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Abstract: 

The gastrointestinal (GI) tract's mucus layer serves as a critical barrier and a mediator in drug 

nanoparticle delivery. The mucus layer’s diverse molecular structures and spatial complexity complicates 

the mechanistic study of the diffusion dynamics of particulate materials. In response, we developed a bi-

component coarse-grained mucus model, specifically tailored for the colorectal cancer environment, that 

contained the two most abundant glycoproteins in GI mucus: Muc2 and Muc5AC. This model 

demonstrated the effects of molecular composition and concentration on mucus pore size, a key 

determinant in the permeability of nanoparticles. Using this computational model, we investigated the 

diffusion rate of polyethylene glycol (PEG) coated nanoparticles, a widely used muco-penetrating 

nanoparticle. We validated our model with experimentally characterized mucus pore sizes and the 

diffusional coefficients of PEG-coated nanoparticles in the mucus collected from cultured human 

colorectal goblet cells. Machine learning fingerprints were then employed to provide a mechanistic 

understanding of nanoparticle diffusional behavior. We found that larger nanoparticles tended to be 

trapped in mucus over longer durations but exhibited more ballistic diffusion over shorter time spans. 

Through these discoveries, our model provides a promising platform to study pharmacokinetics in the GI 

mucus layer. 
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Introduction: 
 
In recent years, designing oral drug nanoparticles has gained increasing interest in pharmaceutics because 

they can facilitate the bioavailability and therapeutic efficacy.1 However, a significant obstacle that 

weakens the drug delivery efficiency is the mucus layer lining the human gastrointestinal (GI) tract, 

which is primarily composed of water and mucin glycoproteins and other minor molecules such as 

electrolytes, lipids, and nucleic acids.2–4 This viscous and dynamic barrier not only plays a crucial role in 

lubricating and protecting the epithelium from exposure to luminal contents, but also significantly hinders 

the penetration and absorption of nanoparticle-based drugs.5–7 The periodic clearance of the mucus layer 

will remove the trapped drug nanoparticles, limiting their availability at designated target sites.4,8 Thus, 

characterizing the mucus's structural and mechanical properties becomes crucial to comprehend how the 

diffusion of drugs is hindered or facilitated through the mucus. This understanding is pivotal for 

improving pharmacokinetic predictions related to nanoparticles (NPs) and nanocarriers in treating 

gastrointestinal diseases and other conditions. 

However, due to the molecular diversity and spatial complexity of the GI mucus layer, predicting the 

interaction and movement of NPs through its layers poses several challenges for pharmacokinetic 

studies.9–11 The main building blocks of intestinal mucus, mucin glycoproteins, have a high molecular 

weight of between hundred thousands to millions of Daltons and contain segments with distinct chemical 

properties: its protein backbone is partitioned as hydrophobic N-terminal and C-terminal, hydrophobic 

cysteine domains, and glycosylated regions in the middle.5,12 Such chemical heterogeneity enables the 

glycoprotein molecules to interact with both hydrophobic and hydrophilic drugs.13 Glycoproteins also 

exhibit remarkable diversity in their molecular structure and functional properties. Mucin glycoproteins 

are broadly categorized into membrane-associated mucins, such as Muc1, Muc3, Muc20, and secretory 

mucins, such as Muc2, Muc5AC, Muc5B, and Muc6.14,15 Different locations in the GI tract or different 

diseases will alter the compositions of these glycoprotein molecules.16,17 For instance, the production of 

Muc2, Muc3, Muc12, Muc13, and Muc17 predominantly occurs in the intestine, whereas Muc5AC and 
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Muc6 are primarily synthesized in the stomach.17 Muc2 is secreted within the intestinal tract by goblet 

cells in healthy individuals18,19, while during inflammatory bowel disease and colorectal cancer, epithelial 

goblet cells express Muc5AC and Muc5B, in addition to Muc2.20–22 Muc5 has different cysteine domain 

patterns in the PTS region compared to Muc216, and cysteine domains significantly affect the polymeric 

crosslinking and the assembly of the mucus network.23,24 Therefore, studying a single type of mucin is 

insufficient to characterize the mucus, especially in regions with lesions that require drug release.  

In addition, the diffusion of nanoparticles through the mucus layer is strongly influenced by the 

characteristics of the nanoparticles, including size, shape, and surface chemistry.1 Particle size plays a 

critical role in determining the diffusion rate of nanoparticles through the mucus, the effect of which is 

tightly related to the mucus pore size.25,26 The shape of nanoparticles also influences their mucosal 

transport, with rod-like nanoparticles showing faster penetration ability compared with spherical 

nanoparticles.27 Moreover, surface charge and hydrophobicity/hydrophilicity is another critical factor. The 

presence of hydrophilic polymers and nearly neutral surface, such as polyethylene glycol (PEG) coated 

nanoparticles, can create a hydration shell that repels the mucin fibers, thereby minimizing adhesive 

interactions and enhancing muco-penetration.28–30 In contrast, hydrophobic or highly charged 

nanoparticles may have higher interactions with the non-polar or polar domains of mucins, respectively, 

which is in favor of muco-adhesive ability.25,31,32  

The diversity and complexity of mucus and nanoparticles mentioned above pose design challenges for 

drug development. Therefore, the development of computational models is indispensable for conducting 

detailed mechanistic studies on interactions between mucus and particulate materials. Due to the large 

size of the mucus network, studying the diffusion dynamics of nanoparticles in mucus requires 

establishing a coarse-grained (CG) model in the mesoscale. However, research on building CG models of 

mucus communities is relatively few. In 2010, Gniewek and Kolinsk proposed a Monte Carlo scheme to 

simulate CG mucus.33 In their model, mucins are constructed by 20 beads, which are classified into three 

types. The values of repulsive, attractive, and neutral contact potentials were simply set to 0.5, -0.5, and 0. 

Later, Lísal et al. developed a dissipative particle dynamics (DPD) model for studying mucin aggregation, 
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which used a better physical model to describe the hydrophobicity and hydrophilicity of mucins.34,35 In 

recent years, a couple of CG models for mucus based on Lennard–Jones (LJ) potentials have been built. It 

has been used to study mucus aggregation and rheological properties.36 Shi et al. investigated the particle 

shape effect on the diffusion process within the regular and random mucus networks.37,38 Yet, a common 

problem for these LJ models is that they lack physical governing equations for setting interaction 

parameters, which hinders the transferability of simulating different types of mucins and nanoparticles. 

Also, these studies overlooked the molecular diversity and heterogeneity of mucus. 

In this work, we constructed a CG mucus model at the mesoscale based on the DPD potential, as DPD 

allows for a more precise description of the hydrophilic/hydrophobic interactions between mucus and 

nanoparticles. To capture the complexity of the mucus network and mimic the environment of colorectal 

cancer18,20, we modeled the two most abundant glycoproteins, Muc2 and Muc5AC, instead of simulating 

only one type of glycoprotein. We studied the pore size variations of the mucus network under different 

molecular compositions. Then, we chose one type of widely used drug nanoparticles, PEG, to investigate 

the diffusion dynamics as PEG is electrostatically neutral and muco-penetrating.1 Experimental 

measurements were also conducted to validate the calculations of diffusion coefficients. Our model 

closely matched our experimental data, offering a cost-effective and efficient method to predict drug and 

nanoparticle permeability through mucus - a cornerstone in designing drug delivery systems that can 

penetrate the mucus layer and effectively reach their intended target sites. Furthermore, we utilized 

machine learning fingerprints proposed by Pinholt39 to analyze the traces of nanoparticles and conducted 

a mechanistic study to explain important features for nanoparticle muco-diffusion. 

 

Materials and Methods 

Mucus collection.  For mucus collection, we modified the method used by Capon et al..40 In brief, the 

human colorectal adenoma cell line HT29-MTX-E12, which adopts a goblet-like phenotype, was cultured 

in 75 cm2 plastic flasks in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) for 21 days after confluence. On day 21, the serum-containing medium was replaced 
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by advanced DMEM/F12 (Gibco) without serum to reduce mucus contamination by foreign proteins. On 

day 22, the serum-free culture medium was discarded, and the flasks were gently rinsed with Dulbecco's 

phosphate-buffered saline (DPBS) several times. After that, the cells were incubated for 1 h at 37 °C in 

DPBS with 0.5 mM forskolin to release the mucus layer. The mucus covering the cells was then gently 

removed in DPBS (with calcium and magnesium, pH=7.4) and used immediately or stored at -20C.  For 

total mass determination, freshly collected mucus was weight and subsequently lyophilized. The water 

content was determined by dividing the dry to wet weight.  

Mechanical characterization of in vitro mucus. A rotational rheometer DHR-3 (TA instruments) was 

used to investigate the viscoelastic characteristics and apparent viscosity of freshly isolated mucus by 

applying frequency and flow sweeps. First, the linear viscoelastic region was determined using an 

amplitude sweep at a constant frequency of 1 rad/s using a 40 mm parallel plate geometry. The mucus' 

viscoelastic properties in terms of loss (G") and storage (G') moduli were then determined using 

frequency sweeps performed between 0.01 to 100 rad/s at a 0.5 μNm constant torque with 5 to 10 

measurement points per decade and 300 um separation gaps. The mucus' apparent viscosity was measured 

using flow sweeps in steady mode with a cone and plate geometry (40 mm cone diameter, 63 um 

truncation). The samples were subjected to shear rates between 0.1 to 100 s-1, with a 300 s equilibration 

time and 300 um separation gaps. Amplitude, frequency, and flow sweeps were all performed in DPBS 

with calcium and magnesium (pH=7-7.2) at 25 °C using three different cell culture batches and at least 

two samples per batch.  

Preparation of PEG-coated nanoparticles. Polyethylene glycol (PEG)-coated nanoparticles were 

prepared using a carbodiimide coupling reaction.41,42 Briefly, FluoSpheres Carboxylate-Modified 

Microspheres (ThermoFisher Scientific) with sizes of 100, 200, and 500 nm in diameter at 2% solid 

concentration were loaded into dialysis tubes (Float-A-Lyzer, 3.5 - 5 kD). The tubes were submerged in 

100 mM of monohydrate [2-(N-Morpholino)-ethanesulfonic acid] (MES) buffer, pH 6, for 2 h under 

constant low stirring. Subsequently, the tubes were transferred to a solution containing 15 mM (1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC), 5 mM N-Hydroxysulfosuccinimide sodium 
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salt (NHS), and 50 mg of methoxypolyethylene glycol amine (mPEG-NH2) in MES buffer for 30 min. 

The bags were then submerged into a solution of 50 mM boric acid and 36 mM sodium tetraborate, pH 

8.5, with NHS and mPEG-NH2 at the same concentrations as before. The reaction was left to proceed 

overnight with constant slow stirring. At the end of the incubation period, the nanoparticles were washed 

in pure borate buffer, ending with DPBS using a dialysis tube of 20 kDa cut-off (Float-A-Lyzer). Purified 

PEG-coated nanoparticles were stored at 4C.  The hydrodynamic ratio of the PEG-coated nanoparticles 

was measured in DPBS by dynamic light scattering using a Malvern Nano Zetasizer.  

Single particle tracking (SPT). HT29-MTX-E12 cells were cultured on coverslips for 21 days. On day 

22, the culture media was replaced for DMEM/F12 media and cells were incubated for one additional 

day. After that, the coverslips were gently rinsed several times with DPBS without calcium and 

magnesium and incubated for 10 min with PEG-coated nanoparticles diluted at 1:1000 in DPBS for 100 

and 200 nm nanoparticles. For 500 nm nanoparticles, 2:1000 dilution was used from a 2% stock 

concentration. For tracking single particles within mucus, the coverslips were flipped upside down and 

imaged using an Elyra Super Resolution Microscope (Zeiss) with a 63X/1.4 oil objective and a sCMOS 

TV2 camera. Since the mucus layer produced by the HT29-MTX-E12 cells is not continuous, we 

conducted SPT imaging near the cell monolayer to ensure accurate tracking of the nanoparticles within 

the mucus layer rather than in the surrounding liquid. Time series containing 500 frames were collected at 

0.05 s step time for at least 3 biological replicates and at different locations over the cell monolayer. The 

same imaging parameters were used for capturing the nanoparticle motion in aqueous solution 

(DPBS).Single particle trajectories were analyzed using the Trackmate plugin for ImageJ, using the DoG 

detector and the LAP tracker options. Frame-to-frame linking was limited to 1 um.  Recovered particle 

trajectories and diffusion coefficients were then processed in MATLAB using the msdanalyzer class.43  

Coarse-grained model of mucins and nanoparticles. We built a coarse-grained (CG) model of mucins 

in which mucin chains are represented by the bead-spring model. The Muc2 and Muc5AC molecules 

consist of hydrophobic protein beads (type h), which represent the N-terminals, C-terminals and cysteine-

rich domains, and hydrophilic beads (type g), which represent the glycosylated regions. We estimated the 
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location and range of the N-terminal, C-terminal, and cysteine-rich domains based on the amino acid 

sequences of the Muc2 (UniProt: Q02817) and Muc5AC (UniProt: T1S9D5).44 Thus, the ratio and the 

position of type h beads for each mucin can be adjusted in accordance with their respective amino acid 

sequences. Type p beads packed into spherical shells forming PEG-coated nanoparticles. Figure 1 shows 

the structures of Muc2, Muc5AC, and the nanoparticles. We also added water beads (type w) to simulate 

the aqueous diffusional environment. The snapshots for nanoparticles with various sizes in mucus were 

provided in the Supplementary Materials (Figure S1). 

 
Figure 1. Coarse-grained model (left) of the nanoparticles in the mixture of Muc2 and Muc5AC. The cyan 
beads represent N-terminal, C-terminal, and cysteine-rich domains. The yellow and pink beads represent the 
glycosylation regions. Yellow beads denote the side chains linked to the backbones. The iceblue beads 
represent nanoparticles. Water beads are invisible. The scalebar denotes 10 length units (10 r0). The 
structures of each individual component, i.e., Muc2, Muc5AC, and nanoparticles are shown on the right. 

The dimensions of the mucin molecules in the simulation were determined according to previous 

literature.34,45–48 First, the number of beads in the mucin backbone were polydisperse, which obeyed a 

Gaussian distribution with a mean of 50 beads and a standard deviation of 3, the value of which were 

chosen to be approximately proportional to the measurement results.45 An average of two beads made up 

each side chain, resulting in the ratio of the diameter to the mucin length comparable with the observation 

from the microscope and the previous simulation model.34,46 Additionally, hydrophilic beads accounted 
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for 87% of the total mucins in our model, which was close to the mass proportion of 80% or 90% 

mentioned in the literature.47,48 

Force field of the CG model. To model the interactions between beads, we adopted the interaction 

potential from the dissipative particles dynamics (DPD) method, as it captures the hydrophilic-

hydrophobic relationship in detail between different types of beads.49 The interaction forces in the DPD 

model within the cut-off radius r!  are defined as the sum of the conservative force 𝐹"#$ , dissipative force 

𝐹"#%, and random force 𝐹"#&. The complete form of potential equations can be referred to Groot’s work.49 

As DPD uses normalized non-dimensional units, the cut-off radius r! was set to one unit length (r! = r') 

and the temperature was 1 𝑘(𝑇. The radius of one bead is 0.52r', which is determined by coarse-graining 

16 water molecules in one bead and the bead density of 𝜌𝑟)* = 3. The values of the maximum repulsive 

parameters 𝑎"# used in our model are listed in Table 1. The parameter between PEG and water 𝑎+, was 

adopted from Luo et al.50, and other parameters 𝑎"# were adopted from Moreno et al.34 The repulsive 

parameters between PEG and hydrophobic protein beads 𝑎+- and between PEG and glycan beads 𝑎+. 

were calculated from Hansen solubility parameters51:  

𝑎"# = 𝑎"" + 3.27 ×
𝑉(
𝑘(𝑇

01𝛿/," − 𝛿/,#4
1 + 0.251𝛿+," − 𝛿+,#4

1 + 0.251𝛿-," − 𝛿-,#4
17, 

which were finally chosen to be 40 𝑘(𝑇/𝑟' and 55 𝑘(𝑇/𝑟', respectively. The detailed reasoning and 

validation is provided in the Supplementary Material Section II. The parameter for the dissipative force 𝛾 

was set to 4.5. In addition, we also defined the bond and the angle potentials as follows. The adjacent 

beads in a backbone or in a side chain were connected by harmonic bonds: 𝑈( = 𝐾(1𝑟"# − 𝑟',(4
1, where 

the stiffness 𝐾( was set to 25 𝑘(𝑇, and the equilibrium distance 𝑟',(	was set to 0.7 𝑟'.34 Considering the 

straight morphology of the tandem repeat regions in the main peptide chains52, the adjacent three g beads 

in the backbone were connected by a harmonic angle: 𝑈2 = 𝐾21𝜃"#3 − 𝜃',24
1, where the equilibrated 

angle 𝜃',2 was 180 degrees and the stiffness was set to 2.5 𝑘(𝑇. 
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Table 1. The maximum repulsive parameters 𝒂𝒊𝒋 used in the DPD model. 
Maximum repulsive parameters 𝒂𝒊𝒋(𝐮𝐧𝐢𝐭:	𝒌𝒃𝑻/𝒓𝒄) 

 h g p w 
h 25    
g 60 25   
p 40 55 25  
w 60 25 26.05 25 

 

Simulation Protocol. We first randomly generated polydisperse mucin molecules in the simulation box 

and equilibrated them by running 600,000 steps of NVE ensemble followed by 10,000,000 steps of NVT 

ensemble (dt = 0.01). Then, if necessary, we created intermolecular disulfide bonds if the distance 

between any two h beads was smaller than 2r0. After adding disulfide bonds, we ran 10,000,000 steps of 

NVT ensemble to re-equilibrate the system. Nanoparticles were randomly added in the empty spaces 

within the mucin network after the crosslinked mucins were equilibrated. The radii of nanoparticles were 

0.5r0, 1.0r0, 1.5r0, 2.0r0, 3.0r0, and hence their volumes varied as well. We added nanoparticles into the 

model systems such that the volume of nanoparticles was 0.2 times of the volume of the mucins. The 

diffusions were conducted under the NVT ensembles for at least 1,000,000 steps (dt = 0.02) to ensure that 

the nanoparticles were in the normal diffusion mode. During the diffusion, each nanoparticle was treated 

as a rigid body, so every p beads in a same nanoparticle had the same velocity. 

Machine-learning Analysis of Nanoparticle Diffusion. We employed a recently-developed machine-

learning framework39 to quantify the fingerprints of nanoparticle diffusion and to classify the different 

sizes of nanoparticles. In the previous paper, the authors defined 17 fingerprints as the features for 

training purposes. Here, we adopted 4 features, MeanMSD, Trappedness, Fractal dimension, Efficiency, 

and developed 3 new features, T1, T2, and T3, which were explained in the Results section. We fed these 

features into logistic regression model using scikit-learn’s function LogisticRegression(). Due to the 

existence of more than two types of nanoparticles, we performed multinomial logistic regression. For the 

sake of generalizability, we randomly spilt 60% of the data into the training set and 40% of dataset into 

the test set and obtained the average accuracy from 200 trials. 
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Results 

Rheology Measurement and Pore Size Characterization: 

To investigate the mechanical and barrier properties of human intestinal mucus, we collected intact mucus 

from the in vitro culture of human goblet cells (HT29-MTX-E12). Compared to other cell lines, HT29-

MTX-E12 cells develop a confluent monolayer of mature goblet cells and produce a mucus layer with a 

thickness comparable to what is observed in humans in vivo.53 We assessed the viscoelastic properties of 

this mucus within the linear viscoelastic range through dynamic oscillatory rheology. We quantified the 

material response to deformation in terms of the storage modulus (G') and loss modulus (G") by performing 

frequency sweeps under a constant deformation force. G' reflects the material's resistance to deformation 

and its ability to store energy. In contrast, G" characterizes the material's liquid-like behavior, indicating its 

capacity to dissipate energy as heat. G" also provides information about the material’s ability to flow or 

deform without resistance.53–55 

Frequency sweep experiments revealed that both G' and G" were frequency independent, indicating that 

the mucus is a cross-linked gel (Figure 2).  The mucus displayed a finite G' value over a significant range 

of frequencies, a characteristic commonly associated with a solid-like viscoelastic response.54 At 1 rad/s, 

the values for G' and G" modulus varied between 0.41-34 Pa and 0.04-4.4 Pa, respectively, which are 

comparable to those reported for human gastric mucus at a similar frequency range (G'=13-21 Pa and 

G"=1.8-3.2 Pa).56 G' was also more than seven times larger than the values for G" for all the samples, 

further demonstrating the solid-like behavior of the mucus. In practical terms, a high G' indicates that the 

material is relatively rigid and can withstand deformation with minimal energy loss. Conversely, a low G' 

suggests a more fluid-like and easily deformable material. Similarly, a high G" implies greater viscosity 

and energy dissipation, while a low G" indicates higher elasticity and minimal energy dissipation.54  This 

viscoelastic behavior is typical in other soft tissues and biological materials.57 Rheological analysis has 

shown that soft tissues  exhibit a G'' around 10% to 20% of their G' moduli at 1Hz.58  
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Mesh size is an important structural feature of polymer networks and affects the diffusion of particulate 

material within mucus.55,59,60 Thus, beyond characterizing the viscoelastic behavior, we also estimated  the 

mucus’ average mesh size from the frequency sweep experiments55  based on the elastic blob theory61,62, 

𝜉 = 	 0 4!

3"5
7
67/*

	, where 𝜉 is the pore size and G' is the storage modulus at zero frequency. The average 

zero-frequency storage modulus was 0.42±0.025 Pa, yielding an estimated mesh size of 214.04±4.29 nm.  

 
Figure 2. The storage (G', closed circles) and loss moduli (G", open circles) for 3 mucus samples collected 
from HT29-MTX-E12 cells. Different mucus samples are distinguished by different colors. The frequency-
independent G" and G' indicates mucus is a cross-linked gel with solid-like viscoelastic response. 

 

In our computational simulations, we calculated the mesh sizes of mucin under three different weight 

percentages, namely 5 wt%, 10 wt% and 20 wt%. The mesh sizes are determined by PSDsolv.63 Since 

HT29-MTX-E12 cells naturally produce mucus composed of 60% Muc5AC and 40% Muc2,18,19 we used 

this ratio in the simulation and tested pure Muc5AC and pure Muc2 as a benchmark (Figure 3). We found 

that the average mesh sizes were roughly inversely proportional to the mucin weight percentage. For 

example, the mean pore sizes were 7.76r0, 4.69r0, and 2.36r0 (Muc5AC/(Muc5AC+Muc2) = 0.6) when the 

weight percentages were 5 wt%, 10 wt%, and 20 wt%, respectively. In addition, the mesh size decreased 
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as the concentration of Muc5AC increased which was clearly observed in the 5 wt% simulation (p-value 

< 0.05 between any two groups, and calculations are described in Supplementary Materials Section III). 

Muc5AC gave rise to a more evenly distributed network structure with smaller mesh sizes due to the 

presence of more crosslink-able cysteine-rich domains. However, high concentrations of Muc5AC, e.g., 

10 and 20 wt%, did not reduce the average mesh sizes to the same extent as in models with 5 wt%. In this 

case, Muc2 provided sufficient crosslinks distributed throughout the network as hydrophobic N- and C-

terminals (explained in greater detail in Supplementary Material Section IV). To choose an appropriate 

weight percentage for subsequent models, we determined the water content in the mucus collected from 

the HT29-MTX-E12 cells. As the dry weight accounted for 20% of the wet weight, we used the mucus 

model of 20 wt% to investigate the dynamics of nanoparticle diffusion (Supplementary Material Section 

V). 

 
 
Figure 3. The pore sizes calculated in the simulations for different Muc5AC/(Muc5AC +Muc2) weight ratios 
and different weight percentages of total mucins, {0, 0.6, 1}×{5 wt%, 10 wt%, 20 wt%}. P-value is calculated 
by the two-samples t-test. For cases where the weight percentage is 5 wt%, the p-value is smaller than 0.05 
between any two groups. 
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Nanoparticle Diffusion 

We employed single-particle tracking to measure the movements of PEG-coated nanoparticles within 

mucus, measuring 100, 200, and 500 nm in diameter. As revealed by Figure 4 (a)-(f), all nanoparticle 

(NP) sizes had diminished ranges of motion within the mucus compared to the aqueous environment 

(DPBS). However, particles nearing the mucus’ mesh size encountered a significant restriction in their 

range of motion. This reduction was particularly pronounced for nanoparticles that are 500 nm in 

diameter, where their explored area decreased twofold compared to their mobility in DPBS. The diffusion 

coefficient quantifies the dynamics of nanoparticles and can be obtained, according to the Einstein 

relation, from the slope of the mean squared displacement (MSD) with respect to time (Figure 4 (g)-(i)).64 

The diffusion coefficients were calculated by fitting the linear equation, 𝑀𝑆𝐷 = 4𝐷𝑡, the values of which 

were further used in validating the simulation model. 
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Figure 4. (a)-(c) The 2D trajectories in x-y plane of 100 nm, 200 nm, 500 nm nanoparticles diffused in mucus. 
(d)-(f) The 2D trajectories in x-y plane of 100 nm, 200 nm, 500 nm nanoparticles diffused in DPBS. Each 
colored line represents the trajectory of one particle. All trajectories were superimposed at the origin. (g)-(i) 
The MSD curves for 100 nm, 200 nm, and 500 nm nanoparticles, respectively. The blue and red curves 
represent the MSDs in DPBS and Mucus. The shaded area denotes the standard deviation of the MSD. The 
diffusion coefficients D were obtained by the linear fitting of the mean MSD, which were shown in the figures. 

 

The van Hove correlation function provides crucial insights into the spatiotemporal behavior of particles 

undergoing diffusion or motion within a complex environment.59,65 It is a mathematical construct that 

describes the probability of finding a particle at a distance ∆𝑥 from a reference particle at a given time ∆𝑡: 

∆𝑥 = 𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡). 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 5 shows the van Hove correlation functions for 100 nm, 200 nm, and 500 nm nanoparticles in 

mucus networks when ∆𝑡 equal to 0.05s, 0.1s, and 0.15s. For nanoparticles of any size, the van Hove 

correlation function exhibited a statistical Gaussian-like distribution, except for disturbance when ∆𝑥 is 

close to zero.  Among various nanoparticle sizes, the smallest nanoparticles were able to diffuse the most 

freely within the mucus. For both 100 nm and 200 nm particles, as ∆t increased, the van Hove distribution 

decreased and broadened, implying increased diffusion over time. Conversely, the 500 nm particles' 

distributions remained relatively unchanged, suggesting effective entrapment within the mucus network. 

 
Figure 5. The van Hove correlation functions of 100 nm, 200 nm, and 500 nm nanoparticles diffusing in 
mucus at the time durations ∆𝒕 of 0.05s, 0.1s, and 0.15s. The narrow peaks of 500 nm nanoparticles revealed 
that they were effectively trapped within the mucus.  

 

In terms of the computational model, we simulated the diffusion of nanoparticles with different sizes. The 

range of nanoparticle sizes were chosen based on the time-averaged mesh size distribution of mucins 

(Figure 6 (a)), which was normally distributed with a mean of 2.16r0 in radius. Compared with the 

experimental mesh size of 214.04±4.29 nm in diameter, the scaling ratio of our model is around 1:50, i.e., 

r0 ≈ 50 nm. We created nanoparticles with radii of 0.5r0, 1.0r0, 1.5r0, 2.0r0 and 3.0r0 into our models, 

covering the range where the nanoparticles are smaller and larger than the average mesh size. 

Importantly, the chosen nanoparticle sizes fall into the diameters (10 nm to 400 nm) commonly used in 

nanoparticle-based therapeutics.66–68 
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We then examined the MSD curves and the diffusion coefficients of the nanoparticles in the model. 

However, due to the relatively small time scale in the simulation, we observed three distinct regimes 

during nanoparticle diffusion: (1) the ballistic regime where the MSD is proportional to 𝑡1; (2) the 

subdiffusive regime where the MSD is proportional to 𝑡9 	(𝛽 < 1); and (3) the normal diffusion regime 

(Fickian diffusion) where the MSD is proportional to 𝑡.69 The diffusion coefficient describes the diffusion 

rate of nanoparticles within the normal diffusion regime. To distinguish the three regimes, we analyzed 

the trend of MSD/time versus time (Figure 6 (b)). Initially, the nanoparticles were in the ballistic regime 

where the curve sloped upwards with time. Large nanoparticles (r = 3.0r0) underwent longer periods of 

ballistic diffusion than small nanoparticles (r = 0.5r0). Subsequently, the curves began to slope 

downwards, indicating that the nanoparticles transitioned into the subdiffusive regime. Eventually, all the 

curves plateaued when the nanoparticles attained the normal diffusion regime, where the diffusion 

coefficient was computed.  

 

Figure 6. (a) The time-averaged pore size distribution of mucus after equilibrium where the mean pore size, 
denoted by the vertical red line, is 2.16r0. (b) The log-log plot of the mean squared displacements divided by 
time for nanoparticles radii of 0.5r0, 1.0r0, 1.5r0, 2.0r0, and 3.0r0. The shaded area denotes the normal 
diffusion states, and the diffusion coefficients were calculated using this region. 

 

(a) (b)

mean: 2.16
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To comparatively analyze the simulation and experimental results, we normalized both diffusion 

coefficient and the nanoparticle size. The diffusion coefficient in mucus 𝐷: was normalized by dividing 

the diffusion coefficient of the same nanoparticle in DPBS buffer 𝐷, (pure water in simulation). The ratio 

𝐷:/𝐷, can help to unveil the influence of mucus network on the diffusion process of nanoparticles. As 

we used the spherical and non-charged PEG-coated nanoparticles in the experiment, the measured 

diffusion coefficients in DPBS were theoretically calculated by Stokes-Einstein equation70: 

𝐷, =
𝑘;𝑇
3𝜋𝜂𝑑

, 

where 𝜂 is the viscosity of the diffusion media (0.001 Pa∙s) and d is the diameter of nanoparticles. In our 

simulations, 𝐷, was obtained by putting the same nanoparticles in pure water beads. To unify the size 

scale of simulation and experiment, we defined the confinement ratio r<==/𝜉 as the effective size of 

nanoparticles to the mucus mesh size. In experiments, the effective size r<== was the actual hydrodynamic 

diameter of nanoparticles measured by dynamic lighting scattering. For the nanoparticles with nominal 

diameter of 100 nm, 200 nm, and 500 nm, we measured their hydrodynamic diameter as 110.30±0.79 nm, 

216.70±2.48 nm, and 495.53±7.71 nm. In simulation, the effective size r<== was defined as the radius of 

the nanoparticle plus the radius of the bead, which is 0.52r0 as defined in the Method section. The pore 

size 𝜉 in the experiment and in simulation were 214.04 nm and 2.16r0, respectively. Figure 7 presents 

dimensionless diffusion coefficients and sizes, depicting the alignment between the model and 

measurements. The diffusion coefficient decreased from 0.6 to 0.1 when the confinement ratio varied 

from 0.5 to more than 2. This trend, shown in Figure 7, parallels the van Hove distribution in Figure 5, 

indicating hindered diffusion for a confinement ratio ≤ 1 and effective restriction for larger nanoparticles 

(confinement ratio > 2). Furthermore, we employed the hopping model, proposed by Cai and 

Rubinstein71, to quantify the connection between the nanoparticle size d and the diffusion coefficient in 

mucus network 𝐷::  
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𝐷: =
𝜉)
1

𝜏'𝑁1𝜙
R
𝑏𝑁'.?

𝑑
T 𝑒6/#/@(# . 

We fixed the number of monomer units in between cross-links as the average beads per mucin chain (N = 

50). The polymer fraction 𝜙 was 20%, which was determined by the dry mass and wet mass of mucus 

samples. As the mucin chains can be treated as worm-like chains, the Kuhn length b of which can be 

approximated by their persistence length (b = 44 nm).45,72 Then, we adjusted the coefficient 𝜉)
1/𝜏'  to be 

4.35×10-10 cm2/s (𝜉) is the correlation length of mucus and 𝜏' is the monomer relaxation time) to fit our 

data points. The value of the coefficient 𝜉)
1/𝜏'  in our mucus model is one order of magnitude lower than 

the coefficient where nanoparticles diffused in a non-biological polymer gel (𝜉)
1/𝜏'=2.9×10-9 cm2/s).62 

This suggests that the mucus possesses a denser, intricate network with extended relaxation times, 

consequently resulting in slower dynamics. 

  
Figure 7. The dependence of the normalized diffusion coefficient (Dm/Dw) to the normalized size (𝐫𝐞𝐟𝐟/𝝃). The 
yellow line was the hopping model used to fit the simulation and experimental data points (mean squared 
error is 1.20e-3). 

 

Machine-learning Classification and Diffusional Feature Analysis 

By addressing the complex and diverse diffusion patterns inherent in biological systems, other authors 

recently established a machine-learning paradigm that contains 17 descriptive features obtained from the 

trajectories of single nanoparticles.39 The paradigm not only enables accurate particle classification but 
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also unveils crucial mechanistic insights by identifying key differences among diffusional features. 

Therefore, we adopted and modified their ML framework to classify and analyze single-nanoparticle 

trajectories from our simulation.  

The features we used are listed in  

Table 2. We picked some representative features, including MeanMSD, fractal dimension, trappedness, 

and efficiency. The MeanMSD is the average MSD counted to half of the trajectories. The fractal 

dimension is defined as 

𝐷A =
ln	(𝑁)

ln(𝑁) + ln	(𝑑𝐿)
, 

where N, d, and L are the number of steps in the trajectory, the maximum distance between two points in 

the trajectory, and total traveling distance, respectively. The trappedness is defined as: 

Trappedness = 1 − exp `0.2045 − 0.25117 a
𝐷𝑡
𝑅 c

d, 

which represents the likelihood of a particle characterized by the diffusion coefficient D to exit a circular 

region with a radius R for during a time interval of t. The efficiency is defined as the logarithm of the ratio 

of end-to-end length to the total traveling distance: 

𝛾 = lnef
(𝑥@ − 𝑥7)1 + (𝑦@ − 𝑦7)1

(𝑁 − 1)h∑ (𝑥" − 𝑥"67)1 + (𝑦" − 𝑦"67)1"B@
"B1 j

k. 

Furthermore, drawing inspiration from the implementation of the Hidden Markov Model for partitioning 

particle trajectories into distinct diffusion states, we divided trajectories into multiple shorter ones. We 

then employed the fractal dimension as a criterion to categorize these short trajectories into three 

diffusion states: ballistic diffusion, normal diffusion, and subdiffusion, denoted by the features T1, T2, 
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and T3. These features represent the proportions of short trajectories corresponding to each respective 

diffusion state. 

Table 2: List of features used in ML classification. 

Feature Name Description 

Fractal 
Dimension (Df) Space-filling-ness of the trajectory 

Trappedness Estimator to determine whether nanoparticle is trapped 

Efficiency The ratio of end-to-end distance to the sum of distance 

MeanMSD The average MSD calculated up to half the trajectory length 

T1 The fraction of piece-wise trajectories when Df < 1.6 (ballistic) 

T2 The fraction of piece-wise trajectories when 1.6 ≤ Df ≤ 2.0 (normal) 

T3 The fraction of piece-wise trajectories when Df > 2.0 (subdiffusive) 
 

Utilizing these features, we employed multinomial logistic regression to classify the sizes of nanoparticles 

diffusing within mucus. As demonstrated in Figure 8, the ML model achieved an accuracy exceeding 

90% for each particle type, even when only a subset of the 17 features suggested in prior studies39 were 

utilized. The clustered arrangement of the confusion matrix along the diagonal indicated that the logistic 

regression model occasionally misclassified a small portion of particles as being of similar size, and there 

were no large deviations occurring. 
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Figure 8. The confusion matrix of logistic regression model to classify the sizes of nanoparticles. The labels 
r0.5, r1, r1.5, r2, r3 denote the nanoparticles with radii of 0.5r0, 1r0, 1.5r0, 2r0, and 3r0, respectively. The 
numerical mean accuracy (max = 1) and standard deviations were shown in the confusion matrix. 

Subsequently, we analyzed the average values of each feature across different nanoparticles. In Figure 9 

(a), it is evident that the MeanMSD exhibited a noticeable reduction as nanoparticle size increased. To 

quantify this trend, we employed an exponential function, 𝑦 = 𝑒67.*CDEF.F*, having a low mean absolute 

percentage error (MAPE) of 3.3%. This observation implies an exponential correlation between 

MeanMSD and the nanoparticle size. Figure 9 (b) and (c) indicated that increased particle size correlated 

with reduced efficiency and heightened trappedness. These findings collectively supported the notion that 

larger particles encountered greater difficulty in traveling extended distances and were more prone to 

entrapment within the mucus. While the changes in efficiency and trappedness were less pronounced than 

the MeanMSD disparities, we quantitively examined the significant differences between the smallest 

particles and the other particles. The calculated p-values demonstrated that a significant difference exists 

between the smallest particles and any particles with r≥2.0. Figure 9 (d) displayed the average and 

standard deviation of fractal dimensions (Df) for particles of varying sizes. According to the definition of 

Df, a small and nearly 1 corresponds to almost ballistic diffusion. Theoretically, normal diffusion 

possesses a Df around 2, while subdiffusion has a Df exceeding 2. However, our outcomes revealed Df 

values slightly below 2 for all particles, a phenomenon also observed by Pinholt.39 This deviation might 



22 
 

arise from the trajectories’ insufficient length. It could be caused by the fact that the trajectories were not 

long enough. Having the same length of trajectories for all particles, we found that smaller particles had 

smaller Df, indicating a propensity towards ballistic diffusion. 

Then, we divided the complete trajectory (comprising 8000 frames) of a single particle into 800 shorter 

trajectories using a window size w of 10. Based on the statistics in Figure 9 (d), we classified ballistic 

diffusion (T1) when Df < 1.6, normal diffusion (T2) when 1.6 ≤ Df ≤ 2.0, and subdiffusion (T3) when Df > 

2.0. Most short trajectories had Df < 1.6, as depicted in Figure 10 (a), indicating their categorization as 

ballistic diffusion (T1). Interestingly, for the short trajectories, the fraction of ballistic diffusion increased 

as the increase in the particle size. This trend was opposite to the observation in Figure 9 (d). Because the 

value of Df depends on ln(𝑑/𝐿), we computed the mean ln(𝑑/𝐿) for all particles across a range of 

window sizes from 10 to 2500 (Figure 10 (b)) to avoid the artificial error caused by the window size. 

When w was smaller than 1000, larger particles exhibited higher ln(𝑑/𝐿), leading to smaller Df values. 

The trend reversed when w exceeded 1000, with larger particles demonstrating smaller ln(𝑑/𝐿), resulting 

in larger Df. This result not only verified the correctness of Figure 10 (a), but also unveiled an intriguing 

diffusion mechanism: over a sufficiently long period, larger particles tend to get trapped and display 

subdiffusive behavior. However, on a very short time scale, they showcase more ballistic diffusion 

compared to smaller particles. 
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Figure 9. (a) The histograms of the average MeanMSD of nanoparticles with radii of 0.5, 1, 1.5, 2, and 3. The 
variety of MeanMSD versus radius was fitted by an exponential relation (mean absolute percentage error = 
3.3%). The error bars denote the standard deviations. (b) – (d) The average fractal dimension, efficiency, and 
trappedness of nanoparticles. The p-values represent the significant difference between the group and the 
first group (r = 0.5). There is a significant difference if p < 0.05. 

 
Figure 10. (a) The fractions of three diffusion states derived from short trajectories (w=10). The state T1 
(dark blue) represents the ballistic diffusion where Df < 1.6. The state T2 (middle blue) represents the normal 
diffusion where 1.6≤ Df ≤ 2.0. The state T3 (light blue) represents the subdiffusion where Df > 2.0. (b) The 
variation of the logarithm of end-to-end distance divided by the total traveled distance, ln(d/L), with respect 
to the window size w. The inset figure shows the variation for window size w ranging from 500 to 2500. 

 

𝑦 = 𝑒$%.'()*+.+'
MAPE	 = 3.3%

p=0.365
p=0.003

p=0.003
P<0.001

p=0.992
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Conclusions 

In this study, we developed a coarse-grained particle-based model for the human gastrointestinal mucus 

and diffusive PEG-coated nanoparticles. To validate the model, experimental measurements were 

performed to characterize the mucus and diffusion processes of nanoparticles. Frequency sweep 

experiments revealed covalent cross-linking in the mucus, giving it solid-like behavior, with an average 

mesh size of 214 nm. Analyzing single particle traces and van Hove correlation functions for 

nanoparticles of 100 nm, 200 nm, and 500 nm in diameter, we found that 500 nm nanoparticles, the ones 

larger than the pore size, were trapped effectively in the mucus polymeric network. From computational 

simulations, our model captured important mucus molecular structures (Muc2 and Muc5AC), allowing us 

to study pore size dependence on chemical composition and mucus concentration. Given the significance 

of pore size for the permeability of nanoparticles, it underscores the necessity of simulating various mucin 

components. To match the experimental conditions, we simulated nanoparticle diffusion in 20 wt% 

mucus composed of 60% Muc5AC and 40% Muc2. Upon normalizing the diffusion coefficient and 

nanoparticle sizes, we observed agreement between the simulated and experimental diffusion coefficients. 

A mathematical model, namely the hopping model, closely matched both simulation and experimental 

outcomes. In addition, we employed 7 diffusional fingerprints for particles, based on which we trained a 

logistic regression model to differentiate particle sizes. By carefully examining the fingerprints, we 

further discovered that larger nanoparticles tend to be trapped in mucus over longer durations, while they 

exhibit more ballistic diffusion over shorter time spans. Based on the studies discussed above, our model 

effectively characterized the diffusion of the surface-neutral muco-penetrating PEG-coated nanoparticles 

in the human colorectal adenoma environment. Yet, CG models under physiological conditions and 

disease states need to be further validated due to the changes in mucus compositions. By tuning the 

abundance of disulfide bonds and intramolecular bonds in the model, mucus aggregation and particle 

diffusion processes can also be examined under the condition of mucolytic enzyme degradation, which is 

another strategy to enhance the penetration ability of particulate materials.1,73 In terms of the modeling of 

nanoparticles, the current model can be extended to study irregularly shaped or charged nanoparticles. 
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The Slater smearing charge distribution method can be used to augment our model for such 

investigations.74,75 Overall, our models will serve as a foundation for understanding and predicting mucus-

nanoparticle interactions, thereby providing a promising platform for future work on the diffusion of 

nanoparticle-based therapeutics in the human gastrointestinal mucus.  
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