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Abstract

We present a novel dataset for animal behavior recogni-
tion collected in-situ using video from drones flown over the
Mpala Research Centre in Kenya. Videos from DJI Mavic
28 drones flown in January 2023 were acquired at 5.4K
resolution in accordance with IACUC protocols, and pro-
cessed to detect and track each animal in the frames. An
image subregion centered on each animal was extracted
and combined in sequence to form a “mini-scene”. Be-
haviors were then manually labeled for each frame of
each mini-scene by a team of annotators overseen by an
expert behavioral ecologist. The resulting labeled mini-
scenes form our resulting behavior dataset, consisting of
more than 10 hours of annotated videos of reticulated gi-
raffes, plains zebras, and Grevy’s zebras, and encompass-
ing seven types of animal behavior and an additional cate-
gory for occlusions. Benchmark results for state-of-the-art
behavioral recognition architectures show labeling accu-
racy of 61.9% for macro-average (per class), and 86.7% for
micro-average (per instance). Our dataset complements re-
cent larger, more diverse animal behavior sets and smaller,
more specialized ones by being collected in-situ and from
drones, both important considerations for the future of an-
imal behavior research. The dataset can be accessed at
https://dirtmaxim.github.io/kabr.

1. Introduction

Behavior, in the context of animal studies, is broadly
defined as the way an animal acts or reacts in response to
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certain stimuli or situations. It encapsulates a wide range
of activities and interactions that take place in an animal’s
life. Understanding animal behavior is vital not only for
ecological and conservation reasons [ ], but also because it
provides insights into how different species adapt to their
environment, how they communicate, and how they social-
ize [2]. This knowledge can have implications for a vari-
ety of fields, from wildlife management and conservation to
agriculture and veterinary medicine.

Studying animal behavior in natural habitats, while
clearly important, is extremely challenging. Just finding
animals and getting in a position to observe their behav-
iors in an unobscured and clear way is often quite diffi-
cult. Traditionally, two methods are used to observe an-
imal behaviors: focal sampling [3] records the behavior
of a selected individual for a fixed period of time, while
scan sampling records the behaviors of multiple individu-
als within a time interval as the observer gradually sweeps
their line of sight through a field of view. These methods
capture only a small fraction of the actual behaviors. These
twin challenges — limited access and limited observations
— can potentially be addressed through a combination of
an aerial-based (such as drone) video capture to reach and
record more animals, and automatic, computer vision-based
behavior analysis to find each animal and determine its be-
havior.

Crucial to the development of modern computer vision
technologies for animal behavior studies is the construction
of well-curated datasets. Several large-scale datasets have
been proposed recently for studying animal behavior recog-
nition [4, 5]. These are generally sourced from online plat-
forms like YouTube, allowing for the collection of a wide
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Figure 1. Examples of the behavior of giraffes, plains zebras, and Grevy’s zebras from our dataset. It includes a total of eight distinct
categories: “Walk”, “Graze”, “Browse”, “Head-Up”, “Auto-Groom”, “Trot”, “Run”, and “Occluded”.

range of species and behaviors. Complementing this work,
there is a clear need for behavior recognition datasets that
are collected in-situ and therefore form a more natural rep-
resentation of behaviors. If drones are to become an im-
portant source of animal behavior information there is an
equally important need to have experimental datasets that
represent the properties of studying behaviors from drone
video.

Our work represents an initial stride toward addressing
these needs. By introducing a novel dataset collected from
drone videos in the natural habitats of Kenyan wildlife, we
aim to enrich the current pool of resources available for
the study of animal behavior. This dataset, specifically de-
signed to reflect in-situ scenarios, is a pioneering effort to
bring the nuances of real-world animal behavior to the fore-
front of this field of study.

This paper presents a novel dataset for animal behavior
recognition collected in-situ from drone videos. Specifi-
cally focused on Kenyan wildlife, it contains behaviors of
giraffes, plains zebras, and Grevy’s zebras. The methodol-
ogy is extensible to other species and environments. The
current dataset includes a total of eight categories that de-
scribe various animal behaviors. Examples of selected be-
haviors are shown in Fig. 1. We make several significant
contributions to the study of animal behavior recognition:

1. We introduce a novel technique for building a dataset
for behavior recognition from drone videos. See Fig. 2.
We detect and track each individual animal in each
high-resolution video, and link the results into track-
lets. For each tracklet, we create a separate video,

called a mini-scene, by extracting a sub-image cen-
tered on each detection in a video frame. This allows
us to compensate for the movement of the drone and
provides a stable and zoomed-in representation of the
animal. This also preserves fine-grained details of ani-
mal behavior, such as auto-grooming.

2. We present a new dataset for animal behavior recogni-
tion collected in-situ and from drones, focused specif-
ically on Kenyan wildlife. The dataset, referred to as
Kenyan Animal Behavior Recognition (KABR), com-
prises over 10 hours of annotated mini-scenes and pro-
vides a natural view of animal behavior in the wild,
resulting in 54.2 GB of annotated image sequences in
the Charades [6] format.

3. We present baseline behavior recognition results using
several state-of-the-art, deep learning models for video
classification. These show approximately 62% clas-
sification rate, indicating the challenge of the KABR
dataset. This serves as a starting point for future re-
search.

Our contributions provide a valuable resource for re-
searchers studying animal behavior and ecology, particu-
larly in the context of wildlife conservation efforts in Kenya.
By accurately categorizing and analyzing animal behaviors,
we can better understand their natural patterns and inform
conservation strategies to protect endangered animals.
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Figure 2. A mini-scene is a sub-image cropped from the drone video footage, centered on and surrounding a single animal. Mini-scenes
simulate the camera as well-aligned with each individual animal in the frame, compensating for the movement of the drone, and ignoring
everything in the large field of view but the animal’s immediate surroundings. The KABR dataset consists of mini-scenes and their frame-
by-frame behavior annotation.

2. Related Work

Action classification and action detection are two differ-
ent tasks in the field of behavior recognition [7]. While both
tasks involve analyzing and understanding actions, they dif-
fer in their objectives and methodologies. The objective of
action classification [8—10] is to assign a single category to
a given video, indicating the action being performed in the
scene. It aims to identify the overall action without speci-
fying the temporal extent or location of the action. Action
detection [1 1] aims to not only recognize the action cate-
gory but also detect and localize the temporal extent of the
action within a video. We use our concept of mini-scenes to
bridge the gap between action detection and recognition.

Action recognition datasets, such as Charades [6] and
UCEF [4, 12, 13] have been crucial in advancing the field of
behavior recognition. However, these datasets are mainly
focused on human actions, and may not be suitable for
studying animal behavior.

Animal Kingdom [5] and MammalNet [14] are both
prominent large-scale datasets for animal behavior recog-
nition. These datasets offer comprehensive collections of
annotated video footage featuring a wide range of animal
species over 50 and 539 hours, respectively. These datasets
primarily rely on videos sourced from online platforms such
as YouTube and therefore lack the in-situ aspect of data col-
lection where observations occur directly in animals’ nat-
ural habitats. APT-36K [15], also sourced from YouTube
videos, further pushes to bridge the gap between behavior

recognition and animal detection, with a collection of 80
video clips for each of the 30 species represented. In our
paper, we contribute to bridging this gap by introducing a
novel in-situ dataset specifically centered around Kenyan
wildlife.

Prior research has explored the potential of drone videos
in addressing challenges related to animal behavior recogni-
tion. Notably, Koger et al. [16] introduced a deep learning
method focused on reconstructing landscapes from drone
videos, enabling the recognition of animal body postures
and the ecological context in which they reside. In con-
trast to the proposed approach, our method is focused on
recognizing animal behavior at the individual level rather
than understanding the relationship between animals and
their landscapes. Additionally, the authors of [17] employed
drones to study spatial positioning within groups of feral
horses, while [18] used drones to track sharks, unveiling
their movement patterns. Furthermore, drone technology
was harnessed by [19] for wildlife detection. These diverse
applications underscore the potential of drone videos in ad-
vancing our understanding of animal behaviors and ecolog-
ical dynamics.

Several other substantial datasets have been meticulously
assembled with a strong focus on recognizing animals, esti-
mating their poses from images [20,21], or generating new
views of images with animals [22]. For instance, the iNat-
uralist dataset [23] contains over 859,000 images of more
than 5,000 different types of plants and animals. Similarly,
the iWildCam [24] dataset contains 263,528 images from
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Figure 3. Overview of the pipeline for KABR dataset preparation.

323 locations of camera traps. These datasets provide a
plethora of sample images, but they are designed to clas-
sify species and count individual animals in images rather
than study their behavior.

Some works have proposed targeted solutions for rec-
ognizing the behavior of certain animals. These solutions
are often based on specific characteristics of the animal’s
behavior, which may not apply to other species. For in-
stance, a study may focus on recognizing the behavior of
primates [25-27], pigs [28-30], goats [31], cows [32,33],
meerkats [34], dogs [35], cats [36], or mice [37-40].
Though these specialized solutions are useful for studying
particular animal behaviors, they are typically smaller and
may not generalize well to other species or contexts. There-
fore, it is important to consider the scope and limitations of
these targeted approaches when using them to study animal
behavior.

In contrast, our dataset offers a distinctive, valuable con-
tribution to the field of animal behavior recognition, as
it focuses specifically on in-situ drone videos of Kenyan
wildlife. Our innovative approach provides numerous ben-
efits over traditional video analysis methods and supplies
a valuable resource for researchers studying animal behav-
ior and ecology, particularly within the critical context of
wildlife conservation efforts in Kenya.

3. Dataset
3.1. Data Collection

The drone videos used in our dataset were collected by
our research team at Mpala Research Centre, Kenya. The
data collection period spanned from January 6, 2023, to
January 21, 2023. During this time, our team conducted
multiple expeditions to different locations within the re-
search center’s vicinity. The drone flights were strategically
planned to capture the behaviors of giraffes, plains zebras,
and Grevy’s zebras. These species were selected based on
their ecological importance and conservation status in the
region.

The dataset consists of 1,139,893 individual frames:
488,638 featuring Grevy’s zebras, 492,507 of plains ze-
bras, and 158,748 frames featuring giraffes. In total, there
are 14,764 distinct sets of behaviors. To ensure high-
quality footage, our team utilized DJI Mavic 2S drones
equipped with advanced camera capabilities. The videos
were recorded in 5.4K resolution at a speed of 29.97 frames
per second, providing a smooth and accurate representation
of the animals’ behaviors. The drones were flown at varying
altitudes and distances from the animals to capture a diverse
range of perspectives. The distances maintained during the
flights ranged from 10 meters to 50 meters away from the
animals, depending on the specific circumstances and safety
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Figure 4. The distribution of classes in the KABR dataset.

regulations. The diversity in recording distances allows us
to observe behaviors at different scales, and will eventually
allow us to consider social dynamics within animal groups.

During the flights, the pilot carefully maneuvered the
drones to capture the behaviors of the animals. The pilot
employed a variety of flight paths, including vertical ascents
and descents, circular orbits, and linear trajectories, depend-
ing on the specific behavior being recorded. The maneuvers
were executed with precision and consideration for the ani-
mals’ well-being, maintaining a safe and non-intrusive dis-
tance.

3.2. Ethical Considerations

Two important categories of ethical considerations were
addressed in our work. First, no humans appeared in the
videos, and all participants were faculty, students, or em-
ployees of the Mpala Research Centre. Second, our re-
search was conducted under the authority of a Nacosti Re-
search License. This license confirms our adherence to the
regulations in place and allows us to collect drone footage
of animals in their natural habitats. We followed a data col-
lection protocol that strictly complies with the guidelines set
forth by the Institutional Animal Care and Use Committee
(IACUC). These guidelines are designed to ensure the eth-
ical and humane treatment of animals involved in research
activities. We also followed the guidelines laid out in [41].
One particular instance of this is that we consistently ap-
proached the animals from downwind, allowing the noise
to dissipate before reaching the animals.

3.3. Data Curation — Mini-Scenes

The raw drone video data typically contains multiple an-
imals in each frame with each animal occupying a small

fraction of the image. In our case, the maximum number of
animals visible in the frame at one time is 13. Attempting
to directly analyze these to extract behavior is impractical.
Instead, we extract mini-scenes, which are sub-videos of
the full-resolution video, each of which is centered on an
animal as it moves through the scene, and cropped to the
animal and its immediate surroundings. The use of mini-
scenes allows us to compensate for much of the movement
of the drone and provides a stable, zoomed-in representation
of the animal’s behavior. This approach allows for accurate
tracking of individual animals within a group. We antici-
pate that in future work this will be particularly useful for
studying social dynamics among animals.

To implement our mini-scenes approach, we utilized
YOLOVS [42] to detect the animals in each frame and the
SORT [43] tracking algorithm to follow their movement.
We then extract a window of size 400 pixels wide and 300
tall, values determined empirically based on the character-
istics of the animals observed and the surrounding environ-
ment, and properties of the drone.

We have developed a set of tools to facilitate the data
annotation process. One of the tools we used extensively
was the interpolation tool, which filled in any missing detec-
tions within a track, thereby improving the overall tracking
quality. The tool uses a linear interpolation algorithm that
estimates an animal’s location based on its previous move-
ments, helping fill in gaps where automatic detection may
have failed. Our data processing pipeline is illustrated in
Fig. 3. We considered a mini-scene to be inappropriate if it
did not satisfy the length criterion. If the total length of the
behaviors in a mini-scene was less than 90 frames, we filter
it out.

The mini-scenes we extracted using our pipeline are a
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Method All  Giraffes Plains Zebras Grevy’s Zebras
I3D (16x5) 5341  61.82 58.75 46.73
SlowFast (16x5, 4x5) 5292  61.15 60.60 47.42
X3D (16x5) 61.9 65.1 63.11 51.16

Table 1. The results of the I3D, SlowFast, and X3D models on our dataset. I3D and X3D were trained with 16 input frames with a sampling
rate of 5. For SlowFast, the Slow branch was trained with 16 input frames with a sampling rate of 5, and the Fast branch was trained with
4 input frames with a sampling rate of 5. The results reflect the macro (per class) average metric.

crucial component of the manual annotation process for be-
havior recognition. These mini-scenes provide a zoomed-in
and stable view of individual animals’ behavior, making it
easier for human annotators to accurately identify and label
their behavior.

3.4. Behaviors and Annotation

Our dataset contains a total of eight behavior categories,
including “Walk”, “Graze”, “Browse”, “Head Up”, “Auto-
Groom”, “Trot”, “Run”, and “Occluded” as determined by
our expert behavioral ecologist looking at the properties
of the videos. These include three locomotion behaviors,
“Walk”, “Trot” and “Run”, each representing a different
gait. “Run” could have been split into canter and gallop,
but these were too infrequent and indistinguishable. Two
of the other behaviors refer to eating: “Graze” refers to
the behavior of an animal when they are eating grass or
other vegetation, while “Browse” describes the behavior of
animals feeding on trees and bushes. For the remaining
categories, “Head Up” refers to the behavior of an animal
when it lifts its head to look around or observe its surround-
ings, typically, these are different types of vigilance, and
“Auto-Groom” describes the behavior of animals when they
groom themselves, which can include licking, scratching,
or rubbing their bodies. Finally, the category of “Occluded”
is used when the animal is not fully visible in the video
footage. This can occur due to obstructions such as trees or
other animals blocking the view, or due to technical limita-
tions of the camera or drone.

To ensure accurate behavior annotation in our dataset,
we employed a team of 10 individuals, all of whom were
trained in the process. The team was led by an experi-
enced expert behavioral ecologist who oversaw the anno-
tation process. We utilized CVAT [44], a powerful tool for
collaborative video annotation, to enable the team to work
together remotely and efficiently. Once the initial annota-
tions were complete, we took an additional step to ensure
quality control by having all videos manually reviewed by
a designated annotator. Finally, we utilized an automatic
filtering process to split the annotated videos into conve-
nient training iterations based on their resulting length. This
ensured that the training data was properly organized and
could be effectively used in the development of deep learn-

ing models. Overall, our comprehensive annotation process
and quality control measures ensure that our dataset is ac-
curate, reliable, and suitable for a wide range of research
applications.

3.5. Class Distribution

Our dataset exhibits a long-tailed distribution, signify-
ing a considerable disparity in the count of samples across
the categories. This is expected since certain behaviors
are considerably more frequent in animals’ natural settings
compared to other behaviors. The distribution of classes is
shown in Fig. 4. Similar imbalances occur in recent larger
datasets [5, 14, 15] scraped from YouTube.

3.6. Data Split

We provide a train-test split of the mini-scenes for eval-
uation purposes, with 75% for train and 25% for testing.
No mini-scene was divided by the split. The splits en-
sured a stratified representation of giraffes, plains zebras,
and Grevy’s zebras.

4. Experiments

To comprehensively assess the performance of differ-
ent models on our dataset, we conduct evaluations using
three well-known architectures: 13D [45], SlowFast [46],
and X3D [47]. The results are summarized in Tab. 1, where
we report the Top-1 accuracy scores for all species, giraffes,
plains zebras, and Grevy’s zebras.

The model was trained for 120 epochs. During training,
we use a batch size of 5. To improve the model’s perfor-
mance and reduce the risk of overfitting, we apply data aug-
mentation techniques during training. Specifically, we use
flip augmentation to randomly mirror the input frames hor-
izontally, and color augmentations to randomly modify the
brightness, contrast, and saturation of the input frames.

To address the issue of long-tailed distribution, we em-
ploy the EQL [48] loss function. The proposed loss func-
tion selectively ignores gradients for frequent categories,
enabling the learning of rare categories during network pa-
rameter updates.

The confusion matrix depicted in Fig. 6 demonstrates
the performance of the X3D model. The model performs
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Figure 6. This confusion matrix showcases the performance of
the X3D model, which has been determined as the top-performing
model on the KABR dataset based on our evaluation.

quite well for the most frequent behaviors in our dataset:
“Walk”, “Graze”, “Browse”, and “Head Up”. The imbal-
ance seen here is reflected in the difference between the
macro and micro average Top-1 accuracy scores. The macro
(per class) average, reported in Tab. 1 peaks at 61.9%, but
the micro (per instance) average is 86.7%. The model also
demonstrates good performance for “Trot” and “Run” de-
spite fewer instances in the dataset for these categories.
Interestingly, “Trot” is most frequently confused with the

other locomotion behaviors, “Walk” and “Run”. The same
applies to the “Run” behavior.

Further insight can be gained from Fig. 5 which shows
the three most frequently occurring predictions made by the
X3D model for each category. This illustrates again that, in
most cases, the correct category showcases a dominant fre-
quency, noticeably higher than the frequencies of the sec-
ond and third most common predictions. This highlights
the ability of the model to learn from the KABR dataset to
predict the correct behavior.

This also highlights some interesting challenge cases:
“Browse” (a giraffe behavior) is frequently confused with
“Head Up”, which is quite intuitive. “Auto-Grooming”, a
very rare behavior in the KABR dataset, is often misclas-
sified with similar looking behaviors, “Graze” and “Head
Up”. Finally, the “Occluded” category is often confused
with “Grazing”, most likely due to the subjectivity of
what constitutes an occlusion when looking at video from
Mpala’s ecosystems. Interestingly, within the “Occluded”
category, the model has a tendency to factor in surround-
ing elements like shrubs and trees (visible in the on-line
videos). We anticipate addressing these issues through fur-
ther data collection and analysis, as enabled by the pipeline
developed here.

5. Discussion

The benchmark results using state-of-the-art video clas-
sification algorithms indicate that the dataset is both inter-
esting and challenging. Though it is necessarily smaller
than recent Animal Kingdom and MammalNet datasets and
captures a more focused set of behaviors, it represents an
important step in the evolution of animal behavior data col-
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lection and analysis because the videos were collected in-
situ and from drones. As such it is closer to, and more rep-
resentative of, how behavioral analysis can be carried out
in the field in the future. One limitation of the dataset as it
currently exists is that some rare behaviors are either cap-
tured infrequently or not at all. The complete set of tools
for KABR that we have developed and shared openly form
a powerful framework to support searching for examples of
these behaviors.

The mini-scenes approach provides a means of rapidly
processing high-resolution videos into a form that can be
analyzed for individual behaviors. The next step would be
to augment the behavior classification approaches to facil-
itate anomaly detection. An interesting question is the po-
tential integration of KABR with MammalNet or Animal
Kingdom for exactly this purpose.

The proposed pipeline has several important advantages.
By applying detection and tracking algorithms, we can ex-
tract zoomed-in footage that is stabilized on the animal
of interest. Consequently, the animal remains consistently
centered in the frame throughout the mini-scene, enhancing
the accuracy of subsequent analysis. This is unlike typi-
cal action recognition where the animal could be moving
across a fixed frame. Consequently, if an object moves
from one side of the frame to the opposite side, the resulting
bounding box may fail to accurately reflect the object’s ac-
tual position. In contrast, our approach avoids this issue by
maintaining the animal of interest at the center of the frame
throughout the extracted mini-scene, allowing for more pre-
cise localization of the moving object over a longer period
of time.

Another important future step is using the mini-scenes
approach to analyze complex social behaviors, such as dom-
inance, aggression, mating, and grooming. Behaviors can
be analyzed in isolation within each mini-scene, in the over-
lap between the bounding regions of mini-scenes, and in a
graphical representation of a neighborhood of mini-scenes.

A final justification of the efficacy of the mini-scenes
approach can be seen in a Grad-CAM analysis [49] of the
mini-scene classification activation, as shown in Fig. 7. This

demonstrates that the neural network indeed prioritizes the
region covered by the animal in the center of the frame and
even the body part. In the case of the Occluded category,
where the animal is not visible within the frame, the net-
work shifts its attention to focus on other objects present. In
the case of Run, the background changes very rapidly, es-
pecially in the region that is being newly occluded in each
frame as the animal moves. This allows the network to iden-
tify it as Run.

6. Conclusion

This paper has presented a new in-situ dataset for ani-
mal behavior recognition from drone videos, with a focus
on Kenyan wildlife, including giraffes, plains zebras, and
Grevy’s zebras. We introduced a novel technique for build-
ing this dataset, which compensates for the movement of the
drone and allows us to capture fine-grained details of animal
behavior. Our dataset contains eight categories that describe
various animal behaviors, providing a comprehensive view
of animal behavior in their natural habitat. Our baseline
solution demonstrates the effectiveness of our dataset for
training conventional deep-learning models for video clas-
sification. Our contributions provide a valuable resource for
researchers studying animal behavior and ecology, particu-
larly in the context of wildlife conservation efforts in Kenya.
Our work represents an important step forward in the field
of animal behavior recognition and provides a solid founda-
tion for future research in this area.
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