Hlamallglizoe ~ IH(f, 0 R) Hlazs

a+m
~ N fllarg, Ngllze=,

a+m

gllr=

with a similar calculation for T,z (f, g).

4. A NEW WEIGHTED ESTIMATE FOR HERMITE MULTIPLIERS

We conclude this exposition with a new result that brings together several lines
of inquiry that Harboure was involved with, namely her work on multipliers and
weighted estimates in [3, 4, 5, 22, 25].

Let o € £>°(N}) with

|A%a (&) S L+, |kl < K, (4.1)

where here kK = (K1,...,kn) € N and the symbol A" = AF*AZ2 ... Akin denotes
the multivariate forward difference operator of order x € Nf; that is, for a function
f defined over N, A, f(€) = f(€+e;) — f(€) and A f = Ny(AF T f) for wy > 2.

Consider the Hermite multiplier given by 7, = F,'(0F) from (3.1). The L?
boundedness was studied by various authors including Mauceri [32] and Thangavelu
[41, 43]; in particular, Thangavelu [41] showed that if = |[n/2| + 1 then T,
is bounded on LP(R™) for 1 < p < oo. Subsequently, weighted estimates were
considered by Thangavelu [43] and by Harboure and her collaborators [25, 22].
The latter showed that by increasing the number of derivatives from |[n/2] + 1 to
n+1, one can obtain weighted estimates. More precisely the following result holds.

Theorem 4.1 (Weighted estimates for Hermite multipliers; [22, Theorem 1.6]).
Let o € £>°(N}) satisfy (4.1) with K =n+1. If 1 < p < oo, the Hermite multiplier
T, extends to a bounded operator on LP(w) for each w € A,.
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Here A, is the standard class of Muckenhoupt weights. Note that this result
can be recovered from the theory of pseudo-multipliers in Section 3 since it can
be readily seen that o belongs to the counterpart of S(l):g +1:2° defined in terms
of the multivariate forward difference operator A, which turns out to generate
Calderén—Zygmund operators (see Corollary 3.6 and the comments following).

In another direction, Harboure and co-authors introduced, in the seminal work [5],
a new class of weights which has generated an extensive line of inquiry (see [3, 4,
11, 14, 28, 46] for a recent selection). These weights extend the Muckenhoupt
weights and their appeal appears to be their suitability in the study of certain
Schrodinger-type operators. They are defined via a so-called ‘critical radius’ func-
tion o : R® — R, that satisfies, at a minimum, the following growth property:
there exist constants C, kg > 0 such that for every z,y € R"

|z — yl\ =
oly) < Cota) (1+ 5, 37) ™ (4.2)

Such functions are built from and are typically used in the analysis of the Schrodinger
operators under consideration; for the Hermite operator £ = —A + |x|2, it is stan-
dard to take o(x) := (1 + |z|)~!

One can now define the class of weights Ag = Az(ﬁ) related to £ as follows. For
1<p<ooand920wesaythatwEAgif

g = g (f ) (f o) (0 i) e

where rp and zp are the radius and center of B, respectively. See [5] for further
details and properties of these weight classes.

The main aim of this section is to show that the weighted estimates of Theo-
rem 4.1 can be extended to the class of weights AZ’ in some sense unifying the
two lines of Harboure’s work described above. More precisely we shall prove the
following result.

Theorem 4.2 (Weighted estimates for Hermite multipliers for Ae) Let 1 < p < o0,

0 >0, and o : N} — C satisfy (4.1) for K =n+1+ |0,], where 0, = -~ max{1+
ko, ko —n/2} and ko is a positive constant from (4.2). Then the Hermzte multzplzer
T, extends to a bounded operator on LP(w) for every w € Ae with

max{ e 21
1T, flurir S oy T PR .

We will adopt the approach from [22, 43] which relies on Littlewood—Paley ‘g-
functions’. Let ¢ be an even function in .(R™) with ¢(0) = 0. Then consider the
following generalized g and g*-functions associated to the Hermite operator:

gz:,w(f)Z(/O | Tb‘\rf|2dt)

and

dydty =
920 () / / ‘) eevDSET) . Ao
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Observe that if we take ¥,(z) = 2= then, up to a harmless constant, g, ., and
97 .4, .2 coincide respectively with the g, and g3 functions in [22].

Let us now gather some of the necessary facts that will be needed in the proof
of Theorem 4.2.

Proposition 4.3 (Weighted estimates for g7, y; [11, Theorem 1.2]). Let 1 €
Z(R™) be an even function with (0) = 0. Let1 < p < oo, § > 0 and X > 2420, /n.
Then for any w € Ag we have

< max{%,ﬁ}

192 A (Do) S W] 11l e (w)-

Proposition 4.4 ([22, Proposition 2.4]). Let A > 1 and o : Nj — C satisfy (4.1)
with IK = |An/2] + 1. Then for any £ > An/2 + 1 we have

9L, (T, f) < gz,wl,A(f)(CC)a a.e. T € R™

Proposition 4.5 (Weighted estimates for gz ;). Let ¢ € (R™) be an even func-
tion with ¥(0) = 0. Then for any 1 < p < 00, 8 > 0 and w € Ag we have
920 ()l Lew) ~ I fllLew) - In particular it holds that

—max{ﬁ,l} max{%,ﬁ}

[w]Ag Il S 920 (e S [W]Az Il e w)- (4.3)

The right-hand side inequality in (4.3) was obtained in [11, Theorem 1.2]. We
shall provide a proof of the left-hand side inequality at the end of this section.
We will also need to use the following ‘duality’ fact concerning the Af; weights:

it holds that w € Az if and only if w'? e Az/(p/_l). Indeed, it can be checked
easily from the definition that

, 1
[w' ] jowr = [w]f" (4.4)
We are now ready to give the proof of Theorem 4.2.

Proof of Theorem 4.2. Let A = 2 + 26,/n + ¢ where ¢ is small enough such that

£ €(0,1) and [0, + ] = |6,]. Then we see that

K=n+1+[0,] =[n+0,+ 2] +1=[2"]+1,
which means that the conditions of Proposition 4.4 are satisfied.
Now let ¥(z) = 22" with 0 =n+2 + |0,]. Then by Propositions 4.5, 4.4
and 4.3 we have

max{ iy 1)

1To fllzo () S [wly, 1920 (To )l e (w)
max{p%,l} "
Sl N9z A (D lzr)

max{ 5ty 1} +max{ 3, 11}

S [w]Ag 11l 2 (w)-
By a simple calculation one finds that

maX{g(Tl,l)a 1} + max{z, 17} = max{ﬁa 5,51
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which completes our proof. O

Proof of Proposition 4.5. We note that the second inequality in (4.3) is directly
from equation (15) of [11, Theorem 1.2] and we only need to obtain the first in-
equality. That is, we will show

max{m
ol T g (o (@5

To prove (4.5) we will follow the approach from [43, Theorem 4.1.2].
Firstly we claim that

[(f1, f2)| < qul/R gew(f1) geu(fo)de,  fi € LP(R™), f2 € LP (R™), (4.6)

where ¢y = [ 1(s)?ds/s.
Assuming (4. 6) for the moment we proceed with the proof of (4.5). Let w € AJ.
Then by (4.6) and Holder’s inequality we obtain

(fw?, F)l S / 920 (F) 920w ) dw < |92 1o 92,6 (w3 P~ | 0

1l w) S

Now since w7 € AZ,(p -1 (see (4.4)) then we may apply the right hand inequality
of (4.3) on L¥ (w'~?") to see that

||9L,w(w%f)w7%||m' = ||9£,w w%f ||LT" 1-p")

max{2, ~
A@(p’—l) H
»’

S [w'7]

f||Lp

Inserting this calculation into the previous inequality, and then invoking (4.4) along
1~ =
with the fact that HwEfHLp, wi—p') = || fll .»r We arrive at

[(fw?, Y] < [w ]m“{m’ }||gc,w(f)|\m(w)llﬂlm/.

Taking supremum over all || f] o < 11in this latter expression we arrive at (4.5).
To complete the proof of Proposition 4.5 we need to show (4.6) which we now
proceed with. Firstly observe that g 4 is an ‘isometry’ on L?(R™). That is,

lgzw(Fllzz = cpll fll2,  Vf e L*(R™) (4.7)

Indeed, from the orthogonality of the Hermite functions we have

VL) FlIT2 = D wEV20E +n)*(f he)?.

£eNy

This fact along with a change of variable gives

dt ds
gz (F) 22 = / VD3 = 3 / V(22 (f.he)

£EN"

= cpl{{f, he) HIe-
Invoking Parseval’s identity then yields (4.7).
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Continuing, we apply (4.7) with the parallelogram law to obtain the following
‘polarization identity’:

) =i [ VDALY (148)

Finally (4.6) follows from applying the Cauchy—Schwarz inequality to (4.8). This
completes the proof of (4.6) and hence that of Proposition 4.5. (|

Remark 4.6. The weighted quantitative estimates for Hermite multipliers for
the classes Ag as given in Theorem 4.2 seem to be the first ones of their kind.
The works [11, 10, 28, 46] contain weighted quantitative estimates related to the
classes AZ for other operators that include maximal and square functions, Riesz
transforms, and spectral multipliers of Laplace transform type.

It is unclear whether the dependence of the [w] ag constant in Theorem 4.2 is
sharp. For a comparison with the classical setting, we refer the reader to [27,
Theorem 1.2], where weighted quantitative estimates are given for Marcinkiewicz
multiplier operators in the context of Muckenhoupt weights.
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