
OptoGPT: A foundation model for inverse design in optical multilayer thin film
structures
Taigao Ma, Haozhu Wang and L. Jay Guo

Citation: Ma TG, Wang HZ, Guo LJ. OptoGPT: A foundation model for inverse design in optical multilayer thin film
structures. Opto-Electron Adv 7, 240062(2024).

https://doi.org/10.29026/oea.2024.240062

Received: 19 March 2024; Accepted: 3 June 2024; Published online: 10 July 2024

Related articles
Benchmarking deep learning-based models on nanophotonic inverse design problems
Taigao Ma, Mustafa Tobah, Haozhu Wang, L. Jay Guo
Opto-Electronic Science    2022  1,  210012        doi: 10.29026/oes.2022.210012

Physics-data-driven intelligent optimization for large-aperture metalenses
Yingli Ha, Yu Luo, Mingbo Pu, Fei Zhang, Qiong He, Jinjin Jin, Mingfeng Xu, Yinghui Guo, Xiaogang Li, Xiong Li, Xiaoliang Ma, Xiangang Luo
Opto-Electronic Advances    2023  6,  230133        doi: 10.29026/oea.2023.230133

More related article in Opto-Electronic Journals Group website  

http://www.oejournal.org/oea  OE_Journal  @OptoElectronAdv

https://www.oejournal.org/oea/
https://doi.org/10.29026/oea.2024.240062
https://www.oejournal.org/article/doi/10.29026/oes.2022.210012
https://doi.org/10.29026/oes.2022.210012
https://www.oejournal.org/article/doi/10.29026/oea.2023.230133
https://doi.org/10.29026/oea.2023.230133
https://www.oejournal.org/article/doi/10.29026/oea.2024.240062#relative-article
https://www.oejournal.org/article/doi/10.29026/oea.2024.240062#relative-article
http://www.oejournal.org/oea


DOI: 10.29026/oea.2024.240062

OptoGPT: A foundation model for inverse
design in optical multilayer thin film structures
Taigao Ma1, Haozhu Wang2# and L. Jay Guo2*

Optical  multilayer  thin  film structures  have  been widely  used  in  numerous  photonic  applications.  However,  existing  in-
verse design methods have many drawbacks because they either fail to quickly adapt to different design targets, or are
difficult to suit for different types of structures, e.g., designing for different materials at each layer. These methods also
cannot accommodate versatile design situations under different angles and polarizations. In addition, how to benefit prac-
tical fabrications and manufacturing has not been extensively considered yet. In this work, we introduce OptoGPT (Opto
Generative Pretrained Transformer), a decoder-only transformer, to solve all these drawbacks and issues simultaneously.
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Introduction
Optical multilayer thin film structure is one of the most
vital  photonic  structures  widely  used  in  many  applica-
tions,  including  structural  color1,2,  filters3,  absorbers4,
distributed  Bragg  reflectors5,6 (DBR),  Fabry–Pérot7 (FP)
resonators,  photovoltaic8 and  radiative  cooling9−11,
among  others.  Inverse  design  seeks  to  identify  the  best
material  arrangements  and  obtain  thickness  combina-
tions  to  achieve  user-desired  optical  targets,  which  is
critical  to  enable  many  of  the  above  applications.  Cur-
rently, there are two types of mainstream inverse design
methods: 1) optimization-based methods12−16, which rely
on numerical simulations and iterative searches to mini-
mize the difference between designed and targeted opti-
cal  responses;  and  2)  deep  learning-based  methods17−23,
which  use  neural  networks  to  learn  a  general  mapping
from the space of target responses to the space of optical

multilayer  thin  film  structures  after  training  on  a  large
dataset.

Although  widely  used,  both  methods  have  their  own
limitations,  either from the perspective of design targets
or  types  of  designed  structures.  Optimization-based
methods  require  running  the  algorithm  from  scratch
when given a new or a different design target, which can
be  time-consuming.  Deep  learning-based  methods  are
versatile  for  design  targets,  but  existing  works  lack  the
ability to design for different types of structures (e.g., dif-
ferent  material  combinations  at  each  layer;  different  to-
tal number of layers, etc). In addition, both methods sel-
domly examine how to  expand the  inverse  design capa-
bilities  for  angled  incidence  with  different  polarizations
that  are  important  for  many  applications,  as  well  as  si-
multaneous  design  under  multiple  conditions  required
for certain applications.

In  addition  to  the  above  drawbacks,  both  methods 
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also fail to accommodate the following two features that
are vital for practical fabrications: diversity and flexibili-
ty. By diversity we mean that a single method can output
multiple  designs  so  that  researchers  can  select  for  their
fabrication based on the availability of materials and de-
position  methods,  while  flexibility  allows  researchers  to
arbitrarily  impose  restrictions  on  the  material  selection
and thickness range at any layers for their fabrication or
design  needs.  An  inverse  design  method  that  can  effec-
tively  meet  these  requirements  will  significantly  bridge
the  gap between design and fabrication,  making the  de-
sign algorithm more practical.

In this work, we propose OptoGPT (Opto Generative
Pretrained  Transformer),  a  decoder-only  transformer24

model  that  can  potentially  address  all  these  issues  and
unify  the  multilayer  structure  inverse  design.  To  do  so,
first, we introduce “structure token” to fuse the represen-
tation of material and thickness and “structure serializa-
tion” to unify different types of structures. Next, we pro-
pose several techniques to unify the design target in dif-
ferent  tasks  as  a  combined  reflection  and  transmission
spectrum target. Further, a series of techniques based on
“finetuning” and “probability sampling” are developed to
unify the design under different angles and polarization,
simultaneous  design  under  multiple  incident  angles,  as
well  as  achieving  diversity  and  flexibility  for  structure
fabrication. Based on the empirical results demonstrated,
we believe that OptoGPT can serve as a foundation mod-
el25 for the design of optical multilayer thin films across a
diverse array of applications. 

Methods
Designing  a  multilayer  structure  involves  determining
the  material  choice  at  each layer  and the  corresponding
thicknesses  of  these  layers.  The major  reason that  exist-
ing deep learning-based methods cannot deal with differ-
ent types of  structures is  that  the output of  these neural
networks  has  fixed  size  that  corresponds  to  a  pre-de-
fined  structure,  e.g.,  the  three-layer  structure  of
Ag/SiO2/Ag  in  ref.18,  the  six-layer  structure  of
MgF2/SiO2/Al2O3/TiO2/Si/Ge  in  ref.21,  and  the  twenty-
layer  structure  of  alternating  SiO2/Si3N4 in  ref.17,  etc.
Therefore,  these  models  can  only  design  thickness  for
each  layer  and  do  not  allow  different  material  choices.
This also make these models fail to accommodate struc-
tures  with different  number of  layers.  Here,  we propose
structure tokens and structure serialization to obtain the
collaborative representation of materials and their thick-

nesses on the same footing,  and treat  the inverse design
task as a conditional sequence generation problem. 

Structure tokens and structure serialization

N
N+ 1

N

To  address  the  aforementioned  issues  of  existing  ap-
proaches,  we  propose  to  treat  material  and  thickness
equally by concatenating them together to form a “struc-
ture  token”.  Adding  these  tokens  one  by  one,  we  can
covert a multilayer structure into a sequence, which will
be  referred as “structure  serialization”. Figure 1(d) gives
one  example  of  serializing  a -layer  structure  on  the
glass  substrate  using a  sequence with  tokens.  The
first  tokens describe the material and thickness at each
layer  and the  last  token is  a  special ‘EoS’ token that  de-
notes  the  end  of  the  sequence.  Utilizing  this  approach,
we can remove the limitation of fixed output size in the
previous work and represent different types of structures
(e.g.,  different  material  combinations  at  each  layer;  dif-
ferent total number of layers) in a unified approach.

18× 50+ 1 = 901

(901)20 ∼ 1059

In  this  work,  we  consider  18  different  materials  (see
Fig. 1(d);  see  Supplementary  information  (SI)  1.1  for
their  refractive  index  data),  and  discretize  the  thickness
in  the  range  of  [10,  500]  nm  with  a  step  size  of  10  nm.
Although  reducing  the  step  size  to  a  smaller  value  can
improve  the  design  performance,  significantly  much
more dataset is needed for training. Also, considering the
fabrication  variation  during  layered  deposition  process,
we  choose  10  nm  step  size  by  balancing  these  factors.
Note  that  we  can  always  use  thickness  finetuning  (dis-
cussed  later)  based  on  the  designed  structure  from  our
model to remove such restrictions and obtain a more ac-
curate  structure.  Therefore,  for  each  layer,  there  are

 possible tokens, corresponding to 900
different  combinations  of  material  and  thickness  plus
one special ‘EoS’ token. We set the maximum number of
layers  to  be  20,  making  the  total  number  of  multilayer
structures  under  design  consideration  to  be

.  We  then  need  to  search  for  an  AI  plat-
form  to  accommodate  such  general  approach  and  han-
dle such a large sample space effectively. 

Conditional sequence generation
Since the output format is now a sequence of tokens, the
inverse  design  problem  is  equivalent  to  the  sequence
generation  problem  conditioned  on  the  input  of  design
targets.  This  is  a  problem  that  has  been  extensively  re-
searched and resolved in the Natural  Language Process-
ing  (NLP)  field  using  the  Generative  Pretrained
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Transformer26,27 (GPT)  model,  especially  the  widely
known  ChatGPT28.  Given  some  texts  as  input,  e.g.,  a
question  or  task  description,  GPT  models  can  generate
and output a text sequence that relates to the input.  We
propose to use similar GPT models to solve our problem.
Differently, the input is the optical targets in the form of
optical  spectra  (as  a  function  of  wavelength)  while  the
output is the serialized physical structure of material and
thickness.  We  show  their  analogy  diagrams  in Fig. 1(a)
and Fig. 1(b).

In  this  work,  we  set  the  reflection  and  transmission

spectrum  under  normal  incidence  as  our  design  target.
The wavelength range covers the whole visible and near-
infrared  (NIR)  region,  spanning  from  400  nm  to  1100
nm with 10 nm step. We further propose a series of tech-
niques  that  can  expand  the  design  target  to  absorption
spectrum,  and  reflective/transmissive  structural  color
with minimal adaptations (see below).
 

Model architecture
Figure 2(a) shows  the  architecture  of  our  OptoGPT
model. For the input, the spectrum target will go through
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Fig. 1 | The schematic of using the Opto-Generative Pretrained Transformer (OptoGPT) to design multilayer thin film structures. (a) and

(b) show the diagram of general GPT model in NLP and our OptoGPT, respectively. For GPT, the model takes in the input prompts and generate

answers from probability  sampling in an auto-regressive way.  In OptoGPT, the input  prompts are the optical  targets while the outputs are de-

signed multilayer structures. (c) Different types of inputs that relates to different application situations, including structural color, absorbers, filters,

distributed bragg reflectors (DBR), Fabry–Pérot (FP) resonator and other arbitrary spectrum targets. All of them are converted to reflection and

transmission spectrum. (d) One example of the “structure serialization” for a N-layer structure on the glass substrate. This N-layer structure is se-

rialized by N+1 tokens.
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a spectrum embedding to obtain its high-dimension hid-
den representation.  For the output,  the structure tokens
will  first  go  through  a  physical  embedding  layer  to  ob-
tain  its  high-dimension  hidden  representation  and  then
go through positional  embeddings to obtain the relative
position  of  each  token  inside  this  sequence.  After  that,
both  hidden  representations  of  the  input  spectrum  and
output  structures  will  go  through  a  series  of  decoder
blocks  which contains  attention layers,  the  major  work-
ing mechanism behind GPT. The first self-attention lay-
er is used to learn the relationship between layered struc-
tures, while the second cross-attention layer can capture
the  relationship  between  the  input  spectrum  and  the
multilayer structure. Their output will further be used to
give a probability distribution over all tokens. Our mod-
el  is  trained  for  ~200  epochs  based  on “next-word  pre-
diction”24 using  this  probability  output.  We  generate  a

∼ 1/1052

large training dataset with 10 million samples and a vali-
dation dataset with 1 million samples (see SI 1.2). The to-
tal  number  of  datasets  is  only  of  the  possible
structures. Each sample is a pair of a randomly sampled
multilayer thin film structure on a glass substrate and the
corresponding  spectra  simulated  using  Transfer  Matrix
Methods29 (TMM).  Details  of  training and model  archi-
tecture  can  be  found  in  SI  1.3.  The  model  architecture
and training details are summarized in SI 1.3, and visual-
ization of multi-head self-attention is illustrated in SI 1.4.
Our model is trained on a single NVIDIA3090 GPU for
roughly two weeks. 

Inverse design
Once trained, our model can be used to design for a giv-
en  input  spectra  target  (see Fig. 2(b)),  specifically,  our
model  finishes  the  design  layer-by-layer  in  an  auto-re-

 

a

c

b(1) (2) (3) (4) (19) (20) (21)……

(1) (2) (3) (4) (19) (20) (21)……

Feed-Forward

Multi-Head Cross-Attention

Multi-Head Self-Attention

Positional embeddings

Physical embeddings

Structure sequence

……, ′TiO2 _30′ ……, ′TiO2 _30′, ′Si_20′

Randomly generated

dataset with 10 M

multilayer structures

and spectra

Training

Opto Generative
Pretrained Transformer

(OptoGPT)

Inputs

Spectrum 1

Spectrum 2

Spectrum 3

……

Inverse design

Structure 1

Structure 2

Structure 3

……

A decoder block

N X

Hidden representation

Spectrum embedding

Reflection and
transmission spectrum

(concatenated)

Target spectrum
λ

Append

Sampling

Append

Sampling

P
ro

b
a
b

ili
ty

P
ro

b
a
b

ili
ty

OptoGPT OptoGPT OptoGPT

Layer (i) Layer (i+1)

……

Designed structure sequence:

……,′TiO2 _30′, ′Si_20′, ……, ′EoS′.

……,′TiO2 _30′ ……,′TiO2 _30′, ′Si_20′

Design process continues
until ends

Ag_20

Ag_10

TiO2 _
30

TiO2 _
100

TiO2 _
200

ZnO_60
Si_20

MgO_90

MgO_40
Ag_20

M
gF2

_40

TiO2
_260

Fig. 2 | Details of OptoGPT model. (a) The model architecture of our OptoGPT, which is a decoder-only transformer. More details can be found

in SI 1.3. (b) The working diagram of our OptoGPT model. (c) The diagram of the auto-regressive design process. When designing for ith layer,

we sample from the probability output to obtain the layered information. This design process will keep going until reaching the maximum layer of

20 or ‘EoS’ is sampled.
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ith

i− 1

ith

(i+ 1)th

gressive way (see Fig. 2(c)). When designing the  layer,
our model takes in the target spectrum together with the
previously designed  tokens, and outputs a probabil-
ity distribution for all 900+1 tokens. Sampling from this
distribution  gives  the  design  at  the  layer.  These  to-
kens will  again be used as the input when designing the

 layer.  This  design  process  will  keep  going  until
reaching the maximum layer of 20 or ‘EoS’ is sampled.

This probability sampling has many advantages. First,
because  of  the  randomness  during  sampling,  running
each separate  design  process  can  output  different  struc-
tures.  Therefore,  the  method  inherently  introduces  di-
versity in the designed structure, capable of output mul-
tiple structures that satisfy the design target. In addition,
it  enables  our  model  to  design  structures  with  different
number of layers. For example, when ‘EoS’ is sampled at
the  fifth  layer,  our  model  terminates  the  design  process
and output the existing four-layer structure.  The proba-
bility  sampling  will  also  be  used  to  handle  design  with
constraints in the latter section. 

Results
 

Visualization of structure tokens
Before presenting the training and inverse design results,
it  is  instructive to examine if  the proposed structure to-
kens can capture the material and thickness information.
We  use  the  t-distributed  stochastic  neighbor
embedding30 (t-SNE)  to  visualize  their  hidden  embed-
dings  by  reducing  the  high-dimensional  embeddings  to
2-D.  The  working  diagram  of  dimension  reduction  us-
ing  t-SNE is  shown in Fig. 3(a).  Both  the  embedding  of
structure  tokens  and  the  embedding  of  spectra  are  in-
cluded.  The  embeddings  of  structure  tokens  are  the
physical embeddings in our model (see Fig. 2(a)) and the
embeddings of spectra are the hidden representations of
spectra after going through the spectrum embedding lay-
er (see Fig. 2(a)). In total, there are 900 structure embed-
dings  (corresponding  to  900  different  structure  tokens)
and  1000  spectra  embeddings  randomly  selected  from
the validation dataset.

We visualize the result of dimension reduction in Fig.
3(b).  Several  interesting  features  are  immediately  ob-
served. First, the physical structures (colored traces con-
sisting  of  individual  dots  representing  the  structure  to-
ken)  and  optical  spectra  responses  (encircled  cluster  of
green crosses) are well  separated in this 2-D representa-
tion,  even  though  they  were  fed  into  training  on  the
equal  footing.  This  demonstrates  that  our  model  has

learned  to  distinguish  the  attributes  of  material  struc-
tures  and  optical  spectra  while  mapping  them  into  the
same hidden representation space.

Second, the 900 structure tokens are easily distinguish-
able,  either  as  colored  curves  (the  starting  and  ending
points correspond to thickness of 500 nm and 10 nm re-
spectively),  or  cluster  of  dots,  with  no  overlap  between
different  materials.  Upon  close  examination,  it  is  clear
that our model has intelligently separated the low refrac-
tive  index dielectrics  from the  high refractive  dielectrics
(zoom-in view in (i)  and (ii)).  Within these two groups,
all curves converge to the center region representing the
lowest thickness 10 nm. This is  anticipated from optical
physics: when the dielectric layer thickness is reduced to
the  minimal  all  materials  will  behave  similarly  as  they
contribute to negligible  optical  phrase change or  optical
absorption (in the case of high index material).  In other
words, our model has learned the fact that thin dielectric
layers of different materials all have similar effect on light
propagation in multilayer  thin films.  Equally  interesting
is  that  all  the metals  cluster into their  own territories  in
this  2-D  map.  This  can  be  understood  because  as  the
metal layer thickness is greater than the optical penetra-
tion  depth,  its  contribution  to  the  optical  response  (i.e.
spectra)  has  little  dependence  on  the  thicknesses.  These
observations  demonstrate  that  even  though  our  model
does  not  directly  take  in  any  refractive  index  nor  thick-
ness,  it  can  capture  this  information  and  learning  hid-
den  representations  from  a  large  dataset,  validating  the
usage of structure serialization and spectrum embedding.
This also aligns well with the strong representation capa-
bilities  demonstrated  in  many  other  foundation  models
such as Galactica31, GaTo32, and PaLM-E33. 

Inverse design performance
Now we will examine our model’s inverse design perfor-
mance  on  different  application  situations.  We  want  to
mention that in this section, our model will be fixed and
all  these design tasks can be finished instantaneously by
feeding  different  inputs  of  target  optical  response  into
our  model.  However,  in  case  of  higher  accuracy  is  re-
quired,  we  run  a  thickness  finetuning  to  improve  the
performance  because  the  10  nm  discretization  of  thick-
ness  may  lead  to  sub-optimal  performance  for  certain
materials  (e.g.  metals  and  absorbing  dielectrics)  (see  SI
2.1). By default, we present the design performance with-
out thickness finetuning unless specified. 
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Performance on the validation dataset
Here,  we  evaluate  the  averaged  inverse  design  perfor-
mance  on  1000  spectra  targets  randomly  selected  from
the  validation  dataset.  Based  on  the  multilayer  design
output  from  our  model,  we  simulate  their  correspond-
ing spectrum using TMM and calculate the Mean Abso-

lute  Error  (MAE)  between  the  input  spectrum  and  the
simulated spectrum to quantify the design accuracy. The
closest  spectrum  with  smallest  MAE  in  the  training
dataset  is  treated  as  the  design  baseline,  i.e.,  the  best
spectrum  we  could  get  by  simply  referring  to  the  train-
ing  dataset.  A  good  machine  learning  model  should  be
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sion of structure embeddings and spectrum embeddings to 2D. (b) Visualization of t-SNE for 900 structure tokens and 1,000 spectra randomly

selected from the validation dataset. Spectra are marked as green cross and structure tokens are marked as colorful dots, where different color

corresponds to  different  materials.  The green dashed circle  illustrates  the approximated boundary  between spectra  and structures.  Inside this

boundary are the spectra,  with examples of  two different spectra (marked as red cross) given in (iii)  and (iv).  Outside the green boundary are

structure tokens corresponding to different material  and thickness combinations. These structure tokens with the same materials either form a

line shape or cluster together. For each line, the dot size is monotonically decreasing from one end to the other end, corresponding to the mono-

tonical thickness decrease from 500 nm to 10 nm. Most lines converge into two regions, with zoom-in details given in (i) and (ii) corresponding to

low refractive  and high refractive  index region,  respectively.  Our  model  demonstrates  the  ability  of  learning the material  and thickness from a

large dataset without their explicit inputs.
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able  to  learn  from  and  outperform  the  training  dataset.
In Fig. 4(a),  we  compare  the  MAEs  of  the  closest  struc-
tures  in  the  training  dataset  (orange  dots),  designed
structures  (blue  dots),  and  finetuned  structures  (red
dots). On average, the MAE of the designed structures is
0.0258, which is lower than the MAE of the closest struc-
tures  (0.0296)  in  the  training  set;  finetuning  the  thick-
ness can further reduce the MAE to 0.0192 (~24% reduc-
tion).  In Fig. 4(b),  we  compare  the  number  of  layers  in
the  target  structure  (the  structure  corresponding  to  the
target spectrum in the validation dataset) vs. the number
of layers in the designed structure. The zero upper diago-
nal matrix implies that our model learns to solve design
tasks  using  a  simplified  structure  with  fewer  layers  (~6
layers  on  average),  which  can  facilitate  the  fabrication
process as structures with fewer layers are easier to make.
Finally, we record the time-consumption in Fig. 4(c). On
average,  our  model  completes  each  design  within  0.1  s,
which is comparable as running a TMM simulation. We
detail  one  such  inverse  design  example  in Fig. 4(d).  By

running the sampling process multiple times, our model
can  output  multiple  different  structures  with  close-to-
target  spectrum  that  are  much  better  than  the  training
dataset. We also detail these designed structures to illus-
trate the diversity in Fig. 4(d). 

Spectrum filter
Now we will evaluate our model on practical inverse de-
sign  tasks.  One  such  application  is  the  spectrum  filter
which  is  used  to  selectively  reflect  or  transmit  specific
band  of  light.  Many  deep  learning-based  methods  have
been proposed to inverse design these filters17,34,35.  Here,
several  examples  are  tested:  a  band-notch  filter  at  550
nm,  a  band-notch  filter  at  700  nm,  high  reflection  in
NIR,  double  high  reflection  in  500–600  nm  and
800–1000 nm, etc. We set the input to be the perfect rect-
angular spectrum, which has 0% transmission in the de-
sired region and 100% transmission in the rest region. In
all these artificial spectrum design targets, our model can
output  designs  that  outperform  the  training  dataset.
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Fig. 4 | Results of inverse design performance on the validation dataset. (a) The Mean Absolute Error (MAE) on 1,000 random spectrum tar-
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Thickness  finetuning  can  further  improve  the  accuracy.
We illustrate two examples and compare their spectrum
in Fig. 5(a, b).  More  examples  and  details  can  be  found
in SI 2.5. 

Absorber
Perfect absorbers have been widely used in photovoltaics,
radiative  cooling,  detecting  and  solar-thermal  harvest-
ing4,10,36−39,  etc.  Although our model  is  trained on reflec-
tion  and  transmission  spectrum,  it  also  demonstrates
good performance for perfect absorbers. This is done by
simply setting the input spectrum as zero for both reflec-
tion and transmission. Our model gives multiple designs
and  we  show  one  design  example  in Fig. 5(c).  We  also
find that our model gives some similar structures report-
ed in ref.40 and ref.21. More details can be found in SI 2.4.

Apart  from perfect  absorbers,  our model  can also de-
sign  for  arbitrary  absorption.  Since  energy  conservation
guarantees that reflection + transmission + absorption =
1,  we can tailor  the input  spectrum by setting reflection

to  be  one  minus  absorption and setting  transmission to
be zero. Figure 5(d) gives one such design example. More
design examples can be found in SI 2.4. 

Structural color
Compared to dyes and chemical pigments, structural col-
ors2 exhibit unique advantages on high resolution, stabil-
ity and sustainability and have been widely used in color
printing41,42,  information  encryption43,  sensors44,  etc.
There  are  also  many  works  that  use  deep  learning  to
solve  the  structural  color  inverse  design18,20,45,46.  Usually,
colors  can  be  represented  by  a  three-dimensional  color
coordinate,  e.g.,  Lab,  RGB  or  xyY  values.  In  order  to
make  our  model  well  suit  for  this  application,  here,  we
propose  an  algorithm  that  can  convert  a  color  coordi-
nate  into  a  continuous  spectrum  in  a  generalized  way
(see SI 2.3). These converted spectra can be pre-calculat-
ed and will not impact the design process. When design-
ing for reflective color, we set the reflection spectrum to
be  this  converted  spectrum  and  transmission  spectrum
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the spectrum of artificial target, the spectrum of the closest structure in the training dataset and the spectrum of designed structure from our mod-

el (with thickness finetuning), respectively. (e–f) shows the example of designing reflective and transmissive structural color, respectively. We use

the color difference of ΔE to evaluate the design performance (smaller ΔE means smaller color difference). For each color, the first brick, second

brick, and third brick correspond to the target color, closest color in the training dataset, and designed color from our mode (with thickness fine-

tuning), respectively. More details and examples can be found in section 2 in SI.
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to  be  zero.  For  transmissive  color,  we  set  the  transmis-
sion spectrum to be this converted spectrum and reflec-
tion spectrum to be one minus transmission. In Fig. 5(e)
and Fig. 5(f),  we illustrate multiple design examples and
their color visualization for both reflective and transmis-
sive  structural  color,  respectively.  Details  on  the  basic
color  theory,  relationship  of  color  coordinate  and  color
spectra, and more examples can be found in SI 2.3. 

Design flexibility
Design  flexibility  adds  extra  freedom to  the  design  pro-
cess  because  researchers  can  impose  restrictions  on  the
material  selection  and  thickness  range  for  any  specific
layer  to  meet  the  fabrication  or  design  needs.  We  pro-
pose  and  apply  a  fast  but  still  generalized  method  of
“probability resampling” to impose restrictions in the de-
sign process. As illustrated in Fig. 6(a), this is done by re-
moving  these  structures  that  do  not  satisfy  constraints
from probability sampling. Since this method is indepen-
dent  of  spectra  targets,  it  can  be  used  to  design  for  any
applications.  Compared  to  many  deep  learning-based
methods,  this  method  can  be  generalized  to  different
types  of  constraints  on material  and thickness  selection.
On  the  other  hand,  compared  to  optimization-based
methods that usually require restarting the optimization

process when facing a different constraint, our method is
fast and can be quickly adapted to different constraints.

As an example,  we use  our model  to  inverse  design a
FP resonator. Here, the target spectrum has a resonance
absorption  at  610  nm  and  corresponds  to  a  three-layer
20  nm  Ag/150  nm  SiO2/50  nm  Ag  resonator  on  a  glass
substrate.  We consider adding four different constraints
separately:

1) Fix the first layer to be 100 nm SiO2

2) Remove Ag in the third layer
3) Limit the thickness of the first layer within [10, 150]

nm range and remove Ag/Al in the first layer
4) Specify the material arrangement to be a three-lay-

er Ag/Si3N4/Ag structure and design the thickness only
The first constraint can be used when a dielectric lay-

er at the air interface is needed for protection, while the
second constraint is practical when looking for an alter-
native to replace silver, considering silver is an expensive
metal. For the third constraint, we use it as a general ex-
ample  of  adding  thickness  and  material  restrictions  si-
multaneously.  We  use  our  model  to  design  structures
and we compare their spectra in Fig. 6(b–d), demonstrat-
ing  that  our  model  can  finish  designs  that  satisfy
desired  constraints  while  still  guaranteeing  spectrum
performance.
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In particular, the fourth constraint specifies the mate-
rial at each layer and only requires thickness design. This
is a traditional design process widely used by human ex-
perts and in many optimization-based methods. The de-
sign results in Fig. 6(e) show that given the spectrum tar-
get  and  material  arrangements,  our  model  can  be  used
for  direct  thickness  design  without  iterative  optimiza-
tion. Since this feature does not rely on the target optical
response, researchers can quickly examine if certain ma-
terial combinations can achieve the target spectrum and
obtain  their  corresponding  thickness  if  so.  We  provide
more examples of design flexibility in SI 3.2. 

Generalization ability
Although our model is trained on normal incident spec-
trum, its  strong generalization ability enables the design
towards different angles and polarization states, expand-
ing  allowable  applications  significantly.  This  is  achieved
through finetuning our entire  model  on a small  dataset.
We further propose the idea of “mixed sampling” to de-
sign structures that  satisfy multiple requirements simul-
taneously. 

Finetuning
Starting  with  the  OptoGPT  model  trained  on  a  10  M
dataset,  we can finetune this model on a smaller dataset
to  suit  for  light  incidence  of  different  angles  and  polar-
ization states. Figure (7a) gives the finetune diagram. For
example, in order to design for s-polarized spectrum un-
der  20°  incident  angle,  we  first  prepare  a  small  1M
dataset with such spectrum and then update entire mod-
el  by  10  epochs.  This  only  requires  1%  computing  re-
sources  compared  with  training  the  entire  model  from
scratch. Similar procedures can be done for other angles
and  polarizations.  In Fig. 7(b–g),  we  show  multiple  in-
verse  design  examples  finetuned  for  20°  s-polarization,
60° s-polarization, 10° p-polarization, 50° p-polarization,
30°  unpolarized  light  and  50°  unpolarized  light,  respec-
tively.  More  comparisons  between  pre-trained  model
and finetuned model are given in SI 4.1. 

Mixed sampling
Instead of designing the spectrum for a specific angle/po-
larization,  in  some  situations  we  hope  the  designed
structure can simultaneously realize multiple spectra un-
der different incident angles/polarizations, which has not

been  extensively  explored.  Benefited  from  our  model’s
probability  output,  we  can  simply  add  up  these  outputs
from multiple models that are specific to each situation,
and then do a probability sampling based on this mixed
output. This is called “Mixed sampling” and we illustrate
it  in Fig. 8(a).  As  an  example,  in Fig. 8(b),  we  use  this
method to design an angle-invariant spectrum at 0°, 20°
and  40°  for  unpolarized  light.  More  examples  can  be
found in SI 4.2. 

Discussion and conclusion
By  converting  the  multilayer  structure  into  a  sequence
using  structure  tokens  and  structure  serialization,  we
propose OptoGPT to effectively deal with the non-trivial
inverse  design  problem  in  multilayer  structure.  Com-
bined  with  many  proposed  techniques,  our  model  can
unify  the  inverse  design  under  different  types  of  input
targets  under  different  incident  angle/polarization,  be
versatile to different types of structures, as well as facili-
tating  the  fabrication  process  by  providing  the  diversity
and  flexibility.  We  compare  our  model  with  existing
methods  in Table  2 in  SI.  We  hope  the  development  of
OptoGPT  will  make  the  multilayer  thin  film  structure-
based inverse design effective in methodology and easily
accessible to researchers and engineers.

The interesting findings of the hidden representations
of OptoGPT suggest that it has acquired domain-specif-
ic  knowledge  pertaining  to  optical  multilayer  structures
through  the  training  process.  Furthermore,  the  model
has  demonstrated  the  capacity  to  apply  this  acquired
knowledge  effectively  in  the  inverse  design  process.
However, the current framework still lacks explain abili-
ty  and  does  not  allow  users  to  directly  understand  the
physical  principles  involved in  its  designs.  For  example,
is  there  a  general  principle  for  designing  absorbers  and
DBR?  How  to  design  high  saturation  structural  color
step-by-step? We hope future work can find a way to ex-
tract  and  formulate  these  design  principles  from  the
model and apply them to guide inverse design.

In addition, using similar methods, our model can be
expanded towards high-dimension complicated photon-
ic structures, e.g., 2D metasurfaces or 3D waveguides, us-
ing  similar  tokenization  method  in  Vision
Transformer47. However, one limitation is that our mod-
el  requires  a  large  dataset  for  training,  which  is  also  a

Ma TG et al. Opto-Electron Adv  7, 240062 (2024) https://doi.org/10.29026/oea.2024.240062

240062-10

 

https://doi.org/10.29026/oea.2024.240062
https://doi.org/10.29026/oea.2024.240062


$

common criticism for  many  GPT models.  For  example,
ChatGPT  is  trained  on  billions  of  tokens  using  ~10000
GPUs, costing ~ 10M for a single training. In this work,
because  of  the  constraint  on  computation resources,  we
need  to  simplify  our  design  problems,  including  using
limited types of materials, limited spectrum range, thick-
ness  discretization  as  well  as  the  maximum  number  of
layers that can be designed, all of which can be extended
with more computation resources. Despite using a large-
scale  dataset  with  10  million  samples  for  training,  it  is

∼ 10−52

important  to  recognize  that  this  dataset  only  covers  a
small  fraction  ( )  of  the  expansive  and  complex
design space associated with optical  multilayer thin film
structures.  Due  to  this  limitation  of  its  training  dataset,
OptoGPT  may  fail  to  find  a  design  that  lies  outside  the
boundaries  of  the  sampled  design  space  (see  SI  4.2).
Close  collaboration  across  multiple  research  groups  is
needed to obtain a  better  model  for  a  more general  and
better  photonic  inverse  design  that  expands  to  more
complicated structures.
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