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ABSTRACT The gastrointestinal tract is inhabited by a vast community of microorganisms, termed the gut microbiota.
Large colonies can pose a health threat but the gastrointestinal mucus system protects epithelial cells from microbiota
invasion. The human colon features a bilayer of mucus lining. Due to imbalances in intestinal homeostasis, bacteria may
successfully penetrate the inner mucus layer which can lead to severe gut diseases. However, it is hard to tease apart the
competing mechanisms that lead to this penetration. To probe the conditions that permit bacteria penetration into the inner
mucus layer, we develop an agent-based model consisting of bacteria and an inner mucus layer subject to a constant flux
of nutrient fields feeding the bacteria. We find that there are three important variables that determine bacterial invasion:
the bacterial reproduction rate, the contact energy between bacteria and mucus, and the rate of bacteria degrading the
mucus. Under healthy conditions, all bacteria are naturally eliminated by the constant removal of mucus. In diseased
states, imbalances between the rates of bacterial degradation and mucus secretion lead to bacterial invasion at certain
junctures. We conduct uncertainty quantification and sensitivity analysis to compare the relative impact between these
parameters. The contact energy has the strongest influence on bacterial penetration which, in combination with bacterial
degradation rate and growth rate, greatly accelerates bacterial invasion of the human gut mucus lining. Our findings will
serve as predictive indicators for the etiology of intestinal diseases and highlight important considerations when developing
gut therapeutics.

SIGNIFICANCE Our study sheds light on the critical interplay between gut microbiota and the protective mucus
barrier in the human colon. By applying agent-based modeling using CompuCell3D, we uncover the pivotal factors
driving bacterial invasion into the inner mucus layer, elucidating the mechanisms underlying gut diseases. Our findings
not only provide insights into the pathogenesis of intestinal disorders, but also offer predictive ideas for gut therapeutics.

1 INTRODUCTION
The human gut microbiota is composed of trillions of bacteria
and other microorganisms that reside in the human digestive
tract. The microbiota plays a critical role in promoting home-
ostatic functions, such as aiding the digestion of complex
carbohydrates, stimulating the production of antibodies, and
synthesizing various nutrients that the human host requires
(1, 2). In return, the host provides sources of energy for mi-
crobial growth and habitats to reside in. The colon is one
part of the human gut system covered by two layers of mucus
that protects epithelial cells from invasion by disease-causing
bacteria. The outer layer acts as a residence for bacteria and
dietary materials while the inner layer is composed of a denser
structure that is mostly free of bacteria (3, 4). The mucus layer
also separates the gut contents, including food debris and gut
microbiota, from the epithelial cells.

Goblet cells continuously produce and secrete gel-forming
mucins to replenish the mucus layer, gradually renewing the
mucus system to avoid bacterial aggregation and proliferation
(5). Dysfunctions of the mucus layer allow the microbiota to
become potentially harmful when they grow in an unregu-
lated manner. Pathogenic biofilms can form on the surface
of the intestinal lining and lead to the host’s inflammatory
response, resulting in severe gastrointestinal diseases, such
as inflammatory bowel disease and colon cancer (6). Hence,
understanding the mechanisms of bacteria aggregation and
penetration in both healthy and diseased guts is very important
to attain a clearer view of the causes of these diseases and
improve treatment efficacy.

The study of polymicrobial dynamics helped unravel some
of the complexity of polymicrobial interactions in the gut. The
development of advanced sequencing and imaging techniques
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has enabled studies of gut microbial community composition
as well as spatial organization. Lin et al. constructed deriva-
tized antibiotic staining probes targeting bacterial surfaces
and explored metabolic labeling for imaging gut bacteria on
various scales (7). Shi et al. developed high-phylogenetic-
resolution microbiome mapping by fluorescence in situ hy-
bridization (HiPR-FISH), a versatile technology that employs
binary encoding, spectral imaging and decoding based on
machine learning to reveal changes in the intricate spatial
structures within the mouse gut microbiome when treated
with antibiotics and examined longitudinal stability of spa-
tial architectures in the human oral plaque microbiome (8).
These studies leveraged current understanding of microbe-
microbe interaction, but they are still limited in exploring how
microbe-mucus interactions influence disease.

Although bacteria interact with multiple environmental
factors, mucus, a viscous and slimy substance, is a key compo-
nent that prevents pathogenic biofilm formation and bacterial
invasion by creating a physical barrier between the gut and
the bacteria that inhabit it (9). Several studies used in-vitro or
computational models to examine bacteria-mucus interaction.
Kim et al. used a gut-on-a-chip microdevice to simulate the
gut environment, including the presence of mucus, epithelial
cells, and gut microbiota. They developed a microengineered
model of human intestinal inflammation and bacterial over-
growth, and analyzed contributions of the microbiome to
intestinal diseases and their mechanisms (10). To model the
viscoelastic properties of mucus, Sardelli et al. engineered an
in-vitro mucus model (I-Bac3Gel) that was suitable for dy-
namic bacterial culture (11). Wheeler et al. tested the behavior
of bacterium Pseudomonas aeruginosa in a 3D laboratory
model of mucus. They discovered that glycan molecules can
prevent bacteria from connecting with each other and forming
harmful biofilms (12). Xu et al. used computational models to
simulate bacterial penetration of mucus layer in gastrointesti-
nal. They tested the influence of two common antibodies at
mucosal surfaces (secretory IgA and IgG) on the penetrability
of mucus layer (13).

While there is significant progress in developing human
gut models, due to the complexity and dynamic evolution of
mucus and microbiota, there is still a lack of robust biolog-
ical models for testing the conditions that prompt bacteria
to invade the inner mucus layer. To probe these conditions,
we develop an agent-based computational model with the
aid of the CompuCell3D software to simulate the behavior
of bacteria in the mucosal environment. Previous research
used Compucell3D to simulate the growth patterns of biofilm,
demonstrating the utility of computational models in simu-
lating the dynamics of gut microbiota (14). In our model,
we simulate the growth of both bacteria and mucus, and by
modifying different input parameters, we mimic the different
gut environments and unveil the tipping point between healthy
and pathogenic bacteria.

2 METHODS
2.1 Agent-based modeling
Systems biology involve the use of mathematical modeling
and computational simulations to predict the behavior of
biological systems and potentially use these behaviors for
purposes of biological design (15). There several major agent-
based frameworks for modeling and simulating cell behavior
and dynamics. NetLogo is user friendly, but less suitable for
complex biological simulations due to existing constraints
in model customizations. NetLogo lacks features for bacte-
rial modeling, such as specific cell-cell interactions (16, 17).
Another platform, CellDesigner, is primarily focused on graph-
ical modeling of gene-regulatory and biochemical networks,
and it does not include a simulation engine itself or database
integration module, which is not well-suited for simulating
bacterial dynamics (18). Similar to CellDesigner, BioNetGen
is a powerful tool in complex biochemical networks such as
enzymatic activities and drug deliveries, but it is not suitable
for population-level dynamics (19). RePast offers advanced
agent-based modeling capabilities, but the coding process is
much more complicated as it has fewer limitations. It works
primarily for social and economic systems, so it does not
include modules specifically for bacterial modeling such as
cell growth, metabolism, or interactions (20). In contrast to
these platforms, CompuCell3D has the right set of modeling
tools for investigating bacterial dynamics.

CompuCell3D (CC3D) provides a platform for bacterial
simulations using the Glazier-Graner-Hogeweg (GGH) model,
a cell-oriented framework designed to simulate growth and pat-
tern formation due to biological cells’ behaviors (14). CC3D
can be used simulate and predict gut bacteria behavior, thus
addressing experimental difficulties when dealing with actual
bacteria and mucus in the human gut. In our models, both
bacteria and inner layer mucus are represented as individual
agents. Since the mucus is usually cross-linked, the average
length between nodes is modelled as the cell size and the
voids between cells represent the pores in inner layer mucus.
The outer layer is simply modeled as the media surrounding
the bacteria and the inner layer mucus.

To minimize the computational resource needed to sim-
ulate the large-scale dynamic behavior of cellular systems,
3D models in CompuCell3D are usually reduced to their 2D
analogs (21). Figure 1(a) depicts the construction of the model
in CC3D in length unit 𝐿0, which equals to 0.125 𝜇𝑚 for
each 𝐿0. The unit settings will be discussed in detail in next
section. To initiate the simulations, a few bacterial cells are
added randomly on the interface between the mucus inner
layer and outer layer. The bacteria then grow and reproduce
together with mucus. Following the mucus renewal process,
which is important for its protective function, the outer layer
of mucus with microbiota is easily removed (i.e., sloughed
off) due to the movement of stools or flushed away by liquid
in the gut (22). To model this dynamic removal of mucus in
the human gut, cells are removed in a pre-specified region
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(a) (b)

Figure 1: The schematic of CC3D model and simulation setup. (a) Initial state of the model: the inner mucus layer has a
thickness of 100 𝐿0, with a few bacteria put randomly on the top and a removal region in the range of 130 - 160 𝐿0. (b) After
100 𝑇0, bacteria grow, divide, and finally penetrate the mucus layer, and cells within the removal region are sloughed off.

at the outer-inner mucus interface, in the range of 130 - 160
𝐿0. Since this layer is constantly removed from the inner
mucus layer under normal biological conditions, if bacteria
can penetrate or proliferate in this portion of the mucus layer,
they may then go on to penetrate the whole inner mucus layer
or at least pose a threat to the epithelial cells underneath.
There are two types of nutrient sources for bacteria in the
human gut: the mucus and the food debris. Some bacteria can
degrade the mucus structure by secreting mucolytic enzymes,
which ease bacterial invasion of the mucus (23). Hence we
model the bacteria as absorbing nutrients by digesting mucus
and food debris to grow and divide together with mucus.

Disruptions in mucosal homeostasis increase the number
of mucus-consuming bacteria and allow them to penetrate
the mucus layer more easily as mucus becomes less sticky
(24). Correspondingly, we would like to explore the effects of
three variables in the simulation: bacterial growth rate, contact
energy between bacteria and mucus, and the rate of mucus
decomposition by bacteria. We explore the circumstances
where bacteria can successfully penetrate the mucus layer. If
the bacteria grow and divide more rapidly compared with
mucus, they may finally fully penetrate the mucus layer, as
seen in Figure 1(b).

2.2 Bacteria and mucus cells construction
Each individual bacterium is modeled as a single cell in
CC3D. Mucus is a slippery aqueous secretion produced by
and covering mucous membranes (25). It is gel-like, mainly
consisting of MUC2 mucin (highly organized glycoprotein
network) produced by goblet cells (26). As shown in Figure 2,
mucin forms a polymeric net-like mucus layer that is attached
to the epithelial cells. Mucus is continuously secreted from
underneath to refresh the mucus layer (3). The average mucus

cell size can be set as the average length between nodes of the
crosslinked mucins, with the voids between cells viewed as
pores.

In CC3D, we set the unit length 𝐿0 to be 0.125 𝜇𝑚 and a
unit time step 𝑡0 is 1 𝑠𝑒𝑐. According to references (9, 27, 28),
all the values of parameters are then converted into the refer-
ence units in CC3D:

Bacteria Size ∼ 1𝜇𝑚 = 8𝐿0

Mucus Size ∼ 0.5𝜇m = 4𝐿0

Mucus Thickness = 100𝐿0 = 12.5𝜇m

∼ 1
8

real thickness of mucus inner layer

Due to the size limitations of our model to balance the com-
putational intensity, we model just the top 1/8th surface of the
actual thickness of the mucus inner layer (29). Even so, we
anticipate that if bacteria can penetrate the top region of the
inner layer, bacteria are very likely to propagate through the
whole layer eventually or at least survive in the inner mucus
layer, thus causing diseases. From our simulations, we find
that there is no condition allowing for the reversal of bacterial
propagation after penetration under the same initial condition,
even after very long simulation times.

2.3 Contact Energy
The intercellular contact energy is the adhesion energy be-
tween neighboring cells to determine how strongly cells stick
to each other. The energy is based on a matrix specifying all
contact interactions between cell types:
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Figure 2: Microstructure of mucus layer composing of grid-like MUC2. The circles at nodes can be viewed as mucus cells, and
the vacant space among them are pores.
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A,B and C are the cell types. When the surface area of a cell
changes, the contact energy of the cell is recalculated based
on the difference in surface areas compared to other cell types
(30):
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𝑗
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[
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(
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) ]
Subscripts i and j denote two neighboring lattice sites, 𝜎 de-
notes cell IDs, and 𝜏 denotes cell types. The first summation
in the equation is for all pixels that make up a particular cell,
and the second summation is over the pixels around the pixel i.
Large contact energies between cells make it harder for cells
to stick to each other, while low energies promote contact.
With lower contact energies between bacteria and mucus, the
mucus becomes less repulsive to bacteria, resulting in easier
bacterial invasion.

2.4 Cell Growth
We use reproduction rate to represent bacterial growth, which
is the doubling time of bacterial population. Initially, some
bacteria cells are randomly placed at the surface of the inner
mucus layer, and they grow and divide together following the
reproduction rate (31, 32):

Bacteria Reproduction Rate ∼ 20𝑚𝑖𝑛

Mucus Growth Rate ∼ 240
𝜇𝑚

ℎ
=

1
15

𝜇𝑚

𝑠
=

8
15

𝐿0/𝑡0

Nutrient absorption is key to cell growth. Under healthy phys-
iological states, mucus grows at a constant rate. Bacteria
mostly consume the food debris for nutrient, and only a small
amount of them can degrade the mucus structure. However,

physiological changes, such as those arising from dietary com-
positions lacking in fiber, can affect bacterial penetrability and
the growth rate of the inner layer of mucus. Approximately,
the value of normalized penetrability is doubled and mucus
growth rate decreases to one-fifth compared with mucus pro-
duction in healthy states (33). Moreover, there is an increase
in the number of bacteria from species that thrive on mucus
consumption. Due to these myriad reasons, bacteria can pene-
trate the inner mucus layer more easily, potentially leading to
diseases of the gut.

2.5 Uncertainty quantification and
sensitivity analysis

Uncertainty quantification (UQ) is a technique used to charac-
terize and estimate the uncertainty in model predictions. UQ
helps to identify the sources of uncertainty, which can arise
from various factors such as measurement errors, model ap-
proximations, or variability in input parameters. While errors
are unavoidable and inevitable, they can always be reduced
through identifying the sources and quantifying the nature of
these errors (34). Sensitivity analysis is a technique of UQ that
focus on how uncertainties in the output of a mathematical
model or system can be divided and allocated to different
sources of uncertainty in its inputs (35). In combination with
a statistical tool known as the Monte Carlo method, which
is often used to evaluate the uncertainty of measurements,
sensitivity analysis can identify which input parameters in the
given range have the most significant impact on the output
following the formula below (36):

Sensitivity =
Percentage change in output
Percentage change of input

Through sensitivity analysis, we can understand the relations
between the input parameters and the output values. Since the
absolute values of the variables cannot be easily determined,
we select a reasonable range for each parameter and vary the
values within this range after each test following a uniform dis-
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tribution. We then apply UQ and sensitivity analysis to test the
correlation between the variables and bacterial penetration.

2.6 CC3D System setup

There are several assumptions in our agent-based models. We
assume that bacteria cells have uniform sizes of 1 𝜇𝑚 and
that there are two nutrient sources: food debris and mucus.
Mucus is modeled as cells with dimensions of 0.5 𝜇𝑚. We
model just the top 1/8th surface of the mucus inner layer as we
find that this is more than sufficient to identify tipping points
that lead to bacterial penetration during our simulations. The
removal region above the mucus inner layer models the mucus
outer layer that is being sloughed off repeatedly under normal
biological conditions. With this model, we then proceed to
explore the conditions needed for bacterial invasion into the
inner mucus layer.

To minimize computational resources and simulation time,
3D cubic boxes in CC3D are usually simplified to 2D slabs.
This model reduction significantly reduces the model’s com-
plexity (21). Our simulation box is set to be 200×200, which
is periodic in the x-direction and has a fixed boundary in
the y-direction. We enlarge the neighbor order to be four to
reduce lattice anisotropy (37). We select rectangular slabs
as the initial cell layout to create layer-like cell clusters. We
create two types of cells: bacteria and mucus. Two chemical
fields (mucus and food) are also added to represent the two
nutrient sources available to the bacteria. Lastly, to capture
the cell properties and behaviors, we model the contact energy
between cells, and allow both bacteria and mucus cells to
grow and divide at specified rates. In addition, mucus cells
can secrete nutrients for bacteria to absorb, hence modeling
the degradation of the mucus by bacterial mucolytic enzymes.

In the initial state, we create several bacteria in random
positions on the mucus layer. We set the initial cell size to be
1 𝜇𝑚 and allow the cells to grow and divide at our specified
reproduction rate. Mucus cells grow with a constant growth
rate and since the bacteria uptake nutrients for food, the
growth of bacteria is directly influenced by both the food
and mucus chemical fields. Bacteria will degrade mucus
cells upon contact following our specified degradation rate.
Bacteria and mucus within the removal area are constantly
removed to model the mucus clearance mechanism in human
gut. Data containing bacterial positions and field values are
stored for further analyses.

3 RESULTS AND DISCUSSION
3.1 Bacterial Elimination Under Healthy

Mucus Layer
Under healthy states, the inner mucus layer has a good barrier
function and is usually free of bacteria. The gel-like mucus has
high viscosity, making it hard for bacteria to go through. The
gut microbiota with the mucus system correspondingly has
sufficient turnover to avoid bacterial penetration and pathogen
growth. The growth rate of mucus is approximately 240 𝜇𝑚/ℎ,
and the reproduction rate of bacteria is around 20 min. Bacte-
ria mostly consume fiber from food debris as their primary
energy source and they rarely degrade mucus under normal
healthy circumstances. To model this behavior, we vary the
three parameters of bacterial reproduction rate, contact energy
between bacteria and mucus, and degradation rate of bacteria
to mucus, within reasonable physiological ranges. Intestinal
bacteria have two types of nutrient sources, which means
the bacterial growth is influenced by the availability of food
debris and mucus.

We find that under healthy conditions, all bacteria will
eventually be eliminated from the inner mucus layer within
two minutes. To determine how these parameters affect bac-
terial elimination time, we repeat the simulations five times
for each case and average the elimination time to quantify the
standard deviation shown in Figure 3. The default values of
the parameters are:

𝐺𝐹bac-food = 0.0008
𝐺𝐹bac-muc = 0.0002

}
Reproduction Rate ∼ 20 min

Contact Energy bac-muc = 6𝐽/𝑝𝑖𝑥
Decomposing Rate = 4%

GF is the growth factor defined in CC3D. As bacterial
growth rate increases, the time taken to fully shed bacteria
fluctuates. This fluctuation indicates that there is no obvious
influence of bacterial reproduction rate to the elimination time.
In healthy physiological states, we expect that the inner mucus
layer grows rapidly with sufficient time to refresh and replen-
ish itself. Changes in bacterial reproduction rate, relative to
the mucus growth rate, is not sufficient for overwhelming the
shedding of the inner mucus layer. However, for the other
two parameters of degradation rate and contact energy, there
are obvious changes in the elimination time. From Figure 3,
increasing bacterial degradation rates will result in longer
persistence time of the bacteria, leading to linearly increasing
elimination times. In comparison, increased contact energy
leads to a logarithmic decrease in the elimination times. Over-
all, in these two cases, although all bacteria are removed
eventually, they have a stronger tendency to degrade mucus
and penetrate into the mucus layer, which allows them to
survive longer in mucus before elimination.
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Figure 3: Bacterial elimination time when bacteria are on colon inner mucus layer of normal functionalities with changing
parameters of contact energy between bacteria and mucus, bacterial degradation rate and reproduction rate. The default values
are 𝐶𝐸 = 6, 𝐷𝑅 = 4, 𝑅𝑅 = 20.

3.2 Bacterial Invasion of Dysfunctional
Mucus Layer

Under diseased states, we expect that the mucus layer has
poorer barrier functions and the mucus turnover is disrupted,
thus bacteria may be able to penetrate more easily. Bacteria
can then accumulate and aggregate together to form biofilm,
which is adverse to the gut system. From previous literature,
the mucus growth rate can decrease to about one fifth of the
original rate and mucus viscosity will also be greatly reduced
(33). There will be more mucus-degrading bacteria and fewer
bacteria that degrade dietary fibers, and bacterial reproduction
rates are also altered to a large degree (24, 38). In this case,
bacteria may fully penetrate the inner mucus layer and be
in contact with the epithelium, leading to inflammation and
disease development. If all bacteria in contact with the inner
mucus layer will degrade mucus, there are three variables that
we consider in our simulations: the bacterial reproduction
rate, the contact energy between bacteria and mucus, and
the rate of mucus degradation by bacteria. Each variable is
changed one at a time to discover the boundary conditions
needed for bacterial penetration. We average the data from five
independent simulations of each case to quantify the standard
deviations. Changes in the penetration depth of bacteria with
these variables are shown in Figure 4. The default values of
the parameters are:

𝐺𝐹bac-muc = 0.001(Reproduction Rate ∼ 20𝑚𝑖𝑛)
Contact Energybac-muc = 6𝐽/𝑝𝑖𝑥

Decomposing Rate = 4%

Overall, the penetration depth grows with decreasing
contact energy and bacterial reproduction rate, or when degra-
dation rate between bacteria and mucus increases. However,
when we dig into the influence of the three parameters, we
notice that the parameters imbued differing characteristics.
For the contact energy, there seems to be a large jump in
penetration depth as its value reduces from four to two. When
the contact energy is larger than 4 J/pix, bacteria show lit-
tle tendency to penetrate, and will be eliminated eventually.
However, the penetration depth increases dramatically from
almost 0 𝜇𝑚 to 40 𝜇𝑚 when contact energy goes beyond
the tipping point. The morphology of the bacterial cells may
explain this phenomenon. When the contact energy is 4 J/pix,
bacterial cells retain approximately oval shapes. However,
when the contact energy is reduced to 2 J/pix, the bacterial
cells become irregularly shaped, as shown in Figure 5(a). The
irregular shapes of the bacterial cells ease the penetration into
the mucus, resulting in much larger penetration depths. Also,
in this case, bacteria cells have larger surface area, which
means they come into contact with more neighboring mucus
cells, thus increasing the degradation of the mucus cells.

As the bacterial degradation rate increases, the penetration
depth rises linearly at first, and then remains stable subse-
quently. When the degradation rate increases to a certain
value, around 14% in this case, the bacteria already degrades
the neighboring mucus completely, as shown in Figure 5(b).
Hence, increasing the bacterial degradation rates does not
significantly impact bacterial penetration. The degradation
rate is a competing factor with the mucus growth rate, helping
the bacteria maintain stasis in the mucus layer.
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Figure 4: Bacterial penetration depth when bacteria are on dysfunctional colon inner mucus layer with changing parameters
of contact energy between bacteria and mucus, bacterial degradation rate and reproduction rate. The default values are
𝐶𝐸 = 6, 𝐷𝑅 = 4, 𝑅𝑅 = 20.

(a) (b)

Figure 5: Morphology of bacterial penetration into the inner mucus layer under (a) low contact energy of 2 J/pix (b) high
degradation rate of 14 %, with all the other parameters in default values in each case.
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(a) (b)

(c)

Figure 6: Penetration depth of bacteria on dysfunctional colon inner mucus layer changing with time of different variables (a)
contact energy (b) degradation rate (c) bacterial reproduction rate.

(a) (b)

Figure 7: Uncertainty quantification and sensitivity analysis (a) bacterial penetration depth for the changing of parameters:
contact energy between bacteria and mucus (CE), degradation rate of bacteria to mucus (DR) and bacterial reproduction rate
(RR) (b) sensitivity ratio of the three parameters for penetration.
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For bacterial growth rate, we cannot see any obvious
relationships from Figure 4. For example, when the bacterial
reproduction rate decreases from 20 min to 5 min (i.e., the
bacteria is doubling faster), the bacterial population does not
have a significant rise before eventual elimination, thereby
keeping the penetration depth constant. But if the bacterial
reproduction rate keeps decreasing beyond this to an unre-
alistically fast rate, bacteria will proliferate and grow inside
the mucus layer as mucus is the bacteria’s only source of
nutrients. This will greatly increase their chances of survival.
To conclude, bacterial growth rate and degradation rate do
not have a strong effect on mucus penetration but can help
bacteria survive in the inner mucus layer, while increases in
contact energy helps them better penetrate into the barrier.

Figure 6 shows the penetration profile of bacteria for
the three parameters. As expected, increasing contact energy
and reproduction rate results in the highest rate of bacterial
penetration. Bacteria also penetrate the mucus layer at slower
speed with increasing degradation rate. Consistent with the
results from Figure 4, these two parameters are major factors
in bacterial proliferation in the inner mucus layer, while the
contact energy stimulates mucosal penetration. To verify the
importance of the three parameters to the bacterial penetration
depth, we apply uncertainty quantification and sensitivity anal-
ysis in our computational model. We conduct 100 tests, each
test is run for 400 time steps, with randomized bacterial posi-
tions initially. The inputs are the three parameters mentioned
above and the output is the depth of bacterial penetration. The
three variables are set in reasonable ranges, and change after
each single test following the uniform distribution. Figure 7(a)
illustrates the distribution of the one hundred samples with the
changing of the three variables. The grey dots represent simu-
lations that do not result in bacterial muco-penetration, while
the orange points indicate the simulations where bacterial
muco-penetration occurred. The contact energy is sampled
within the range of 0-8 J/pix, the degradation rate is 0-12%
and the bacterial reproduction rate is 5-25 min. Figure 7(b)
shows the results of the sensitivity analysis. The contact energy
and degradation rate are the dominant factors, which imply
that bacteria have a larger probability of muco-penetration if
these two values are sufficiently high. In contrast, changes in
bacterial growth rate only affects the penetration to a small
extent.

4 CONCLUSION
We developed a bacteria-mucus model using the software,
CompuCell3D, to simulate the biological process of bacterial
penetration into the inner mucus layer in the human gut. With
this model, we simulated the bacteria-mucus dynamics under
physiologically healthy states to evaluate the impact of three
parameters on the bacterial elimination time: bacterial repro-
duction rate, contact energy between bacteria and mucus, and
the rate of bacterial degradation of mucus. Decreasing contact
energy or increasing degradation rate extended elimination

time, while bacterial reproduction rate had negligible effect.
In addition, we conducted simulations to test bacterial pene-
tration depth under physiologically diseased states, which was
modeled as a dramatic drop in the mucus growth rate. The re-
sults showed that bacterial reproduction rate and degradation
rate helped the bacteria survive in the mucus layer, while the
contact energy could strongly stimulate bacterial penetration.
Lastly, we applied uncertainty quantification and sensitivity
analysis, which revealed contact energy and degradation rate
as key factors affecting bacterial penetration.

There are two primary limitations in our model. Firstly,
CC3D is a cell-based modeling software, so we constructed
liquid-like mucus using individual cells, potentially neglect-
ing its inherent fluidic properties. Also, due to constraints
of computational resources and simulation time, our model
do not consider bacteria variety and nutrition sources, which
may oversimplify the microbial diversity and complexity, and
neglect some important microbial interactions. To improve
these limitations, future research can integrate fluid dynamics
models within CC3D to capture the liquid-like properties of
mucus. Perhaps with additional computational resources or
more efficient algorithms, multiple bacterial types and diverse
nutrition sources can be modeled.

For future validations of the relations between the parame-
ters and bacterial penetration, experimental groups could use
gut-on-a-chip models to replicate the structure of human gut.
Mucus-like hydrogels can help with such validations. Bacteria
can then be cultured and transferred into the microchannels
of the chip, while introducing the necessary nutrients (39).
With the help of such in-vitro models, we can better relate the
simulation results with it and eventually verify our hypotheses.
Regardless, our findings can still serve as predictive indicators
for the etiology of intestinal diseases and our work highlighted
important considerations when developing gut therapeutics.
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