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Abstract. Field and remote sensing studies suggest that ice mélange influences glacier-fjord systems by exerting stresses on
glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long time scales
are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing
viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally
expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow
when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and stress transfer via force
chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we
produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and
that is suitable for long time-scale simulations. For parallel-sided fjords, the model exhibits two possible steady state solutions.
When there is no calving of new icebergs or melting of previously calved icebergs, the ice mélange is pushed down fjord by
the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential.
When calving and melting are included, the ice mélange evolves to another steady state in which its location is fixed relative
to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts
that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power law
relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg
calving flux. The increase in buttressing force with the calving flux, which depends on glacier thickness, appears to occur
more rapidly than the force required to prevent the capsize of full-glacier-thickness icebergs, suggesting that glaciers with high

calving fluxes may be more strongly influenced by ice mélange than those with small fluxes.

1 Introduction

Ice mélange is an intrinsically granular material that is comprised of icebergs, brash ice, and sea ice packed together at the

ocean surface. In some fjords, where iceberg productivity is high, ice mélange can persist year round. In others, it forms for
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a few months in winter, when sea ice binds the iceberg clasts together, and then breaks apart each spring. Ice mélange is a
highly heterogeneous material, with clast dimensions varying from meters to hundred of meters in both horizontal and vertical
dimensions. The large vertical dimension of ice mélange suggests that some processes that are important for sea ice and river
ice, such as ridging and rafting, are likely unimportant for the flow of ice mélange.

Previous work has established that glacier advance between major calving events can result in the formation of an ice
mélange wedge that flows quasi-statically and that exerts a force per unit width on the glacier terminus on the order of
10" N m—? (Robel, 2017; Burton et al., 2018; Amundson and Burton, 2018). This load may be sufficient to inhibit calv-
ing and capsizing of new icebergs (e.g., Amundson et al., 2010; Krug et al., 2015; Bassis et al., 2021; Crawford et al., 2021;
Schlemm et al., 2022), which is supported by studies that have linked break-up of a seasonal ice mélange wedge to the onset of
calving in early summer (Cassotto et al., 2015; Bevan et al., 2019; Xie et al., 2019; Joughin et al., 2020). In locations where ice
mélange persists year round, it appears to remain sufficiently strong to influence the timing and seasonality of calving events
(Wehrlé et al., 2023). Terrestrial radar data indicates that ice mélange flow becomes incoherent at the grain scale in the hours
preceding major calving events (Cassotto et al., 2021), suggesting a weakening of the ice mélange, and that dynamic jamming
occurs once an iceberg calves into the fjord (Peters et al., 2015).

Recent work has demonstrated that icebergs are also important sources of freshwater in fjords (Enderlin et al., 2016, 2018;
Moon et al., 2017; Mortensen et al., 2020), especially during winter, and that this distributed release of freshwater has implica-
tions for fjord circulation and submarine melting of glacier termini. The presence of icebergs tends to freshen and cool fjords,
but also helps to enhance estuarine circulation and drive warm water into fjords, where it comes into contact with and melts
glacier termini (Davison et al., 2020). Icebergs additionally create complex flow pathways and tend to decrease the velocity of
subsurface waters (Hughes, 2022).

The conclusion of many studies is that there is a strong need for an ice mélange model that is consistent with its granular
nature and that can be mechanically and thermodynamically coupled to the glacier-ocean system. Previous modeling attempts
have used discrete element models (Robel, 2017; Burton et al., 2018), modified existing ice shelf models (Pollard et al., 2018),
incorporated sparse icebergs into sea ice models (Vaitkkova and Holland, 2017; Kahl et al., 2023), or used simple parameteri-
zations (Schlemm and Levermann, 2021). Here we develop a depth-integrated ice mélange flow model that uses the nonlocal
granular fluidity rheology (Henann and Kamrin, 2013), which has been developed from experiments of granular materials
and that has successfully described a variety of granular flows. In order to investigate the basic behavior of the model and to
expedite development of coupled glacier-ocean-mélange models, we convert the model into a quasi-one-dimensional model
by separately parameterizing the longitudinal and shear stresses and then integrating across the fjord. This approach closely
mimics one that is commonly used for developing flow line models for ice shelves, as does the numerical implementation of
the model. Thus, this study provides a framework by which realistic models of ice mélange can be incorporated into coupled

glacier-ocean models.
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2 Model description
2.1 Depth-integrated flow equations

We start by defining the strain rate and effective strain rate as ¢;; = 1/2(du; /0x; + Ou;/dx;) and é, = (¢;;6:;/2)"/?, where
u; = (u,v,w) and z; = (z,y,2) are the velocity and position vectors. We use the Cauchy stress tensor, o;; = 0j;, with the
convention that positive stresses are extensional. We partition the stress tensor into tectonic stresses I2;; and the granular static
pressure p by setting 0;; = R;; — pd;j, where d;; is the Kronecker delta. We assume that the ice mélange is tightly packed and
incompressible (€, = 0), at flotation, and evolving slowly enough that acceleration can be neglected. Consequently, the model
is best suited for simulating ice mélange behavior in fjords where it persists year round or for winter conditions in fjords where
it forms seasonally. Further modifications would be required to model rapid flow associated with calving events or complete
disintegration of ice mélange in summer. For well-packed ice mélange the inertial number is typically very small (< 10~°; see
Amundson and Burton, 2018), which places it well within the quasi-static regime. Under steady flow conditions the equations

of motion are then 0o;;/0x; = pgemd;~, Where p is the material density and

g 2>0
Jeoft = (D

— (1 — p%) g z<0,
with p,, the density of water, g the gravitational acceleration, and z = 0 corresponding to sea level. This formulation differs
from that used to derive the shallow shelf approximation (SSA) that is used for modeling ice shelves because seawater fills
void spaces within ice mélange and thus the static pressure does not depend solely on the weight of the overlying ice. The static

pressure is found by integrating Equation (1):

pg[(l—piw)H—z} 23>0

pg(l—p%) (H—&—’%Z) z <0, ?

p(z) =
where H is the ice mélange thickness.

In addition, we assume that basal shear stresses are small and therefore vertical shear is negligible; consequently velocities,
strain rates, and stresses do not vary with depth. Thus, after partitioning the stress tensor, vertical integration of the momentum

equations leads to

d ) oP
d ) or
—(H H— =2H —
ay( Bo) + Ox Ray oy’ 3)

where R;; now refers to depth-averaged values and

P:lpg(1—p)H (4)
2 Pw
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is the depth-averaged granular static pressure. This continuum description of ice mélange will produce a smooth basal surface;
with such geometries we anticipate very small shear stresses along the base. Hughes (2022) modeled the flow of water through
and beneath rough ice mélange and found that the drag force per unit width is on the order of 10 kN m~—!, which is about two
orders of magnitude smaller than the drag forces due to lateral shear that we calculate in our model. We therefore neglect basal
shear stresses but note that future efforts may need to include them in order to model fjords in which ice mélange does not
remain well packed or persist year round.

The depth-averaged deviatoric stress is defined as o’l’-j =0; — Pd;j, where P = (04 + 0yy + 0..)/3 is the depth-averaged

isometric pressure. By vertically integrating the tectonic stress and comparing the result to the deviatoric stress, we find that
Rij=ol,— (P=P)s;. )
When ¢ = j = z, Equation (5) can be re-written to show that

(P - 13) —o/.~R.=-0_ —0o —R... ©6)

Due to its granular nature ice mélange will not flex like ice shelves, which are often close to being in hydrostatic equilibrium
except near their grounding lines. We therefore assume that bridging effects are negligible (i.e., that the weight of the ice

mélange is locally supported by seawater) and therefore R, = 0. Thus Equation (5) becomes

Rij :J;J—i—(aém—i—o;y)é” (7)
Following Amundson and Burton (2018), we assume a depth-integrated viscoplastic rheology for granular materials:
uP .
0l = =G ®)

e

where p is an effective coefficient of friction within the ice mélange that depends nonlinearly on the strain rate (see below).

/

From Equation (6) we see that P = P — o/, — oy

Y and therefore
, _WP-0o

o, =

/ /
Tz Uyy) .
ij . €5 9

€e

Solving for o7, and a;y, plugging the results back into Equation (9), and rearranging yields
P
o= (10)
e+ p(€x + éyy)
The resistive stress is then found by inserting Equation (10) into Equation (7):
uP

_ : : 1. 11
ée + M(exm + Eyy) [6” * (elx * Eyy) 6”] ( )

Substituting Equation (4) into Equation (11) and the result into Equation (3), dividing by pg(1 — p/pw)/2, and rearranging,

gives

9 pH? L 0 nH . OH

(2642 H— | ——F———¢é,y| =2H—

Oz Le—i—u(ém—kéyy)( ¢ +€yy)] + Oy [ee—&—u(em—i—eyy)e Y oz

d pH? . 0 nH . OH

— |2 . H_— | ———————¢éy| =2H——. 12
By Lew(eméyy)( o T ¢ )] o [e@w(emeyyf v =%y (12

4
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In viscoplastic granular rheologies, i is a complex function of é.. We adopt the nonlocal granular fluidity rheology of Henann
and Kamrin (2013), which is derived from laboratory experiments that demonstrate viscous flow at high stress and plug flow
at low stress. The rheology is nonlocal because it enables mesoscopic regions of yielding to cause elastic deformation in
adjacent jammed regions, and it is particularly well suited for ice mélange because it has been developed from experiments
of flows associated with low inertial numbers. The nonlocal granular fluidity rheology has successfully modeled a variety
of granular flows, including flow down a rough plane (Kamrin and Henann, 2015), creep of intruders in low stress regions
(Henann and Kamrin, 2014), annular shear with various grain geometries and materials (Fazelpour et al., 2022), and silo
clogging (Dunatunga and Kamrin, 2022), and has also recently been applied to other geophysical systems (e.g., Damsgaard
et al., 2020; Zhang et al., 2022)

In the nonlocal granular fluidity rheology, the effective coefficient of friction depends on the granular fluidity, ¢’, which is a
measure of how easily the material can flow for a given stress:

€

W= —c; (13)
g
The granular fluidity depends on local and distant stresses through the differential relation
1
v2g/: ?(gl_glloc)7 (14)

where £ is the cooperativity length and g; . is the local granular fluidity. The local granular fluidity is based on experiments

that suggest that granular materials behave like Bingham fluids (solid at low stresses and viscous at high stresses):

iM ifp>p

Gloc =13 V pd* b (15)
0 if p < ps,

where b is a dimensionless constant and i is the static yield coefficient. The Laplacian term in Equation (14) spreads out the
fluidity into regions where i < 1, (Kamrin and Koval, 2012) and allows for deformation in regions of low stress. The distance
over which the fluidity spreads out is determined by the cooperativity length, which scales with grain size and diverges at the
yield point (Bocquet et al., 2009; Kamrin and Henann, 2015):

Ad
{= = (16)

V |N’_Ms|’

where A is a dimensionless constant.

Substituting Equation (13) into Equation (12) yields

0 H? 0 H 0H
- |:..(2ézz+éyy):| +H— |:6:1:y:| =2H——
0x | ¢’ + éza +éyy Oy | 9"+ éxa +éyy ox
0 H? 0 H 0H
S — ) P . H—|——— ¢, | =2H—. 17
ay |:g/+émm+éyy( 6yy+€ ):| + O [g’+6m+€yy6 1/:| 8y ¥))

Equation (17), along with the equations for ¢’ (Equations 13-16), is analogous to the shallow shelf approximation. We therefore

suggest referring to Equation (17) as the nonlocal shallow mélange approximation (NSMA).
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2.2 Width-integrated flow equations and boundary conditions

To reduce Equation (17) to a quasi-one-dimensional flow model we adopt an approach from glacier flow modeling in which
extension-dominated dynamics are used to characterize the longitudinal stresses and shear-dominated dynamics are used to
characterize the shear stresses (Pegler, 2016). This approach allows for width-integration of the flow equations and, importantly,
asymptotes to the correct dynamics in extension- and shear-dominated regimes. Essentially, we assume that (i) flow is in the

x-direction and variations in width are small (i.e.,

dW/dz| < 1; Pegler, 2016), so that v =~ 0 and €,,, =~ 0, (ii) the ice mélange
thickness and longitudinal strain rates are uniform across the width of the fjord, and (iii) the granular fluidity in the longitudinal
stress term ([ ) is only a function of ¢, while the granular fluidity in the shear stress term (R, ) is only a function of é,,.

Under these assumptions, integrating the z-component of Equation (17) across the fjord and dividing by the width W yields

2 2 .
>t e () -G (18)
y=0

0z | g% + €pe © W € ). _o Oz’
where g” is used to indicate that the granular fluidity in the longitudinal stress term depends solely on €, (i, 1S the value of p
along the fjord walls, y is taken to be the distance from the near wall of the fjord, and due to symmetry the shear strain rates at
y = 0 and y = W have the same magnitude but opposite sign. Due to our assumptions, the y-component of Equation (17) does
not affect flow in the x-direction and can be ignored. The first and second terms in Equation (18) characterize extension- and
shear-dominated dynamics, respectively.

For shear-dominated flow, (égy/éc)|y=0 = $gn(€zy)|y=0 =sgn(U), where U is the depth- and width-averaged velocity.
Thus, combining and rearranging Equation (18) gives the one-dimensional stress balance equation:

0 H? oU OH H?
- - — " | = Hi + —
Ox | g* + (0U/dx) Ox ox W

Equation (19) is the key dynamical equation that is used to determine the ice mélange velocity along the length of the fjord. We

sgn(U). (19)

define x = 0 as being the upstream end of the ice mélange. At this boundary, material flows into the domain at a rate determined
by the iceberg calving flux. Conservation of mass dictates that the velocity there is given by

H,

Up = U, 2t 20
0 H, (20)

where subscript 0 refers to values at x = 0, U, is the calving rate, and H; is the terminus thickness. We define the downstream
end of the ice mélange (z = L) as being the point where the ice thins to the grain scale, d. At thicknesses less than grain scale,
the nonlocal granular fluidity rheology no longer applies. In order to prevent divergence for thicknesses less than the grain
scale, we therefore require that the velocity gradient there is
%g Y 1)
This downstream boundary condition is similar to regularizations used in sea ice models to prevent ice floes with free bound-
aries from spreading under their own weight (Hibler, 2001; Leppéranta, 2012).

The granular fluidity g* is described by a simplified version of Equation (14) in which ¢’ and g . are replaced with g*

and gj7 ., V2g® = 0%g* /022, and é. = |é,z| + S¢. J¢ is a strain rate parameter that is used to regularize the granular fluidity
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equations in order to improve stability and efficiency. Other regularization schemes are possible (Chauchat and Médale, 2014);
however, we have had success with this simple regularization scheme and therefore leave investigation of other schemes for
future work. For boundary conditions we set dg*/0x = 0 at x = 0, L following the recommendation of Henann and Kamrin
(2013).

The value of ., is related to the width-averaged velocity relative to the fjord walls, which is given by U + (U; — U,.),
where Uy is the glacier terminus velocity and U; — U.. is the rate of glacier terminus migration. In other words, the fjord walls
move backward in our coordinate system, which is defined relative to the glacier terminus, at a rate given by U; — U,.. For

shear-dominated flow, the effective coefficient of friction varies linearly across the fjord, such that

_ 2
P (1 W) 22)

for 0 < y < W/2. Using Equation (22), the local granular fluidity and cooperativity length can be readily calculated as functions
of position for a given value of p,,. The results are then inserted into the granular fluidity differential equation (Equation 14),
except that ¢’ and g{  are replaced with g¥ and g;/ . (to emphasize that the granular fluidity for shear-dominated flow depends
only on é,,) and VZg¥ = 8%g¥ /dy*>. As before, we set dg¥/dy = 0 at both boundaries. The granular fluidity equation is then
solved to determine g¥(y, i, ). If the flow is in the positive z-direction then é, = (OU/0y)/2 and Equation (13) can be rewritten

as

ou 2y
= =2ug" =21 (1 — =2 ) g% (Y, ptw)- 23
oy 29 =2 < W)Q(yu) (23)

The average velocity in the transect is found by integrating Equation (23), which must equal the velocity in the bedrock

reference frame:

W/2 y
2
U+U; — W// [ (1—)gy(y’,uw)dy’dy~ (24)
0 O

Finally, the ice mélange geometry changes in response to melting, flow divergence, and dispersal of icebergs at z = L. The

surface evolves according to the depth- and width-integrated mass continuity equation (van der Veen, 2013), in which

oOH . 1 0
=B (UHW), (25)

where B is the surface plus basal mass balance rate, and the length evolves so as to ensure that the thickness at the end of the

ice mélange is always equal to the characteristic iceberg size.
2.3 Numerical implementation and stability considerations

The quasi-one-dimensional ice mélange flow model that we have developed depends on five variables: U, ¢*, u.,, H, and L.
We determine these variables by simultaneously solving the width-integrated NSMA, granular fluidity, transverse velocity, and
mass continuity equations (Equations 19, 14, 24, and 25), while also requiring that Hy, = d. We use finite differences with

a stretched coordinate system and a staggered grid for velocity and thickness. The mass continuity equation uses an implicit
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Table 1. Description of model variables.

Variable Description

05 Pw densities of ice and water

z; = {(x,y,%z)  position vector

g, et t gravitational acceleration, effective gravity, and time

u; = (u,v,w)
€ij, €c

/
Tij, 035> Rij

velocity vector
strain rate tensor and effective strain rate
stress, deviatoric stress, and tectonic stress tensors

kronecker delta

D granular static pressure

P, P depth-averaged pressure and granular static pressure

U,H, W, L ice mélange velocity, thickness, width, and length

H;, U, U, depth- and width-averaged (glacier) terminus thickness, terminus velocity, and calving rate
Uy, Hy velocity and thickness at x = 0

F buttressing force

B surface plus basal mass balance rate

Ly M effective coefficient of friction within the ice mélange and along the fjord walls

s static yield coefficient

9, Jloe granular fluidity and local granular fluidity

g, g¥ granular fluidity for extension-dominated and shear-dominated flow

13 cooperativity length

d characteristic iceberg diameter

b, A dimensionless parameters

o€ finite strain rate parameter

X> Ts €x longitudinal position, time, and effective strain rate in the stretched coordinate system

time stepping scheme and an upwind scheme for discretization. Our numerical scheme, which closely mimics that of Schoof
(2007), is described in detail in the Appendix.

The width-integrated NSMA is more computationally expensive than the analogous width-integrated SSA approximation
for two reasons. First, the nonlocal granular fluidity rheology introduces additional nonlinear differential equations that must
be solved as part of the iteration procedure, essentially doubling the number of unknowns. Second, because ice mélange tends
to be considerably thinner than its parent glacier, ice mélange velocities must be several times higher than glacier terminus
velocities in order to balance the ice flux into the fjord. This latter effect becomes particularly critical if ice mélange thins to

close to its characteristic iceberg size.
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For example, although we are using an implicit scheme, we find that the CFL condition (Courant-Fredrichs-Lewy; At <
CrnaxAz/U) is a useful metric for determining appropriate time steps that maintain numerical stability. From our experience,
Chax = 1 provides good stability across a range of parameter choices and model states, although this is not a strict requirement.
At xg, the ice mélange velocity is Uy = U.H;/Hy (Equation 20). Thus the CFL condition at 2 can be expressed as

AIHO
At < .
~ U.H;

(26)

For thick ice mélange (Hy ~ H,), with a calving rate of 6000 m a~!, a terminus thickness of H; = 600 m, and a grid spacing of
500 m, At < 0.09 a. However if the ice mélange approaches the characteristic iceberg size, for example Hy = d = 25 m, then
At < 4 x 1073 a (assuming a similar grid spacing). In reality, higher velocities may occur farther down fjord, necessitating
shorter time steps. Since our model uses a moving grid and the ice mélange thickness and length may vary significantly over

seasonal time scales, we recommend using short time steps or an adaptive time step in prognostic simulations.
2.4 Ice mélange buttressing force

Although we do not model glacier flow in this paper, we do assess the impact of model parameters, glacier fluxes, melt rates,
and fjord geometry on the buttressing force that ice mélange exerts on glacier termini, which is given by (—HW o4 )|4,- The
force imposed on a glacier terminus (per unit width) due to the presence of ice mélange is therefore

F/W = (~HRy, + HP) . 27)

Zo

Substituting in the nonlocal granular fluidity rheology yields

2H Pé,,

F/W=|- 2T L HP | . 28
/ ( P ) (28)
To

In the limit that U /0x — 0, F'/W scales with the thickness squared, Hg.

3 Model results
3.1 Steady-state profiles

We begin exploring the model behavior by investigating the impact of model parameters and forcings on steady-state profiles.
The model is capable of producing two types of steady state solutions: one in which material is continuously flowing through
the ice mélange domain and the geometry is steady in the bedrock reference frame, and one in which no material enters or
leaves the ice mélange and the geometry is steady in a reference frame that moves down fjord with the glacier terminus and
the velocity is constant (OU/9x = 0). We refer to these two states as the “steady-state” and “quasi-static” regimes. We focus
primarily on the steady-state regime as the quasi-static regime has already been analyzed in some detail in Amundson and
Burton (2018).



https://doi.org/10.5194/egusphere-2024-297
Preprint. Discussion started: 11 March 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

—— steady-state --- quasi-static
200 100 200
a b e — x=0
7 150 A —_ o — x=0.25
L £ —— x=0.50
£ 5 x=0.75
o > 150 A
Q w
n 50 - —200 -
0 T T T —300 T T T -
0 5 10 15 20 0 5 10 15 20 5
Longitudinal coordinate [km] Longitudinal coordinate [km] € 100 4
e
()
[
Q.
10 1.0 v ‘
C d
8 1 0.8
=6 0.6 50 7
o, 3 ‘
o 4 044 __—
---------------------------------- ‘ “
|
2 - 0.2 1 | g N
q v
0 . . . 0.0 . . . 0 . :
0 5 10 15 20 0 5 10 15 20 -3 0 3
Longitudinal coordinate [km] Longitudinal coordinate [km] Transverse coordinate [km]

Figure 1. Steady-state (solid curves) and quasi-static (dashed curves) profiles. (a)—(d) Longitudinal profiles of velocity, thickness, granular
fluidity, and limit of internal friction along the fjord walls. (e) Transverse velocity profiles at various fractions x of the distance along the
ice mélange. For the steady-state simulation, U; = U. = 6000 m a~ !, H, =600 m, W = 4000 m, B=-0.6m d ', d=25m, ns = 0.3,

A=0.5,and b=1 x 10*. Longitudinal coordinates are relative to the glacier terminus.

To produce steady-state profiles, we set the terminus velocity and calving rate to be constant and equal to each other and

230 we set the surface mass balance rate equal to a constant. We then run prognostic simulations until the ice mélange length and
thickness are no longer changing with time (dL/dt = 0 and OH/dt = 0). The approach that we adopt here differs from that

of Amundson and Burton (2018), where we derived an expression for steady-state profiles in the quasi-static limit in several
important ways: (i) we do not set the calving and melt rates equal to 0, (ii)) we do not require ., to be constant but instead
solve for it, (iii) we allow for variable width, and (iv) the ice mélange length is not specified a priori but rather is determined

235 by the balance of the inflow and melt rates. We then turn off calving and melting and allow the ice mélange to evolve to a new

10
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steady-state in order to demonstrate the changes in flow and geometry that occur during the transition from the steady-state
regime to the quasi-static regime.

Example steady-state and quasi-static profiles are shown in Figure 1. Velocities increase in the down fjord direction in the
steady-state scenario which, when combined with surface and basal melting, leads to a relatively large thickness gradient. The
extensional flow is also associated with an increase in (i, in the down fjord direction. Once calving and melting are turned off
the velocities drop because there is no longer a flux of material into the ice mélange and the icebergs are simply pushed at the
rate of glacier terminus advance. Consequently the shear stresses also decrease, which is reflected in a decrease in f,,. The
reduction in shear stresses allows the ice mélange to thin and spread outward. When the quasi-static limit is reached the ice
mélange has a roughly exponential thickness profile and p,, is spatially constant. In Amundson and Burton (2018) we assumed
that 1, is a constant in the quasi-static limit and showed that this leads to a roughly exponential thickness profile; here we see it

arise naturally through the momentum and mass continuity equations in a manner that is consistent with our prior assumptions.
3.1.1 Sensitivity to model parameters

The nonlocal granular fluidity rheology depends on several parameters that must be specified: the characteristic iceberg size
d, dimensionless constants b and A (described below), and the static yield coefficient y,. For default values we have selected
d=25m,b=1x10% A=0.5,and i, = 0.3, which produces thickness and velocity profiles that are roughly consistent with
observations from Sermeq Kujalleq (Jakobshavn Isbre), Helheim Glacier, and Kangerdlugssuaq Glacier (e.g., Foga et al.,
2014; Amundson and Burton, 2018; Xie et al., 2019). Here, we provide some context for our selection of default values and

explore how adjusting these parameters affects the model behavior (refer to Figure 2 throughout this section).

— The characteristic iceberg size influences the local granular fluidity, the cooperativity length (see Equations 15 and 16),
and the ice mélange extent (since the end of the domain is defined as being where H = d). Ice mélange is a highly
heteorogeneous material, with iceberg dimensions ranging from meters to hundreds of meters. Several studies indicate

that iceberg area (in map view) follows power-law size distributions, p(a) o< a~™®

, with « ranging from 2.1-3.4 (e.g.,
Enderlin et al., 2016; Sulak et al., 2017; Kirkham et al., 2017; Kaluzienski et al., 2023). Power law distributions require
a minimum size threshold. Using a minimum area of 10 m? gives median and mean iceberg areas of about 13—18 m?
and 17-110 m?2 (see Equations 6 and 8 in Kaluzienski et al., 2023), resulting in a characteristic diameter on the order
of 4-10 m. It is unclear, however, how iceberg heterogeneity affects ice mélange flow or if there is a controlling iceberg

size. Nonetheless, we find that decreasing the iceberg size allows the ice mélange to thin and advance.

— Dimensionless constant b is given by the ratio of the range of effective friction coefficients to the inertial number (see
Kamrin and Henann, 2015), which is itself a function of grain size, characteristic strain rate, and pressure. These values
are poorly constrained for ice mélange at present. Using typical values, we find that b is likely in the range of 10*~10°. b
only affects the local granular fluidity (Equation 15), and as such its impact on model behavior is more transparent than

that of iceberg size. Increasing b makes the ice mélange more stiff and extensive.

11
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Figure 2. Steady-state profiles for various model parameter choices. For all simulations, U; = U. = 6000 m a~l, B=-06m d ' H, =

600 m, and W = 4000 m. The solid curves represent the results produced using the default values (A =0.5,b=1 X 10%, d = 25 m, and
s = 0.3). For the other curves, we adjusted one model parameter, as indicated in the legend, but kept all other parameters set to their default

values. Longitudinal coordinates are relative to the glacier terminus.

— Dimensionless constant A affects the cooperativity length and is thought to be of order one; fitting to laboratory exper-

iments and discrete element simulations suggests that A equals 0.5 for glass beads and 0.9 for stiff disks (Henann and

270 Kamrin, 2013; Kamrin and Koval, 2014). For our simulations, using values of A = 0.5 gives cooperativity lengths of a
few kilometers in the longitudinal direction. Changing A does not have much impact on our results other than changing

the curvature of the transverse velocity profiles.

— Lastly, the static yield coefficient determines the stress at which the ice mélange will begin to flow. Reducing the yield

coefficient causes the ice mélange to deform more easily and become thinner and shorter.
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Determining appropriate model parameters that are able to describe ice mélange flow across a range of forcings and fjord
geometries remains a major task. The default parameters that we have selected produce ice mélange geometries and velocity
profiles that appear to be roughly consistent with field observations. Adjusting any of the parameters appreciably from our
default parameters will likely require modifying one or more additional parameters in order to produce profiles that are not
too thin or too thick. For example, we can also produce similar profiles if we reduce the static yield coefficient but only if we

increase b appropriately.
3.1.2 Sensitivity to external forcings and fjord geometry

The modeled ice mélange geometry and flow depend on iceberg calving fluxes, surface and basal melt rates, and fjord geometry.
We address each of these in turn.

To investigate the impact of calving fluxes on ice mélange flow and geometry, we consider three scenarios in which the
glacier velocity and calving rate scale with the fjord width and glacier terminus thickness. The ice mélange becomes more
extensive as the fluxes increase (Figure 3), implying that ice mélange produced by highly active glaciers is more likely to exert
high resistive stresses against the glacier termini and to persist year round. One way of estimating the minimum force from ice
mélange that will affect calving is by considering the torques acting on a full-glacier-thickness iceberg that has detached from
the glacier but not yet capsized. The buoyant torque acting on the iceberg scales with H} (Section 3.2 in Burton et al., 2012)
and therefore the ice mélange buttressing force that would prevent an iceberg from capsizing scales with H? (see Equation 1 in
Amundson et al., 2010). In these simulations we varied the terminus thickness H; from 600-800 m and varied the calving rate
from 60008000 m a~!. The force that would be required to prevent large icebergs from capsizing increased by ~ 77%, yet the
buttressing force increased by about 100% because the ice mélange thickness increased by over 40%. Although the imposed
calving rates are ad hoc, these results suggest that highly productive glaciers are more likely to be affected by ice mélange
buttressing because as H; increases, the buttressing force from the resulting ice mélange increases more rapidly than the force
required to prevent icebergs from capsizing.

The ocean affects the modeled ice mélange by melting it. Iceberg melt rates in fjords can range from 0.1-0.8 m d ! (Enderlin
etal., 2016) and icebergs are particularly important sources of freshwater in winter (Moon et al., 2017). We find that ice mélange
extent is sensitive to melt due to its indirect effect on lateral shear stresses (Figure 4) and that the buttressing force depends on
the melt rate through an inverse power law relationship with an exponent of about -3.

Fjord width also has important impacts on ice mélange extent and buttressing force. Increasing the fjord width reduces
the ability of shear stresses to build an ice mélange wedge, and thus the ice mélange thins and sheds icebergs. Consequently
the buttressing force decays roughly exponentially with fjord width (Figure 5 a—b), as also observed in the analysis of quasi-
static flow (Amundson and Burton, 2018; Burton et al., 2018). The width gradient has similar effects on the buttressing force.
Converging walls (dWW/dx < 0) create extra flow resistance that allows for the development of a thicker ice mélange wedge.

The buttressing force also decays roughly exponentially with the width gradient (Figure Sc—d).
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Figure 3. Steady-state profiles for various size glaciers as follows: (solid lines) U; = U. = 6000 m a~!, H, =600 m, and W = 4000 m;
(dashed lines) U; = U. = 7000 m a~ !, H, =700 m, and W = 5000 m; (dotted lines) Uy = U, = 8000 m a~!, H, =800 m, and
W = 6000 m. (a)—(d) Longitudinal profiles of velocity, thickness, granular fluidity, and coefficient of friction along the fjord walls. (e) Trans-
verse velocity profiles at the ice mélange midpoint. For all simulations, B=-08md ', d=25m, s =0.3, A=0.5,and b=1 x 10%.

Longitudinal coordinates are relative to the glacier terminus.

3.2 Transient simulations

The ice mélange buttressing force is clearly sensitive to changes in ice mélange thickness. From field and remote sensing
observations we expect ice mélange to be weakest in summer, when melt rates and calving activity are highest (e.g., Joughin
et al., 2020). To investigate the implications of these fluctuations, we impose seasonal variations in melting and calving rates
with amplitudes of 0.2 m d~! and 600 m a~—*, respectively.

We find that the buttressing force decreases as the melt rate increases (Figure 6a—-b), as might be expected during the summer

months. However, there is a lag of 2 months between the highest melt rates and the weakest ice mélange. The lag is smallest
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for ice mélange experiencing higher melt rates because smaller ice mélange will respond more rapidly to external forcings.
There is also less variability in the buttressing force for smaller ice mélange.

Iceberg calving also varies seasonally and tends to be highest in the summer. The model, which assumes the ice mélange
remains well packed year round, predicts that it will thicken and grow in response to the addition of new material. As with
melting, there is a lag of 2 months between variations in calving rates and the force exerted on the glacier termini, and the
amplitude of the variations in force also decrease with ice mélange extent (Figure 6¢c—d). Thus, melt and calving, which both
vary seasonally, have opposite effects on the model behavior.

Following observations that suggest that iceberg calving is affected by the ice mélange buttressing force, we use an ad hoc
linear relationship between calving and the buttressing force to begin investigating their coupled impacts on ice mélange. We
suppose that

Uc,ss
Fss

where U, s and F§, are the steady-state calving rate and buttressing force for a given set of model parameters. An imposed

Uc = 2Uc,ss - F7 (29)

variation in melt rates causes F' to vary, which is coupled to the calving rate via a negative feedback loop. This coupling reduces
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the lag time between the melt rate and the buttressing force to about 0.1 a and, as a result, the calving rate is high when melt

rates are also high (Figure 6).
3.3 Buttressing forces in the steady-state and quasi-static regimes

The ice mélange buttressing force depends on the thickness, tectonic stress R, and granular static pressure P atthe glacier-ice
mélange boundary (Equation 28). In the quasi-static limit the velocity gradient is zero and therefore the buttressing force scales
with HZ. However, we find that when calving and melting are nonzero the flow is extensional, which causes the buttressing
force to be less than would be expected if buttressing force estimates were based solely on ice thickness (Figs. 4 and 5).

We find that, for parallel-sided fjords, the buttressing force in the steady-state regime also scales with HZ despite the com-
plexity introduced by nonzero strain rates (Fig. 7). During our transient simulations the buttressing force circles around the
initial steady-state solutions as the flow becomes more/less extensional. We never observe compressional flow in our simu-
lations, and field and remote sensing observations indicate that compressional flow only occurs during and in the immediate
aftermath of iceberg calving events (Peters et al., 2015; Amundson and Burton, 2018; Cassotto et al., 2021). Thus, observations
of ice mélange thickness from satellite data, along with the quasi-static approximation of Equation (28), can be used to provide

an upperbound on the ice mélange buttressing force.

4 Conclusions

We have developed a depth-averaged continuum model of ice mélange flow, which we refer to as the nonlocal shallow mélange
approximation, that is based on recent advances in our understanding of granular materials and that is suitable for long time-
scale glacier simulations. Consistent with other granular flows, the model exhibits viscous flow where the stresses are far from
the yield point and plug flow where the stresses approach the yield point.

The model contains four parameters (the iceberg size, two dimensionless constants, and the static yield coefficient) that must
be tuned. We have selected a set of parameters that produce velocity and thickness profiles that are roughly consistent with
remote sensing observations from Greenland (Foga et al., 2014; Amundson and Burton, 2018; Xie et al., 2019). Ultimately, the
profiles depend on the ice mélange stiffness; stiff ice mélange does not spread very easily and tends to result in thick, extensive
ice coverage. Each of the four model parameters can affect the overall fluidity; thus, other parameter combinations may also
produce suitable model results. Determining the best parameter values that work across a range of forcing and fjord geometries
remains a major task for laboratory experiments and field observations.

We assume that the ice mélange is well packed and homogeneous, and we do not account for cohesion. The model is likely
to perform best for winter ice mélange and for systems where ice mélange persists year round since the flow approximation
is not applicable for granular materials far from the well-packed limit. The impacts of iceberg heterogeneity and cohesion
on ice mélange flow require further investigation. We suggest that both could potentially be incorporated into our modeling
framework through modification of the model parameters, which are currently treated as constants, and/or by tuning the model

parameters with field observations, laboratory experiments, and discrete element simulations. Future work should also attempt
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to quantify the degree to which the quasi-one-dimensional model can replicate the behavior of ice mélange in fjords with
complex geometry.

Ultimately, we find that the nonlocal shallow mélange approximation produces realistic (albeit smooth) thickness and veloc-
ity profiles and evolves in response to glaciological, atmospheric, and oceanographic forcing. Ice fluxes, melt rates, and fjord
geometry strongly affect the model geometry and ice mélange buttressing forces. Addition of new material into the ice mélange
via iceberg calving makes it longer, thicker, and more resistive, whereas removal of material through surface and basal melting
does the opposite. Thus the model may be capable of explaining temporal variations in buttressing forces and why ice mélange

appears to have larger impacts in some glacier-fjord systems than others.

Code availability. The model code (glaciomelD) and files used to produce the figures in this manuscript are available at

https://github.com/jmamundson/glaciome1D. The code is written in Python and uses standard Python libraries.

Appendix A: Coordinate stretching

We use a coordinate system that moves with the glacier terminus and, following Schoof (2007), we introduce a coordinate

stretching to deal with the moving boundary at the end of the ice mélange (z = L):

_* Al
X=7 (Al)
which maps 0 <z < L to 0 < x < 1. According to the chain rule,
1
0 oxo0 190 (A2)

dr  dxrdx Lox
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The coordinate stretching also necessitates a transformation of time derivatives. The material derivative is

D dx 0 0

= =7 = A3
Dt dtox ot A9
The grid points move with velocity

dx dL

=y, Ad
at ~ Xt A

The material derivative of a quantity that is moving with the grid is the same as the partial derivative of that same quantity
in the grid’s reference frame. As in Schoof (2007), we therefore let ¢ = 7 to distinguish between partial derivatives when z
and  are held constant, respectively, which allows us to replace D /Dt with §/97. Thus, after rearranging Equation (A3) and

inserting Equations (A2) and (A4), we arrive at
—_—=— - —— . (AS)

The coordinate transformations are then applied to the stress balance, granular fluidity, and mass continuity equations (Equa-

tions 19, 14, and 25), yielding

li N 2187(] _567H+H72 sgn(U)

Lox \g=+(@U/o)/L"" Tox) Loy  whe™

10%g* 1, ., .

ﬁaXQ :?(g _gloc)

OH xdLOH 1 9 .

9r Larox T wrax VHW) =B (A6)

The granular fluidity depends on €., which is transformed as

. €x
e =7 (A7)
where ¢, is the second invariant of the strain rate in the stretched coordinate system. The transverse velocity equation is

unaffected by the coordinate transformation.

Appendix B: Nondimensionalization

We nondimensionalize the model equations to improve model convergence. We start by assuming that we know characteristic

scales for the length [L], velocity [U], and mass balance rate [B]. We then set scales for the thickness and time:

2= )
[B]
_ [
[T]= 0] (B1)
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The model is scaled by defining

L=[L|L*
H=[H|H*
U =[UjU*
B = B]|B*
W = [L]W*
d=[H]d", (B2)

where * is used to indicate dimensionless variables. We also note that ¢’ = ¢’*[U]/[L] since g’ = é./u. Dropping the asterisks
and defining v = [H]?/[L]?, the nondimensional stress balance, granular fluidity, transverse velocity, and mass continuity

equations become

10 H? oU\ HOH H?
2 0x <gz T (0U/0x)/1 ax) =T oy T wresenll)
v gt 1,
ﬁW:?(g ~ Gioc)
2,y
7% = é(gy — Gine)
w/2 y

2 2
U+ (U, -U,) = G / /2uw (1—;)gydy’dy
0 O

OH ~YdLOH 1 0 .
o Lar oy Twra UHWI=8 .

Using dimensionless variables, the cooperativity length and local granular fluidity are calculated as

Ad
f=——— (B4)
VK= 1s]
and
(L] P (p—ps) .
e —— ifu>p
gL .= glyoc ={ [U]\ pd?[H] pb (BS)
0 if oo < pus.

When calculating g®, the effective coefficient of friction is given by p = (é, /L + €)/g”, and when calculating ¢¥ it is given
by 1= (1 —2y/W) and Ou /Oy = 2ugY.
The boundary conditions are unchanged in dimensionless variables.

Appendix C: Finite difference discretization

We use finite differences with a staggered grid and implicit time step to calculate U, g_, .., ft., H, and L. Indices j and n refer

to grid points and time steps. We define j =0 : IV, so that there are NV + 1 grid points each for U and pu,, and /N points each
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for H and ¢/,,.. Altogether the model solves for 4N + 3 unknowns in the z-direction. The discretized stress balance, granular
fluidity, p.,, and mass continuity equations provide 4 N + 2 equations. One additional equation comes from defining the end of

the ice mélange as being where the thickness equals the grain size:
3HN_1/2—HN_3/2:d. (Cl)
C1 Stress balance equation

The discretized stress balance equation is
1
m [Vj—l/QUj—l - (Vj+1/2 + l/j_1/2) Uj —+ Vj+1/2Uj+1] —

2
L Hjpp+Hiq 1 (Hjpaya+Hj)0)

H; —H;_ = ). U,), C2
TAx 5 (Hjpr2 = Hjay2) + 3 Wistys W1y 0 sgn (U;) (C2)
which is used for j = 1: N — 1 and where we have defined
2
Hi 12 3

Vi—1/2 = .

TR gr y+ (U~ U1/ (LAX)
The upstream boundary condition is Uy = U.H, / Hy (Equation 20), while the downstream boundary conditionis Uy —Un_1 =
0 (Equation 21).

C2 Nonlocal granular fluidity equation

The equation for the granular fluidity is discretized using a standard difference formula, such that

Gi-s2 = 29j-12F sz _ 1

(LAY)? = ?_1/2 (9;6—1/2 *glwoc,j—l/2> ) (C4

with boundary conditions g§/2 — gf/Q =0and 9?\/—1/2 — gf\’,_g/Q =0 (9¢”/0x =0 at x = 0, L). The granular fluidity is only
calculated on N grid points because it depends on the velocity gradient, which we calculate using a one-sided difference. As

result, 9;'671/2 depends on U; and U;_;. Similarly, gﬁm)jflm (Equation 15) depends on U; and U;_; as well as H;_1 5.
C3 Transverse velocity equation

We calculate transverse velocity profiles at each y grid point. We use M + 1 grid points in the y-direction. The discretized
granular fluidity equation in the y-direction is then

Yy _ Yy Yy
Im—1—29m +9 1
a2k b _ L (9%~ e ) - (C5)

At the boundaries we set dg¥/dy = 0, and therefore gi — g¢§ =0 and g¢%,-g%,_; =0. g/, and &, both depend on y (see

Equations 15 and 16). For shear-dominated flow, p varies linearly across the fjord (Equation 22). Therefore, for a given value

of Ly, gf’oc_m and &, can be directly calculated. Equation (C5) is then solved to determine g¥(y).
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Finally, we integrate Equation (23) twice to find the average velocity in the transect, which is required to equal the velocity

U in the ice mélange’s reference frame plus the glacier terminus velocity:

Wi/2 y
Uj+U:—-U _ 2 // 1 % Ydy'd (C6)
J t C_Wj Hw,j W; g ay ay.

0 0
C4 Mass continuity equation

For the mass continuity equation we use an upwind scheme with a backward Euler step; the advective term is discretized with

centered differences:

Hj+1/2_H;+1/2 B . % Hj+3/2—Hj_1/2
AT X125y SLAY
1 (Uj+1+Uj)Hj+1/2Wj+1/2—(Uj+Uj71)Hj_1/2Wj_1/2 .
w. 2LA = Dj+1/2, (C7)
j+1/2 X

where superscript * is now used to refer to values from the previous time step. At both boundaries (j =0 and j =N — 1) we
use one-sided differences for the advective term, and at the upstream boundary (j = 0) we use a forward difference for the

diffusive term. Consequently, the discretized mass continuity equations at the upstream and downstream boundaries are

Hy - HY)y dL\ Hzso — Hyjg  (Uz+Ur)HgjoWs )0 — (UL +Up) HyjoWi2
— | X125 + =Bi)o (C3)

At dr LAY 2Wy2LAX
and
HN71/2_H]<771/2 B dL HN71/2—HN73/2+

AT XN-1/2 dr LAYy
(UN+UNn-1)HN_12WN_1/2 = (Un-1+Un—2) Hy_32WN_3/2 B
= Bn_1/2- (C9)
2Wi_1/2LAX
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