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HERMITE BESOV AND TRIEBEL–LIZORKIN SPACES

AND APPLICATIONS

FU KEN LY AND VIRGINIA NAIBO

In memory of Eleonor Harboure

Abstract. We present an overview of Besov and Triebel–Lizorkin spaces in
the Hermite setting and applications on boundedness properties of Hermite
pseudo-multipliers and fractional Leibniz rules in such spaces. We also give a
new weighted estimate for Hermite multipliers for weights related to Hermite
operators.

1. Introduction

In this survey, we give an overview of some recent work on function spaces and
pseudo-differential type operators in the context of Hermite expansions. These
expansions belong to the family of classical orthogonal expansions that include
Laguerre, Jacobi and Chebyshev to name a few, and have been well studied as far
back as the 18th century.

In one dimension, the Hermite function of degree k ∈ N0 = N ∪ {0} is given by

hk(t) = (2kk!
√
π)−1/2Hk(t)e−t2/2 ∀t ∈ R,

where Hk(t) = (−1)ket
2

∂kt (e−t2) is the kth Hermite polynomial. In higher dimen-
sions the Hermite functions hξ are defined over the multi-indices ξ = (ξ1, . . . , ξn) ∈
Nn0 as

hξ(x) =

n∏

j=1

hξj
(xj) ∀x ∈ R

n.

These functions form an orthonormal basis for L2(Rn) and also arise naturally as
eigenfunctions of the harmonic oscillator L = −∆ + |x|2 in the sense that

L(hξ) = (2|ξ| + n)hξ,

where, for a multi-index ξ = (ξ1, . . . , ξn) ∈ Nn0 , |ξ| = ξ1 + · · · + ξn. As such
the Hermite functions have an important connection with mathematical physics.
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244 FU KEN LY AND VIRGINIA NAIBO

Partly for this reason, and partly due to their remarkable properties, they continue
to possess an enduring role in various fields of mathematics.

The interest in Hermite expansions from the harmonic analysis viewpoint may
perhaps be traced back to Stein and Muckenhoupt in the 1960s [34, 35, 36], who
began exploring analogues of Fourier analytic results for orthogonal expansions in-
cluding topics spanning conjugate functions, Hardy spaces, Littlewood–Paley the-
ory, and multiplier theory, amongst other things. In the ensuing decades, the de-
velopment of harmonic analysis for Hermite functions experienced several phases
of activity and innovation, and Thangavelu’s 1993 volume [43] marks a kind of
capstone and state of the art for that period.

Since then there has been further progress and we shall now mention two partic-
ular themes of development that underpin the work in this survey, both of which
have their roots in the work of Epperson from the mid 90s [17, 18, 19].

The first concerns the extension of the classical theory of function spaces in the
spirit of Frazier–Jawerth [20, 21] to the Hermite context. As is well known, the
ϕ-transform of Frazier–Jawerth provides a powerful way to represent functions or
distributions (a so-called ‘frame decomposition’) via translates and dilations of a
fixed Schwartz function ϕ, leading to a host of useful consequences and applica-
tions. In [17, 19] Epperson introduced the notion of a Triebel–Lizorkin space for
Hermite expansions in dimension one and provided a frame decomposition. This
was extended and generalised to higher dimensions and to the Besov scale a decade
later by Petrushev and Xu [37].

The second theme concerns mapping properties of spectrally defined operators
in the Hermite setting. For a bounded and measurable function σ : Nn0 → C one
can define the Hermite multiplier on L2(Rn) by

Tσf =
∑

ξ∈Nn
0

σ(ξ)〈f, hξ〉hξ.

These operators have been well studied (see [43]) and, in honor of Eleonor Harboure,
we wish to especially highlight her work [22, 25] on the weighted Lp boundedness
of Tσ. In [18], Epperson extended multiplier results from Lp to the Hermite–
Triebel–Lizorkin spaces, and in the same work, introduced the notion of a new
Hermite ‘pseudo-multiplier’, which is defined like a multiplier, but whose ‘symbol’
σ is allowed to also depend on the spatial variable. In this way these operators can
be considered Hermite analogues of the classical pseudodifferential operators. Two
decades later these objects were reinvestigated in [2], and has since sparked several
new results, some of which will be described below.

These twin themes provide fertile ground for further exploration and, in the
remainder of this survey, we describe some results and contributions to this growing
area of investigation. We shall give a tour of some of the main features and results,
omitting the proofs but providing references where appropriate. We will also, in
the final section, give a new result that draws together several lines of research that
Harboure was engaged with.
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HERMITE BESOV AND TRIEBEL–LIZORKIN SPACES 245

This article is organized as follows. In Section 2, we define Hermite Besov
and Hermite Triebel–Lizorkin spaces and outline some respective decompositions
including frame and new molecular decompositions. In Section 3, we describe some
applications, including mapping properties of operators such as the multipliers,
pseudo-multipliers and their bilinear counterparts, and other related consequences.
Finally, in Section 4, we conclude our survey by giving a new result on Hermite
multipliers and weights.

2. Hermite function spaces and their decompositions

In this section, we define Hermite Besov and Hermite Triebel–Lizorkin spaces
and describe two decompositions, one through frames and one through smooth
molecules. The full details and background can be found in [14, 30, 37] (see also
[9, 12, 13]).

The definition of the Hermite Besov and Hermite Triebel–Lizorkin spaces that
we employ utilises a Littlewood–Paley type construction. We say that ϕ is an
admissible function if ϕ ∈ C∞(R+) and

suppϕ ⊂ [ 1
4 , 1], |ϕ| > c > 0 on [2−7/4, 2−1/4] (2.1)

for some c > 0. Given an admissible function ϕ, we set ϕj(λ) = ϕ(2−jλ) if j ∈ N0

and call the resulting collection {ϕj}j∈N0
an admissible system. Since the Hermite

functions hξ with ξ ∈ Nn0 are members of S (Rn), then given any admissible system

{ϕj}j∈N0
we may define the operators ϕj(

√
L) on S ′(Rn) by

ϕj(
√

L)f(x) =
∑

ξ∈Nn
0

ϕj(
√

2|ξ| + n) 〈f, hξ〉hξ(x) ∀f ∈ S
′(Rn), x ∈ R

n,(2.2)

where 〈f, φ〉 = f(φ) for f ∈ S ′(Rn) and φ ∈ S (Rn).
Let α ∈ R and 0 < q ≤ ∞. We say that a tempered distribution f belongs to

the Hermite Besov space Bp,qα = Bp,qα (L) for 0 < p ≤ ∞ if

‖f‖Bp,q
α

=
( ∑

j∈N0

(
2jα‖ϕj(

√
L)f‖Lp

)q)1/q

< ∞;

and to the Hermite Triebel–Lizorkin space F p,qα = F p,qα (L) for 0 < p < ∞ if

‖f‖Fp,q
α

=
∥∥∥
( ∑

j∈N0

(
2jα|ϕj(

√
L)f |

)q)1/q∥∥∥
Lp
< ∞,

with the appropriate sup-norm replacement when p or q take the value of infinity.
It turns out that these spaces are independent of the choice of ϕ; they are also in
general different from the classical Triebel–Lizorkin and Besov spaces associated
to the Laplacian operator in Rn. For the details (as well as other related facts)
see [8, 14, 30, 37] and earlier works cited there.

Throughout the rest of this article we will adopt the following notational con-
ventions. We use Ap,qα (L) (or Ap,qα ) to refer to Bp,qα (L) or F p,qα (L), with the under-
standing that α ∈ R, 0 < q ≤ ∞, 0 < p ≤ ∞ if A = B and 0 < p < ∞ if A = F .
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We also denote

np,q =





n

min{1, p, q} if Ap,qα (L) = F p,qα (L),

n

min{1, p} if Ap,qα (L) = Bp,qα (L).

It is perhaps interesting to note that there is no notion of ‘homogeneous’ space
Ȧp,qα (L) in the Hermite context (through taking summation over j ∈ Z in place of
j ∈ N0 in the above definitions). This is due the fact that L = −∆ + |x|2 has a
spectral gap; that is, the eigenvalues of L, being 2|ξ| + n, lie away from zero. This

implies that ϕj(
√

L) = 0 for all j < 0 and thus it holds that

Ȧp,qα (L) = Ap,qα (L).

It is well known that the classical Triebel–Lizorkin and Besov scales yield char-
acterizations of many standard function spaces from analysis, such as the Lebesgue,
Hardy, and Sobolev spaces. In an analogous way, we have the following identifica-
tions:

Lp(Rn) ∼ F p,20 (L), 1 < p < ∞, (2.3)

hp(L) ∼ F p,20 (L), 0 < p ≤ 1, (2.4)

W s,p(L) ∼ F p,2s (L), 1 < p < ∞, s ∈ R, (2.5)

hs,p(L) ∼ F p,2s (L), 0 < p ≤ 1, s ∈ R,

all with equivalent norms. The identification with Lp(Rn) was obtained in [8, 17,
37]. The spaces hp(L) are the atomic Hardy spaces associated to the Hermite oper-
ator introduced in [16] (see also [13]); the identification with the Triebel scale can
be seen in [13, 24]. The spaces W s,p(L) and hs,p(L) are the Hermite Sobolev and
Hermite Hardy–Sobolev spaces respectively; they are defined, for s ∈ R, through

‖f‖W s,p(L) := ‖Ds
L(f)‖Lp and ‖f‖hs,p(L) := ‖Ds

L(f)‖hp(L),

for f ∈ S ′(Rn), where Ds
L is the Hermite fractional differential operator

Ds
L(f) :=

∑

ξ∈Nn
0

(2|ξ| + n)s/2〈f, hξ〉hξ,

(see [6, 26, 42]). Note that Ds
L is well defined on S ′(Rn) since it preserves S (Rn).

The Hermite Sobolev spaces are strictly contained in the classical Sobolev spaces
for s > 0 and, when s is a positive integer, W s,p(L) turns out to be the space
of functions with ‘Hermite derivatives up to order s’ in Lp(Rn) (see [6, 42]). The
identification above can be seen via the ‘lifting property’ (see [31, Proposition 2.1])

‖f‖Fp,q
α

∼ ‖Ds
L(f)‖Fp,q

α−s
, 0 < p, q < ∞, α, s ∈ R.

2.1. Hermite sequence spaces and a frame decomposition. In this section
we describe how the frame decomposition of Frazier–Jawerth [20, 21] for classical
function spaces has been adapted to the Hermite setting. The Frazier–Jawerth’s
setup utilises several key ingredients and we outline their analogues in the Hermite
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setting before providing the main result of this section (Theorem 2.1), a frame
characterisation for Hermite Besov and Hermite Triebel–Lizorkin spaces.

2.1.1. Hermite tiles. A crucial ingredient in the classical setup is the family of
dyadic cubes Q of Rn. In the Hermite context the standard dyadic cubes are
replaced by a notion of ‘tiles’ or ‘rectangles’. They are constructed from the zeros
of Hermite polynomials and we provide a brief description of their geometry here.
Further details can be found in [14, 30, 37].

For each ‘level’ j ∈ N0 there exists a number Nj ∼ 4j and a collection Xj of
nodes, defined as the set of n-tuples of zeros of the Hermite polynomial H2Nj

. To
each node in Xj , we associate a tile R with sides parallel to the axes, so that each
such tile contains precisely one node and any two different tiles with nodes in Xj
have disjoint interiors. We set Ej to be the collection of all jth level tiles and
define E :=

⋃
j≥0 Ej to be the collection of all tiles. It turns out that through this

construction, Ej contains a finite number of tiles (approximately 4jn), although
every point in Rn is eventually contained in some tile in E .

These tiles obey important properties, some of which we describe here. Roughly
speaking the tiles are approximately cubes along the diagonals of Rn, and are
rectangular boxes off the diagonal. In fact there exists 2 < c? < 4 such that

|R| ∼ 2−jn if |xR| ≤ c?2
j ,

and

2−jn . |R| . 2−jn/3 if |xR| > c?2
j .

Here xR denotes the ‘node’ of R. The diagrams below give a visual depiction of
our tile construction.

#Xj ∼ 4jn

Nodes from Xj

#Ej ∼ 4jn

Tiles from Ej

2.1.2. Needlets. Another key ingredient of Frazier–Jawerth’s theory is the system
of ‘canonical’ frames {ϕQ}Q∈Q, which are translates and dilates of a fixed Schwartz
function ϕ. Frames in the Hermite context are formed using the admissible function
from (2.1), and in the literature they have been coined ‘needlets’ (see [37]).
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If {ϕj}j∈N0 is an admissible system, then one can see from (2.2) that the kernels

of the operators ϕj(
√

L) are

ϕj(
√

L)(x, y) =
∑

ξ∈Nn
0

ϕj(
√

2|ξ| + n)hξ(x)hξ(y) x, y ∈ R
n.

Then for each tile R ∈ Ej we define the needlet ϕR by

ϕR(x) = τ
1/2
R ϕj(

√
L)(x, xR).

Here xR is the node of R and τR = τxR
is a structural constant that satisfies

τR ∼ |R|. For more details concerning the numbers {τR}R∈E see [30, 37].
Crucial for the development of the subsequent theory outlined in this exposition

are the following estimates on the needlets:

|ϕR(x)| . 2jn|R|−1/2

(1 + 2j |x− xR|)η eε4j (x)eε4j (xR), (2.6)

where eN (x) := e−c|x|2

for some c > 0 if |x|2 ≤ N , and eN (x) := 1 otherwise. For
further details and related estimates see [30, Lemma A.1] and [14, Propostion 2.2].

2.1.3. Hermite sequence spaces. The final key ingredient in Frazier–Jawerth theory
is the notion of ‘sequence spaces’ ap,qα , which are sequences defined over the set of
all dyadic cubes. The Hermite analogues are as follows. Let α ∈ R and 0 < q ≤ ∞.
For 0 < p ≤ ∞, the Hermite Besov sequence space bp,qα = bp,qα (L) is defined as the
set of all complex sequences s = {sR}R∈E such that

‖s‖bp,q
α

=

{ ∑

j∈N0

2jαq
( ∑

R∈Ej

(
|R|1/p−1/2|sR|

)p)q/p
}1/q

< ∞;

for 0 < p < ∞, the Hermite Triebel–Lizorkin sequence space fp,qα = fp,qα (L) is the
set of all complex sequences s = {sR}R∈E such that

‖s‖fp,q
α

=

∥∥∥∥
( ∑

j∈N0

2jαq
∑

R∈Ej

(
1R(·)|R|−1/2|sR|

)q)1/q
∥∥∥∥
Lp

< ∞.

Analogously to the function spaces Ap,qα (L), we use ap,qα (L) (or just ap,qα ) to refer
to bp,qα (L) or bp,qα (L), as appropriate to the context.

2.1.4. Frame decomposition for Hermite function paces. We are now ready to give
the frame decomposition of Hermite function spaces. This essentially says that
given a suitable pair of admissible functions ϕ and ψ, one can form maps Sϕ and
Tψ between functions and sequences such that the following diagram commutes:

Ap,qα Ap,qα

ap,qα
Sϕ Tψ

Id
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In particular, the maps are continuous and one has that

‖f‖Ap,q
α (L) ∼ ‖Sϕf‖ap,q

α (L).

More precisely we have the following result.

Theorem 2.1 (Frame decomposition; [14, 37]). Let α ∈ R, 0 < q ≤ ∞, and
0 < p < ∞ if Ap,qα (L) = F p,qα (L) or 0 < p ≤ ∞ if Ap,qα (L) = Bp,qα (L). Given
any two admissible systems {ϕj}j∈N0

and {ψj}j∈N0
the ‘analysis’ operator Sϕ :

f 7−→ {〈f, ϕR〉}R∈E and ‘synthesis’ operator Tψ : {sR}R∈E 7−→ ∑
R∈E sRψR act as

bounded maps between

Tψ : ap,qα (L) → Ap,qα (L) and Sϕ : Ap,qα (L) → ap,qα (L).

Moreover, if
∑

j≥0

ψj(λ)ϕj(λ) = 1 ∀ λ ≥ 1
2 ,

then Tψ ◦ Sϕ = I on Ap,qα (L) (with convergence in S ′(Rn)).

Theorem 2.1 was proved in [37] (see also [14, Theorem 3.1]). An essential ingre-
dient in the proof are the kernel and needlet estimates such as those in (2.6).

2.2. Smooth molecular characterization. Another cornerstone of the Frazier–
Jawerth theory is the notion of smooth molecules, which provides an important
tool in the study of operators between function spaces (see [21, 45]). In this section
we present smooth molecules for function spaces in the Hermite context; they are
used in obtaining some of our results in Section 3.

Molecules encode the intrinsic smoothness and cancellation properties of the
function space scales. One important difference between the Hermite context with
the classical situation relates to the required moment conditions on the molecules.
Recall that the standard requirement is of the form,

ˆ

Rn

xγm(x) dx = 0, ∀γ ∈ N
n
0 such that |γ| ≤ M, (2.7)

where M is some positive number. This cancellation is satisfied, for example, by
the canonical functions ϕQ used in the frame decomposition (which are prototypical
examples of molecules), and follows from the fact that ϕ̂ is supported away from
the origin.

Since
´

Rn hξ 6= 0 in general, one should not expect (2.7) to hold for our needlets,
ϕR. However the following property (see [40, Lemma 1.2])

∣∣∣
ˆ

Rn

χ(x)hξ(x) dx
∣∣∣ = O

(
|ξ|−N

)
, χ ∈ C∞

0 (Rn),

hints at some form of inherent cancellation for the Hermite functions; this translates
to a kind of ‘approximate cancellation’ for needlets, and forms the basis for the
moment conditions of our Hermite molecules below (see [30, Lemma 3.3 and Lemma
A.1]) .

We now present the definition of smooth molecules for the Hermite setting, which
was introduced in [30, Section 3]. Let (M, θ) ∈ {N0 × (0, 1)} ∪ {(−1, 1)}, N ∈ N0,
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0 ≤ δ ≤ 1 and µ ≥ 1. A function m ∈ CN (Rn) is said to be a smooth Hermite
(M, θ,N, δ, µ)-molecule associated with a tile R ∈ Ej for some j ∈ N0 if

(i) for each multi-index γ with 0 ≤ |γ| ≤ N we have

|∂γm(x)| ≤ |R|−1/22j|γ|(1 + 2j |x− xR|)−µ
(

1 +
|x|
2j

)−N−δ
∀x ∈ R

n,

(ii) for each multi-index γ with |γ| = N we have

|∂γm(x) − ∂γm(y)| ≤ |R|−1/22j|γ|
( |x− y|

2−j

)δ(
1 + 2j |x− xR|

)−µ

for every x, y ∈ Rn with |x− y| ≤ 2−j .
(iii) for each multi-index γ with 0 ≤ |γ| ≤ M we have

∣∣∣
ˆ

Rn

(y − xR)γm(y) dy
∣∣∣ ≤ |R|−1/22−j(n+|γ|)

(1 + |xR|
2j

)M+θ−|γ|
.

If (M, θ) = (−1, 1), part (iii) is taken to be void. Note also that property (i) for
any N , implies (ii) for N−1 (modulo a constant); see [30, Remark 3.2]. As already
mentioned above, needlets ϕR are basic examples of smooth molecules (see [30,
Lemma 3.3]).

The important fact here is that the Hermite function spaces can be characterised
by smooth molecules. The following was obtained in [30] (see Theorems 3.5, 3.6
and Remark 3.7 (i) therein).

Theorem 2.2 (Molecular characterization; [30]). Let α ∈ R, 0 < q ≤ ∞, and
0 < p < ∞ if Ap,qα (L) = F p,qα (L) or 0 < p ≤ ∞ if Ap,qα (L) = Bp,qα (L).

If µ ≥ 1, (M, θ) ∈ {N0 × (0, 1)} ∪ {(−1, 1)}, N ∈ N0 and 0 ≤ δ ≤ 1 then there
exists a family of (M, θ,N, δ, µ)-molecules {mR}R∈E such that, for any f ∈ Ap,qα (L),
there is a sequence of scalars {sR}R∈E satisfying f =

∑
R sRmR in S ′(Rn) and

‖s‖ap,q
α

. ‖f‖Ap,q
α

.
Conversely if {mR}R∈E is a collection of (M, θ,N, δ, µ)-molecules satisfying

N + δ > α, n+M + θ + α > np,q, µ > max{np,q, n+M + θ},

then for any complex sequence s = {sR}R∈E ∈ ap,qα (L),
∥∥ ∑

R∈E sRmR

∥∥
Ap,q

α
.

‖s‖ap,q
α

.

It may be of interest to note that the proof requires an almost orthogonality
type estimate:

|ϕj(
√

L)mR(x)| . |R|−1/2

(1 + 2j∧k|x− xR|)η 2−(n+M+θ)[(k−j)∨0]−(N+δ)[(j−k)∨0]

for some η < µ, and all x ∈ Rn, j, k ∈ N0 and R ∈ Ek ([30, Lemma 3.4]).

3. Hermite multipliers and pseudo-multipliers

In this section we consider operators related to the Hermite operator derived
through functions of its spectrum. These are analogues of the Fourier multipliers
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and pseudo-differential operators which, the reader may recall, can be defined for
suitable functions f as operators of the form

F−1(σF(f)),

where F is the Fourier transform, and σ is a function depending on frequency or
spatial variables.

In the Hermite context, one can study analogues using the Hermite–Fourier
transform FL : f 7→ {〈f, hξ〉}ξ∈Nn

0
, and the inverse Hermite–Fourier transform

F−1
L : {sξ}ξ∈Nn

0
7→ ∑

ξ∈Nn
0
sξhξ. When σ : N0 → C is a bounded function we obtain

the Hermite multiplier

F−1
L (σFL(f)) =

∑

ξ∈Nn
0

σ(2|ξ| + n)〈f, hξ〉hξ. (3.1)

The L2(Rn) boundedness of such operators is immediate by invoking Parseval’s
identity. For the Lp(Rn) boundedness with p 6= 2 (and on other function spaces)
satisfying answers have been given by [18, 22, 25, 32, 41, 43] to name a few. In Sec-
tion 4 we will discuss an extension of one of Harboure et al.’s multiplier results; for
now we turn to a new kind of operator that has recently been garnering increasing
interest.

Consider again operators of the form (3.1) but where the symbol σ can also
depend on the spatial variable. In this sense these are analogues of the usual
pseudo-differential operators, and will be the main objects of study in the rest of
this section. More precisely we will be considering the following linear and bilinear
operators.

Pseudo-multipliers: Given σ : Rn×N0 → C, we define the Hermite pseudo-
multiplier by

Tσf(x) =
∑

ξ∈Nn
0

σ(x, 2|ξ| + n)〈f, hξ〉hξ(x). (3.2)

Bilinear pseudo-multipliers: Given σ : Rn × N0 × N0 → C, we define the
bilinear Hermite pseudo-multiplier by

Tσ(f, g)(x) =
∑

ξ,η∈Nn
0

σ(x, 2|ξ| + n, 2|η| + n)〈f, hξ〉〈g, hη〉hξ(x)hη(x). (3.3)

The operators (3.2) were introduced and first studied by Epperson [18], and their
research has continued in [1, 2, 9, 15, 30, 29]; the operators (3.3) were introduced
and investigated in [31]. Questions that have been tackled in these works include
sufficient conditions for boundedness on Lp(Rn) and also for more general function
spaces (which are more delicate than for the multiplier scenario (3.1)), investigating
suitable analogues of the Hörmander symbols, and (in the bilinear case) establishing
algebra properties and fractional Leibniz rules in the setting of Hermite function
spaces.

In the remainder of this section we survey some of the results in this developing
area, drawing mostly from [30, 31]. We will first discuss results for linear pseudo-
multipliers (3.2) in Section 3.1, before presenting results for bilinear operators (3.3)
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252 FU KEN LY AND VIRGINIA NAIBO

in Section 3.2. Almost all proofs will be omitted but sketches are provided for the
main results in Section 3.3; for everything else, relevant references will be given.

3.1. Results for pseudo-multipliers. Here we consider operators of the form
(3.2). The main symbols we will consider are the following Hörmander-type sym-
bols.

Definition 3.1 (Smooth symbols). Let m ∈ R, ρ, δ ≥ 0, and N ,K ∈ N0 ∪ {∞}.

The symbol σ : Rn×N0 → C belongs to Sm,K,Nρ,δ if σ(·, j) ∈ CN (Rn) for each j ∈ N0

and there exists Cν,κ > 0 such that for each (x, j) ∈ Rn × N0 we have

|∂νx4κ
j σ(x, j)| ≤ Cν,κ (1 + j)

m
2 −ρ|κ|+ δ

2 |ν|

for ν ∈ Nn0 and κ ∈ N0 satisfying 0 ≤ |ν| ≤ N and 0 ≤ κ ≤ K.

When N = K = ∞ we just write Sm,∞,∞
ρ,δ = Smρ,δ. Note that here and in what

follows the symbol 4 denotes the forward difference operator, that is, for a function
f defined over the integers, 4jf(j) = f(j + 1) − f(j) and 4κ

j f(j) = 4(4κ−1f)(j)
for κ ≥ 2, κ ∈ N.

It is worth mentioning that many of the results below are also true when the
symbols are allowed to have additional growth conditions and we direct the inter-
ested reader to [30] for further details.

We have the following result for spaces with smoothness index α > 0.

Theorem 3.2 ([30]). Let m ∈ R, 0 ≤ δ ≤ 1, N ,K ∈ N and σ ∈ Sm,K,N1,δ . Assume
α ∈ R, 0 < q ≤ ∞, 0 < p < ∞ for Triebel–Lizorkin spaces or 0 < p ≤ ∞ for Besov
spaces satisfy

np,q − n < α < N and np,q < K.

Then the operator Tσ extends to a bounded operator from Ap,qα+m(L) to Ap,qα (L).

Theorem 3.2 furnishes an analogue of the classical results for pseudo-differential
operators on Lipschitz and Sobolev spaces (see for example [39, Chapter 7, Sections
1.3 and 5.6]) and more generally on classical Besov and Triebel–Lizorkin spaces
(see [38, 44]). For related results in the Hermite context see [9, 23].

Our next main result allows for function spaces with smoothness index α ≤ 0.
It provides an avenue for considering questions of boundedness on, for instance,
the Lp(Rn) scale. Before stating the result, let us define a new class of symbols.

Definition 3.3 (Cancellation class). Let m ∈ R, M ∈ N0 ∪ {∞} and %(x) =
(1 + |x|)−1. The symbol σ : Rn × N0 → C belongs to Cm,M if

(
−
ˆ

B(x,%(x))

∣∣∂γyσ(y, j)
∣∣2
dy

)1/2

. (1 + j)
m
2 %(x)−|γ| ∀(x, j) ∈ R

n × N0

for γ ∈ Nn0 satisfying 0 ≤ |γ| ≤ 2b(n+M)/2c + 2 and where the implicit constant
may depend on γ.
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As is well known, there exist pseudo-differential operators with symbols from
the corresponding Hörmander class for S0

1,1 that are unbounded on L2(Rn) (the
so-called ‘forbidden class’; see [39, Ch. 7, Proposition 2]). The class of symbols in
Definition 3.3 enable us to consider the endpoint (ρ, δ) = (1, 1).

We are now ready to state our second main result.

Theorem 3.4 ([30]). Let m ∈ R, M ∈ N0 and N ,K ∈ N. Assume that σ :
Rn × N0 → C satisfies one of the following conditions:

(a) σ ∈ Sm,K,N1,1 ∩ Cm,M ,

(b) σ ∈ Sm,K,N1,δ for some 0 ≤ δ < 1 and N ≥ 2dn+M+1
2(1−δ) e.

Suppose α ∈ R, 0 < q ≤ ∞, 0 < p < ∞ for Triebel–Lizorkin spaces or 0 < p ≤ ∞
for Besov spaces satisfy

np,q − n−M − 1 < α < N and max{np,q, n+M} < K.
Then the operator Tσ extends to a bounded operator from Ap,qα+m(L) to Ap,qα (L).

It is worth pointing out that the ‘approximate cancellation’ property of our
smooth molecules from Section 2.2 plays an important role in the proof of Theo-
rem 3.4.

When N = K = ∞, one can summarise Theorems 3.2 and 3.4 more simply as
follows.

Corollary 3.5 ([30]). Let m ∈ R, α ∈ R, 0 < q ≤ ∞, 0 < p < ∞ for Triebel–
Lizorkin spaces or 0 < p ≤ ∞ for Besov spaces. Assume that σ : Rn × N0 → C

satisfies one of the following conditions:

(a) σ ∈ Sm1,1 ∩ Cm,∞,
(b) σ ∈ Sm1,δ for some 0 ≤ δ < 1,

(c) σ ∈ Sm1,δ for some 0 ≤ δ ≤ 1 and α > np,q − n.

Then the operator Tσ extends to a bounded operator from Ap,qα+m(L) to Ap,qα (L).

3.1.1. Applications to boundedness on Lp and Sobolev scales. In this section we
give some applications of Theorems 3.2 and 3.4 to the boundedness of pseudo-
multipliers on particular function spaces. We only focus on certain cases, aiming
to be indicative rather than exhaustive.

We first discuss the question of Lp boundedness. The earliest result in this
direction is due to Epperson [18], who studied the case p < 2 in dimension 1 under
the condition

‖∆κ
j σ(·, j)‖L∞ . (1 + j)−κ, 0 ≤ κ ≤ 5,

and assuming a-priori boundedness in L2(R). Epperson showed that under these
conditions, Tσ is of weak type (1, 1) and hence preserves Lp(R) for all 1 < p < 2.
Bagchi-Thangavelu, [2], extended this to dimension n ≥ 2 assuming |κ| ≤ n + 1.
The case p > 2 can be obtained by assuming additional regularity in the spatial
variable: it was shown in [2, Theorem 1.4]) that if Tσ is bounded on L2(Rn) and

σ ∈ S0,n+1,1
1,0 then Tσ is bounded on Lp(Rn) for 1 < p < ∞.
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The reader will observe that the a-priori L2(Rn) boundedness was assumed in the
results above. While the L2(Rn) boundedness for multipliers (3.1) is immediate,
the situation is far from clear for pseudo-multipliers. The question of sufficient
conditions ensuring L2(Rn) boundedness of pseudo-multipliers was raised in [2]
along with the possibility of a Calderón–Vaillencourt type theorem for the Hermite
context. The result below, which is a consequence of Theorem 3.4 and (2.3),
provides one answer to this question.

Corollary 3.6 (Lp boundedness; [30]). Assume that σ : Rn×N0 → C satisfies one
of the following conditions:

(a) σ ∈ S0,n+1,1
1,1 ∩ C0,0,

(b) σ ∈ S0,n+1,N
1,δ for some 0 ≤ δ < 1 and N ≥ 2d n+1

2(1−δ) e.

Then Tσ extends to a bounded operator on Lp(Rn) for all 1 < p < ∞.

Additional answers are given in [1, 15, 29] under various interesting conditions
on the symbols. We will not give an account here but refer the reader to the
relevant works for the details. It is however worth pointing out here that under
the hypotheses of Corollary 3.6, the operators Tσ are in fact Calderón–Zygmund
operators ([29, Theorem 1.5]). This parallels the situation for pseudo-differential
operators with the Hörmander class S0

1,δ (see [39, p. 322]), and as a by-product,

also extends the results for multipliers on weighted Lp ([22, 43]) to the case of
pseudo-multipliers.

In passing, let us conclude this section with some additional consequences of
Theorems 3.2 and 3.4 for Hardy and Sobolev spaces. From Theorem 3.4 and (2.4)
we have the following result.

Corollary 3.7 (hp boundedness). Let 0 < p ≤ 1, 0 ≤ δ < 1 and N ≥ 2d bn/pc+1
2(1−δ) e .

If σ : Rn ×N0 → C satisfies σ ∈ S
0,b n

p
c+1,N

1,δ then Tσ extends to a bounded operator

on hp(L).

From Theorem 3.2 and (2.5) we have the following result.

Corollary 3.8 (Boundedness on Sobolev spaces). Let s > 0 and 1 < p < ∞. If

σ : Rn × N0 → C satisfies σ ∈ S
0,n+1,bsc+1
1,1 then Tσ extends to a bounded operator

on W s,p(L).

3.1.2. Applications to properties of function spaces. In this section we present some
properties of Hermite function spaces that follow as consequences of Theorems 3.2
and 3.4. The first fact is that Hermite Besov spaces and Hermite Triebel–Lizorkin
spaces are closed under non-linearities.

Theorem 3.9 (Closure under non-linearities; [30]). Assume 0 < p < ∞, 0 < q <
∞, α > np,q − n and H ∈ C∞(R) is such that H(0) = 0. If f ∈ Ap,qα (L) ∩ L∞(Rn)
is real-valued, then H(f) ∈ Ap,qα (L) ∩ L∞(Rn).

This result uses ideas from Bony [7] and Meyer [33], and can be obtained from
Theorem 3.2 together with the following linearization formula from [30]: Let H ∈

Rev. Un. Mat. Argentina, Vol. 66, No. 1 (2023)



HERMITE BESOV AND TRIEBEL–LIZORKIN SPACES 255

C∞(R) be such that H(0) = 0. If f ∈ S (Rn) is real-valued, there exists σf ∈
S0,∞,∞

1,1 such that H(f) = Tσf
(f).

Note that Theorem 3.9 implies that Hermite spaces form an algebra under point-
wise products. More precisely, if 0 < p < ∞, 0 < q < ∞, α > np,q − n and
f, g ∈ Ap,qα (L)∩L∞(Rn), then fg ∈ Ap,qα (L)∩L∞(Rn) (see [30, Remark 5.14]). For
a different approach to this fact that also yields ‘Leibniz rules’, see Corollary 3.13
below.

The final property we wish to highlight is that the Hermite spaces admit the
so-called ‘lifting property’; this follows from Corollary 3.5.

Theorem 3.10 (Lifting property for Hermite function spaces; [31]). Assume 0 <
p < ∞ for Triebel–Lizorkin spaces or 0 < p ≤ ∞ for Besov spaces, 0 < q ≤ ∞ and
α, s ∈ R. Then the operator Ds

L maps Ap,qα (L) isomorphically onto Ap,qα−s(L) and
‖f‖Ap,q

α
∼ ‖Ds

L(f)‖Ap,q

α−s
.

This result will be important in Section 3.2 below.

3.2. Results for bilinear pseudo-multipliers. In this section we consider op-
erators of the form (3.3) and the symbols we will consider are the following bilinear
Hörmander-type symbols.

Definition 3.11 (Smooth bilinear symbols). Let m ∈ R, ρ, δ ≥ 0, and N ,K ∈
N0 ∪ {∞}. The symbol σ : Rn × N0 × N0 → C belongs to BSm,N ,K

ρ,δ if σ(·, j, `) ∈
CN (Rn) for all j, ` ∈ N0, and there exists Cν,κ,ϑ > 0 such that for each (x, j, `) ∈
Rn × N0 × N0 we have

|∂νx4κ
j4ϑ

` σ(x, j, `)| ≤ Cν,κ,ϑ (1 + j + `)
m
2 −ρ(κ+ϑ)+ δ

2 |ν|

for ν ∈ Nn0 and κ, ϑ ∈ N0 satisfying 0 ≤ |ν| ≤ N and 0 ≤ κ, ϑ ≤ K.

As before when N = K = ∞ we just write BSm,∞,∞
ρ,δ = BSmρ,δ.

The main result of this section is the following generalized Leibniz-type rules.

Theorem 3.12 (Fractional Leibniz-type rules for bilinear Hermite pseudo-mul-
tipliers; [31]). Let m ∈ R, 0 ≤ δ ≤ 1 and σ ∈ BSm1,δ. Assume 0 < p < ∞
for Triebel–Lizorkin spaces or 0 < p ≤ ∞ for Besov spaces, 0 < q ≤ ∞ and
α > np,q − n. Then it holds that

‖Tσ(f, g)‖Ap,q
α

. ‖f‖Ap,q
α+m

‖g‖L∞ + ‖f‖L∞‖g‖Ap,q
α+m

.

3.2.1. Applications to properties of function spaces. Let us highlight two main con-
sequences of Theorem 3.12. The first concerns pointwise products and algebra
properties of our function spaces. Taking σ ≡ 1, Theorem 3.12 yields the follow-
ing.

Corollary 3.13 (Algebra property for Ap,qα ; [31]). Assume 0 < p < ∞ for Triebel–
Lizorkin spaces or 0 < p ≤ ∞ for Besov spaces, 0 < q ≤ ∞ and α > np,q − n.
Then Ap,qα (L) ∩ L∞(Rn) is a quasi-Banach algebra and

‖fg‖Ap,q
α

. ‖f‖Ap,q
α

‖g‖L∞ + ‖f‖L∞‖g‖Ap,q
α
. (3.4)
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Note that as alluded earlier, closure under pointwise products can also be ob-
tained through Theorem 3.9. However that approach does not seem to yield (3.4).

The second consequence concerns extensions to the Hermite setting of the well
known fractional Leibniz rules on Rn, namely,

‖(−∆)s(fg)‖Lp . ‖(−∆)s(f)‖Lp‖g‖L∞ + ‖f‖L∞‖(−∆)s(g)‖Lp , (3.5)

for 1 < p < ∞ and s > 0. Here (−∆)s is the homogeneous fractional differential

operator given by ̂(−∆)sf(ξ) = |ξ|sf̂(ξ). The ‘lifting property’ of Theorem 3.10
and the estimates in Corollary 3.13 along with (2.3) and (2.4) give the following
Hermite analogues of (3.5).

Corollary 3.14 (Hermite fractional Leibniz rules; [31]). Let 0 < p < ∞ and s > 0.

(a) If 1 < p < ∞ and s > 0, it holds that

‖Ds
L(fg)‖Lp . ‖Ds

L(f)‖Lp‖g‖L∞ + ‖f‖L∞‖Ds
L(g)‖Lp .

(b) If 0 < p ≤ 1 and s > n(1/p− 1), it holds that

‖Ds
L(fg)‖hp(L) . ‖Ds

L(f)‖hp(L)‖g‖L∞ + ‖f‖L∞‖Ds
L(g)‖hp(L).

3.3. Sketch of proofs of the results for pseudo-multipliers. In this section
we outline some of the main steps in the proofs of Theorems 3.2, 3.4 and 3.12.

3.3.1. Steps in the proofs of Theorems 3.2 and 3.4. Let {ϕj}j∈N0
and {ψj}j∈N0

be
admissible systems satisfying

∑
j≥0 ψj(λ)ϕj(λ) = 1 for λ ≥ 0. Under the hypoth-

esis of Theorems 3.2 and 3.4 it follows that if R ∈ Ej , then 2−jmTσψR satisfies (i)
and (ii) in the definition of molecule (smoothness conditions), with appropriate pa-
rameters. This requires the following size, smoothness and cancellation estimates
on the action of Tσ on needlets: for |γ| ≤ N , 1 ≤ N ≤ K and β ≥ 0

|∂γxTσϕR(x)| . |R|−1/22j(m+|γ|)

(1 + 2j |x− xR|)N
(

1 +
|x|
2j

)−β

,

and

∣∣∣
ˆ

Rn

(y − xR)γTσϕR(y) dy
∣∣∣ . |R|−1/22j(m−n−|γ|)

(1 + |xR|
2

)M+θ−|γ|

for j ∈ N0, R ∈ Ej , x ∈ Rn. Using the frame characterization (Theorem 2.1) we can
write

Tσf =
∑

R∈E

2jm〈f, ϕR〉2−jmTσ(ψR);

then use molecular and frame characterization again (Section 2) to obtain

‖Tσf‖Ap,q
α

.
∥∥{2jm〈f, ϕR〉}R∈E

∥∥
ap,q

α
=

∥∥{〈f, ϕR〉}R∈E

∥∥
ap,q

α+m

. ‖f‖Ap,q
α+m

.
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3.3.2. Steps in the proof of Theorem 3.12. Besides the frame and molecular char-
acterizations from Section 2, the proof of Theorem 3.12 requires a certain decom-
position of the bilinear pseudo-multiplier Tσ = Tσ1 + Tσ2 (with σ1, σ2 ∈ BSm1,δ)
along with suitable molecular estimates of the following form: for any family of
needlets {ψR}R, µ, β > 0 and γ ∈ Nn0 ,

|∂γxTσ1(ψR, g)(x)| + |∂γxTσ2(g, ψR)(x)|

.
|R|−1/22j(m+|γ|)

(1 + 2j |x− xR|)µ
(

1 +
1 + |x|

2j

)−β

‖g‖L∞ ,

where the implicit constant is independent of x ∈ Rn, j ∈ N0, R ∈ Ej and g ∈
S(Rn). In particular this shows that the functions 2−jmTσ1(ψR, g)/‖g‖L∞ and
2−jmTσ2(g, ψR)/‖g‖L∞ are multiples of smooth (−1, 1, N, ε, µ)-molecules for any
N, ε.

Then using linearity and the frame decomposition we may write

Tσ(f, g) = Tσ1(f, g) + Tσ2(f, g) =
∑

R∈E

〈f, ϕR〉Tσ1(ψR, g) +
∑

R∈E

〈f, ϕR〉Tσ2(g, ψR).

Finally, molecular characterization and frame decomposition give us

‖Tσ1(f, g)‖Ap,q
α

. ‖{2jm〈f, ϕR〉}‖ap,q
α

‖g‖L∞ ∼ ‖{〈f, ϕR〉}‖ap,q
α+m

‖g‖L∞

∼ ‖f‖Ap,q
α+m

‖g‖L∞ ,

with a similar calculation for Tσ2(f, g).

4. A new weighted estimate for Hermite multipliers

We conclude this exposition with a new result that brings together several lines
of inquiry that Harboure was involved with, namely her work on multipliers and
weighted estimates in [3, 4, 5, 22, 25].

Let σ ∈ `∞(Nn0 ) with

|∆κσ(ξ)| . (1 + |ξ|)−|κ|, |κ| ≤ K, (4.1)

where here κ = (κ1, . . . , κn) ∈ Nn0 and the symbol ∆κ = 4κ1
1 4κ2

2 . . .4κn
n denotes

the multivariate forward difference operator of order κ ∈ Nn0 ; that is, for a function
f defined over Nn0 , 4if(ξ) = f(ξ + ei) − f(ξ) and 4κi

i f = 4i(4κi−1
i f) for κi ≥ 2.

Consider the Hermite multiplier given by Tσ = F−1
L (σFL) from (3.1). The Lp

boundedness was studied by various authors including Mauceri [32] and Thangavelu
[41, 43]; in particular, Thangavelu [41] showed that if K = bn/2c + 1 then Tσ
is bounded on Lp(Rn) for 1 < p < ∞. Subsequently, weighted estimates were
considered by Thangavelu [43] and by Harboure and her collaborators [25, 22].
The latter showed that by increasing the number of derivatives from bn/2c + 1 to
n+1, one can obtain weighted estimates. More precisely the following result holds.

Theorem 4.1 (Weighted estimates for Hermite multipliers; [22, Theorem 1.6]).
Let σ ∈ `∞(Nn0 ) satisfy (4.1) with K = n+ 1. If 1 < p < ∞, the Hermite multiplier
Tσ extends to a bounded operator on Lp(w) for each w ∈ Ap.
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Here Ap is the standard class of Muckenhoupt weights. Note that this result
can be recovered from the theory of pseudo-multipliers in Section 3 since it can
be readily seen that σ belongs to the counterpart of S0,n+1,∞

1,0 defined in terms
of the multivariate forward difference operator ∆, which turns out to generate
Calderón–Zygmund operators (see Corollary 3.6 and the comments following).

In another direction, Harboure and co-authors introduced, in the seminal work [5],
a new class of weights which has generated an extensive line of inquiry (see [3, 4,
11, 14, 28, 46] for a recent selection). These weights extend the Muckenhoupt
weights and their appeal appears to be their suitability in the study of certain
Schrödinger-type operators. They are defined via a so-called ‘critical radius’ func-
tion % : Rn → R+ that satisfies, at a minimum, the following growth property:
there exist constants C, k0 > 0 such that for every x, y ∈ Rn

%(y) ≤ C%(x)
(

1 +
|x− y|
%(x)

) k0
k0+1

. (4.2)

Such functions are built from and are typically used in the analysis of the Schrödinger
operators under consideration; for the Hermite operator L = −∆ + |x|2, it is stan-
dard to take %(x) := (1 + |x|)−1.

One can now define the class of weights Aθp = Aθp(L) related to L as follows. For

1 < p < ∞ and θ ≥ 0 we say that w ∈ Aθp if

[w]Aθ
p

:= sup
B:balls

(
−
ˆ

B

w
)(

−
ˆ

B

w− 1
p−1

)p−1(
1 +

rB
%(xB)

)−θ
< ∞,

where rB and xB are the radius and center of B, respectively. See [5] for further
details and properties of these weight classes.

The main aim of this section is to show that the weighted estimates of Theo-
rem 4.1 can be extended to the class of weights Aθp, in some sense unifying the
two lines of Harboure’s work described above. More precisely we shall prove the
following result.

Theorem 4.2 (Weighted estimates for Hermite multipliers for Aθp). Let 1 < p < ∞,

θ ≥ 0, and σ : Nn0 → C satisfy (4.1) for K = n+ 1 + bθpc, where θp = θ
p−1 max{1 +

k0, k0 −n/2} and k0 is a positive constant from (4.2). Then the Hermite multiplier
Tσ extends to a bounded operator on Lp(w) for every w ∈ Aθp with

‖Tσf‖Lp(w) . [w]
max{ 3

2(p−1)
, p

p−1 ,
3
2 }

Aθ
p

‖f‖Lp(w).

We will adopt the approach from [22, 43] which relies on Littlewood–Paley ‘g-
functions’. Let ψ be an even function in S (Rn) with ψ(0) = 0. Then consider the
following generalized g and g∗-functions associated to the Hermite operator:

gL,ψ(f) =
( ˆ ∞

0

∣∣ψ(t
√

L)f
∣∣2 dt

t

) 1
2

,

and

g∗
L,ψ,λ(f) =

( ˆ ∞

0

ˆ

Rn

(
1 +

|x− y|
t

)−λn∣∣ψ(t
√

L)f
∣∣2 dy dt

t1+n

) 1
2

, λ > 0.
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Observe that if we take ψ`(z) = z2`e−z2

then, up to a harmless constant, gL,ψ`
and

g∗
L,ψ1,λ

coincide respectively with the g` and g∗
λ functions in [22].

Let us now gather some of the necessary facts that will be needed in the proof
of Theorem 4.2.

Proposition 4.3 (Weighted estimates for g∗
L,ψ,λ; [11, Theorem 1.2]). Let ψ ∈

S (Rn) be an even function with ψ(0) = 0. Let 1 < p < ∞, θ ≥ 0 and λ > 2+2θp/n.
Then for any w ∈ Aθp we have

‖g∗
L,ψ,λ(f)‖Lp(w) . [w]

max{ 1
2 ,

1
p−1 }

Aθ
p

‖f‖Lp(w).

Proposition 4.4 ([22, Proposition 2.4]). Let λ > 1 and σ : Nn0 → C satisfy (4.1)
with K = bλn/2c + 1. Then for any ` ≥ λn/2 + 1 we have

gL,ψ`
(Tσf) . g∗

L,ψ1,λ(f)(x), a.e. x ∈ R
n.

Proposition 4.5 (Weighted estimates for gL,ψ). Let ψ ∈ S (Rn) be an even func-
tion with ψ(0) = 0. Then for any 1 < p < ∞, θ ≥ 0 and w ∈ Aθp we have
‖gL,ψ(f)‖Lp(w) ∼ ‖f‖Lp(w). In particular it holds that

[w]
− max{ 1

2(p−1)
,1}

Aθ
p

‖f‖Lp(w) . ‖gL,ψ(f)‖Lp(w) . [w]
max{ 1

2 ,
1

p−1 }

Aθ
p

‖f‖Lp(w). (4.3)

The right-hand side inequality in (4.3) was obtained in [11, Theorem 1.2]. We
shall provide a proof of the left-hand side inequality at the end of this section.

We will also need to use the following ‘duality’ fact concerning the Aθp weights:

it holds that w ∈ Aθp if and only if w1−p′ ∈ A
θ(p′−1)
p′ . Indeed, it can be checked

easily from the definition that
[
w1−p′]

A
θ(p′

−1)

p′

= [w]
1

p−1

Aθ
p
. (4.4)

We are now ready to give the proof of Theorem 4.2.

Proof of Theorem 4.2. Let λ = 2 + 2θp/n + ε where ε is small enough such that
εn
2 ∈ (0, 1) and bθp + εn

2 c = bθpc. Then we see that

K = n+ 1 + bθpc = bn+ θp + εn
2 c + 1 = bλn2 c + 1,

which means that the conditions of Proposition 4.4 are satisfied.

Now let ψ`(z) = z2`e−z2

with ` = n + 2 + bθpc. Then by Propositions 4.5, 4.4
and 4.3 we have

‖Tσf‖Lp(w) . [w]
max{ 1

2(p−1)
,1}

Aθ
p

‖gL,ψ`
(Tσf)‖Lp(w)

. [w]
max{ 1

2(p−1)
,1}

Aθ
p

‖g∗
L,ψ1,λ(f)‖Lp(w)

. [w]
max{ 1

2(p−1)
,1}+max{ 1

2 ,
1

p−1 }

Aθ
p

‖f‖Lp(w).

By a simple calculation one finds that

max{ 1
2(p−1) , 1} + max{ 1

2 ,
1
p−1 } = max{ 3

2(p−1) ,
p
p−1 ,

3
2 },
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which completes our proof. �

Proof of Proposition 4.5. We note that the second inequality in (4.3) is directly
from equation (15) of [11, Theorem 1.2] and we only need to obtain the first in-
equality. That is, we will show

‖f‖Lp(w) . [w]
max{ 1

2(p−1)
,1}

Aθ
p

‖gL,ψ(f)‖Lp(w). (4.5)

To prove (4.5) we will follow the approach from [43, Theorem 4.1.2].
Firstly we claim that

|〈f1, f2〉| ≤ c−1
ψ

ˆ

Rn

gL,ψ(f1) gL,ψ(f2) dx, f1 ∈ Lp(Rn), f2 ∈ Lp
′

(Rn), (4.6)

where cψ =
´∞

0
ψ(s)2ds/s.

Assuming (4.6) for the moment we proceed with the proof of (4.5). Let w ∈ Aθp.
Then by (4.6) and Hölder’s inequality we obtain

|〈fw 1
p , f̃〉| .

ˆ

Rn

gL,ψ(f) gL,ψ(w
1
p f̃) dx ≤

∥∥gL,ψ(f)
∥∥
Lp(w)

∥∥gL,ψ(w
1
p f̃)w− 1

p

∥∥
Lp′ .

Now since w1−p′ ∈ A
θ(p′−1)
p′ (see (4.4)) then we may apply the right hand inequality

of (4.3) on Lp
′

(w1−p′

) to see that
∥∥gL,ψ(w

1
p f̃)w− 1

p

∥∥
Lp′ =

∥∥gL,ψ(w
1
p f̃)

∥∥
Lp′ (w1−p′ )

.
[
w1−p′]max{ 1

2 ,
1

p′
−1

}

A
θ(p′

−1)

p′

∥∥w 1
p f̃

∥∥
Lp′ (w1−p′ )

.

Inserting this calculation into the previous inequality, and then invoking (4.4) along

with the fact that
∥∥w 1

p f̃
∥∥
Lp′ (w1−p′ )

= ‖f̃‖Lp′ we arrive at

|〈fw 1
p , f̃〉| . [w]

max{ 1
2(p−1)

,1}

Aθ
p

∥∥gL,ψ(f)
∥∥
Lp(w)

‖f̃‖Lp′ .

Taking supremum over all ‖f̃‖Lp′ ≤ 1 in this latter expression we arrive at (4.5).
To complete the proof of Proposition 4.5 we need to show (4.6) which we now

proceed with. Firstly observe that gL,ψ is an ‘isometry’ on L2(Rn). That is,

‖gL,ψ(f)‖L2 = cψ‖f‖L2 , ∀f ∈ L2(Rn) (4.7)

Indeed, from the orthogonality of the Hermite functions we have

‖ψ(t
√

L)f‖2
L2 =

∑

ξ∈Nn
0

ψ(t
√

2|ξ| + n)2〈f, hξ〉2.

This fact along with a change of variable gives

‖gL,ψ(f)‖2
L2 =

ˆ ∞

0

‖ψ(t
√

L)f‖2
L2

dt

t
=

∑

ξ∈Nn
0

( ˆ ∞

0

ψ(s)2 ds

s

)
|〈f, hξ〉|2

= cψ‖{〈f, hξ〉}‖2
`2 .

Invoking Parseval’s identity then yields (4.7).
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Continuing, we apply (4.7) with the parallelogram law to obtain the following
‘polarization identity’:

〈f1, f2〉 = c−1
ψ

ˆ ∞

0

〈
ψ(t

√
L)f1, ψ(t

√
L)f2

〉dt
t
. (4.8)

Finally (4.6) follows from applying the Cauchy–Schwarz inequality to (4.8). This
completes the proof of (4.6) and hence that of Proposition 4.5. �

Remark 4.6. The weighted quantitative estimates for Hermite multipliers for
the classes Aθp as given in Theorem 4.2 seem to be the first ones of their kind.
The works [11, 10, 28, 46] contain weighted quantitative estimates related to the
classes Aθp for other operators that include maximal and square functions, Riesz
transforms, and spectral multipliers of Laplace transform type.

It is unclear whether the dependence of the [w]Aθ
p

constant in Theorem 4.2 is

sharp. For a comparison with the classical setting, we refer the reader to [27,
Theorem 1.2], where weighted quantitative estimates are given for Marcinkiewicz
multiplier operators in the context of Muckenhoupt weights.

References

[1] S. Bagchi and R. Garg, On L2-boundedness of pseudo-multipliers associated to the Grushin
operator, 2023. arXiv 2111.10098 [math.AP].

[2] S. Bagchi and S. Thangavelu, On Hermite pseudo-multipliers, J. Funct. Anal. 268 no. 1
(2015), 140–170. DOI MR Zbl

[3] B. Bongioanni, A. Cabral, and E. Harboure, Extrapolation for classes of weights related
to a family of operators and applications, Potential Anal. 38 no. 4 (2013), 1207–1232. DOI

MR Zbl

[4] B. Bongioanni, A. Cabral, and E. Harboure, Schrödinger type singular integrals:
weighted estimates for p = 1, Math. Nachr. 289 no. 11-12 (2016), 1341–1369. DOI MR

Zbl

[5] B. Bongioanni, E. Harboure, and O. Salinas, Classes of weights related to Schrödinger
operators, J. Math. Anal. Appl. 373 no. 2 (2011), 563–579. DOI MR Zbl

[6] B. Bongioanni and J. L. Torrea, Sobolev spaces associated to the harmonic oscillator,
Proc. Indian Acad. Sci. Math. Sci. 116 no. 3 (2006), 337–360. DOI MR Zbl

[7] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux
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