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Synopsis  Acquiring accurate 3D biological models efficiently and economically is important for morphological data col-
lection and analysis in organismal biology. In recent years, structure-from-motion (SFM) photogrammetry has become in-
creasingly popular in biological research due to its flexibility and being relatively low cost. SFM photogrammetry registers 2D
images for reconstructing camera positions as the basis for 3D modeling and texturing. However, most studies of organismal
biology still relied on commercial software to reconstruct the 3D model from photographs, which impeded the adoption of
this workflow in our field due the blocking issues such as cost and affordability. Also, prior investigations in photogrammetry
did not sufficiently assess the geometric accuracy of the models reconstructed. Consequently, this study has two goals. First, we
presented an affordable and highly flexible SFM photogrammetry pipeline based on the open-source package OpenDroneMap
(ODM) and its user interface WebODM. Second, we assessed the geometric accuracy of the photogrammetric models acquired
from the ODM pipeline by comparing them to the models acquired via microCT scanning, the de facto method to image
skeleton. Our sample comprised 15 Aplodontia rufa (mountain beaver) skulls. Using models derived from microCT scans of
the samples as reference, our results showed that the geometry of the models derived from ODM was sufficiently accurate for
gross metric and morphometric analysis as the measurement errors are usually around or below 2%, and morphometric anal-
ysis captured consistent patterns of shape variations in both modalities. However, subtle but distinct differences between the
photogrammetric and microCT-derived 3D models could affect the landmark placement, which in return affected the down-
stream shape analysis, especially when the variance within a sample is relatively small. At the minimum, we strongly advise
not combining 3D models derived from these two modalities for geometric morphometric analysis. Our findings can be in-
dictive of similar issues in other SFM photogrammetry tools since the underlying pipelines are similar. We recommend that
users run a pilot test of geometric accuracy before using photogrammetric models for morphometric analysis. For the research
community, we provide detailed guidance on using our pipeline for building 3D models from photographs.

Introduction Iglhaut et al. 2019; Duncan et al. 2022). Due to the
non-invasive nature of photography, this technique has
been used by clinicians in the past 15 years to acquire
craniofacial scans relatively quickly and safely from
patients, as well as research in human craniofacial
development and disorders (Heike et al. 2009, 2010;
Weinberg et al. 2016; Al-Rudainy et al. 2018; Duncan

Acquiring 3D biological models efficiently and eco-
nomically can aid in data collection, research collabo-
ration, and developing a comprehensive understanding
of phenotypical variations and underlying biological
mechanisms. Therefore, photogrammetry, the category
of techniques that uses 2D photos for reconstructing
3D models with realistic texture, has become increas- €t al: 2022).

ingly used in biological research (Giacomini et al. 2019; Thanks to the fast advancement of computer vision
Waltenberger et al. 2021). techniques and infrastructure, structure-from-motion

(SFM) photogrammetry tools have been rapidly devel-
oped and refined within the last decade (Fau et al. 2016;
Giacomini et al. 2019; Morgan et al. 2019; Waltenberger
et al. 2021). Unlike stereophotogrammetry, SFM

The conventional technique for the reconstruc-
tion of 3D models from photos is stereophotogram-
metry, which typically involves multiple cameras
and recording their positions (Westoby et al. 2012;
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photogrammetry estimates camera poses and posi-
tions from 2D image registration (Westoby et al. 2012;
Iglhaut et al. 2019). Thus, a single camera can be
used for data collection. Due to this flexibility, SFM
photogrammetry has been widely used in 3D data
acquisition for geographical and geological surveys,
architectural preservation, and 3D modeling for arche-
ological and paleontological sites (Westoby et al. 2012;
Zimmer et al. 2018; Wang et al. 2019). In recent years,
SEM photogrammetry has also been introduced to bi-
ological data collection for research, museum archives,
and anatomical education as a flexible and low-cost
tool (Knyaz et al. 2018; Giacomini et al. 2019; Lauria
et al. 2022).

Most previous studies that evaluated SFM pho-
togrammetry for biological research used commercial
software, for which the costs might be substantial or
yearly accruing (Fahlke & Autenrieth 2016; Knyaz et al.
2018; Giacomini et al. 2019; Waltenberger et al. 2021).
Furthermore, although photogrammetry derived 3D
models may look realistic due to the high-resolution
texture, their geometric accuracy should be carefully as-
sessed (Giacomini et al. 2019; Waltenberger et al. 2021).
As pooling 3D data acquired by different digitization
methods has been becoming more frequent, we ur-
gently need to understand how the errors produced by
these methods due to differences in the acquired geom-
etry may disrupt detecting biological signals.

Previous tests of SFM photogrammetry have not in-
corporated sufficient evaluations of the geometric ac-
curacy of the acquired textured models. Some studies
only provided an overall evaluation and visualization
of 3D model surface deviations between photogram-
metric models and those acquired by other digitization
methods (Fahlke & Autenrieth 2016; Fau et al. 2016;
Buzi et al. 2018; Waltenberger et al. 2021). Other studies
that assess the performance of photogrammetric mod-
els in landmark-based morphometric analyses only
showed that models acquired by digitization methods
tended to cluster together in principal component (PC)
plots (Buzi et al. 2018; Waltenberger et al. 2021). Only
Giacomini et al. (2019) evaluated the error produced
by digitization methods in a morphometric analysis us-
ing 3D models of bat skulls acquired by photogramme-
try, CT scanning, and laser scanning. They suggested
that, although photogrammetric models could be over-
all sufficiently accurate for multi-species evolutionary
studies, researchers should be cautious in mixing data
acquired by different digitization methods, especially
when the sample showed limited variability.

Regarding measurement accuracy, Morgan et al.
(2019) found that the average error between measure-
ments taken on photogrammetric models of 45 hu-
man skulls and physical measurements fell below 2 mm
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(around 2%). A 2-mm average measurement error is
usually considered acceptable for anthropometric anal-
ysis (Katz & Friess 2014; Stull et al. 2014; Morgan et al.
2019; Oriola et al. 2022). However, physical measure-
ments may not be a good reference since they are more
prone to operator errors compared to taking measure-
ments on 3D models (Weinberg et al. 2004; Robinson
& Terhune 2017; Waltenberger et al. 2021). Other re-
searchers focused on the consistency of measuring pho-
togrammetric models compared to measuring physical
specimens, laser, or microCT scanned models (Jurda &
Urbanova 2016; Weinberg et al. 2016; Lee & Gerdau-
Radonic 2020; Lauria et al. 2022; Oriola et al. 2022).

In summary, our study has two main objectives.
First, we presented a full workflow of photogrammetry
from photography to 3D model post-processing using
only free, open-source tools. The SFM photogramme-
try was based on the WebODM, the convenient user
interface of the open-source package OpenDroneMap
(ODM) (Vacca 2019, 2020; WebODM Authors n.d.).
We provided methods, tools, and detailed guidance to
ease users’ introduction to photogrammetry. Second,
we offered an assessment of the geometric accuracy
of the ODM-derived models using both metric and
landmark data. For this purpose, we used the mod-
els acquired from microCT scanning as the gold stan-
dard. We also focused on whether mixing photogram-
metric and CT model could influence data analysis
in a single-species sample with low variance, because
slight deviations in model geometry created by different
3D digitization modalities can disrupt detecting subtle
but meaningful biological signals (Robinson & Terhune
2017; Giacomini et al. 2019; Pietrobelli et al. 2022).

Materials and methods
Materials

Our sample comprised 15 adult mountain beaver
(Aplodontia rufa) skulls. A total of 14 skulls were pro-
vided by the courtesy of Burke Museum of Natural His-
tory, Seattle, WA, USA. An additional skull was pro-
vided from the personal collection of one of the authors
(A.M.M.). Burke Museum accession numbers can be
found in Table S1 in the supplemental material.

3D model reconstruction using ODM and WebODM

We used a low-end DSLR camera mounted on a tripod,
a remote-controllable turntable, and a lightbox for pho-
tography. The specifics of the photography setup and
imaging protocol, along with the open-source software
to control the data acquisition can be found in the work-
flow instructions of the supplementary material.

SEM photogrammetry was performed using We-
bODM, the graphic user interface of the open-source
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package ODM (Vacca 2020; WebODM Authors n.d.).
The essential steps of SFM photogrammetry in ODM
can be summarized as:

(1) Image registration based on feature matching.

(2) Multi-view stereo: This process reconstructs cam-
era poses and positions based on image registration
and the camera metadata. The output is a sparse
point cloud.

(3) Dense point cloud creation: using the information
and the sparse point cloud from the last step to gen-
erate a dense point cloud.

(4) Modeling and texturing: by default, ODM uses Pois-
son reconstruction for 3D modeling based on the
dense point cloud and then maps texture to the
model.

(5) Model scaling: In ODM, it is possible to scale 3D
models to their physical sizes using Aruco Markers.
Without using Aruco Markers, users need to scale
each model manually by taking measurements di-
rectly from the specimen and apply the correction
after the model is built. Using Aruco Markers can
also ensure successful textured model reconstruc-
tion in ODM by providing a size reference to the
program.

3D model reconstruction using microCT scanning

We used a Bruker/Skyscan 1076C microtomography
microCT scanner to acquire 3D scans of mountain
beaver skulls at 35-micron resolution. These scans were
converted into 3D models using Segment Editor mod-
ule of 3D Slicer (Kikinis et al. 2014) and SlicerMorph
(Rolfe et al. 2021) as microCT imaging is considered the
“gold standard” to acquire geometrically accurate mod-
els. For detailed microCT scanning protocols, please see
Table S2 in the supplementary material.

Landmark collection

The photogrammetric models (ODM-derived here-
after) and microCT scanned models (CT-derived here-
after) were imported into 3D Slicer for landmark col-
lection (Kikinis et al. 2014). The same operator (CZ)
annotated 29 landmarks on each model (Figure S1,
Table S3). The procedure was replicated three times.
The average of the three replicates was the final land-
mark set for metric and morphometric analysis, which
we refer as mean landmark dataset in sections below.
Replicates were also used to calculate intraobserver er-
ror for each method. All error calculation and analy-
sis were performed using statistical language R (R Core
Team 2017).

Measurement errors and accuracy

Because the ODM-derived models had been automat-
edly scaled using the Aruco markers to approximate
real-life sizes, the Euclidean distances between land-
marks were directly used to represent the actual
measurements. We calculated 17 linear measurements
for each model based on the mean landmark set:
6 anteroposterior length measurements, 9 bilateral
width measurements between pairwise landmarks,
and 2 height measurements (Table S4). We reported
inter-method measurement error by subtracting the
ODM-derived measurement from the CT derived
one, and taking its absolute value: errofiner-method =
(abs(CT measure— ODMpneasure)). The inter-method er-
ror for each measurement was also converted to the
percentages of corresponding CT-derived measure-
ment (inter-method % error in the following text):
errorinter—method/CTmeasure x 100.

The accuracy of the ODM-derived measurements
was determined as how similar they were to the gold
standard, the CT-derived measurements. For this pur-
pose, we conducted two-sided ¢-test to assess whether
the mean CT and ODM-derived values for each of
the 17 measurements were significantly different. If the
mean CT and ODM-derived measurements were not
significantly different (P > 0.05) for the majority of the
17 measurements, the accuracy of the ODM-derived
measurements could be considered as acceptable for
statistical analysis.

Errors in geometric morphometric analysis

We first assessed the errors created by the two digitiza-
tion methods, photogrammetry (ODM) and CT scan-
ning, in a morphometric analysis based on a mixed
dataset with landmarks annotated on the models de-
rived from these two methods. To do this, we per-
formed a Procrustes analysis of variance (ANOVA)
with random residual permutation (RRPP) based on
a joint Generalized Procrustes Analysis (GPA) of all
three ODM and CT-derived landmark sets using the ge-
omorph R package (Collyer et al. 2015; Adams et al.
2021). GPA registers landmark configurations by re-
moving size, location, and orientation factors (Zelditch
et al. 2012). Similar to ordinary ANOVA, Procrustes
ANOVA is designed to quantify variances explained by
different factors within a landmark dataset registered
by GPA and test whether these variances are significant
(Goodall 1991; Klingenberg & McIntyre 1998).

Our linear model (Procrustes coordinates ~
ID + Method + Replicates + ID: Method) con-
tained three variables and an interaction term: (1) ID:
individual variations based on labeling the ODM and
CT-derived models with the same ID, (2) Method:



the mean error (or systematic error) caused by the
two digitization methods: photogrammetry and CT
scanning, (3) Replicates: intraobserver errors from
three landmark trials, and (4) ID by Method: the in-
teraction between digitization methods and ID. This
fourth term, the interaction, represents the variance
explained by the variation in the errors caused by the
two digitization methods across individuals. In other
words, this interactive factor quantifies the random
errors associated with digitization methods occurred at
the individual level. R square of each factor quantifies
the proportion of variance it explains. If the P-value
of each factor is smaller than 0.05, the factor explains
a significant amount of variance. In general, if the
landmarks are carefully annotated and the digitization
methods yield highly consistent landmark sets, the “ID”
factor should account for nearly all the total variance
with an extremely small P-value.

Additionally, separate GPAs of the ODM and CT-
derived mean landmark datasets were performed to as-
sess whether they captured similar patterns of shape
variation and resulted in similar shape spaces. First, we
computed the correlation coefficient between all pairs
of Procrustes distances of the ODM and CT-derived
datasets. The Procrustes distance is the root of the sum
of squares between two landmark configurations, thus
representing their overall shape difference. Therefore,
the correlation between all pairs of Procrustes distances
of the ODM and CT-derived datasets reflected over-
all similarity between the shape spaces of these two
datasets. Second, we calculated the correlation coeffi-
cients between the PC scores of the first five PCs using
the corrplot R package (Wei & Simko 2021). Principal
Component Analysis is commonly used to reduce the
dimensionality of the hyper-dimensional shape space
by generating PCs) ordered by the variances they ex-
plained. Usually, the first few PCs are used to summa-
rize the patterns and magnitude of the overall variations
within a sample. Thus, the correlation between corre-
sponding high-ranking PCs assesses the detailed sim-
ilarity between the shape spaces of the ODM and CT
datasets. Overall, if the correlation coeflicient (r) ex-
ceeded 0.8 and the P-value was below 0.05, the two vari-
ables were considered as strongly correlated. Ideally, if
the shape spaces from the CT and ODM-derived land-
mark sets are highly consistent, the correlation coefhi-
cients of Procrustes distances and first five PCs should
all be close to 1.

We also computed the correlation coefficient be-
tween the CT and ODM-derived sets of centroid sizes,
which are standard size measurements in geometric
morphometric analysis (Zelditch et al. 2012). In ad-
dition, we compared the similarity of the CT and
ODM-derived form spaces, which were constructed by
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adding the logarithmic transformation to the tangent
Euclidean space of each shape space using the Morpho
R package (Klingenberg 2016; Schlager et al. 2023). For
this purpose, we conducted the same correlation analy-
sis using pairwise distances and PC scores as in the pre-
vious correlation analysis of the two shape spaces.

Results
Quality of the ODM-derived textured models

The raw photos and the output ODM-derived models
(OB file) are available publicly in an online repository
(https://osf.io/b39yx/, DOI: 10.17605/OSEIO/B39YX)
(Figure S1). Overall, the quality of the textured models
was high and sufficient for visual comparison and land-
mark annotation. The ODM-derived textured mod-
els have around 400,000-700,000 vertices. There were
some black polygons (noise) attached to thin edges and
structures, such as the external and internal surfaces
of the zygomatic arches and the anterior margin of the
nasal bones (Figure S3). However, they, in general, did
not influence landmarking (Figure S1). We only used
functions for removing selected polygons and isolated
polygons in MeshLab to delete the black polygons at-
tached at the external surface of the zygomatic arches
because they may influence landmark annotation in a
few specimens (see Section 6.1 in the workflow instruc-
tions of the supplementary material).

The ODM-derived models were essentially water-
tight (Figure S2). The holes and foramina, such as inci-
sive foramina and even foramen magnum, in the ODM-
derived models were closed. Furthermore, the sutures
were also marked by texture and did not show on the
surface of the meshes. The fissures at the two sides
of the occipital bones were also fused. These struc-
tures were delineated only by texture. Thus, we re-
lied on using texture to place the landmarks on these
structures.

Processing time for ODM-derived models

When syncing the turntable with the camera, it took
approximately 2 min to photograph each of the six sets
of photos (32-64 photos). Overall, taking photos for
one specimen took around 20-30 min, which included
setting up specimens into different orientations and ad-
justing the camera focus ring. After training with three
to four specimens, the time for taking photos of one
specimen could drop to around 20 min. It took less than
10 min per specimen for photo preprocessing, such as
using a custom script in 3D Slicer to create a rectangu-
lar box for an initial background masking for each set
of photos (Section 4 in the workflow instructions of the
supplementary material). Using a cloud server-based
ODM, creating a 3D model from photographs took
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Fig. I Inter-method measurement errors based on the automatedly scaled ODM-derived datasets. (A) Inter-method measurement errors in
absolute values. (B) Inter-method measurement errors as percentages of the corresponding CT measurements. Each column represents the
inter-method errors between the CT and ODM-derived sets for each of the |7 measurements. Red dots: mean inter-method measurement
errors. Blue dots: mean CT-derived intraobserver errors. Green dots: mean ODM-derived intraobserver errors. Red horizontal line: overall
mean ODM-CT measurement error. For both modalities, intraobserver measurement errors were calculated by averaging the errors between
measurements derived from the mean landmark set and each replicate.

about 2-3 h. We configured the WebODM to allow  Metric errors and accuracy

running two tasks concurrently to increase the The gyerall mean inter-method measurement error was
throughput. Overall, the 15 beaver models took ap- (550 mm. The mean inter-method errors of the 17
proximately 20 h to process. measurements ranged from 0.138 to 1.376 mm (Fig. 1
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Table | Procrustes ANOAVA after a joint GPA of the ODM and CT datasets.

Degree of freedom Sum of square Mean square R square F value P value
ID 14 0.107 0.00761 0.908 91.049 I x 107*
Method | 0.00127 0.00127 0.0108 15.171 I x 10~*
Replica 2 0.000270 0.000135 0.00230 1.615 0.0485
ID: method 14 0.00443 0.000317 0.0378 3.786 I x 10~*
Residual 58 0.00485 0.0000836 0.0413
Total 89 0.117

and Table S6). When converting the inter-method
errors to the percentages of the corresponding CT-
derived measurements, the overall mean inter-method
% error was 1.760%. The mean inter-method % er-
rors of the 17 measurements ranged from 0.998 to
3.057% (Fig. 1, Tables S6 and S7). A total of 95% of the
inter-method % errors fell below 4%. The large inter-
method percent errors were primarily due to the mea-
surements were small scaled. For example, the largest
inter-method % error (7.824%) was from the specimen
82409’s measurement 14, a small-scaled measurement
between two premolars. However, the corresponding
absolute inter-method measurement error was not ex-
ceptionally large (0.601 mm). Two-sided Welch t-tests
showed that the mean CT and ODM-derived values
were not significantly different for all measurements
(P > 0.05) except for measurement 3 (P < 0.05). Thus,
the accuracy of the ODM-derived measurements was
acceptable for statistical analysis.

Geometric morphometric analysis

Procrustes ANOVA based on a joint GPA of the three
CT and ODM-derived landmark replicates showed that
the individual variations (the factor “ID”) accounted for
90.8% of the total variance (R-square) (Table 1). Though
statistically significant, intraobserver errors (the factor
“replica”) from three rounds of manual landmarking
only accounted for 0.23% of the total variance. There-
fore, the intraobserver errors can be considered as min-
imal. The factor “method,” the mean difference be-
tween the CT and ODM-derived landmark datasets, ac-
counted for a small but significant amount of the total
variance (1.08%). The interaction between individual
specimens and the digitization methods, as represented
by “ID : method,” explained 3.78% of the total variance
and was highly significant. This showed that the varia-
tion in the difference between two digitization methods
across individuals accounted for a small but highly sig-
nificant amount of the total variance. In other words,
digitization methods also created significant random

errors at the individual level in addition to systematic
error.

The correlation analysis of pairwise Procrustes dis-
tances and PC scores from the separate GPAs of the
CT and ODM-derived landmark sets confirmed de-
viations caused by the two digitization methods in
morphometric analysis. Though strongly correlated
(P-value < 0.001 and correlation coefficient r = 0.893),
the correlation coefficient between the CT and ODM-
derived pairwise Procrustes distances fell below 0.9
(Fig. 2A). None of the correlation coefficients between
the scores of the first five CT and ODM-derived PCs,
which explained 70.7 and 72.7% of the total vari-
ance, respectively, exceeded 0.9 (Fig. 2B). In particular,
the correlation coefficient between the CT and ODM-
derived PC1 scores fell below 0.8. Overall, though devi-
ations existed, the strong correlation in Procrustes dis-
tances still showed that the CT and ODM-derived shape
spaces were overall consistent. In addition, the centroid
sizes of the CT and ODM-derived datasets were nearly
perfectly correlated (correlation coefficient r = 0.999, P-
value < 0.001) (Figure S5A). The CT and ODM-derived
form spaces, which were constructed by adding the log-
arithmic transformation of centroid sizes to the tan-
gent space of each shape space, showed stronger cor-
relation than the shape spaces of the two datasets based
on the comparison of pairwise distances and PC scores
(Figure S5B and S5C).

Discussion
Geometric accuracy of the ODM-derived models

Our study showed the linear measurements taken on
the ODM-derived models were in general consistent
with the CT-derived ones. Therefore, the ODM-derived
models were sufficiently accurate for statistical analy-
ses using linear measurements. The mean inter-method
measurement error fell below 2%. Morgan et al. (2019)
considered that an average error of 2% % was ac-
ceptable for human osteometric analysis. However, in
our study, the inter-method measurement errors still
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distances. (B) Correlations of the scores of the first five PCs.

exceeded the intraobserver errors. If the ODM and CT-
derived models were nearly identical, the inter-method
errors should be comparable with intraobserver error.
Therefore, users should still be cautious about analyz-
ing subtle variations, such as individual variations, us-
ing measurements taken on the ODM-derived models.

The performance of ODM-derived landmark sets
in morphometric analysis yielded mixed results. In
general, we concur with the previous studies (e.g., Katz
& Friess 2014; Giacomini et al. 2019; Waltenberger et al.
2021) that Landmarks collected from the ODM-derived
(and other photogrammetry-derived) models can be
sufficient for capturing overall trends within a sample.
In other words, CT and ODM-derived models were
overall highly consistent in geometry and centroid size.
However, the landmarks placed on the ODM-derived
(and other photogrammetry-derived) 3D models may
not be ideal for investigating subtle variation, such

as variation within a species with limited variability.
Nearly 5% of variance was associated with digitization
methods in a mixed CT and ODM-derived landmark
set. The CT and ODM-derived landmark sets also
showed clear deviations in shape space. Consequently,
the differences in the model geometry created by
two digitization methods may conceal subtle but bi-
ologically meaningful signals. Moreover, in addition
to the subtle but significant systematic error created
by the CT and ODM methods, the two digitization
methods generated significant random error across
individuals. In other words, landmarks placed on CT
and ODM-derived models can produce different levels
of error, subject to the condition of each individual
specimen. The random errors created by digitization
errors are usually hard to predict and control, thus can
further complicate the results of morphometric analysis
based on landmarks placed on ODM-derived models.



Therefore, we concur with Giacomini et al. (2019) and
advice not to mix landmark sets taken from the CT and
ODM-derived models for morphometric analysis, in
particular, when the focus of the analysis is individual
variation.

It should be noted that the results of error testing
in our study (as well as in any study of error based
on landmark data) depended on the landmark choice,
sample, and experience of the operator (Giacomini
et al. 2019). For example, our study was based on a
single species with limited variability. The impact of
digitization methods on morphometric analysis may
be reduced if our sample contains well differentiated
groups, such as different species in an evolutionary
study (Giacomini et al. 2019). Nevertheless, our find-
ings can still indicate similar issues in other SFM pho-
togrammetry tools since the underlying pipelines are
similar. Therefore, we recommend users to run a pilot
study to determine whether models acquired by pho-
togrammetry are appropriate for metric and morpho-
metric analyses.

The importance of photography settings
for photogrammetry

Our photogrammetry pipeline completely relies on
open-source software, thus further bringing the cost
down compared to previous studies using commer-
cial software. The downside of any photogrammetry
pipeline is that it can be laborious. The photo tak-
ing and preprocessing can be highly time-consuming
and is subject to the experience of users (Fahlke &
Autenrieth 2016; Fau et al. 2016; Waltenberger et al.
2021). We offered a variety of tools to ease the process of
photography and improve the repeatability of data col-
lection, such as syncing the camera with the turntable
and using Depth-of-Field to set up camera parameters
(see supplementary material). With sufficient training,
the time it took to take 320 pictures for each specimen
can be reduced to around 20 min.

Here, we present several tips and methodological
concerns for taking photos (also see the workflow in-
structions of the supplementary information). The first
is about the sharpness of the photos. For camera param-
eters, the F stop values determine the sharpness of pic-
tures. We set up the F stop values between F13 and F16.
However, based on our earlier experiments, F/20-F/22
could still achieve sharp enough photos for high-quality
texturing based on our relatively low-end DSLR camera.

It is critical to cover sufficient detail of the specimen
by taking pictures from different angles. We used six sets
of 320 photos for each specimen. We first experimented
with taking three sets of vertically oriented specimens
and found that this setting is better for capturing the
trunk of the skull. We then added two more sets of pho-
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tos of a horizontally placed specimen to better capture
the lateral structures, such as zygomatic arches and the
external acoustic meatus. Users can experiment with re-
constructing models with photos taken from different
angles to see which angles do better in capturing certain
aspects of the objects. We recommend taking more than
32 pictures (i.e., no more than 11.25 degrees difference
per rotation) for each full circle of turntable rotation to
make sure sufficient overlapping between adjacent pic-
tures exists.

Ambient light should be provided to expose suf-
ficient details of the specimen. However, eliminating
shadows is not possible. Shadow is not an issue if cov-
ered structures are sufficiently exposed in other photos.
Glare and reflective surfaces would also cause problems
for photogrammetry. Therefore, overly intense light-
ning should be avoided. In general, our beaver skulls
were smooth and reflective in a few areas, but we did
not encounter problems with model reconstruction.

Photogrammetric process and other
methodological concerns

WebODM is a convenient interface to run the ODM
package for photogrammetric reconstruction (Vacca
2020; WebODM Authors n.d.). Users only need to sub-
mit photos and specify parameters to run the pro-
cess. We provided a reference parameter setting in the
pipeline guidance (see Section 5.2 in the workflow in-
structions of the supplementary material).

Reducing background noise is critical to ensure
successful photogrammetric reconstruction and high-
quality textured modeling (Matuzevic¢ius & Serackis
2021). Simply covering the background with the same
color is helpful but insufficient. For example, the thin
structures, such as zygomatic arches, might be covered
by black polygons that may obscure placing landmarks
(Figure S4). The same difficulty in reconstructing thin
structures has also been reported by other researchers
using commercial software (Giacomini et al. 2019).
ODM has a deep learning background removal algo-
rithm to mask the background automatedly. This option
must be checked to ensure consistent successful recon-
struction for our photogrammetric reconstruction and
substantially improve the quality of the textured model,
especially the thin structures (Figure S4) (see Section
5.2 in the workflow instructions of the supplementary
material). Some pre-processing of acquired photos was
still necessary. To prepare for the background removal,
we used a script to call functions in 3D Slicer to cre-
ate a bounding box that contains the specimen (see Sec-
tion 4.1 in the workflow instructions of the supplemen-
tary material). We then masked the area outside the
box as black. This step of preprocessing could reduce
the burden of background removal during the model
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reconstruction process in ODM and ensure consistent
success for each sample. This step was also neces-
sary to remove the putty that fixed the specimen ver-
tically, or else the putty would be reconstructed as
well. Note that the small areas of the specimen can
be masked if the same areas are provided in other
pictures.

Finally, we recommend using Aruco markers not just
for automated scaling but also for ensuring successful
textured model reconstruction in ODM (see Sections
2.3 and 3 in the workflow instructions of the supple-
mentary material). Based on our experience, the model
reconstruction task may fail due to the inability to esti-
mate a scale from the input photos.

Conclusion

We presented an open-source SFM photogrammetry
pipeline using WebODM to acquire textured mod-
els from biological specimens. We offered a variety of
tools and detailed guidance to simplify the data col-
lection process and ensure consistency and repeatabil-
ity in model reconstruction. Comparing to the “gold
standard” microCT-derived models, the reconstructed
textured models were sufficiently accurate for assess-
ing overall shape differences and conducting metric
analysis. However, differences between the CT and
ODM-derived models, though small, could still signif-
icantly impact detailed morphological analysis. While
our analysis is specific to the open-source ODM pho-
togrammetry toolkit, given the SFM photogramme-
try pipelines are similar across different programs,
our finding is not unique to ODM, but likely indica-
tive of similar issues in other photogrammetry tools.
Users should be cautious about mixing photogrammet-
ric models with models acquired by other digitization
methods.
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