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Abstract—This letter proposes a data-driven inertia estimator
for inverter-based resources (IBRs) with grid-forming control.
It is able to track both constant and time-varying inertia. By
utilizing the Thevenin equivalent, the virtual frequency inside
IBRs is first estimated with only its terminal voltage and
current phasor measurements. The virtual frequency and the
measurements are then used together to derive the state-space
swing equation model. Then, an enhanced adaptive Unscented
Kalman filter (EAUKF) is developed to estimate IBR inertia.
Numerical results on the modified IEEE 39-bus power system
demonstrate that the proposed inertia estimator remarkably
outperforms the existing state-of-art methods both in tracking
speed and accuracy.

Index Terms—Inertia estimation, virtual synchronous genera-
tor, grid-forming inverters, adaptive Kalman filter.

I. INTRODUCTION

With more and more synchronous generators replaced by
inverter-based resources (IBRs), such as wind and solar gen-
erations, the inertia of the power system is reduced [1]. Inertia
plays a critical role in countering frequency deviations from
the nominal value. Accurate knowledge of system real-time
inertia is essential for maintaining frequency stability.

To accurately and quickly estimate the inertia inside syn-
chronous generators or regional systems, some methods are
proposed using measurements from the phasor measurement
units (PMUs) [2]–[4]. To mitigate the frequency instability
induced by IBRs, some inverters are equipped with inertia
emulation control, i.e., virtual synchronous generator (VSG)
control, which may introduce time-varying inertia. [5] de-
velops a dynamic estimator to track the time-varying inertia
from VSG, but it suffers from numerical oscillations. [6]
utilizes ambient measurements to estimate non-synchronous
generator inertia constant, however, it assumes the knowledge
of generator rotor speed and angle, difficult to obtain in
practice. In addition, it cannot track the time-varying inertia
of IBRs due to control parameter changes.

To address the above issues, this paper proposes a data-
driven time-varying inertia estimator for IBRs. It only re-
quires the terminal PMU measurements of IBRs and can
track both constant and time-varying inertia. Specifically, a
Thevenin equivalent of the grid-forming control-based inverter
is developed to estimate the virtual frequency. The latter
is further utilized to construct and drive the proper state-
space model for time-varying inertia tracking. This is achieved
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Fig. 1. Control diagram of the VSG-based IBR.

by the proposed enhanced adaptive unscented Kalman filter
(EAUKF). Numerical results show that the proposed approach
can converge quickly and achieve high estimation accuracy.

II. PROBLEM FORMULATION

When an inverter is equipped with virtual synchronous
generator (VSG) control, it can provide inertia for frequency
support. As shown in Fig. 1, VSG control is mainly com-
posed of three parts: active power control, reactive power
control and virtual impedance. Pe and Pset are respectively
the measured active power and its set point; V⃗t = Vt∠θ
and Vset are respectively the measured terminal voltage and
its set point; V⃗s = Vs∠δ is the internal voltage of VSG;
Z⃗ = Z∠ϕ = rs + jxs is the virtual impedance; I⃗t is the
terminal current; ω and δ are respectively the internal virtual
frequency and angle; Ta and Dp are the virtual inertia and
damping factor respectively, where the virtual inertia plays a
similar role as inertia constant in synchronous generators.

The core part of VSG is active power control, which
can provide frequency support. Mathematically, it can be
formulated as:{

dδ
dt = ∆ω = ω − ωs
dω
dt = 1

Ta
(Pset − Pe −Dp △ ω)

(1)

where ωs is the reference frequency. In (1), we are interested
in estimating Ta, which allows us to calculate inertia directly,
however, it is a nonlinear and time-varying estimation model
under (1) since Dp is also unknown. By linearizing (1), [6]
estimates inertia constant but it cannot track time-varying
inertia. This letter proposes an online time-varying inertia
estimator for VSG control-based inverter.

III. PROPOSED TIME-VARYING INERTIA ESTIMATOR

A. Virtual Frequency Estimation

According to (1), Ta and Dp can be easily obtained if the
virtual frequency ω is known. Therefore, the first step is to
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estimate ω. From Fig. 1, it can be seen that V⃗s = Vs∠δ can
be derived via Thevenin equivalent:

Vs∠δ = V⃗t + Z⃗I⃗t (2)

where ω is the derivatives of δ:

ω =
dδ

dt
(3)

Z⃗ can be estimated with recursive total least square in an
online manner using our previous approach [7]. In this process,
only terminal voltage and current measurements are required.
Note that with the reactive power control, Vs will not change
violently after a disturbance. Consequently, the estimated Z⃗ is
in turn plugged into (2) to calculate V⃗s = Vs∠δ and thereby
ω, which will be used as one of the measurements in EAUKF.

B. Time-varying Inertia Estimation based on EAUKF

For synchronous generator inertia constant estimation,
damping factor and resistance are negligible [8]. However,
in VSG control, the damping factor plays an important role
in mitigating the frequency oscillations, while the resistance
can also help limit the inverter current. Thus, in this letter,
the damping factor and resistance are both estimated when
tracking time-varying inertia.

Besides (1), the nonlinear measurement function of active
power Pe and reactive power Qe of VSG can be employed to
enhance the estimation tracking: Pe =

VsVt

Z cos (θ − δ + ϕ)− V 2
t

Z cos (ϕ)

Qe =
VsVt

Z sin (θ − δ + ϕ)− V 2
t

Z sin (ϕ)
(4)

By taking Vs, Ta and Dp as additional state variables,
(1) and (4) can be discretized and cast into Kalman filter
framework, where the state space function at time step k can
be formulated as:

ωk − ωk−1 = ∆t
Ta,k−1

[
Pset − P̃e,k−1 −Dk−1 △ ωk−1

]
+ ϵk1

δk − δk−1 = (ωk−1 − ωs)∆t+ ϵk2

Vs,k = Vs,k−1 + ϵk3

Ta,k = Ta,k−1 + ϵk4

Dp,k = Dp,k−1 + ϵk5
(5)

P̃e,k =
Vs,kVt,k

Zk
cos (θk − δk + ϕk)−

V 2
t,k

Zk
cos (ϕk) (6)

while the measurement function is written as:
zk1 = dδ

dt = ωk + υk1

zk2 =
Vs,kVt,k

Zk
cos (θk − δk + ϕk)−

V 2
t,k

Zk
cos (ϕk) + υk2

zk3 =
Vs,kVt,k

Zk
sin (θk − δk + ϕk)−

V 2
t,k

Zk
sin (ϕk) + υk3

(7)

where ∆t is the time step; zk1, zk2 and zk3 are respectively
the measurement functions of ωk, Pe,k and Qe,k; ϵk =
[ϵk1 ϵk2 ϵk3 ϵk4 ϵk5]

T and υk = [υk1 υk2 υk3]
T are process

noise and measurement noise respectively, which are assumed
to be zero-mean white Gaussian noise with covariance matri-
ces Qk = E[ϵkϵTk ] and Rk = E[υkυ

T
k ].

(5) and (7) can be simplified with the discretized state space
function f(·) and the discretized measurement function h(·).{

xk = f(xk−1,uk) + ϵk

zk = h(xk,uk) + υk

(8)

where x ∈ Rn×1 is the n-dimension state variable vector
and z ∈ Rm×1 is the m-dimension measurement variable
vector. Specifically, for x and z at time step k, they can be
respectively written as xk = [ωk δk Vs,k Ta,k Dp,k]

T and
zk = [zk1 zk2 zk3]

T; uk = [Vt,k θk]
T is the input variable

vector.
To achieve online inertia estimation, the EAUKF is pro-

posed. EAUKF at time step k consists of three steps: prediction
step, updating step and noise covariance matrices adaptation
step, which are summarized below

1) Prediction step: With the state vector x̂k−1 and its
covariance matrix Σxx

k−1 at time step k−1, 2n weighted sigma
points χk−1with weight wj = 1/(2n) can be generated and
propagated via the nonlinear system to obtain the predicted
state x̂k|k−1 and its corresponding covariance matrix Σxx

k|k−1:

χj
k−1 = x̂k−1 ±

(√
nΣxx

k−1

)
j
, j = 1, 2, · · · , 2n

χj
k|k−1 = f(χj

k−1)

x̂k|k−1 =
∑2n

j=1 wjχ
j
k|k−1; e

xx,j
k|k−1 = χ̂j

k|k−1 − x̂k|k−1

Σxx
k|k−1 =

∑2n
j=1 wj

(
exx,jk|k−1

)(
exx,jk|k−1

)T

+Qk

χ̂j
k|k−1 = x̂k|k−1 ±

(√
nΣxx

k|k−1

)
j

, j = 1, 2, · · · , 2n

ẑk|k−1 =
∑2n

j=1 wjh(χ̂
j
k|k−1); e

zz,j
k|k−1 = h(χ̂j

k|k−1)− ẑk|k−1

(9)
where ẑk|k−1 is the predicted measurements vector.

2) Updating step: this step is to update state vectors x̂k

and its covariance matrix Σxx
k at time step k.

Σzz
k|k−1 =

∑2n
j=1 wj

(
ezz,jk|k−1

)(
ezz,jk|k−1

)T

+Rk

Σxz
k|k−1 =

2n∑
j=1

wj

(
χ̂j

k|k−1 − x̂k|k−1

)(
h(χ̂j

k|k−1)− ẑk|k−1

)T

Kk = Σxz
k|k−1(Σ

zz
k|k−1)

−1

x̂k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Σxx
k = Σxx

k|k−1 + KkΣ
zz
k|k−1KT

k

(10)
3) Noise covariance matrices adaptation step: since

process noise Qk and measurement noise Rk are time-varying,
their corresponding covariance matrices should be adaptively
updated. This paper adopts the following approach:

Ck =
∑k

i=k−L+1(zi−h(x̂i))(zi−h(x̂i))
T

L

α = (1− β)/(1− βk);dk = zk − ẑk|k−1

Qk+1 = (1− α)Qk + αKkCkKT
k

Rk+1 = γRk + (1− γ)dkd
T
k

(11)

where Ck and dk are measurement estimation error co-
variance and residual, respectively; L is the length of mea-
surements used to update noise covariance matrices; both
β ∈ [0.95 1] and γ ∈ [0.9 1] are constant.

For virtual inertia tracking of the grid-following inverter, its
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Fig. 2. Virtual frequency estimation of VSG under various scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.
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Fig. 3. Inertia estimation results under various scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6.

active power control can be formulated as [1]:{ dθ
dt = ∆f = f − fs
df
dt = 1

Kd
(Pset − Pe −Ke∆f))

(12)

where f and fs are respectively the bus terminal frequency
and its nominal value, while Kd and Ke are respectively the
control coefficients. By replacing (1) with (12) and calculating
δ with (2), the same Kalman filter framework can also be
applied for the estimation of Kd and Ke.

IV. NUMERICAL RESULTS

The proposed inertia estimator is tested using the modified
IEEE 39-bus power system, where Bus 4 is connected with
80MW VSG control-based inverter. For VSG control, Dp is
20, while the control parameters Kp and Ki are respectively
set as 0.5 and 0. The following scenarios are investigated to
verify the performance of the proposed method:

• Scenario 1: Constant inertia H = 1
2Ta = 20 s, virtual

reactance xs = 0.106 pu and and small virtual resistance
rs = 0.006 pu;

• Scenario 2: Constant inertia H = 1
2Ta = 20 s, virtual

reactance xs = 0.106 pu and large virtual resistance rs =
0.1 pu;

• Scenario 3: Constant inertia H = 1
2Ta = 20 s, virtual re-

actance xs = 0.006 pu and virtual resistance rs = 0.006
pu;

• Scenario 4: Time-varying inertia H = 1
2Ta =

10(sin[2π(t − 1)] + 2) s, virtual reactance xs = 0.106

pu and virtual resistance rs = 0.006 pu, where the sin
function is used to emulate time-varying inertia.

For Scenarios 1 to 4, a three-phase short-circuit fault is applied
to Bus 3 at t = 1 s and is cleared at t = 1.1 s. To evaluate
the impacts of different disturbance natures and noises on the
proposed inertia estimator, Scenarios 5 and 6 are also tested:

• Scenario 5: Constant inertia H = 1
2Ta = 20 s, virtual

reactance xs = 0.106 pu and small virtual resistance rs =
0.006 pu; the load on Bus 4 is tripped at t = 1 s;

• Scenario 6: Time-varying inertia H = 1
2Ta =

10(sin[2π(t − 1)] + 2) s, virtual reactance xs = 0.106
pu and virtual resistance rs = 0.006 pu; a three-phase
short-circuit fault is applied to Bus 3 at t = 1 s and is
cleared at t = 1.1 s; according to IEEE standard, 1% total
vector error is simulated by adding mean-zero Gaussian
noise with standard deviation [9], [10]

σ =
E[ϖ]× 1%

3× 100
(13)

where ϖ denotes measurements.

In all scenarios, L is 10, β is 0.99 while γ is 0.95. Besides,
the state-of-art methods in [8] (Method 1) and [5] (Method
2) are compared. The initial value of ω, δ, and Vs can be
obtained from the power flow solutions-based initialization
that is widely used in power system transient simulations.
The initial values of Ta and Dp are 80% of their true values
for Scenarios 1-3 and 5-6, while 320% of the true values for
Scenario 4. These different initialization errors would be used
to demonstrate the robustness of the proposed method.
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A. Necessity for Virtual Frequency Estimation

It is worth noting that for existing inertia estimation works
on the synchronous generator, i.e., [2], the generator terminal
bus frequency is usually utilized as the approximation of
rotor speed. This approximation may be acceptable when the
internal impedance of synchronous generators is small, and
this is also true for small-impedance VSG, as shown in Fig.
2(c). However, as VSG requires a large virtual impedance to
mitigate inverter current, it will lead to a large estimation
bias for VSG, as shown in Figs. 2(a)-(b). Therefore, virtual
frequency estimation for VSG is necessary. From Figs. 2(a)-
(b), it can be seen that, with a larger resistance, the frequency
dynamics will be more violent. However, the virtual frequency
inside VSG can be accurately estimated in each scenario by
the proposed method.

B. Performance Comparisons under Different Scenarios

Figs. 3(a)-(d) show the inertia estimation results of different
methods under various scenarios. It can be observed that in
Scenarios 1, 2 and 3, the proposed EAUKF can converge
within 0.5 seconds with the maximum error of 1.94% and
can track the time-varying inertia timely and accurately with
the help of the adaptiveness of Qk and Rk. However, since
Method 1 doesn’t consider the damping factor, which has non-
negligible impacts on frequency, the estimation error is more
than 18%. For Method 2, it can be seen that its maximum
estimation error is up to 50% and it fails to track time-varying
inertia. It is worth pointing out that Method 2 is subject to
numerical oscillations especially when the virtual resistance
is small. This is because the dynamic estimator in Method 2
also cannot estimate the damping factor well, which has been
shown in [5]. On the other hand, by comparing Method 1 with
EAUKF, it can be shown that the adaptive adjustment of Qk

and Rk is critical to enhancing its capability of handling both
constant and time-varying inertia.

C. Robustness Validation

Comparing the results shown in Fig. 3(d) with those in
Fig. 3, it can be found that the proposed method can still
achieve accurate and fast inertia tracking even with 220%
error of initial values, which indicates the proposed estimator
is not sensitive to the initial values; it can also be seen from
Fig. 3(e) that the proposed inertia estimator is able to handle
different dynamic events of various natures, while Method 1
diverges in Scenario 5, which may be due to the significant
impacts of damping factor; Fig. 3(f) demonstrates that the
proposed method is only slightly affected by noise thanks to
the adaptiveness of Qk and Rk, although there is an estimation
time delay. However, with measurement noise, Methods 1 and
2 fail, demonstrating the superiority of the proposed inertia
estimator. These illustrate the applicability of the proposed
method for the practical power system.

V. CONCLUSIONS

This letter proposes a data-driven online time-varying esti-
mator for VSG control-based inverter using IBR terminal volt-
age and current phasor measurements. Specifically, the virtual

frequency inside VSG is estimated via Thevenin equivalent
in a real-time manner. By modeling the active power control
and deriving the state-space model between unknown states
and parameters to the measurements, the EAUKF is proposed
to track the time-varying inertia. Numerical results on the
IEEE 39-bus power system show that the proposed method is
able to track both constant and time-varying inertia accurately
and quickly and achieves significantly superior performance
compared with existing state-of-art methods. Future works
will be extending the developed approach to consider the
current limiter impacts of IBRs, improving the performance
for tracking time-varying inertia and damping parameters as
well as testing its effectiveness using field measurements from
practical power systems.
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