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Synopsis Acquiring accurate 3D biological models efficiently and economically is important for morphological data col- 
lection and analysis in organismal biology. In recent years, structure-from-motion (SFM) photogrammetry has become in- 
creasingly popular in biological research due to its flexibility and being relatively low cost. SFM photogrammetry registers 2D 

images for reconstructing camera positions as the basis for 3D modeling and texturing. However, most studies of organismal 
biology still relied on commercial software to reconstruct the 3D model from photographs, which impeded the adoption of 
this workflow in our field due the blocking issues such as cost and affordability. Also, prior investigations in photogrammetry 
did not sufficiently assess the geometric accuracy of the models reconstructed. Consequently, this study has two goals. First, we 
presented an affordable and highly flexible SFM photogrammetry pipeline based on the open-source package OpenDroneMap 
(ODM) and its user interface WebODM. Second, we assessed the geometric accuracy of the photogrammetric models acquired 
from the ODM pipeline by comparing them to the models acquired via microCT scanning, the de facto method to image 
skeleton. Our sample comprised 15 Aplodontia rufa (mountain beaver) skulls. Using models derived from microCT scans of 
the samples as reference, our results showed that the geometry of the models derived from ODM was sufficiently accurate for 
gross metric and morphometric analysis as the measurement errors are usually around or below 2%, and morphometric anal- 
ysis captured consistent patterns of shape variations in both modalities. However, subtle but distinct differences between the 
photogrammetric and microCT-derived 3D models could affect the landmark placement, which in return affected the down- 
stream shape analysis, especially when the variance within a sample is relatively small. At the minimum, we strongly advise 
not combining 3D models derived from these two modalities for geometric morphometric analysis. Our findings can be in- 
dictive of similar issues in other SFM photogrammetry tools since the underlying pipelines are similar. We recommend that 
users run a pilot test of geometric accuracy before using photogrammetric models for morphometric analysis. For the research 
community, we provide detailed guidance on using our pipeline for building 3D models from photographs. 
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Iglhaut et al. 2019 ; Duncan et al. 2022 ). Due to the 
non-invasive nature of photography, this technique has 
been used by clinicians in the past 15 years to acquire 
craniofacial scans relatively quickly and safely from 

patients, as well as research in human craniofacial 
development and disorders ( Heike et al. 2009 , 2010 ; 
Weinberg et al. 2016 ; Al-Rudainy et al. 2018 ; Duncan 

et al. 2022 ). 
Thanks to the fast advancement of computer vision 

techniques and infrastructure, structure-from-motion 

(SFM) photogrammetry tools have been rapidly devel- 
oped and refined within the last decade ( Fau et al. 2016 ; 
Giacomini et al. 2019 ; Morgan et al. 2019 ; Waltenberger 
et al. 2021 ). Unlike stereophotogrammetry, SFM 
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cquiring 3D biological models efficiently and eco-
omically can aid in data collection, research collabo-
ation, and developing a comprehensive understanding
f phenotypical variations and underlying biological
echanisms. Therefore, photogrammetr y, the categor y
f techniques that uses 2D photos for reconstructing
D models with realistic texture, has become increas-
ngly used in biological research ( Giacomini et al. 2019 ;
altenberger et al. 2021 ). 
The conventional technique for the reconstruc-

ion of 3D models from photos is stereophotogram-
etry, which typically involves multiple cameras

nd recording their positions ( Westoby et al. 2012 ; 
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photogrammetry estimates camera poses and posi- 
tions from 2D image registration ( Westoby et al. 2012 ; 
Iglhaut et al. 2019 ). Thus, a single camera can be 
used for data collection. Due to this flexibility, SFM 

photogrammetry has been widely used in 3D data 
acquisition for geographical and geological surveys, 
architectural preservation, and 3D modeling for arche- 
ological and paleontological sites ( Westoby et al. 2012 ; 
Zimmer et al. 2018 ; Wang et al. 2019 ). In recent years, 
SFM photogrammetry has also been introduced to bi- 
ological data collection for research, museum archives, 
and anatomical education as a flexible and low-cost 
tool ( Knyaz et al. 2018 ; Giacomini et al. 2019 ; Lauria 
et al. 2022 ). 

Most previous studies that evaluated SFM pho- 
togrammetry for biological research used commercial 
software, for which the costs might be substantial or 
yearly accruing ( Fahlke & Autenrieth 2016 ; Knyaz et al. 
2018 ; Giacomini et al. 2019 ; Waltenberger et al. 2021 ). 
Furthermore, although photogrammetry derived 3D 

models may look realistic due to the high-resolution 

texture, their geometric accuracy should be carefully as- 
sessed ( Giacomini et al. 2019 ; Waltenberger et al. 2021 ). 
As pooling 3D data acquired by different digitization 

methods has been becoming more frequent, we ur- 
gently need to understand how the errors produced by 
these methods due to differences in the acquired geom- 
etry may disrupt detecting biological signals. 

Previous tests of SFM photogrammetry have not in- 
corporated sufficient evaluations of the geometric ac- 
curacy of the acquired textured models. Some studies 
only provided an overall evaluation and visualization 

of 3D model surface deviations between photogram- 
metric models and those acquired by other digitization 

methods ( Fahlke & Autenrieth 2016 ; Fau et al. 2016 ; 
Buzi et al. 2018 ; Waltenberger et al. 2021 ). Other studies 
that assess the performance of photogrammetric mod- 
els in landmark-based morphometric analyses only 
showed that models acquired by digitization methods 
tended to cluster together in principal component (PC) 
plots ( Buzi et al. 2018 ; Waltenberger et al. 2021 ). Only 
Giacomini et al. (2019) evaluated the error produced 

by digitization methods in a morphometric analysis us- 
ing 3D models of bat skulls acquired by photogramme- 
try, CT scanning, and laser scanning. They suggested 

that, although photogrammetric models could be over- 
all sufficiently accurate for multi-species evolutionary 
studies, researchers should be cautious in mixing data 
acquired by different digitization methods, especially 
when the sample showed limited variability. 

Regarding measurement accuracy, Morgan et al. 
(2019) found that the average error between measure- 
ments taken on photogrammetric models of 45 hu- 
man skulls and physical measurements fell below 2 mm 
around 2%). A 2-mm average measurement error is
sually considered acceptable for anthropometric anal-
sis ( Katz & Friess 2014 ; Stull et al. 2014 ; Morgan et al.
019 ; Oriola et al. 2022 ). However, physical measure-
ents may not be a good reference since they are more
rone to operator errors compared to taking measure-
ents on 3D models ( Weinberg et al. 2004 ; Robinson
 Terhune 2017 ; Waltenberger et al. 2021 ). Other re-
earchers focused on the consistency of measuring pho-
ogrammetric models compared to measuring physical
pecimens, laser, or microCT scanned models ( Jurda &
rbanová 2016 ; Weinberg et al. 2016 ; Lee & Gerdau-
adonic 2020 ; Lauria et al. 2022 ; Oriola et al. 2022 ). 
In summary, our study has two main objectives.

irst, we presented a full workflow of photogrammetry
rom photography to 3D model post-processing using
nly free, open-source tools. The SFM photogramme-
ry was based on the WebODM, the convenient user
nterface of the open-source package OpenDroneMap
ODM) ( Vacca 2019 , 2020 ; WebODM Authors n.d. ).
e provided methods, tools, and detailed guidance to
ase users’ introduction to photogrammetry. Second,
e offered an assessment of the geometric accuracy
f the ODM-derived models using both metric and
andmark data. For this purpose, we used the mod-
ls acquired from microCT scanning as the gold stan-
ard. We also focused on whether mixing photogram-
etric and CT model could influence data analysis

n a single-species sample with low variance, because
light deviations in model geometry created by different
D digitization modalities can disrupt detecting subtle
ut meaningful biological signals ( Robinson & Terhune
017 ; Giacomini et al. 2019 ; Pietrobelli et al. 2022 ). 

aterials and methods 
aterials 

ur sample comprised 15 adult mountain beaver
 Aplodontia rufa ) skulls. A total of 14 skulls were pro-
ided by the courtesy of Burke Museum of Natural His-
ory, Seattle, WA, USA. An additional skull was pro-
ided from the personal collection of one of the authors
A.M.M.). Burke Museum accession numbers can be
ound in Table S1 in the supplemental material. 

D model reconstruction using ODM and WebODM

e used a low-end DSLR camera mounted on a tripod,
 remote-controllable turntable, and a lightbox for pho-
ography. The specifics of the photography setup and
maging protocol, along with the open-source software
o control the data acquisition can be found in the work-
ow instructions of the supplementary material. 
SFM photogrammetry was performed using We-

ODM, the graphic user interface of the open-source
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ackage ODM ( Vacca 2020 ; WebODM Authors n.d. ).
he essential steps of SFM photogrammetry in ODM
an be summarized as: 

1) Image registration based on feature matching. 
2) Multi-view stereo: This process reconstructs cam-

era poses and positions based on image registration
and the camera metadata. The output is a sparse
point cloud. 

3) Dense point cloud creation: using the information
and the sparse point cloud from the last step to gen-
erate a dense point cloud. 

4) Modeling and texturing: by default, ODM uses Pois-
son reconstruction for 3D modeling based on the
dense point cloud and then maps texture to the
model. 

5) Model scaling: In ODM, it is possible to scale 3D
models to their physical sizes using Aruco Markers.
Without using Aruco Markers, users need to scale
each model manually by taking measurements di-
rectly from the specimen and apply the correction
after the model is built. Using Aruco Markers can
also ensure successful textured model reconstruc-
tion in ODM by providing a size reference to the
program. 

D model reconstruction using microCT scanning 

e used a Bruker/Skyscan 1076C microtomography
icroCT scanner to acquire 3D scans of mountain
eaver skulls at 35-micron resolution. These scans were
onverted into 3D models using Segment Editor mod-
le of 3D Slicer ( Kikinis et al. 2014 ) and SlicerMorph
 Rolfe et al. 2021 ) as microCT imaging is considered the
gold standard” to acquire geometrically accurate mod-
ls. For detailed microCT scanning protocols, please see
able S2 in the supplementary material. 

andmark collection 

he photogrammetric models (ODM-derived here-
fter) and microCT scanned models (CT-derived here-
fter) were imported into 3D Slicer for landmark col-
ection ( Kikinis et al. 2014 ). The same operator (CZ)
nnotated 29 landmarks on each model (Figure S1,
able S3). The procedure was replicated three times.
he average of the three replicates was the final land-
ark set for metric and morphometric analysis, which
e refer as mean landmark dataset in sections below.
eplicates were also used to calculate intraobserver er-
or for each method. All error calculation and analy-
is were performed using statistical language R ( R Core
eam 2017 ). 
Measurement errors and accuracy 

Because the ODM-derived models had been automat-
edly scaled using the Aruco markers to approximate
real-life sizes, the Euclidean distances between land-
marks were directly used to represent the actual
measurements. We calculated 17 linear measurements
for each model based on the mean landmark set:
6 anteroposterior length measurements, 9 bilateral
width measurements between pairwise landmarks,
and 2 height measurements (Table S4). We reported
inter-method measurement error by subtracting the
ODM-derived measurement from the CT derived
one, and taking its absolute value: error inter-method =
(abs(CT measure −ODM measure )). The inter-method er-
ror for each measurement was also converted to the
percentages of corresponding CT-derived measure-
ment (inter-method % error in the following text):
error inter-method /CT measure × 100. 

The accuracy of the ODM-derived measurements
was determined as how similar they were to the gold
standard, the CT-derived measurements. For this pur-
pose, we conducted two-sided t -test to assess whether
the mean CT and ODM-derived values for each of
the 17 measurements were significantly different. If the
mean CT and ODM-derived measurements were not
significantly different ( P > 0.05) for the majority of the
17 measurements, the accuracy of the ODM-derived
measurements could be considered as acceptable for
statistical analysis. 

Errors in geometric morphometric analysis 

We first assessed the errors created by the two digitiza-
tion methods, photogrammetry (ODM) and CT scan-
ning, in a morphometric analysis based on a mixed
dataset with landmarks annotated on the models de-
rived from these two methods. To do this, we per-
formed a Procrustes analysis of variance (ANOVA)
with random residual permutation (RRPP) based on
a joint Generalized Procrustes Analysis (GPA) of all
three ODM and CT-derived landmark sets using the ge-
omorph R package ( Collyer et al. 2015 ; Adams et al.
2021 ). GPA registers landmark configurations by re-
moving size, location, and orientation factors ( Zelditch
et al. 2012 ). Similar to ordinary ANOVA, Procrustes
ANOVA is designed to quantify variances explained by
different factors within a landmark dataset registered
by GPA and test whether these variances are significant
( Goodall 1991 ; Klingenberg & McIntyre 1998 ). 

Our linear model (Procrustes coordinates ∼
ID + Method + Replicates + ID: Method) con-
tained three variables and an interaction term: (1) ID:
individual variations based on labeling the ODM and
CT-derived models with the same ID, (2) Method:
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the mean error (or systematic error) caused by the 
two digitization methods: photogrammetry and CT 

scanning, (3) Replicates: intraobserver errors from 

three landmark trials, and (4) ID by Method: the in- 
teraction between digitization methods and ID. This 
fourth term, the interaction, represents the variance 
explained by the variation in the errors caused by the 
two digitization methods across individuals. In other 
words, this interactive factor quantifies the random 

errors associated with digitization methods occurred at 
the individual level. R square of each factor quantifies 
the proportion of variance it explains. If the P -value 
of each factor is smaller than 0.05, the factor explains 
a significant amount of variance. In general, if the 
landmarks are carefully annotated and the digitization 

methods yield highly consistent landmark sets, the “ID”
factor should account for nearly all the total variance 
with an extremely small P -value. 

Additionally, separate GPAs of the ODM and CT- 
derived mean landmark datasets were performed to as- 
sess whether they captured similar patterns of shape 
variation and resulted in similar shape spaces. First, we 
computed the correlation coefficient between all pairs 
of Procrustes distances of the ODM and CT-derived 

datasets. The Procrustes distance is the root of the sum 

of squares between two landmark configurations, thus 
representing their overall shape difference. Therefore, 
the correlation between all pairs of Procrustes distances 
of the ODM and CT-derived datasets reflected over- 
all similarity between the shape spaces of these two 
datasets. Second, we calculated the correlation coeffi- 
cients between the PC scores of the first five PCs using 
the corrplot R package ( Wei & Simko 2021 ). Principal 
Component Analysis is commonly used to reduce the 
dimensionality of the hyper-dimensional shape space 
by generating PCs) ordered by the variances they ex- 
plained. Usually, the first few PCs are used to summa- 
rize the patterns and magnitude of the overall variations 
within a sample. Thus, the correlation between corre- 
sponding high-ranking PCs assesses the detailed sim- 
ilarity between the shape spaces of the ODM and CT 

datasets. Overall, if the correlation coefficient ( r ) ex- 
ceeded 0.8 and the P -value was below 0.05, the two vari- 
ables were considered as strongly correlated. Ideally, if 
the shape spaces from the CT and ODM-derived land- 
mark sets are highly consistent, the correlation coeffi- 
cients of Procrustes distances and first five PCs should 

all be close to 1. 
We also computed the correlation coefficient be- 

tween the CT and ODM-derived sets of centroid sizes, 
which are standard size measurements in geometric 
morphometric analysis ( Zelditch et al. 2012 ). In ad- 
dition, we compared the similarity of the CT and 

ODM-derived form spaces, which were constructed by 
dding the logarithmic transformation to the tangent
uclidean space of each shape space using the Morpho
 package ( Klingenberg 2016 ; Schlager et al. 2023 ). For
his purpose, we conducted the same correlation analy-
is using pairwise distances and PC scores as in the pre-
ious correlation analysis of the two shape spaces. 

esults 
uality of the ODM-derived textured models 

he raw photos and the output ODM-derived models
OBJ file) are available publicly in an online repository
 https://osf.io/b39yx/ , DOI: 10.17605/OSF.IO/B39YX)
Figure S1). Overall, the quality of the textured models
as high and sufficient for visual comparison and land-
ark annotation. The ODM-derived textured mod-
ls have around 400,000–700,000 vertices. There were
ome black polygons (noise) attached to thin edges and
tructures, such as the external and internal surfaces
f the zygomatic arches and the anterior margin of the
asal bones (Figure S3). However, they, in general, did
ot influence landmarking (Figure S1). We only used
unctions for removing selected polygons and isolated
olygons in MeshLab to delete the black polygons at-
ached at the external surface of the zygomatic arches
ecause they may influence landmark annotation in a
ew specimens (see Section 6.1 in the workflow instruc-
ions of the supplementary material). 
The ODM-derived models were essentially water-

ight (Figure S2). The holes and foramina, such as inci-
ive foramina and even foramen magnum, in the ODM-
erived models were closed. Furthermore, the sutures
ere also marked by texture and did not show on the
urface of the meshes. The fissures at the two sides
f the occipital bones were also fused. These struc-
ures were delineated only by texture. Thus, we re-
ied on using texture to place the landmarks on these
tructures. 

rocessing time for ODM-derived models 

hen syncing the turntable with the camera, it took
pproximately 2 min to photograph each of the six sets
f photos (32–64 photos). Overall, taking photos for
ne specimen took around 20–30 min, which included
etting up specimens into different orientations and ad-
usting the camera focus ring. After training with three
o four specimens, the time for taking photos of one
pecimen could drop to around 20 min. It took less than
0 min per specimen for photo preprocessing, such as
sing a custom script in 3D Slicer to create a rectangu-
ar box for an initial background masking for each set
f photos (Section 4 in the workflow instructions of the
upplementary material). Using a cloud server-based
DM, creating a 3D model from photographs took

https://osf.io/b39yx/
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Fig. 1 Inter-method measurement errors based on the automatedly scaled ODM-derived datasets. (A) Inter-method measurement errors in 
absolute values. (B) Inter-method measurement errors as percentages of the corresponding CT measurements. Each column represents the 
inter-method errors between the CT and ODM-derived sets for each of the 17 measurements. Red dots: mean inter-method measurement 
errors. Blue dots: mean CT-derived intraobserver errors. Green dots: mean ODM-derived intraobserver errors. Red horizontal line: overall 
mean ODM-CT measurement error. For both modalities, intraobserver measurement errors were calculated by averaging the errors between 
measurements derived from the mean landmark set and each replicate. 
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bout 2–3 h. We configured the WebODM to allow
unning two tasks concurrently to increase the
hroughput. Overall, the 15 beaver models took ap-
roximately 20 h to process. 
Metric errors and accuracy 

The overall mean inter-method measurement error was
0.550 mm. The mean inter-method errors of the 17
measurements ranged from 0.138 to 1.376 mm ( Fig. 1
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Table 1 Procrustes ANOAVA after a joint GPA of the ODM and CT datasets. 

Degree of freedom Sum of square Mean square R square F value P value 

ID 14 0 .107 0 .00761 0 .908 91 .049 1 × 10 −4 

Method 1 0 .00127 0 .00127 0 .0108 15 .171 1 × 10 −4 

Replica 2 0 .000270 0 .000135 0 .00230 1 .615 0.0485 

ID: method 14 0 .00443 0 .000317 0 .0378 3 .786 1 × 10 −4 

Residual 58 0 .00485 0 .0000836 0 .0413 

Total 89 0 .117 
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and Table S6). When converting the inter-method 

errors to the percentages of the corresponding CT- 
derived measurements, the overall mean inter-method 

% error was 1.760%. The mean inter-method % er- 
rors of the 17 measurements ranged from 0.998 to 
3.057% ( Fig. 1 , Tables S6 and S7). A total of 95% of the
inter-method % errors fell below 4%. The large inter- 
method percent errors were primarily due to the mea- 
surements were small scaled. For example, the largest 
inter-method % error (7.824%) was from the specimen 

82409’s measurement 14, a small-scaled measurement 
between two premolars. However, the corresponding 
absolute inter-method measurement error was not ex- 
ceptionally large (0.601 mm). Two-sided Welch t -tests 
showed that the mean CT and ODM-derived values 
were not significantly different for all measurements 
( P > 0.05) except for measurement 3 ( P < 0.05). Thus, 
the accuracy of the ODM-derived measurements was 
acceptable for statistical analysis. 

Geometr ic mor phometr ic analysis 

Procrustes ANOVA based on a joint GPA of the three 
CT and ODM-derived landmark replicates showed that 
the individual variations (the factor “ID”) accounted for 
90.8% of the total variance ( R -square) ( Table 1 ). Though 

statistically significant, intraobserver errors (the factor 
“replica”) from three rounds of manual landmarking 
only accounted for 0.23% of the total variance. There- 
fore, the intraobserver errors can be considered as min- 
imal. The factor “method,” the mean difference be- 
tween the CT and ODM-derived landmark datasets, ac- 
counted for a small but significant amount of the total 
variance (1.08%). The interaction between individual 
specimens and the digitization methods, as represented 

by “ID : method,” explained 3.78% of the total variance 
and was highly significant. This showed that the varia- 
tion in the difference between two digitization methods 
across individuals accounted for a small but highly sig- 
nificant amount of the total variance. In other words, 
digitization methods also created significant random 
rrors at the individual level in addition to systematic
rror. 
The correlation analysis of pairwise Procrustes dis-

ances and PC scores from the separate GPAs of the
T and ODM-derived landmark sets confirmed de-
iations caused by the two digitization methods in
orphometric analysis. Though strongly correlated

 P -value < 0.001 and correlation coefficient r = 0.893),
he correlation coefficient between the CT and ODM-
erived pairwise Procrustes distances fell below 0.9
 Fig. 2 A). None of the correlation coefficients between
he scores of the first five CT and ODM-derived PCs,
hich explained 70.7 and 72.7% of the total vari-
nce, respectively, exceeded 0.9 ( Fig. 2 B). In particular,
he correlation coefficient between the CT and ODM-
erived PC1 scores fell below 0.8. Overall, though devi-
tions existed, the strong correlation in Procrustes dis-
ances still showed that the CT and ODM-derived shape
paces were overall consistent. In addition, the centroid
izes of the CT and ODM-derived datasets were nearly
erfectly correlated (correlation coefficient r = 0.999, P -
alue < 0.001) (Figure S5A). The CT and ODM-derived
orm spaces, which were constructed by adding the log-
rithmic transformation of centroid sizes to the tan-
ent space of each shape space, showed stronger cor-
elation than the shape spaces of the two datasets based
n the comparison of pairwise distances and PC scores
Figure S5B and S5C). 

iscussion 

eometric accuracy of the ODM-derived models 

ur study showed the linear measurements taken on
he ODM-derived models were in general consistent
ith the CT-derived ones. Therefore, the ODM-derived
odels were sufficiently accurate for statistical analy-
es using linear measurements. The mean inter-method
easurement error fell below 2%. Morgan et al. (2019)
onsidered that an average error of 2% % was ac-
eptable for human osteometric analysis. However, in
ur study, the inter-method measurement errors still
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Fig. 2 Correlations of morphometric variables from separate GPAs of the ODM and CT datasets. (A) Correlations of pairwise Procrustes 
distances. (B) Correlations of the scores of the first five PCs. 
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xceeded the intraobserver errors. If the ODM and CT-
erived models were nearly identical, the inter-method
rrors should be comparable with intraobserver error.
herefore, users should still be cautious about analyz-
ng subtle variations, such as individual variations, us-
ng measurements taken on the ODM-derived models. 
The performance of ODM-derived landmark sets

n morphometric analysis yielded mixed results. In
eneral, we concur with the previous studies (e.g., Katz
 Friess 2014 ; Giacomini et al. 2019 ; Waltenberger et al.
021 ) that Landmarks collected from the ODM-derived
and other photogrammetry-derived) models can be
ufficient for capturing overall trends within a sample.
n other words, CT and ODM-derived models were
verall highly consistent in geometry and centroid size.
owever, the landmarks placed on the ODM-derived
and other photogrammetry-derived) 3D models may
ot be ideal for investigating subtle variation, such
as variation within a species with limited variability.
Nearly 5% of variance was associated with digitization
methods in a mixed CT and ODM-derived landmark
set. The CT and ODM-derived landmark sets also
showed clear deviations in shape space. Consequently,
the differences in the model geometry created by
two digitization methods may conceal subtle but bi-
ologically meaningful signals. Moreover, in addition
to the subtle but significant systematic error created
by the CT and ODM methods, the two digitization
methods generated significant random error across
individuals. In other words, landmarks placed on CT
and ODM-derived models can produce different levels
of error, subject to the condition of each individual
specimen. The random errors created by digitization
errors are usually hard to predict and control, thus can
further complicate the results of morphometric analysis
based on landmarks placed on ODM-derived models.
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Therefore, we concur with Giacomini et al. (2019) and 

advice not to mix landmark sets taken from the CT and 

ODM-derived models for morphometric analysis, in 

particular, when the focus of the analysis is individual 
variation. 

It should be noted that the results of error testing 
in our study (as well as in any study of error based 

on landmark data) depended on the landmark choice, 
sample, and experience of the operator ( Giacomini 
et al. 2019 ). For example, our study was based on a 
single species with limited variability. The impact of 
digitization methods on morphometric analysis may 
be reduced if our sample contains well differentiated 

groups, such as different species in an evolutionary 
study ( Giacomini et al. 2019 ). Nevertheless, our find- 
ings can still indicate similar issues in other SFM pho- 
togrammetry tools since the underlying pipelines are 
similar. Therefore, we recommend users to run a pilot 
study to determine whether models acquired by pho- 
togrammetry are appropriate for metric and morpho- 
metric analyses. 

The importance of photography settings 
for photog rammetr y 

Our photogrammetry pipeline completely relies on 

open-source software, thus further bringing the cost 
down compared to previous studies using commer- 
cial software. The downside of any photogrammetry 
pipeline is that it can be laborious. The photo tak- 
ing and preprocessing can be highly time-consuming 
and is subject to the experience of users ( Fahlke & 

Autenrieth 2016 ; Fau et al. 2016 ; Waltenberger et al. 
2021 ). We offered a variety of tools to ease the process of 
photography and improve the repeatability of data col- 
lection, such as syncing the camera with the turntable 
and using Depth-of-Field to set up camera parameters 
(see supplementary material). With sufficient training, 
the time it took to take 320 pictures for each specimen 

can be reduced to around 20 min. 
Here, we present several tips and methodological 

concerns for taking photos (also see the workflow in- 
structions of the supplementary information). The first 
is about the sharpness of the photos. For camera param- 
eters, the F stop values determine the sharpness of pic- 
tures. We set up the F stop values between F13 and F16. 
However, based on our earlier experiments, F/20–F/22 
could still achieve sharp enough photos for high-quality 
texturing based on our relatively low-end DSLR camera. 

It is critical to cover sufficient detail of the specimen 

by taking pictures from different a ngles. We used six sets 
of 320 photos for each specimen. We first experimented 

with taking three sets of vertically oriented specimens 
and found that this setting is better for capturing the 
trunk of the skull. We then added two more sets of pho- 
os of a horizontally placed specimen to better capture
he lateral structures, such as zygomatic arches and the
xternal acoustic meatus. Users can experiment with re-
onstructing models with photos taken from different
ngles to see which angles do better in capturing certain
spects of the objects. We recommend taking more than
2 pictures (i.e., no more than 11.25 degrees difference
er rotation) for each full circle of turntable rotation to
ake sure sufficient overlapping between adjacent pic-

ures exists. 
Ambient light should be provided to expose suf-

cient details of the specimen. However, eliminating
hadows is not possible. Shadow is not an issue if cov-
red structures are sufficiently exposed in other photos.
lare and reflective surfaces would also cause problems
or photogrammetry. Therefore, overly intense light-
ing should be avoided. In general, our beaver skulls
ere smooth and reflective in a few areas, but we did
ot encounter problems with model reconstruction. 

hotog rammetr ic process and other 
ethodological concerns 

ebODM is a convenient interface to run the ODM
ackage for photogrammetric reconstruction ( Vacca
020 ; WebODM Authors n.d. ). Users only need to sub-
it photos and specify parameters to run the pro-
ess. We provided a reference parameter setting in the
ipeline guidance (see Section 5.2 in the workflow in-
tructions of the supplementary material). 
Reducing background noise is critical to ensure

uccessful photogrammetric reconstruction and high-
uality textured modeling ( Matuzevi ̌cius & Serackis
021 ). Simply covering the background with the same
olor is helpful but insufficient. For example, the thin
tructures, such as zygomatic arches, might be covered
y black polygons that may obscure placing landmarks
Figure S4). The same difficulty in reconstructing thin
tructures has also been reported by other researchers
sing commercial software ( Giacomini et al. 2019 ).
DM has a deep learning background removal algo-
ithm to mask the background automatedly. This option
ust be checked to ensure consistent successful recon-
truction for our photogrammetric reconstruction and
ubstantially improve the quality of the textured model,
specially the thin structures (Figure S4) (see Section
.2 in the workflow instructions of the supplementary
aterial). Some pre-processing of acquired photos was
till necessary. To prepare for the background removal,
e used a script to call functions in 3D Slicer to cre-
te a bounding box that contains the specimen (see Sec-
ion 4.1 in the workflow instructions of the supplemen-
ary material). We then masked the area outside the
ox as black. This step of preprocessing could reduce
he burden of background removal during the model
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econstruction process in ODM and ensure consistent
uccess for each sample. This step was also neces-
ary to remove the putty that fixed the specimen ver-
ically, or else the putty would be reconstructed as
ell. Note that the small areas of the specimen can
e masked if the same areas are provided in other
ictures. 
Finally, we recommend using Aruco markers not just

or automated scaling but also for ensuring successful
extured model reconstruction in ODM (see Sections
.3 and 3 in the workflow instructions of the supple-
entary material). Based on our experience, the model
econstruction task may fail due to the inability to esti-
ate a scale from the input photos. 

onclusion 

e presented an open-source SFM photogrammetry
ipeline using WebODM to acquire textured mod-
ls from biological specimens. We offered a variety of
ools and detailed guidance to simplify the data col-
ection process and ensure consistency and repeatabil-
ty in model reconstruction. Comparing to the “gold
tandard” microCT-derived models, the reconstructed
extured models were sufficiently accurate for assess-
ng overall shape differences and conducting metric
nalysis. However, differences between the CT and
DM-derived models, though small, could still signif-
cantly impact detailed morphological analysis. While
ur analysis is specific to the open-source ODM pho-
ogrammetry toolkit, given the SFM photogramme-
ry pipelines are similar across different programs,
ur finding is not unique to ODM, but likely indica-
ive of similar issues in other photogrammetry tools.
sers should be cautious about mixing photogrammet-
ic models with models acquired by other digitization
ethods. 
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