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Abstract—Grid-forming inverters, such as the virtual syn-
chronous generator (VSG), can emulate constant or time-varying
inertia to mitigate frequency stability issues. This paper proposes
a data-driven variational Bayesian adaptive unscented Kalman
filter (VBAUKEF) to estimate the VSG-based inverter inertia and
damping factor using its terminal measurements. By adopting
the Thevenin equivalent idea, the virtual frequency of VSG is
estimated first. Utilizing the estimated virtual frequency and
considering the effects of the inverter current limiter, the time-
varying inertia and damping factor estimation problem is refor-
mulated into the state-space model-based dynamic state estima-
tion framework. The measurements include the obtained virtual
frequency, inverter terminal real, and reactive power while the
unknowns are inverter inertia, damping factor, internal virtual
rotor speed, and angle. To this end, an innovative VBAUKF
is proposed with the advantages of dealing with unknown and
time-varying models and measurement uncertainties. Numerical
results on the modified IEEE 39-bus system and IEEE 118-
bus power system demonstrate that the proposed estimator
significantly outperforms other state-of-the-art approaches under
various scenarios.

Index Terms—Inertia estimation, virtual inertia, Variational
Bayesian estimation, unscented Kalman filter, dynamic estima-
tion, inverter-based resources, power system dynamics.

I. INTRODUCTION

HE frequency variation from the nominal level reflects

the imbalance degree between the generation and con-
sumption, while the inertia in the system is able to restrain
the variation. However, with the rapid growth of inverter-based
resources (IBRs), like wind and photovoltaic energies, inertia
in the modern power grid has been sharply reduced [1]. This
yields larger frequency deviations as well as an exorbitant rate
of change of frequency (ROCOF), which could lead to under-
frequency relays activation. For real-time grid operations with
a high penetration of IBRs, maintaining adequate inertia and
damping is essential to ensure grid reliability. Based on the
values of inertia and damping factor, control actions (like
changing generator outputs, adjusting control systems, or
shedding load) can be taken to ensure system stability. To
assist system operators in taking the appropriate precautions,
it is meaningful to precisely analyze the inertia level at each
node and its variation trend at each time instant [2].
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By utilizing phasor measurement units (PMUSs) data under
large disturbance, many efforts have been made to estimate
inertia constant inside synchronous generators (SG) or areas.
Since inertia is mathematically represented to be the pro-
portion of the active power deviation to ROCOF, the main
issue is to calculate ROCOF after a disturbance within several
seconds. This requires the time derivative of bus frequency
measured with PMUs. However, noise and discontinuities
in bus frequency may lead to significant numerical issues.
To mitigate these effects, a fifth-order approximation with
respect to time to estimate ROCOF is proposed in [3] but it
requires a 20-second window to conduct curve fitting that may
contain the effects of primary frequency control. This leads
to inaccurate inertia estimation. By utilizing the Thevenin
equivalent, [6] directly estimates rotor speed, which is further
merged into the unscented Kalman filter (UKF) framework
to estimate inertia. To perform regional power system inertia
estimation, [7]-[9] derive the analytic relationship between
inertia constant and oscillation modes. Based on the frequency
divider theory, [10] builds identification models to estimate
the spatial inertia distribution across the grid nodes. [11]
also develops a frequency domain-based approach to iden-
tify the inertia constant of a single generator. Nevertheless,
both [10] and [11] require accurate model information. To
estimate regional power system inertia with ambient data,
the explicit relationship between area inertia and interarea
oscillation modes is confined in [13], while [14] developed an
autoregressive-based method to identify area inertia. However,
[13] and [14] are only applicable to areas that are oscillating
against each other. Estimation methods for system inertia,
applied to realistic power systems like those in the UK,
Hawaiian Islands, and WECC, utilize system identification
[15] and machine learning [16], [17]. These methods have
been validated under actual measurement data. Nevertheless,
they are limited to synchronous generator-dominated system
inertia estimation.

Note that the aforementioned works are focused on syn-
chronous generator inertia estimation, while the inertia of
non-synchronous generators is rarely investigated. As some
advanced inertial control schemes, such as virtual synchronous
generator (VSQ), are designed for IBRs to provide frequency
support, how to estimate the constant or time-varying virtual
inertia inside inverters becomes challenging. By linearizing the
dynamic system, [18] and [19] identify the inertia constant
of IBRs via using ambient measurements, but some state
variables, i.e., intermediate state variables inside the phase
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Fig. 1. VSG Control chart of IBRs with current limiter.

lock loop, are assumed to be known, which is unrealistic.
Furthermore, it doesn’t have the capability of estimating the
time-varying virtual inertia of IBRs. To this end, [20] proposes
an inertia estimation formula to estimate the constant or time-
varying virtual inertia for IBRs, however, it is plagued by
convergence speed. [21] mitigates the numerical issues but
does not perform damping factor estimation well under time-
varying inertia. Besides, a current limiter usually exists to
regulate the maximum fault current for IBRs and this limiter
can affect the virtual inertia support. However, none of the
existing work has considered this, leading to bias in inertia
estimation results.

To address these issues, a data-driven time-varying inertia
estimator for IBRs considering the current limiter is developed
in the paper. The contributions are summarized below:

e A time-varying inertia and damping factor estimation
framework considering the current limiter of IBRs has
been developed by deriving the proper state-space model.
This allows us to mitigate the effects of the current limiter
of IBRs. This is the first time to address that in the
literature.

o This paper proposes the variational Bayesian adaptive
unscented Kalman filter (VBAUKF), a novel approach
for inferring the unknown posterior distributions of model
and measurement noise through Bayesian approximation.
Additionally, the measurement noise covariance matrix
is dynamically adapted, employing strategies such as
exponentially discarding outdated information when the
current limiter is inactive, and gradually modifying the
measurement noise covariance matrix upon the activation
of the current limiter. As a result, the discontinuity
effects caused by the current limiter can be mitigated.
This leads to significantly improved inertia and damping
factor tracking speed and accuracy while being robust to
unknown noise and the effects of the current limiter.

o The proposed method is data-driven and only requires
the IBR terminal PMU or other similar measurements
(e.g., synchronized wave measurements) of IBRs. It is
able to estimate constant and time-varying inertia as well
as damping parameters. Note that the damping parameter
is difficult to track for [20] and [21] in the presence of
measurement noise.

II. PROBLEM FORMULATION

The photovoltaic (PV) system and the wind generation sys-
tem, specifically the permanent magnet synchronous generator
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Fig. 2. Dynamic response of VSG after a disturbance. (a) Terminal current
magnitude; (b) Active power.

(PMSG) system, are predominant IBRs that offer virtual iner-
tia. Rather than determining virtual inertia from an individual
unit, this paper focuses on estimating aggregated virtual inertia
for efficient transmission system operation. While manufac-
turers may provide inertia and damping parameters for each
individual IBR unit, the equivalent value for the entire IBR
system remains uncertain, especially when the inertia of IBRs
is time-varying since these characteristics can stabilize the
system and limit the power flow of inverter [22]. As a result,
estimating inertia and damping factor from aggregated IBRs
is still necessary.

Once IBRs are equipped with VSG control, as shown in
Fig. 1, they can provide frequency support. In Fig. 1, P, and
P;.; denote the active power of IBR and its reference value;
Note that, Pi.; is egual to the active power output of IBR
at the steady state; [; = [;Z¢ is the terminal current, while
I [ is the current limited by VSG V = V, /6 represents the
internal voltage inside VSG; Viim is the voltage limited by
VSG to make sure that the voltage drop on IBR won’t exceed
the maximum value; the measured terminal voltage of IBR
and its reference value are represented by V} = V;£0 and
Vet severally; Zv = R, + j X, is the virtual impedance, and
Zs = R, +jX, is the converter series impedance; K, and K;
are the voltage control module parameters.

The control framework of VSG contains three modules: ac-
tive power control, voltage control and current limiter control.
The critical module of VSG is active power control to render
virtual inertia for frequency deviation mitigation. It is

{ g = Aw =w — w; 0
L = TT(Pset —P.— D, Aw)
where w denotes the virtual frequency and wy is the synchro-
nization frequency; T, is the virtual inertia while D,, is the
damping factor. There are two main challenges:

e (1) shows highly nonlinear property due to including
P,., which is calculated via ‘_/; V; and the equivalent
impedance between them. Time-varying 7, and unknown
D,, further increase the difficulty in estimating inertia
and damping factor. Although [20] has developed a
time-varying inertia estimation method, it suffers from
numerical oscillations;

e As an inverter cannot tolerate very high current, it is
equipped with the current limiter, i.e.,

Viim = Vi + Zo I, )
- - V4 I < Ios
FA NG A L 3)

Imazllp It > Imax
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In (3), 1,4, is the maximum current that the inverter can
tolerate, and Ij;,,(+) is the current limiter function. As shown
in Fig. 2, the current limiter is activated when IBRs experience
over-current conditions beyond permissible levels. Specifically,
when the current surpasses the maximum tolerance threshold
of the IBRs, the limiter engages to restrict the current at a
defined ceiling value until the current is smaller. The likelihood
of such large currents is related to the type and location of the
disturbance. For example, three-phase short-circuit fault is a
typical disturbance that leads to large currents. Besides, if a
disturbance is close to the IBRs, this also can result in large
current. As a result, the current limiter in IBRs is triggered.
From (2) to (3), it can be seen that the power will be blocked
when the current limiter is activated, leading to failure in
providing virtual inertia. Note that, the orange area is the stage
where the current limiter acts. Therefore, if the effects of the
current limiter are not considered, inertia tracking results will
be biased. How to deal with these effects for inertia estimation
is still an open problem.

Remark: The fundamental component of VSG control is
the active power control based on the swing equation, which is
essential for mimicking the inertial response of a synchronous
generator. Besides active power control, the implemented
VSG control scheme incorporates a virtual automatic voltage
regulator for voltage control. While advanced high-order VSG
controls introducing additional elements, such as virtual gov-
ernors or inner-outer loop controls, have been developed [23],
[24], the swing equation-based active power control remains
an indispensable element. This allows for conducting inertia
estimation. Consequently, the model depicted in Fig. 1 is an
appropriate representation of a typical VSG control.

III. PROPOSED VBAUKF FOR IBR INERTIA ESTIMATION
A. Virtual Frequency Estimation

From (1), it can be seen that, if w is known, (1) is tractable.

Thus, the first step is estimating the VSG’s virtual frequency

w, which is achieved by Thevenin equivalent in this paper.
Specifically, the internal voltage of VSG can be derived as:

Vo =Vir + jVei = Vi + Zo1I

:‘Z+(Re +]X€)]:; (4)
= (Vir + Vi) + (Re + jXe) (Ler + j 1)
where Z, = R. + jX. = Z./¢, R = R, + R, and
X, = X, + X,. The real and imaginary components of
relevant variables are indicated by the subscripts “r”” and “¢”

respectively. Considering the difference between two continu-
ous measurements, (4) is reformulated into the matrix form:

_Altr Altz Re _ A‘/tr _ [ A‘/sr (5)
—AlL; —AlL, Xe | | AVy | AV
Taking [AVy,. AV,]"T as estimation error e, (5) can be
rewritten as: )
_AItr AItz Re _ A‘/tr
([ ~AL; —AlL, } +e> [ X, ] 0= Ay, | ©

where 1) is the measurement noises. Since (6) is a linear
equation, it can be solved by recursive total least squares [6].
Once R, and X are estimated, \75 = V,Z6 can be calculated
with (4). Consequently, the virtual frequency of VSG can be
obtained as w = dd/dt. With the obtained w, it is feasible

to estimate unknown parameters 7, and D,, using a real-time
nonlinear estimator.

B. Parameter Estimation Model Derivation

In our previous work [6], an unscented Kalman filter is
employed to identify the inertia constant for SG. However, it
neglects the damping factor and impedance of SG, which will
yield a large estimation bias. Therefore, in this paper, a more
comprehensive model is derived.

To track inertia accurately, (1) is utilized together with
nonlinear P, and reactive power ().:

P, = VVtcos(Q (5—&—(/5)——22008((;5)
Q. = VVtsm(G 5+¢))7V—sm(¢))

Employing both functions of active and reactive power, as op-
posed to just one, introduces redundancy, thereby diminishing
uncertainty and enhancing the reliability of inertia estimation.
Through adding V5, T7, and D,, to be extra unknown variables,
(1) and (7) are merged within the Kalman filter framework, in
which the discrete differential equations are derived as:

At |:Reet —~Poj1— D Dwpa | + e

)

W — Wg—1 =

Ta.k—l
Ok — Ok—1 = (Wp—1 — ws) At + €xo
Vo = Vs -1+ €3
To =Th -1+ €pa
Dp,k = Dp,k—l + €5
V2 3
~ Vs Vi )
P, = MILALTL (Ok—1 — Op—1 + b)) — bk cos (¢r) (9)
Ze,k Ze,k

where k is the time step. The active power of IBRs equal to
Pse: under the steady operation due to the active power control
module. Therefore, P;.; can be obtained via the pre-fault
active power of IBRs. In addition, since the virtual frequency
w can be estimated, the discrete measurement functions are

formulated for w, P, and Q). at time step k£ simultaneously:

_ dé
2kl = G = Wk T Ukl

V2

Zng = % cos (0, — 61, + or) — Z”‘ (Bk) + k2

2k3 = VZ’“V‘ Esin (0 — Ok + or) — (ér) + vis
(10)

In (8)-(10), At is the sampling time interval; zpo and zp3
represent correspondingly the measurement functions of active
and reactive power; the zero-mean white Gaussian process
noise €x = [ex1 €r2 €r3 €xa €xs)' and measurement noise
Vi = [Ur1 Ur2 Uks] have covariance Qj = E[eke};] as well
as Ry, = E[vyv]] severally.

According to (8)-(10), it can be conjectured that the discrete
inertia tracking model is nonlinear and time-varying under
the unknown 7, and D,,. This paper proposes the VBAUKF
method to deal with that. For more compact expressions,
(8) and (10) are respectively denoted by the discretized state
function f(-) and measurement functions h(-):

xp = f(xTp—1,ur) + € (11
Zp = h(:l?k, uk) + Vg
in (11), x € R*"¥! and 2z € R™*! denote respectively
the state and measurement vector, while n and m repre-
sent their corresponding dimensions. u = [P Vi 6]7 is
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the input. In addition, xj; is equivalently
[wk (Sk Vs}k ka Dp7k]T, while Zj can
[Zm Zro ZL-Q]T.

represented via
be denoted by
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Fig. 3. VSG control equivalent for inertia estimation

Remark: As illustrated in Fig. 3, the Thevenin equivalent of
IBRs and active power control are integral to constructing the
Kalman filter framework for inertia estimation. The proposed
method primarily utilizes the internal voltage V;, employed
in the measurement function for active and reactive power
derivation, without relying on control information from the
voltage control module. Consequently, the control strategy or
efficacy of voltage regulation does not influence the estima-
tion’s accuracy, as the method calculates the active and reactive
power of IBRs based on Vj, irrespective of its specific values.
C. VBAUKF-based Inertia and damping factor Estimation

[25] presented the generalized maximum-likelihood UKF
(GM-UKEF) to better manage outliers, while [26] developed
the H-infinity UKF specifically to address inaccuracies in
model parameters, addressing model uncertainties. Despite
these advancements, a common shortfall in these approaches is
their limited capability in managing noise uncertainties. This is
primarily due to the process noise and measurement covariance
matrices being statically determined based on empirical data
in [25], [26], without accommodating changes over time.

In the realistic power system, the process and measurement
noises are time-varying and unknown, causing challenges for
accuracy estimation. To deal with this, VBAUKF is pro-
posed, which consists of three parts: sigma points generation,
construction of covariance prior distribution and variational
approximations. UKF is chosen in this study for its balance
between performance and computational efficiency, a notable
advantage over alternatives like the extended Kalman filter ,
quadrature Kalman filter, and cubature Kalman filter, which
typically involve greater computational demands or numerical
issues [27]-[29].

1) Sigma Points Generation: At time step k, 2n sigma
points X x—1 can be first obtained based on the estimated state

4
vector Zj_; as well as its covariance matrix is PR
Xy = @1 £ (\nZfr,) =120 20 (12)
J

in (12), (., /nﬁlifl)j .denotes ].'-th column o.f /nXE . By
transformmg Xk—1 with f(+), its corresponding transformed
outputs Xkl o1 are calculated via:

Xkuc = FOa-1) (13)

Consequently, the predicted state vector 2y, is derived as:
2n

Thjk—1 = D WX (14)
j=1

= 1/(2n) denotes the weight of j-th sigma point. The
covariance matrix of £k| L—1 1s obtained as:

. T
i ~
k|k 1= E wy (XM;C 1 wkuc 1) (Xk‘k_l - wk\kq)

+ Qk

15)

2) Construction of Covariance Prior Distribution: In (15),
since there is no precise knowledge about Qp, Eszq is
inaccurate while the similar scenario is also applied to Ry,
leading to tremendous tracking errors or algorithm divergence.
To get the accurate posterior distribution of 7% , and Ry,
the prior distribution of Qy, Eifk_l and Ry, should be defined.

It is an assumption that both the conditional distribution

p(xk | 21.k—1) and the likelihood p(zy | xx) obey Gaussian

distribution:
p (fck | Z1:k—1,2£fk_1> = N(zp; Tijp—1, Zifi—r)  (16)
p(zk | Tk, Ri) = N (zp; h(xk), Ry) (17)

z1 .k—1 means measurements obtained from time step 1 to

—1; N (; 4, X) stands for Gaussian distribution, in which
p denotes the mean value and 3 represents the covariance
matrix.

Targeting at deriving the joint distribution of xp, Zifkq
and Ry, based on (16) and (17), the conjugate prior distribution
is chosen for Zﬁfk_l and Ry. This is because the posterior
and prior distributions have a similar mathematical expression
if conjugacy is applied. In the Bayesian inference field, the
inverse Wishart (IW) distribution can be commonly selected
to be the conjugate prior distribution for the covariance matrix
of a Gaussian distribution [30]. IW distribution’s probability
density function (PDF) of a symmetric positive definite matrix
A € R¥*? can be written as:

Waa 1) = PPAITCT TP exp {05t (YA}

20A/2T (M /2
a(A/2) as)
\ represents degrees of freedom (DoF); ¥ € R?*? means
the inverse scale matrix and d denotes its dimension; tr(-) is
the trace function, while T'(-) represents the d-variate gamma
function. There is an important property of IW distribution for
the subsequent derivations:
A~TW(A;NT)

{ E[A } =A—d-1D)YtifA>d+1
According to (16) and (17), Eklk , and Ry represent re-
spectively the covariance matrices of Gaussian distributions.
Consequently, prior distributions of them can be formulated

19)
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as:
{ P(EE 1 | Z1—1) = IW(Eifk_ﬁz:lilk—lafklk—l)
P (R | z1:6-1) = IW(Rg; Ug -1, Ugjp—1)

(20)
where tk| k—1 and 7, Up|k—1 are respectively the DoF parameters
forp(Ek‘k 1 | z1k—1) and p (Ry, | z1:4—1), while Tk|k 1 and
Uy, -1 denotes their inverse scale matrices accordmgly

To obtain the prior parameters tk| k—1» uk| k—1» Tk‘ k—1 and
Uk‘ k—1, (19) is utilized. Specifically, let EZ‘*}C , be the mean

value of Eifk , and Qk be the mean value of Qy, we get:

Tk\k—l

tejg—1 —n—1 |
where,
N 2n ) . T
klk—1 :ij (chlk—l - ’Ekl’cfl) (Xff\k—l B Ek"“’1>
j:l
+ Qk
(22)

Define tk‘k 1 = n+ 7+ 1, in which 7 > 0 denotes a

hyperparameter. As a result, Tk‘ k_1 1is derived as:

(23)

noises are varying slowly,

P (Ri—1 | Z1:6—2) =
can be propagated in

Tk|k 1= szk 1
Since the measurement
the previous posteriors
Iw (Rk—1; Up—1|k—2; Uk*l\k*Z)
time by means of a adjustment factor p, € [0 1]T [31].
Consequently, prior parameters of p(Ry | z1.x—1) are
obtained:
{ @\k|k71 = Pu @k71|k72 -m
Ukj—1 = puUg 1]k —2

3) Variational Approximations for Covariance Poste-
rior Distribution: Once the prior distributions of Eil 1
and Ry are determined, the union posterior distribution
p(xk, E”,jﬁcfl, Ry, | z1.;) should be solved so that @y, Eifk—l
and Ry can be inferred simultaneously. However, it is hard
to formulate the analytical form. Therefore, the variational
approximation (VB) can be utilized to deduce a factored PDF
to approximate p(xy, Eifkfl, Ry | z1.1):

p(@r, S5y Ry | 21) ~ a(@)a(S55_)a (Re) (25
where q(@x), (35, _,) and ¢ (Ry) are respectively approx-
imated posterior dlstnbutlon of xy, E?fkq and Ry,.

The core idea of VB to perform (25) s
minimizing Kullback-Leibler divergence (KLD) between
p(:ck,E“,gl””k_l,Rk | z1x) and g(xk)q (Eilxk Da (Ry) via
iterations, whose objective function is defined as:

* . _ 19()

() = argmin KLD(0]p) = [ 0()1og Za()
where p(-) = p(@r, 35, Re | zux) and J() =
q(xk)q(35, 1 )q (Ri). Solving (26) is equivalent to iterating
the following equations:

log (&) = Egc-¢ [logp (&, z1.1)] + c¢ (27)
where E = {wk,Eifk_l,Rk} and £ € E; c¢ is a constant,

—1)+m+1 4)

(26)

while =€) denotes removing ¢ from E; p (5, z1.;) is the
joint PDF of E and z1.;; E(-) denotes the expectation function.
Consequently, the predicted posterior mean state vector’s co-

variance 37 | k(zfl) and the posterior mean measurement noise
covariance R(Hl) are obtained via:
, . T

GS) =7 w0 4 ( 2 — ak\k—l) (E;(;) — Ly -1

By = 570 4 (2 - b(@")) (2 — h(@))

Sz, (i41) _ ai+1) /40+1)

2k|k71 =T, /(tk —n—1)

‘ o (28)

where f,(jﬂ) = g1 + L, T(ZH) = Gg) +

fk\kﬂ; Eiw’(i) =E {(mk - :c/(c)) (

B|(n@) - nten) (n@) - n(en)'|
fj—éi-&-l)

AN T .
et

S
C@ eme
-1) Ri 1+ B,(f)
pu (lg—1 —m—1)+1
where ﬂgﬂ) = Up|p—1 + 1 and ﬁ]gﬂ) = B,(:) + ﬁk|k_1.

Recall that there is no analytical form for 3;° @) in (28)
(1+1)

(29)
_ pu (U1 —m

we employ the following formula to approximate R,
current limiter is not activated:

R — bRy + (1 — p)dydy (30)
where dj_1 represents the innovation error at time k£ — 1 and
p is a value between [0 1]. If the current limiter is activated,
¥ can be a i d via si ints:

k pproximated via sigma points:

o) =&y + (x/nEka(”> G=12,--
() = hl(6)"),5” = S wy(2])0
=0 S (D) -217) (b)) - 20)
(31)

Exploiting (28)-(29), ¢ (x},) is derived as:
¢ (@) = Nz, 3 3

In (32), A(Hl and X7 D are derived according to the
following measurement updating process, which is same as
that in standard UKF:

(X}i-|k_1)(i+1) = I/B\k|k71 + (
(2]

(k\k)—l)(H—l) _ h((Xi\k )(i+1))

~(i+1 i

k|;<r 1 *Z] wi (25, ) )
)(z+1)_ ((

(eZZJ

k|k

zz,(i+1) z
Ek\kfl - Z (

( zz,_] z+1)) + ﬁ](j#el)
(2 )0 = (3, )<l+ ) B

ez (itl) & zx,j \(i+1) 2,5 \(i+1) T
Elk—1 = Z:le(eldk 1) (( €i-1) )

nz;gfk“jﬂ) =1 .om
J

A(H—l)

k|k
i )”1)) 21

J
K(z+1) n (H—l)(zzz,(z-i-l)),l

klk—1 k|k—1
~ 41 ~(i+1
g+ ) _ $k| . +K§j+ )(zk _ Z}(Czlz )1)

Szz,(i+1) (i41) o 2z,(i+1) (i41)
DPTE VAD  aat (K )

2§m7(i+1) —

(33)
After N fixed-point iterations, the inference of the posterior
distribution of time-varying Eklk ; and R can converge.
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The residual dj, is obtained by zj

2, = 2" and 277 = 57N are respectively used as the
final estimated state and its corresponding mean covariance
N

— 24y~ In this paper,

matrix at time step k, while }/E\k = 1/%\;C represents the
mean measurement noise covariance. To further improve the
posterior inference speed and accuracy, @ can be updated
according to (34). This allows providing a good prior mean
value for Q.
h(z;))(z;—
Cp = L( )(
=(1-p)/1-p"
Qri1=(1—a)Qx + OéK ‘e, (K(N)>
where L is the length of the measurements to update @}, and
B € [0.95 1]T is a constant. In this way, the memory of old

Q. can be exponentially released while Qy, is updated with
recent measurements.

h(@:)"

k
Dimk—r41(Zi—

(34)

D. Inertia Estimation Framework with Current Limiter

During the effects of the current limiter, there is an esti-
mation error of the equivalent impedance Z, of VSG if mea-
surements are kept, but these measurements can be utilized.
This is because if the measurements during the activation of
the current limiter are thrown away, the performance of the
proposed inertia estimator may deteriorate due to the large
discontinuities. Therefore, in this paper, the measurements
during the activation of the current limiter are used. From
Fig. 2, it is evident that when the disturbance current surpasses
the maximum threshold, the current value is maintained at this
maximum. This effectively halts energy output to the grid,
leading to a situation where both virtual inertia and damping
factor are nullified. Given this behavior, the equivalent inertia
H = %Ta and damping factor can be considered zero in such
scenarios. In other words, from the perspective of the IBR
terminals, there are sharp fluctuations in inertia and damping
factor, i.e., from a large value to zero. As a result, the only
issue is the discontinuities coming from the instant when the
current limiter is activated.

Since 2{;’_1 4_o 18 the predicted value for measurements,
which hasn’t considered the measurement noise. Therefore,
dip._1 = zp_1 — gljcv—uk—z can be used to indicate the noise
level. The adaptive change of R via dj_; allows for accurate
and fast-tracking of time-varying inertia and damping factor
when the current limiter is not activated. However, (30) is
sensitive to sharp changes caused by the current limiter since
R is updated with the relatively large innovation error. This
can lead to large estimation errors when the current limiter is
activated.

It is observed that (29) is influenced by the estimation
error [z — h(&:\,(;))], calculated using the estimated states or

parameters Zj. Given that [z — h(:ﬁl(;))], which could be zero
in an ideal scenario, is considerably smaller than the innova-
tion error dj_1, the estimator employing (29) demonstrates
less sensitivity compared to that using (30), particularly under
abrupt parameter shifts during the current limiter’s activation.

Therefore, to mitigate the discontinuities at the present time
step, (29) is utilized to update R;, during the activation of the

Algorithm 1: The proposed inertia estimation frame-
work for VSG-based IBRs considering current limiter.

Input: Measurements of ‘Z, I_;, P, and (@).; the time
instant ke,q; 7; p; N.
Output: The equivalent inertia H and damping factor
D,, of VSG-based IBRs.
1 Initialize Ty, 33, Ry, Qo;
2 for k=1;k < kepg do
3 Estimate Ze k» W using (6) and w = dé/dt;
4 Generate sigma pomts using (12), (13), (14), (22);
5 Update tk|k 1 and Tk‘k 1 using
tk:\k 1 =n+7+1 and (23)

6 Update iy ;1 and ﬁk|k_1 using (24);

7 for i =1;i < N do

8 Update G’ () using (28);

9 Update ¢, A(Hl) Tk(lﬂ) Fr = = o1 + 1,
Tk(“rl = G;(; +Tk|k—1,

10 Update B\ using (28) and (31);

1 Update u(“rl) U(Hl) A,(jﬂ) = Ugjp—1 + 1,
U = B + Ui

12 if Current limiter is activated then

13 \ Update ijjf,;ﬂij”, R by (28) and (29);

14 else

15 | Update 351, RY™ by (28) and (30);

16 end

17 Update K,(fﬂ), 55;;“) , Ezm’(H_l) using (33);

18 end

19 Update Qk using (34);

20 C/l:\k—iltk Hk—*ak,Rk—R and
Ezz — Ezl (N)’
21 if Current limiter is activated then
2 | Hp=0;Dp =0;
23 else
2 | No changes;
25 end
26 end
27 return H = {Hy, Ho,--- , Hy,_ ,} and
p ={Dp1,Dp2,-- s Dpkonal

current limiter. When the current limiter is not activated, (30)
is employed to track time-varying inertia and damping factor.
The comprehensive inertia and damping factor estimation
framework with the current limiter are shown in Algorithm 1
and Fig. 4.

Remark: In scenarios of normal operation, an array of
methodologies already exist for conducting inertia estimation,
such as those elucidated in references [14] and [33]. These
established methods primarily leverage ambient measurements
to estimate the inertia of either individual generators or the
entire system. However, they are not feasible in time-varying
inertia tracking under large disturbances. By contrast, our
proposed method is specifically designed to address the more
intricate challenge of tracking time-varying inertia during
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Inertia and damping factor estimation framework with the current

events. This distinction underscores the complementary nature
of our approach in conjunction with ambient-data-based esti-
mation methods, catering to a broader spectrum of operational
scenarios.

IV. NUMERICAL RESULTS

Aiming at verifying the performance of the developed
estimator, extensive simulations have been conducted on the
modified IEEE 39-bus system [34], as shown in Fig. 5, and
an 80-MW aggregated VSG-based IBR system is connected
to Bus 4. In other words, Ps.; is equal to SOMW. The IBR
system is designed to connect with a PV farm or PMSG
farm that includes energy storage. Given that it’s entirely
isolated by the inverter, under VSG-based control, it can
effectively function as a voltage source. Loads are modeled
with voltage-dependency dynamic characteristics [35]. From
Fig. 6, it is evident that a larger 7, results in a smaller
frequency deviation. Consequently, estimating virtual inertia
from IBRs proves beneficial for the power system frequency
stability.

In the VSG control, Kp, K; are respectively set as 0.5, and
0. The parameters N, p,, and 7 should be selected from the
intervals [6, +00], [0.9, 1], and [2, 6], respectively, as suggested
in [31]. Despite our proposed nonlinear Bayesian Kalman

Fig. 5. The one-line diagram of modified IEEE 39-bus power system.

filter being an advancement of the linear Bayesian Kalman
filter presented in [31], the parameter configurations proposed
there remain applicable. For a more detailed discussion on
the selection of N, p,, and 7, refer to [31]. Experimental
results indicate the parameters IV, p,, and 7 exhibit negligible
sensitivity to performance in terms of mitigating fluctuations
attributed to the current limiter. Consequently, the values of
N =20, p, = 1—¢e7% and 7 = 3 have been adopted
for all testing scenarios. It is observed that L exhibits min-
imal sensitivity to the outcomes according to our experience.
Consequently, its tuning interval can be specified as [2, +00],
with L being set to 10 in this study. S is set as 0.9999
in all testing scenarios, and its sensitivity will be discussed
in Section IV-F. The diagonal elements of 3§* ,Ro, Qo are
assumed to be 107, All numerical simulations were executed
using DIgSILENT PowerFactory and MATLAB/Simulink on
a laptop equipped with an AMD Ryzen5 4600H processor,
clocked at 3.0 GHz, and 16 GB of RAM. Note that, all
disturbances occur at t =1 s.

A. Virtual Frequency Estimation

In this subsection, the necessity of virtual frequency es-
timation is illustrated. The generator located at Bus 35 is
disconnected at ¢t = 1 s. T, is set as 40. Two scenarios are
tested:

o Scenario Al:
70.106; .
e Scenario A2: large impedance with Z, = 0.1 + j0.106.

small impedance with Z, = 0.006 +

It is worth mentioning that the existing work, i.e., [4],
on SG inertia estimations rely on the assumption that the
terminal bus frequency can be a substitute of rotor speed.
This holds for most of SG since their internal impedance is

Frequency deviation [pu]

=T, =1
0 Ty = 40
-T,=1
! . . T 09 .
0 1 2 3 4 5

Time [s]

Fig. 6. Frequency deviation of Bus 40 under different 7}, settings.

—True w
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5, 1.0005 », 1.0005 ‘\
Q \ =
o IS
& o
= 0.9995 = 0.9995
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Time [s] Time [s]
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Fig. 7. Virtual frequency estimation under different scenarios. (a) Scenario
Al; (b) Scenario A2.
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small enough to be neglected. However, this is not the case for
VSG-based inverters since a large internal impedance Z. may
be needed to limit current. As shown in Fig. 7, the dynamic
curve of the virtual frequency is different from that of the
terminal bus frequency, while the dissimilarity increases as Z,
becomes larger. Fig. 7 also presents that the proposed estimator
is capable of effectively and precisely estimating the virtual
frequency, which is critical for inertia tracking.

B. Inertia Estimation under Different Disturbances

To verify the robustness of the proposed inertia estimator to
various disturbances, the following scenarios are considered.
Specifically, the time-varying inertial control schemes in Sce-
narios B3 and B4 are adopted from [22]. However, to illustrate
the generalization of the proposed method, a more complicated
synthetic sinusoidal inertia is utilized afterward.

e Scenario B1: The generator located at Bus 35 is dis-
connected; Constant inertia H = %Ta = 20 s; Ze =
0.006 + 70.106;

o Scenario B2: The generator located at Bus 35 is dis-
connected; Constant inertia H = %Ta = 20 s; Ze =
0.1 + 50.106;

e Scenario B3: The generator located at Bus 35 is
disconnected; Time-varying inertia H = 1T, =
25000ezp(—5(50Aw + 2.2)) 4+ 10 s [22]; Z, = 0.006 +
70.106;

e Scenario B4: The generator located at Bus 35 is
disconnected; Time-varying inertia H = 1T, =
25000ezp(—5(50Aw + 2.2)) 4+ 10 s [22]; Z, = 0.1 +
70.106;

e Scenario B5: The load located at Bus 4 is disconnected;
Constant inertia H = %Ta =20s; Ze = 0.1+ 50.106;

e Scenario B6: The load located at Bus 4 is disconnected;
Time-varying inertia H = 17T, = 20(sin[2m(t —1)] +2)
s; Z. = 0.1 + j0.106;

e Scenario B7: Line 16-21 is disconnected; Constant iner-
tia H = 1T, =20s; Z, = 0.1+ j0.106;

o Scenario B8: Line 16-21 is disconnected; Time-varying
inertia H = 1T, = 20(sin[27(t — 1)] +2) s; Z, =
0.1+ 50.106;

For all scenarios, 80% of T;, and D,,’s true values are used as
their initial values. p is set as 0.95. In addition, the existing
methods in [6] (M1) and [20] (M2) are taken as comparisons.
In M2, T and T, are set as 0.02 and 0.01 respectively. Since
the damping factor is neglected in M1, the inertia estimator,
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-M2 24 o1
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=240 16—k & ; S
= 30 1’ 3734 519 i _-Mr;e alue
%8 e e 17 4 AUKF
0 [ Y — - VBAUKF
0 1 2 3 4 5 o 1 2 3 4 5
Time [s] Time [s]
(a) (b)

Fig. 8. Performance comparisons in Scenario B1. (a) H; (b) Dy.
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Fig. 9. Performance comparisons in Scenario B2. (a) H; (b) D,.
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Fig. 10. Performance comparisons in Scenario B3. (a) H; (b) Dy.
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Fig. 12. Performance comparisons in Scenario BS. (a) H; (b) Dy.

adaptive unscented Kalman filter (AUKF), utilized in [6] is
employed to solve (8) and (10) for comparison. This allows
illustrating the importance of the damping factor and Ry, in
inertia tracking. To quantify the estimation error, the maximum
absolute error (MAE) and the average absolute error (AAE)
after time ¢ is formulated as:

MAE; = max {t’ € [t, tend); Thrue,t” — Test,t”

X 100%}
(35)

Thrue, t’
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Fig. 13. Performance comparisons in Scenario B6. (a) H; (b) Dy.
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Fig. 14. Performance comparisons in Scenario B7. (a) H; (b) Dy.

0 32
Z)O —True Value =" AUKF 23 =True Value - AUKF
=M1 - VBAUKF -M2 = VBAUKF
50 . 24
3720 — g
.~ 16 _l_-_‘\-' r
12p TTTTTTrTTTTTT T
8
0 1 2 3 4 5
Time [s] Time [s]
(a) (b)

Fig. 15. Performance comparisons in Scenario B8. (a) H; (b) Dy.

Tltrue,t’ — Test,t’

AAE,; = mean {t’ € [t, tend);

X 100%}

(36)
where 7je,s 1s the true inertia or damping factor at time
t’, and ney 4+ denotes the estimated inertia or damping factor
at time t'; tenq, 1.€., 58 in this paper, represents the total
simulation time.

Figs. 8-11 show the tracking results under both small and
large Z.. For constant and time-varying inertia tracking, it
can be seen that VBUKF gets converged within 0.5 s and
achieves much higher accuracy than other methods due to its
adaptiveness in Qj, and Ry. Although the convergence time of
D, estimation is larger than inertia, it can get converged within
2 s. This is because inertia plays the main role in mitigating
frequency deviation. However, M1 diverges in Scenarios B1-
B4 since it ignores the effects of the damping factor. Although
AUKEF is able to track inertia quickly, it cannot estimate D,
well, which in turn deteriorates the performance on inertia
tracking, see Fig. 10. This is because AUKF doesn’t adaptively
estimate Ry, leading to misjudgment in measurement noise,
especially in time-varying inertia cases. As for M2, it can get
converged in constant inertia tracking, but it requires a much
longer convergence time (> 2s) and achieves a much lower
accuracy. Comparing Fig. 8 with Fig. 9 or Fig. 10 with Fig.

Thtrue,t’

TABLE I
ESTIMATION ERROR OF THE PROPOSED UNDER DIFFERENT
DISTURBANCES

| Inertia | Damping factor
Scenarios | \IAE, 5(%) AAE.s(%)| MAE.5(%) AAEy.s(%)

Bl | 3.60 110 | 149 0.44
B2 ‘ 2.26 0.29 ‘ 3.38 0.41
B3 | 2325 411 | 1815 2.97
B4 ‘ 21.80 3.46 ‘ 17.00 2.77
B5 \ 1.42 0.32 \ 2.66 0.75
B6 ‘ 32.16 6.92 ‘ 16.02 4.31
B7 ‘ 2.47 1.00 ‘ 12.76 2.32
B8 \ 53.21 8.65 \ 20.58 7.78

11, it can be found that the estimation accuracy of M2 is
significantly affected by resistance as this is ignored in M2.

From Figs. 8-15, it illustrates that the proposed estima-
tor tracks both inertia and D, well in all scenarios under
various disturbances. However, other methods are not robust
to different scenarios. Specifically, on one hand, AUKF and
M2 have much higher MAE, than VBAUKF in the constant
inertia estimation scenarios, as shown in Fig. 16; on the other
hand, AUKF cannot track time-varying inertia when D, is
not well estimated; M1 and M2 are not able to estimate time-
varying inertia. An interesting phenomenon is that M1 can get
converged when M2 and AUKF fail in estimating D), and the
proposed VBAUKEF has a longer convergence time in tracking
D, see Figs. 12-15. This may indicate that, in these cases, the
damping factor has a negligible effect on frequency deviation
mitigation, leading to the slow convergence of MI.

Table I demonstrates that the proposed method can estimate
inertia and damping factor with high accuracy (as evidenced
by the low values of MAE; 5 and AAE; 5) under conditions
of constant inertia. In scenarios involving time-varying inertia,
although the values of MAE; 5 and AAE; s are slightly
higher compared to the constant inertia case, these remain at
acceptable levels. As can be seen in Fig. 15, for example,
the estimates exhibit small delays but closely track the inertia
trends over time.

C. Performance under Various Parameters Settings

In this section, p is same as that in Section B, while Ze =
0.1 4 50.106.

1) Performance under Different T,: Aiming at demon-
strating the generalization of the proposed estimator, the
performance under various 7y, is investigated. 80% of T;, and
D,’s true values are used as their initial values. Besides, the
generator located at Bus 35 is disconnected. The following
scenarios are discussed:

e Scenario C1: Constant inertia H = %Ta =5s;

e Scenario C2: Time-varying inertia H =

5(sin[2r(t —1)] +2) s;
« Scenario C3: Constant inertia H = 17, =10 s;

1
la =
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Fig. 16. Constant inertia tracking errors under multiple scenarios. (a) VBAUKEF; (b) AUKF; (c) M2.
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Fig. 19. Performance comparisons in Scenario C3. (a) H; (b)Dp.
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Fig. 22. Performance comparisons in Scenario C6. (a) H; (b)Dp.

o Scenario C4: Time-varying inertia H = 37T, =
10(sin[27(t — 1)] + 2) s;

o Scenario C5: Constant inertia H =

e Scenario C6: Time-varying inertia H =
30(sin2m(t — 1)) + 2) s.

1T, =30s;
i -

From Figs. 17-22 and Table II, it can be seen that the
proposed VBAUKEF has the capability of estimating constant
and time-varying inertia as well as D, under different Tj,
verifying the excellent performance of the proposed estimator
in tracking speed and accuracy. Due to the adaptive adjustment
for Qy as well as Ry, VBAUKF has a much better perfor-
mance on estimating constant and time-varying inertia than
AUKEF. Besides, existing methods are not able to track time-
varying virtual inertia, as shown in Figs. 18(a), 20(a) and 22(a).
With the increasing of T,, M1 tends to converge and even
fluctuate following the trend of inertia. This is because larger
inertia can have higher impacts on frequency mitigation, which
may mask the effects of the damping factor. Consequently, the
damping factor may be neglected. Since the proposed method
models damping factor, different 77, doesn’t have impacts on
the tracking performance.
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TABLE II
ESTIMATION ERROR OF THE PROPOSED UNDER VARIOUS PARAMETERS
SETTINGS
| Inertia | Damping factor
Scenarios | \AE, 5(%) AAE.1s(%)| MAE15(%) AAEy.s(%)
Cl | 407 124 | 502 0.39
C2 ‘ 131.91 16.94 ‘ 19.26 2.04
3| 110 047 | 379 0.51
C4 ‘ 76.03 11.88 ‘ 18.02 3.87
C5 ‘ 2.18 0.39 ‘ 11.22 0.62
C6 ‘ 45.22 6.08 ‘ 20.75 3.16
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Fig. 23. Tracking results under different initial conditions (a) Constant inertia
scenarios; (b) Time-varying inertia scenarios.

2) Performance under Different Initial Values of T,: In
this subsection, initial values of 7, are set as -60%, -40%,
40%, 60%, 80% and 100% errors of the true value, while the
true value of T}, is 20 s. From the constant and time-varying
inertia scenarios in Fig. 23, VBAUKF requires a longer time
to converge when the initial values of 7, are farther away
from the real value. However, the proposed method can get
converged within 0.5 s even if there is a 100% error of the
initial value compared with the true value.

D. Performance under Highly IBR-Penetrated Power System

The proposed method has also been validated on a highly
IBR-penetrated power system. In the modified IEEE 39-
bus power system, synchronous generators at Buses 30, 34,
and 38 have been replaced with VSG control-based IBRs,
each having the same capacity as the original synchronous
generator. For these VSG control-based IBRs at Buses 30, 34,
and 38, we have set T, and D, to 20, respectively. In the
disturbance setting, the generator at Bus 35 is disconnected.
We are primarily interested in estimating parameters within the
VSG control-based IBRs at Bus 4, and for this purpose, we
have considered both constant inertia control and time-varying
control scenarios, with settings identical to those in Scenarios
C3 and C4, respectively.

Figs. 24(a)-(b) illustrate the estimation results under the
constant inertia control scenario, while Figs. 24(c)-(d) display
the estimation results under the time-varying inertia control
scenario. It is evident that in both scenarios, our proposed
method accurately tracks inertia and damping factor, as shown
in Table III. This success is attributed to our method’s sole
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Fig. 24. Estimation result of highly IBR-penetrated power system. (a) Inertia
estimation under constant inertia control; (b) Damping factor estimation under
constant inertia control; (c) Inertia estimation under time-varying inertia
control; (d) Damping factor estimation under time-varying inertia control.

TABLE III
ESTIMATION ERROR OF THE PROPOSED UNDER HIGHLY
IBR-PENETRATED POWER SYSTEM

Inertia Damping factor
Scenarios | 'MAE, 5(%) AAE:5(%)| MAE.5(%) AAE;5(%)
Constant H | 223 0.66 | 1.1 0.27
Time- 59.48 11.87 13.37 2.93
varying H

reliance on terminal measurements, enabling a decentralized
execution manner that is not influenced by the dynamics of
other generators.

E. Performance under Current Limiter

Since an inverter cannot tolerate very high currents, the
current limiter is employed. In this paper, the maximum mag-
nitude of the terminal current [,,,,, is set as 1.15 p.u, as shown
in Fig. 25; Line 16-21 is disconnected,; Ze = 0.1+ 50.106; p
is set as 0.9. 80% of T, and D,’s true values are used as their
initial values. The following scenarios are investigated:

« Scenario E1: Constant inertia H = 1T, = 40 s;

01 2 3 4 5 0 1 2 3 4 5
Time [s] Time [s]

(a) (b)

Fig. 25. Terminal currents of the inverter. (a) Scenarios E1; (b) Scenarios E2.
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Fig. 26. Performance comparisons in Scenario El. (a) H; (b) Dp.
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Fig. 27. Performance comparisons in Scenario E2. (a) H; (b) D).

e Scenario E2: Time-varying inertia H =
40(sin[27(t — 1)] + 2) s.

It can be observed from Fig. 25 that the current limiter
stops the terminal current from increasing, leading to an inertia
emulation block. As a result, these measurements may lead
to discontinuities in estimation results. Fig. 26-27 show the
performance of various methods under the current limiter.
Because of the adaptiveness of Q) as well as Ry, it can be
seen in the constant inertia scenario that the proposed approach
can mitigate effects of discontinuities caused by the current
limiter. In spite of the estimation time delay in the time-
varying scenario, as shown in Fig. 27, VBAUKF is still able to
track the trend of inertia, although MAE; 5 and AAE; 5 are
higher than scenarios without the current limiter control, as
shown in Table IV. However, other methods suffer from these
discontinuities, see Fig. 26.

Regarding computational efficiency, the computational load
per PMU sample is quantified, as delineated in Table V. It is
worth pointing out that the computing time of the proposed
method for each PMU sample is much smaller than the
nominal PMU scan interval of 20 ms. This demonstrates the
feasibility of the introduced approach for real-time inertia and
damping factor tracking.

TABLE IV
ESTIMATION ERROR OF THE PROPOSED UNDER CURRENT LIMITER

| Inertia | Damping factor

Scenarios | \AE, 5(%) AAE:5(%)] MAE:5(%) AAE; 5(%)
El ‘ 1.54 0.46 ‘ 12.50 2.50
E2 \ 146.00 21.37 \ 17.89 3.39

TABLE V
COMPUTATION SPEED OF THE PROPOSED METHOD PER SAMPLE

E1l
0.377ms

E2
0.370ms

Scenarios

Computation Time

FE. Hyperparameter Sensitivity Analysis

p and f3, as the forgetting factors for adjusting measurement
and process noise covariance matrices, were subject to sensi-
tivity analysis in this section. With VSG settings consistent
with Scenarios E1 and E2 in the paper, we fixed /5 at 0.9999
and varied p from 0.9 to 0.95. As illustrated in Fig. 28, a lower
p improves damping factor estimation, maintaining effective
inertia estimation within the range of [0.9,0.95]. Conversely,
fixing p at 0.9 and varying 8 from 0.98 to 0.9999 shows
that a higher 5 enhances inertia estimation, with effective
damping factor estimation within [0.98,0.9999], as shown in
Fig. 29. Therefore, p and 8 can be set within [0.9,0.95]
and [0.98,0.9999] respectively. Good results for both inertia
and damping factor estimation are achieved with p close to
0.9 and (8 approaching 1. Our experience also indicates that
B =0.9999 can get fast and accurate estimation in all testing
scenarios.

—Trie Valu§=p = 0.925

| { =p=09 p=0.95
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Time [s]
(@ (b)
Fig. 28. Sensitivity analysis of p. (a) Estimation results of inertia; (b)

Estimation results of damping factor.
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Fig. 29. Sensitivity analysis of (. (a) Estimation results of inertia; (b)

Estimation results of damping factor.

G. Scalability on Large-Scale Power System

To demonstrate the scalability of our proposed method,
we have conducted validation on the modified IEEE 118-bus
power system, as shown in Fig. 30. Within this system, an 80-
MW VSG control-based IBR is connected to Bus “Bus_119".
Att = 1 s, a load on Bus 74 is tripped. We have set the
maximum magnitude of the terminal current Ip,x to be 1.15
p-u. The settings for constant inertia control and time-varying
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Fig. 30. The one-line diagram of modified IEEE 118-bus power system.

inertia control of VSG are identical to those in Scenarios C3
and C4, respectively.

Figs. 31(a)-(b) illustrate the estimation results under the
constant inertia control scenario, while Figs. 31(c)-(d) display
the estimation results under the time-varying inertia control
scenario. It is evident that in both scenarios, our proposed
method accurately tracks inertia and damping factor. This

20 40
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2] a
— 10 t y 20 —
- Q20—
5 10
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Fig. 31. Estimation result of modified IEEE 118-bus power system. (a)
Inertia estimation under constant inertia control; (b) Damping factor estimation
under constant inertia control; (c) Inertia estimation under time-varying inertia
control; (d) Damping factor estimation under time-varying inertia control.

success stems from the fact that our method solely relies on
terminal measurements, thus facilitating decentralized execu-
tion, which remains unaffected by the system size.

H. Impacts of Measurement Noise

There are unavoidable noises in PMU measurements. In
line with the IEEE Standard for Synchrophasor Measurements
[36], the total vector error (TVE) of measurements should be
less than 1% compared with the real value. In this paper, the
maximum error of measurements is considered to verify the
worst scenario. The 1% TVE can be emulated via mean-zero
Gaussian noise, whose standard deviation is given by [37]:

E[w] x 1%

77 T3% 100 37

where w is the true value. Targeting at verifying the per-
formance of the proposed estimator when measurements are
corrupted by noises, the disturbance is the tripping of the
generator located at Bus 35 is disconnected. Z, is 0.1450.106,
while p is set as 0.95. 80% of T;, and D,’s true values are
used as their initial values. The following scenarios are tested:

« Scenario H1: Constant inertia H = 3T, = 20 s;
e Scenario H2: Time-varying inertia H = %Ta =
20(sin2m(t — 1)) + 2) s.

Since M1 cannot converge in most scenarios as demon-
strated in the previous sections, it is not taken as the compar-
ison in this section. Figs. 32 and 33 show that VBAUKEF can
also track inertia even under the 1% TVE of measurements,
though there is a time delay in estimation time-varying inertia.
This is because the accurate distribution inference of R; and
Q). is beneficial in filtering the noise and thus reducing the
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Fig. 32. Performance comparisons in Scenario H1. (a) Estimation results of
inertia; (b) Estimation results of damping factor.
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Fig. 33. Performance comparisons in Scenario H2. (a) Estimation results of
inertia; (b) Estimation results of damping factor.

estimation error. However, AUKF and M2 collapse in inertia
tracking due to the lack of knowledge of noise. These results
illustrate that the proposed approach is more suitable for
practical application.

V. CONCLUSIONS

The article develops a data-driven time-varying inertia esti-
mation approach for VSG control-embedded IBRs by utilizing
their terminal measurements. By using Thevenin equivalent to
formulate the relationship between the terminal and internal
voltages, the virtual frequency of IBRs is accurately estimated.
Together with the estimated virtual frequency, nonlinear mea-
surements of active and reactive power are incorporated into
the Kalman filter framework, which is solved by the proposed
VBUKF considering effects from the current limiter. We
demonstrate that the proposed estimator performs significantly
better in comparison to current state-of-art approaches. Con-
clusions are presented as follows:

o The proposed VBAUKF-based inertia estimator is able
to infer the posterior distribution of process noise as well
as measurement noise, leading to accurate and fast inertia
tracking performance;

o There are unignorable effects of the damping factor on
inertia tracking. As a result, it is necessary to model the
damping factor into the inertia estimation framework;

o Thanks to the adaptiveness of the measurement noise
covariance updating mechanism in VBUKEF, the proposed
estimation framework can mitigate the estimation dis-
continuities caused by the current limiter of IBRs, while
existing state-of-art methods fail.

In this paper, we have introduced a method for estimating in-
ertia and damping factor in fully decoupled IBRs, specifically
those associated with PV or PMSG-based wind generation.
Our future research endeavors will focus on extending this

method to address the complexities presented by partially cou-
pled IBRs, such as doubly-fed induction generators (DFIGs),
which exhibit more intricate inertial and damping dynamics.
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