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OptoGPT: A foundation model for inverse
design in optical multilayer thin film structures
Taigao Ma!, Haozhu Wang?# and L. Jay Guo?*

Optical multilayer thin film structures have been widely used in numerous photonic applications. However, existing in-
verse design methods have many drawbacks because they either fail to quickly adapt to different design targets, or are
difficult to suit for different types of structures, e.g., designing for different materials at each layer. These methods also
cannot accommodate versatile design situations under different angles and polarizations. In addition, how to benefit prac-
tical fabrications and manufacturing has not been extensively considered yet. In this work, we introduce OptoGPT (Opto
Generative Pretrained Transformer), a decoder-only transformer, to solve all these drawbacks and issues simultaneously.
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Introduction

Optical multilayer thin film structure is one of the most
vital photonic structures widely used in many applica-
tions, including structural color'?, filters’, absorbers?,
distributed Bragg reflectors>® (DBR), Fabry-Pérot’ (FP)
resonators, photovoltaic® and radiative cooling® ',
among others. Inverse design seeks to identify the best
material arrangements and obtain thickness combina-
tions to achieve user-desired optical targets, which is
critical to enable many of the above applications. Cur-
rently, there are two types of mainstream inverse design
methods: 1) optimization-based methods'>-'°, which rely
on numerical simulations and iterative searches to mini-
mize the difference between designed and targeted opti-
cal responses; and 2) deep learning-based methods!'” %,
which use neural networks to learn a general mapping

from the space of target responses to the space of optical

multilayer thin film structures after training on a large
dataset.

Although widely used, both methods have their own
limitations, either from the perspective of design targets
or types of designed structures. Optimization-based
methods require running the algorithm from scratch
when given a new or a different design target, which can
be time-consuming. Deep learning-based methods are
versatile for design targets, but existing works lack the
ability to design for different types of structures (e.g., dif-
ferent material combinations at each layer; different to-
tal number of layers, etc). In addition, both methods sel-
domly examine how to expand the inverse design capa-
bilities for angled incidence with different polarizations
that are important for many applications, as well as si-
multaneous design under multiple conditions required
for certain applications.

In addition to the above drawbacks, both methods
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also fail to accommodate the following two features that
are vital for practical fabrications: diversity and flexibili-
ty. By diversity we mean that a single method can output
multiple designs so that researchers can select for their
fabrication based on the availability of materials and de-
position methods, while flexibility allows researchers to
arbitrarily impose restrictions on the material selection
and thickness range at any layers for their fabrication or
design needs. An inverse design method that can effec-
tively meet these requirements will significantly bridge
the gap between design and fabrication, making the de-
sign algorithm more practical.

In this work, we propose OptoGPT (Opto Generative
Pretrained Transformer), a decoder-only transformer*
model that can potentially address all these issues and
unify the multilayer structure inverse design. To do so,
first, we introduce “structure token” to fuse the represen-
tation of material and thickness and “structure serializa-
tion” to unify different types of structures. Next, we pro-
pose several techniques to unify the design target in dif-
ferent tasks as a combined reflection and transmission
spectrum target. Further, a series of techniques based on
“finetuning” and “probability sampling” are developed to
unify the design under different angles and polarization,
simultaneous design under multiple incident angles, as
well as achieving diversity and flexibility for structure
fabrication. Based on the empirical results demonstrated,
we believe that OptoGPT can serve as a foundation mod-
el for the design of optical multilayer thin films across a
diverse array of applications.

Methods

Designing a multilayer structure involves determining
the material choice at each layer and the corresponding
thicknesses of these layers. The major reason that exist-
ing deep learning-based methods cannot deal with differ-
ent types of structures is that the output of these neural
networks has fixed size that corresponds to a pre-de-
fined structure, e.g., the three-layer structure of
Ag/SiOy/Ag in ref’, the six-layer structure of
MgF,/Si0,/Al,03/TiO5/Si/Ge in ref?!, and the twenty-
layer structure of alternating SiO,/Si3Ny in ref.’’, etc.
Therefore, these models can only design thickness for
each layer and do not allow different material choices.
This also make these models fail to accommodate struc-
tures with different number of layers. Here, we propose
structure tokens and structure serialization to obtain the
collaborative representation of materials and their thick-

nesses on the same footing, and treat the inverse design
task as a conditional sequence generation problem.

Structure tokens and structure serialization

To address the aforementioned issues of existing ap-
proaches, we propose to treat material and thickness
equally by concatenating them together to form a “struc-
ture token”. Adding these tokens one by one, we can
covert a multilayer structure into a sequence, which will
be referred as “structure serialization”. Figure 1(d) gives
one example of serializing a N-layer structure on the
glass substrate using a sequence with N 41 tokens. The
first N tokens describe the material and thickness at each
layer and the last token is a special ‘EoS’ token that de-
notes the end of the sequence. Utilizing this approach,
we can remove the limitation of fixed output size in the
previous work and represent different types of structures
(e.g., different material combinations at each layer; dif-
ferent total number of layers) in a unified approach.

In this work, we consider 18 different materials (see
Fig. 1(d); see Supplementary information (SI) 1.1 for
their refractive index data), and discretize the thickness
in the range of [10, 500] nm with a step size of 10 nm.
Although reducing the step size to a smaller value can
improve the design performance, significantly much
more dataset is needed for training. Also, considering the
fabrication variation during layered deposition process,
we choose 10 nm step size by balancing these factors.
Note that we can always use thickness finetuning (dis-
cussed later) based on the designed structure from our
model to remove such restrictions and obtain a more ac-
curate structure. Therefore, for each layer, there are
18 x 50 4+ 1 = 901 possible tokens, corresponding to 900
different combinations of material and thickness plus
one special ‘EoS’ token. We set the maximum number of
layers to be 20, making the total number of multilayer
structures under design consideration to be
(901)*" ~ 10, We then need to search for an Al plat-
form to accommodate such general approach and han-
dle such a large sample space effectively.

Conditional sequence generation

Since the output format is now a sequence of tokens, the
inverse design problem is equivalent to the sequence
generation problem conditioned on the input of design
targets. This is a problem that has been extensively re-
searched and resolved in the Natural Language Process-
ing (NLP) field using the Generative Pretrained
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Fig. 1 | The schematic of using the Opto-Generative Pretrained Transformer (OptoGPT) to design multilayer thin film structures. (a) and

(b) show the diagram of general GPT model in NLP and our OptoGPT, respectively. For GPT, the model takes in the input prompts and generate

answers from probability sampling in an auto-regressive way. In OptoGPT, the input prompts are the optical targets while the outputs are de-

signed multilayer structures. (c) Different types of inputs that relates to different application situations, including structural color, absorbers, filters,

distributed bragg reflectors (DBR), Fabry—Pérot (FP) resonator and other arbitrary spectrum targets. All of them are converted to reflection and

transmission spectrum. (d) One example of the “structure serialization” for a N-layer structure on the glass substrate. This N-layer structure is se-

rialized by N+1 tokens.

Transformer” (GPT) model, especially the widely
known ChatGPT?*. Given some texts as input, e.g., a
question or task description, GPT models can generate
and output a text sequence that relates to the input. We
propose to use similar GPT models to solve our problem.
Differently, the input is the optical targets in the form of
optical spectra (as a function of wavelength) while the
output is the serialized physical structure of material and
thickness. We show their analogy diagrams in Fig. 1(a)
and Fig. 1(b).

In this work, we set the reflection and transmission

spectrum under normal incidence as our design target.
The wavelength range covers the whole visible and near-
infrared (NIR) region, spanning from 400 nm to 1100
nm with 10 nm step. We further propose a series of tech-
niques that can expand the design target to absorption
spectrum, and reflective/transmissive structural color

with minimal adaptations (see below).

Model architecture
Figure 2(a) shows the architecture of our OptoGPT
model. For the input, the spectrum target will go through

240062-3
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Fig. 2 | Details of OptoGPT model. (a) The model architecture of our OptoGPT, which is a decoder-only transformer. More details can be found

in SI 1.3. (b) The working diagram of our OptoGPT model. (c) The diagram of the auto-regressive design process. When designing for i layer,

we sample from the probability output to obtain the layered information. This design process will keep going until reaching the maximum layer of

20 or ‘EoS’ is sampled.

a spectrum embedding to obtain its high-dimension hid-
den representation. For the output, the structure tokens
will first go through a physical embedding layer to ob-
tain its high-dimension hidden representation and then
go through positional embeddings to obtain the relative
position of each token inside this sequence. After that,
both hidden representations of the input spectrum and
output structures will go through a series of decoder
blocks which contains attention layers, the major work-
ing mechanism behind GPT. The first self-attention lay-
er is used to learn the relationship between layered struc-
tures, while the second cross-attention layer can capture
the relationship between the input spectrum and the
multilayer structure. Their output will further be used to
give a probability distribution over all tokens. Our mod-
el is trained for ~200 epochs based on “next-word pre-
diction™* using this probability output. We generate a

large training dataset with 10 million samples and a vali-
dation dataset with 1 million samples (see SI 1.2). The to-
tal number of datasets is only ~ 1/10 of the possible
structures. Each sample is a pair of a randomly sampled
multilayer thin film structure on a glass substrate and the
corresponding spectra simulated using Transfer Matrix
Methods* (TMM). Details of training and model archi-
tecture can be found in SI 1.3. The model architecture
and training details are summarized in SI 1.3, and visual-
ization of multi-head self-attention is illustrated in SI 1.4.
Our model is trained on a single NVIDIA3090 GPU for
roughly two weeks.

Inverse design

Once trained, our model can be used to design for a giv-
en input spectra target (see Fig. 2(b)), specifically, our
model finishes the design layer-by-layer in an auto-re-

240062-4
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gressive way (see Fig. 2(c)). When designing the iy, layer,
our model takes in the target spectrum together with the
previously designed i — 1 tokens, and outputs a probabil-
ity distribution for all 900+1 tokens. Sampling from this
distribution gives the design at the iy layer. These to-
kens will again be used as the input when designing the
(i +1),, layer. This design process will keep going until
reaching the maximum layer of 20 or ‘EoS’ is sampled.

This probability sampling has many advantages. First,
because of the randomness during sampling, running
each separate design process can output different struc-
tures. Therefore, the method inherently introduces di-
versity in the designed structure, capable of output mul-
tiple structures that satisfy the design target. In addition,
it enables our model to design structures with different
number of layers. For example, when ‘EoS’ is sampled at
the fifth layer, our model terminates the design process
and output the existing four-layer structure. The proba-
bility sampling will also be used to handle design with
constraints in the latter section.

Results

Visualization of structure tokens

Before presenting the training and inverse design results,
it is instructive to examine if the proposed structure to-
kens can capture the material and thickness information.
We use the t-distributed stochastic neighbor
embedding® (t-SNE) to visualize their hidden embed-
dings by reducing the high-dimensional embeddings to
2-D. The working diagram of dimension reduction us-
ing t-SNE is shown in Fig. 3(a). Both the embedding of
structure tokens and the embedding of spectra are in-
cluded. The embeddings of structure tokens are the
physical embeddings in our model (see Fig. 2(a)) and the
embeddings of spectra are the hidden representations of
spectra after going through the spectrum embedding lay-
er (see Fig. 2(a)). In total, there are 900 structure embed-
dings (corresponding to 900 different structure tokens)
and 1000 spectra embeddings randomly selected from
the validation dataset.

We visualize the result of dimension reduction in Fig.
3(b). Several interesting features are immediately ob-
served. First, the physical structures (colored traces con-
sisting of individual dots representing the structure to-
ken) and optical spectra responses (encircled cluster of
green crosses) are well separated in this 2-D representa-
tion, even though they were fed into training on the
equal footing. This demonstrates that our model has

https://doi.org/10.29026/0ea.2024.240062

learned to distinguish the attributes of material struc-
tures and optical spectra while mapping them into the
same hidden representation space.

Second, the 900 structure tokens are easily distinguish-
able, either as colored curves (the starting and ending
points correspond to thickness of 500 nm and 10 nm re-
spectively), or cluster of dots, with no overlap between
different materials. Upon close examination, it is clear
that our model has intelligently separated the low refrac-
tive index dielectrics from the high refractive dielectrics
(zoom-in view in (i) and (ii)). Within these two groups,
all curves converge to the center region representing the
lowest thickness 10 nm. This is anticipated from optical
physics: when the dielectric layer thickness is reduced to
the minimal all materials will behave similarly as they
contribute to negligible optical phrase change or optical
absorption (in the case of high index material). In other
words, our model has learned the fact that thin dielectric
layers of different materials all have similar effect on light
propagation in multilayer thin films. Equally interesting
is that all the metals cluster into their own territories in
this 2-D map. This can be understood because as the
metal layer thickness is greater than the optical penetra-
tion depth, its contribution to the optical response (i.e.
spectra) has little dependence on the thicknesses. These
observations demonstrate that even though our model
does not directly take in any refractive index nor thick-
ness, it can capture this information and learning hid-
den representations from a large dataset, validating the
usage of structure serialization and spectrum embedding.
This also aligns well with the strong representation capa-
bilities demonstrated in many other foundation models
such as Galactica®, GaTo*, and PaLM-E*.

Inverse design performance

Now we will examine our model’s inverse design perfor-
mance on different application situations. We want to
mention that in this section, our model will be fixed and
all these design tasks can be finished instantaneously by
feeding different inputs of target optical response into
our model. However, in case of higher accuracy is re-
quired, we run a thickness finetuning to improve the
performance because the 10 nm discretization of thick-
ness may lead to sub-optimal performance for certain
materials (e.g. metals and absorbing dielectrics) (see SI
2.1). By default, we present the design performance with-
out thickness finetuning unless specified.

240062-5
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Fig. 3 | 2D visualization of the hidden space using t-SNE to reduce dimension. (a) The working diagram of using t-SNE to reduce dimen-

sion of structure embeddings and spectrum embeddings to 2D. (b) Visualization of t-SNE for 900 structure tokens and 1,000 spectra randomly

selected from the validation dataset. Spectra are marked as green cross and structure tokens are marked as colorful dots, where different color

corresponds to different materials. The green dashed circle illustrates the approximated boundary between spectra and structures. Inside this

boundary are the spectra, with examples of two different spectra (marked as red cross) given in (iii) and (iv). Outside the green boundary are

structure tokens corresponding to different material and thickness combinations. These structure tokens with the same materials either form a

line shape or cluster together. For each line, the dot size is monotonically decreasing from one end to the other end, corresponding to the mono-

tonical thickness decrease from 500 nm to 10 nm. Most lines converge into two regions, with zoom-in details given in (i) and (ii) corresponding to

low refractive and high refractive index region, respectively. Our model demonstrates the ability of learning the material and thickness from a

large dataset without their explicit inputs.

Performance on the validation dataset

Here, we evaluate the averaged inverse design perfor-
mance on 1000 spectra targets randomly selected from
the validation dataset. Based on the multilayer design
output from our model, we simulate their correspond-

ing spectrum using TMM and calculate the Mean Abso-

lute Error (MAE) between the input spectrum and the
simulated spectrum to quantify the design accuracy. The
closest spectrum with smallest MAE in the training
dataset is treated as the design baseline, i.e., the best
spectrum we could get by simply referring to the train-

ing dataset. A good machine learning model should be
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Fig. 4 | Results of inverse design performance on the validation dataset. (a) The Mean Absolute Error (MAE) on 1,000 random spectrum tar-

gets from the validation dataset. The orange, blue and red dots correspond to closest structures in training dataset, designed structures and fine-

tuned structures. Their averaged MAE are 0.0296, 0.0258, 0.0192, respectively. (b) The number of layers in the target structure v.s. the number

of layers in the designed structure. On average, the designed structures have 6 fewer layers than the target structure. (¢) Time comparison of for-

ward simulation using TMM and inverse design using OptoGPT (without finetuning). Results are averaged on 1,000 random targets in the valida-

tion dataset, showing that our model makes inverse design as fast as doing a TMM simulation. (d) One inverse design example from the valida-

tion dataset. The table below gives the details of five designed structures and the finetuned structure as well as their spectrum MAE.

able to learn from and outperform the training dataset.
In Fig. 4(a), we compare the MAEs of the closest struc-
tures in the training dataset (orange dots), designed
structures (blue dots), and finetuned structures (red
dots). On average, the MAE of the designed structures is
0.0258, which is lower than the MAE of the closest struc-
tures (0.0296) in the training set; finetuning the thick-
ness can further reduce the MAE to 0.0192 (~24% reduc-
tion). In Fig. 4(b), we compare the number of layers in
the target structure (the structure corresponding to the
target spectrum in the validation dataset) vs. the number
of layers in the designed structure. The zero upper diago-
nal matrix implies that our model learns to solve design
tasks using a simplified structure with fewer layers (~6
layers on average), which can facilitate the fabrication
process as structures with fewer layers are easier to make.
Finally, we record the time-consumption in Fig. 4(c). On
average, our model completes each design within 0.1 s,
which is comparable as running a TMM simulation. We

detail one such inverse design example in Fig. 4(d). By

running the sampling process multiple times, our model
can output multiple different structures with close-to-
target spectrum that are much better than the training
dataset. We also detail these designed structures to illus-
trate the diversity in Fig. 4(d).

Spectrum filter

Now we will evaluate our model on practical inverse de-
sign tasks. One such application is the spectrum filter
which is used to selectively reflect or transmit specific
band of light. Many deep learning-based methods have
been proposed to inverse design these filters'”***. Here,
several examples are tested: a band-notch filter at 550
nm, a band-notch filter at 700 nm, high reflection in
NIR, double high reflection in 500-600 nm and
800-1000 nm, etc. We set the input to be the perfect rect-
angular spectrum, which has 0% transmission in the de-
sired region and 100% transmission in the rest region. In
all these artificial spectrum design targets, our model can

output designs that outperform the training dataset.
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Fig. 5 | Examples of inverse design artificial spectra in different applications. (a) Design for band-notch filter at 550 nm. (b) Design for high

reflection in NIR. (c) Design for perfect absorber. (d) Design for arbitrary absorber. Here, solid lines, dotted lines and squared lines correspond to

the spectrum of artificial target, the spectrum of the closest structure in the training dataset and the spectrum of designed structure from our mod-

el (with thickness finetuning), respectively. (e—f) shows the example of designing reflective and transmissive structural color, respectively. We use

the color difference of AE to evaluate the design performance (smaller AE means smaller color difference). For each color, the first brick, second

brick, and third brick correspond to the target color, closest color in the training dataset, and designed color from our mode (with thickness fine-

tuning), respectively. More details and examples can be found in section 2 in SI.

Thickness finetuning can further improve the accuracy.
We illustrate two examples and compare their spectrum
in Fig. 5(a, b). More examples and details can be found
in SI 2.5.

Absorber
Perfect absorbers have been widely used in photovoltaics,
radiative cooling, detecting and solar-thermal harvest-
ing"1030-3, etc. Although our model is trained on reflec-
tion and transmission spectrum, it also demonstrates
good performance for perfect absorbers. This is done by
simply setting the input spectrum as zero for both reflec-
tion and transmission. Our model gives multiple designs
and we show one design example in Fig. 5(c). We also
find that our model gives some similar structures report-
ed in ref.* and ref.?!. More details can be found in SI 2.4.
Apart from perfect absorbers, our model can also de-
sign for arbitrary absorption. Since energy conservation
guarantees that reflection + transmission + absorption =

1, we can tailor the input spectrum by setting reflection

to be one minus absorption and setting transmission to
be zero. Figure 5(d) gives one such design example. More

design examples can be found in SI 2.4.

Structural color

Compared to dyes and chemical pigments, structural col-
ors? exhibit unique advantages on high resolution, stabil-
ity and sustainability and have been widely used in color
printing’*?, information encryption®, sensors*, etc.
There are also many works that use deep learning to
solve the structural color inverse design'®2*4>%, Usually,
colors can be represented by a three-dimensional color
coordinate, e.g., Lab, RGB or xyY values. In order to
make our model well suit for this application, here, we
propose an algorithm that can convert a color coordi-
nate into a continuous spectrum in a generalized way
(see SI 2.3). These converted spectra can be pre-calculat-
ed and will not impact the design process. When design-
ing for reflective color, we set the reflection spectrum to

be this converted spectrum and transmission spectrum
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to be zero. For transmissive color, we set the transmis- process when facing a different constraint, our method is
sion spectrum to be this converted spectrum and reflec- fast and can be quickly adapted to different constraints.
tion spectrum to be one minus transmission. In Fig. 5(e) As an example, we use our model to inverse design a
and Fig. 5(f), we illustrate multiple design examples and FP resonator. Here, the target spectrum has a resonance
their color visualization for both reflective and transmis- absorption at 610 nm and corresponds to a three-layer
sive structural color, respectively. Details on the basic 20 nm Ag/150 nm SiO,/50 nm Ag resonator on a glass
color theory, relationship of color coordinate and color substrate. We consider adding four different constraints
spectra, and more examples can be found in SI 2.3. separately:
1) Fix the first layer to be 100 nm SiO,
Design flexibility 2) Remove Ag in the third layer
Design flexibility adds extra freedom to the design pro- 3) Limit the thickness of the first layer within [10, 150]
cess because researchers can impose restrictions on the nm range and remove Ag/Al in the first layer
material selection and thickness range for any specific 4) Specify the material arrangement to be a three-lay-
layer to meet the fabrication or design needs. We pro- er Ag/SizNy/Ag structure and design the thickness only
pose and apply a fast but still generalized method of The first constraint can be used when a dielectric lay-
“probability resampling” to impose restrictions in the de- er at the air interface is needed for protection, while the
sign process. As illustrated in Fig. 6(a), this is done by re- second constraint is practical when looking for an alter-
moving these structures that do not satisfy constraints native to replace silver, considering silver is an expensive
from probability sampling. Since this method is indepen- metal. For the third constraint, we use it as a general ex-
dent of spectra targets, it can be used to design for any ample of adding thickness and material restrictions si-
applications. Compared to many deep learning-based multaneously. We use our model to design structures
methods, this method can be generalized to different and we compare their spectra in Fig. 6(b-d), demonstrat-
types of constraints on material and thickness selection. ing that our model can finish designs that satisfy
On the other hand, compared to optimization-based desired constraints while still guaranteeing spectrum
methods that usually require restarting the optimization performance.
n . . Zn0O_60
Add constraint Renormalize f
—_— —_—
> e.g., remove Ag > > g Sampling v
3 3 3
@® ®© ®©
3 S S
& & , & | |
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Fig. 6 | lllustration of design flexibility. (a) A visualization of the design process when adding the design constraint. We use the example of “re-
move Ag from material selection at i, layer”. When designing the desired i, layer, we remove these tokens that do not satisfy constraints from
probability distribution and only sample from the renormalized probability based on remaining tokens. (b—e) Comparison of the spectrum perfor-
mance with different constraints, respectively. The solid lines and squared lines are the target spectrum and the spectrum of the designed struc-
ture with different constraints, respectively. More examples of design flexibility can be found in section 3 in SI.
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In particular, the fourth constraint specifies the mate-
rial at each layer and only requires thickness design. This
is a traditional design process widely used by human ex-
perts and in many optimization-based methods. The de-
sign results in Fig. 6(e) show that given the spectrum tar-
get and material arrangements, our model can be used
for direct thickness design without iterative optimiza-
tion. Since this feature does not rely on the target optical
response, researchers can quickly examine if certain ma-
terial combinations can achieve the target spectrum and
obtain their corresponding thickness if so. We provide

more examples of design flexibility in SI 3.2.

Generalization ability

Although our model is trained on normal incident spec-
trum, its strong generalization ability enables the design
towards different angles and polarization states, expand-
ing allowable applications significantly. This is achieved
through finetuning our entire model on a small dataset.
We further propose the idea of “mixed sampling” to de-
sign structures that satisfy multiple requirements simul-

taneously.

Finetuning

Starting with the OptoGPT model trained on a 10 M
dataset, we can finetune this model on a smaller dataset
to suit for light incidence of different angles and polar-
ization states. Figure (7a) gives the finetune diagram. For
example, in order to design for s-polarized spectrum un-
der 20° incident angle, we first prepare a small 1M
dataset with such spectrum and then update entire mod-
el by 10 epochs. This only requires 1% computing re-
sources compared with training the entire model from
scratch. Similar procedures can be done for other angles
and polarizations. In Fig. 7(b-g), we show multiple in-
verse design examples finetuned for 20° s-polarization,
60° s-polarization, 10° p-polarization, 50° p-polarization,
30° unpolarized light and 50° unpolarized light, respec-
tively. More comparisons between pre-trained model

and finetuned model are given in SI 4.1.

Mixed sampling

Instead of designing the spectrum for a specific angle/po-
larization, in some situations we hope the designed
structure can simultaneously realize multiple spectra un-

der different incident angles/polarizations, which has not

https://doi.org/10.29026/0ea.2024.240062

been extensively explored. Benefited from our model’s
probability output, we can simply add up these outputs
from multiple models that are specific to each situation,
and then do a probability sampling based on this mixed
output. This is called “Mixed sampling” and we illustrate
it in Fig. 8(a). As an example, in Fig. 8(b), we use this
method to design an angle-invariant spectrum at 0°, 20°
and 40° for unpolarized light. More examples can be
found in SI 4.2.

Discussion and conclusion

By converting the multilayer structure into a sequence
using structure tokens and structure serialization, we
propose OptoGPT to effectively deal with the non-trivial
inverse design problem in multilayer structure. Com-
bined with many proposed techniques, our model can
unify the inverse design under different types of input
targets under different incident angle/polarization, be
versatile to different types of structures, as well as facili-
tating the fabrication process by providing the diversity
and flexibility. We compare our model with existing
methods in Table 2 in SI. We hope the development of
OptoGPT will make the multilayer thin film structure-
based inverse design effective in methodology and easily
accessible to researchers and engineers.

The interesting findings of the hidden representations
of OptoGPT suggest that it has acquired domain-specif-
ic knowledge pertaining to optical multilayer structures
through the training process. Furthermore, the model
has demonstrated the capacity to apply this acquired
knowledge effectively in the inverse design process.
However, the current framework still lacks explain abili-
ty and does not allow users to directly understand the
physical principles involved in its designs. For example,
is there a general principle for designing absorbers and
DBR? How to design high saturation structural color
step-by-step? We hope future work can find a way to ex-
tract and formulate these design principles from the
model and apply them to guide inverse design.

In addition, using similar methods, our model can be
expanded towards high-dimension complicated photon-
ic structures, e.g., 2D metasurfaces or 3D waveguides, us-
ing  similar  tokenization method in  Vision
Transformer”. However, one limitation is that our mod-

el requires a large dataset for training, which is also a
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Fig. 7 | Design performance on different angles and polarization. (a) The diagram of finetune. (b—g) gives inverse design examples for spec-
trum with 20° s-polarization, 60° s-polarization, 10° p-polarization, 50° p-polarization, 30° unpolarized and 50° unpolarized, respectively. The sol-
id line, dashed line and squared line correspond to the target spectrum, spectrum designed by the pretrained model and spectrum designed by

the finetuned model, respectively.

common criticism for many GPT models. For example,
ChatGPT is trained on billions of tokens using ~10000
GPUs, costing ~$10M for a single training. In this work,
because of the constraint on computation resources, we
need to simplify our design problems, including using
limited types of materials, limited spectrum range, thick-
ness discretization as well as the maximum number of
layers that can be designed, all of which can be extended
with more computation resources. Despite using a large-

scale dataset with 10 million samples for training, it is

important to recognize that this dataset only covers a
small fraction (~ 107"*) of the expansive and complex
design space associated with optical multilayer thin film
structures. Due to this limitation of its training dataset,
OptoGPT may fail to find a design that lies outside the
boundaries of the sampled design space (see SI 4.2).
Close collaboration across multiple research groups is
needed to obtain a better model for a more general and
better photonic inverse design that expands to more

complicated structures.
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